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Quasifree proton scattering from %He is examined on the basis of available data. Cross
sections are given in the pole-dominance approximation for either two protons or a proton
and deuteron detected in coincidence. The cross sections are evaluated for a constant He
vertex and a separable-potential model of the *He vertex amplitude. Both two- and three-
body breakup of *He are considered, with final-state rescattering included between the spec-
tator nucleons in three-body breakup. It is shown that the asymptotic form of the coordinate-
space *He wave function governs the shape of these low-momentum-transfer cross sections
and that final-state rescattering between the spectator pair in *He(p, 2p)pn mainly affects

the magnitude of this cross section.

I. INTRODUCTION

The three-nucleon system has become important
as a testing ground for phenomenological two-nu-
cleon interactions and in extracting information
about the structure of 3He and *H.! Most investiga-
tions, both experimental and theoretical, deal
with the three-nucleon system through its ground-
state properties or through scattering processes
which involve only three nucleons, e.g., n-d scat-
tering or electron scattering from He. In princi-
ple, it is possible to investigate the structure of
3He and °H by bombarding them with strongly in-
teracting particles, the simplest being protons
(or neutrons). One objective in the initial stages
of p-°He scattering studies is to plan experiments
whose interpretation does not require consideration
of a four-body problem. This is achieved with
coincidence experiments like *He( p, 2p) and 3He-
(p, pd) under prescribed kinematic conditions.?™
The approach is to adjust the experimental param-
eters to correspond to quasifree scattering, i.e.,
low momentum transfer.

In this paper, we present a theoretical study of
the recent *He( p, 2p) and 3He(p, pd) data.?™* Our
objectives are twofold: (1) to determine what
must be known about the 3He wave function in or-
der to interpret the data, and (2) to calculate the
appropriate cross sections with wave functions
derived from a separable-potential model of the
two-nucleon interaction. We show that these ex-
periments are mainly sensitive to the asymptotic
form of the coordinate-space *He wave function
and that final-state rescattering between the spec-
tator pair in 3He( p, 2p)pn must be included to in-
terpret the data.

The development begins in Sec. II with a brief
justification of pole dominance and a derivation
of the cross-section formulas. In Sec. III, the
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cross sections are computed assuming constant
vertices and the relationship of this approximation
to wave-function calculations is stressed. Sections
IV and V contain, respectively, the separable-
model calculations and the conclusions. An Ap-
pendix summarizes the kinematical considera-
tions.

II. POLE DOMINANCE

The experiments under consideration differ in
their incident proton energy, but are similar in
that they all correspond to low momentum trans-
fer, q. The incident proton energy determines
the importance of initial-state, p-3He rescatter-
ing corrections, which are greatest at low ener-
gies (100 MeV). The main effect of initial-state
rescattering is to decrease the cross section with-
out altering its shape.® Therefore, when this ob-
servation is combined with the low-momentum-
transfer conditions, ¢< 0.5 fm™, a first attempt
to understand the data can begin with the assump-
tion that the amplitude is dominated by the pole
diagram. A necessary, but not sufficient, condi-
tion for the applicability of the pole approxima-
tion is that 0 <¢< K, where K?/2u is the proton-
deuteron binding in *He, with p the p-d reduced
mass.® For 3He- p+d, K~0.42 fm~!, and in the
experiments, g=< K, thus giving support to this
approach. In this approximation, the derivations
of the *He(p, 2p)d, °He(p, 2p)pn, and *He(p, pd)p
cross sections are similar, so we outline only the
3He(p, 2p)d case.

The *He(p, 2p)d amplitude is calculated from the
diagram in Fig. 1. The differential cross section
averaged over initial spins and summed over final
spins is
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where V,, is the magnitude of the relative velocity of the incident proton and 3He, ; comes from the spin
averaging, the four-dimensional 6 function requires over-all four-momentum conservation, and the mean-
ing of the phase-space momentum variables is evident from Fig. 1. The amplitude A;; in pole approxima-
tion is given by
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where A°He and A®® are the *He— p +d and p +p— p +p vertex amplitudes, respectively. The m’s represent
the magnetic quantum numbers. A*” is taken to be antisymmetric with respect to exchange of (kj,;) and
(E;’, m}), thus assuring that the over-all amplitude is antisymmetric with respect to exchange of the two
final-state protons. Conservation of energy at the 3He vertex permits us to write the propagator as
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where B, is the p-d binding energy in *He(% =c =1). We shall approximate the *He ground state by its dom-
inant, spatially symmetric 2S,,, component. Thus, the *He—- p+d vertex amplitude with its spin dependence
displayed explicitly with a vector-coupling coefficient is

A°He (G m my,, m) =AM (q)X(1m g3 7, |3 m) (4)
and ¢=|q|. With Eq. (4), the spin sums can be done to get
1 —
|2=]A3H 2 PPy ann? 2 5
'Ef lA.fiI IA e(q)l (3q2/4Mp)+Bz 2 pz_’ |A (mP mP’umP)I ( )
1, mpm
m;m,f'

When Eq. (5) is substituted into Eq. (1), the 3He(p, 2p)d cross section is

do |A*Me(@)|2 _do(pp) . (s ,
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and
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The tilde, ~, means in the p-p center-of-mass system and we have suppressed the ¢ dependence of the

p-p cross section. The kinematics, except for the exchanged proton, are treated relativistically. Thus,
Eq. (6) is the general form of the *He(p, 2p)d cross section in pole approximation.

The *He(p, 2p)pn cross section is obtained from a diagram similar to the one in Fig. 1, except the spec-
tator deuteron is replaced by a proton-neutron pair moving relative to each other with momentum %. The
phase-space volume in Eq. (1) has another factor, d®/(27)%, and the *He vertex amplitude must be general-
ized to account for its dependence on % and the spin coupling, S, of the p-» pair. Equation (4) is replaced
by
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and the spin sums are done as before. The form of the cross section is
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where B, is the binding energy of *He. The kinematic factor has the same form as Eq. (7), but it now de-
pends on k and M, is everywhere replaced by M, +M,. The range of the k integration is determined from
the kinematics and is discussed in the Appendix.

The remaining cross section, *He(p, pd)p, cannot be based on a single pole diagram if low-incident-pro-
ton energies (50 MeV) are to be considered. In addition to the usual diagram shown in Fig. 2, two other
diagrams must be considered. The first comes from the antisymmetrization requirement for the two out-
going protons, which amounts to exchanging -§ and E; in Fig. 2. The second arises from the neutron pick-
up process® shown in Fig. 3. These diagrams add coherently, and destroy the factorizability of the cross
section in contrast to Egs. (6) and (9). However, at high incident proton energies (2100 MeV) and low gq,
the contribution from the latter two processes should be negligible. The antisymmetrization diagram will
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be suppressed due to the kinematic requirement of low g, while the neutron pickup diagram will be small
due to the small n +p—d vertex amplitude at high energies, relative to the diagram in Fig. 2. Since we
consider only the data at 587-MeV incident proton energy, the cross section is derived on the basis of
Fig. 2.

The derivation of the 3He(p, pd)p cross section follows closely the 3He(p, 2p)d case. The notational
changes in Eqgs. (1) and (2) are obvious. The main difference in this derivation is the spin sums. They
introduce a factor %, which combines with the 1 in Eq. (1) to give %+ —the necessary factor for the spin

average in introducing the p-d cross section. The result is

do____ |A’e(g)|®  do(pd)
dQ,dQgde; ~[(3q2/4M,)+B,]? 4%}

and
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Equations (6), (9), and (10) are the basis of our discussions.

III. CONSTANT VERTICES

Thus far, two main approximations have been
made in our discussion: (1) pole dominance; and
(2) the ®He ground state is 2S,,,. These assump-
tions led us to factorable forms of the coincidence
cross sections. Our major concern in these ex-
pressions is the vertex amplitude, A(g). The kine-
matic factors can be computed with the formulas
given, but the p-p and p-d cross sections as ex-
pressed are not known, since they are “off-shell”
cross sections, i.e., the exchanged particle is
virtual. Since g is small (¢<0.5 fm™!) in the ex-
periments of interest, we introduce a third as-
sumption: The exchanged particle is on shell.
This corresponds to neglecting off-shell varia-
tions in the cross sections. We then substitute
the on-shell p-p and p-d cross sections at the
appropriate kinematical values. Usually, these
cross sections are taken from experiment and
thus introduce uncertainty into the computation
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FIG. 1. 3He(p,2p)d pole diagram.

T
of the coincidence cross sections. This forms
the framework within which A(q) is studied.

We begin our investigation of A(g) by assuming
that it is independent of q. When A (q) is taken to
be a constant, the shape of the momentum distri-
bution as a function of g obtained by dividing the
coincidence cross section by the product of the
kinematical factor and the p-p (p-d) cross section
is determined by the propagator. This fact is a
direct consequence of the pole-dominance approxi-
mation. We see in Figs. 4 and 5 (solid curves),
that the skape of the momentum distributions is
basically determined by the propagator for the
SHe( p, 2p)d data at incident-proton energies of
35 and 155 MeV, respectively. At 155 MeV, we
plot the coincidence cross section rather than the
momentum distribution since the kinematic factor
is a slowly varying function of ¢ and the p-p cross
section is taken to be a constant. The value of
[[(4M,)/3]A%"e|2/(27)? used to set the normaliza-
tion in each case is 3.5x107% fm~! at 35 MeV and

FIG. 2. A %He(p,pd)p pole diagram.
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3He p

FIG. 3. Neutron-pickup diagram in *He(p, pd)p.

8.9x107% fm™! for 155 MeV.” The difference in
these values is a measure of the importance of
initial-state rescattering (distortion) at the lower
incident-proton energies.®

The vertex constant |[(4M,)/3]A°"®|2/(27) can
also be extracted from the 3He( p, pd)p reaction.
Data are available at both 35 and 587 MeV, but
the 35-MeV data do not appear to be describable
by the single diagram given in Fig. 2.2 We men-
tioned above which additional diagrams most likely
come into play, while Epstein et al.® have shown
the significance of the neutron pickup diagram dis-
played in Fig. 3. Since the vertex constant has
already been extracted from 35-MeV data, we
consider only the 587-MeV data. Our curve in
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FIG. 4. 3He— p + d momentum distribution at 35-MeV
incident-proton energy. The solid curve is the constant-
vertex result and the dashed curve is computed with the
separable-potential model described in the text. The
data are from Ref. 2.
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FIG. 5. %He(p, 2p)d cross section at 155-MeV incident-
proton energy. The solid curve is the constant-vertex
result and the dashed curve is computed with the separ-
able-potential model described in the text. The data are
from Ref. 3.

Fig. 6 yields 7.1x1072 fm™! for the vertex con-
stant.® This value is ~25% smaller than the value
obtained at 155 MeV. We would have expected the
587-MeV result to be greater than that at 155 MeV,
since initial-state rescattering should be negligible
at 500-600-MeV incident energy. However, 25%

is not a large difference and probably lies within
present absolute experimental errors. Thus, with-
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FIG. 6. °He(p, pd)p cross section at 587-MeV incident-
proton energy. The solid curve is the constant-vertex re-
sult and the dashed curve is computed with the separable-
potential model described in the text. The data are from
Ref. 4.
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in these errors, the presently available data ap-
pear to be consistent.

We could go on and consider the 3He(p, 2p)pn
reaction in the same way to extract the He— p
+(pn) vertex constant, but our point about the
shape is adequately served by the above discus-
sion. The question which now arises concerns
the meaning of this result with respect to wave-
function calculations. First we establish how wave

S—

of °He as

[*He; L m) = 9, (123)xL/21(3, 12),

functions come into play.

Wave-function calculations based on the Schro-
dinger equation are valid as long as the particles
emerging from the *He vertex are nonrelativistic.
The vertex amplitude, Aa“e(q), can then be com-
puted if appropriate wave functions are available.
As an example, consider the reaction He(p, 2p)d.
If particle 3 is taken to be the neutron, we can
write the spatially symmetric %S, ,, ground state

(12)

where zpo(TZ_Z;) is the spatial wave function symmetric under particle exchange and xL72)(3 12) is the total-
spin-3 function antisymmetric under exchange of particles 1 and 2. The two-body p-d state in the 3He ver-

tex is

- — 1
|pD;§,mqim,) = 75 GLg3(L, 23052 (X, (23),

(13)

with @, the antisymmetrization operator for particles 1 and 2, and g3(1, 23), the product of the deuteron
wave function and a plane wave of momentum J for the proton-deuteron relative motion. The He—-p+d

vertex amplitude is [See Eq. (4)]

ASHe(ﬁ;maﬁp,mF(Pd;ﬁ,ma% |V12l3He; §m> (14)
3 .
=—<;ﬁi+39<ﬂkmﬂu"uPH%%m>, (15)
P

where V,, is the two-nucleon potential between particles 1 and 2. The Schrddinger equation was used in
going from Eq. (14) to Eq. (15). When the spin sums are performed as before, the momentum distribution

becomes

|A®He(q)|?
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¢ p(7) is the coordinate-space, s-wave, deuteron wave function and its momentum space counterpart is
@p(k). The coordinates T and p are the standard Jacobi coordinates for three particles and all bound-state
wave functions are normalized to unity. Thus the relationship of the vertex amplitude to wave functions is

clear,

The answer to our question of wave-function
interpretation can be established with Eq. (16).
Since we are concerned with small values of ¢,
the important contributions to the p integration
come from p values 22 fm, thus emphasizing the
asymptotic region of y,(F, p) with respect to p. In
this region, it is reasonable to take y,(T, p) as the
following factorizable form!: !

. - e B
ll’o(r,P)m N®(r) . (18)

It becomes clear immediately what the meaning of
constant vertices is with respect to wave-function
calculations, since the Fourier transform of e~8?/p

r

is the propagator:

35 -5 €00 __4T_
fdpe P (19)
If B?=4M,B,/3, we reproduce the constant-vertex
result. The point is that the low-g experiments
are mainly sensitive to the asymptotic region of
the three-nucleon wave function; that region where
one particle is relatively far removed from the
remaining two. The major contribution to the
amplitude comes from the external region in which
there is only a weak nuclear interaction between
the particles. This is the realm in which the pole
approximation is valid.’? Therefore, it is clear
why the Irving-Gunn wave function, which behaves
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asymptotically like Eq. (18), reproduces the shape
of the data, but the Irving and Gaussian wave func-
tions, which do not behave in this way, do not.'®
The exponential wave function behaves similarly
to the Irving form, asymptotically.

We emphasize that the above discussion is pred-
icated on two main conditions. Firstly, that the
condition of pole dominance be satisfied: ¢V 2uB,.
Secondly, that the major effect of the initial-state
rescattering corrections (distortion) is to reduce
the magnitude of the cross section and not to alter
its shape to any appreciable extent. There is suf-
ficient evidence that this is the case.3: %15

IV. SEPARABLE-POTENTIAL MODEL

In the previous section, we examined the general
character of the low-momentum transfer 3He(p, 2p)-
d and 3He(p, pd)p data. We now consider the data
with a model where the wave functions are derived
from a parametrization of the two-nucleon inter-
action. This approach permits cross-section pre-
dictions to be made which are independent of other
three-body data and the 3He( p, 2p)pn cross section
to be computed in a consistent manner.

This model was used previously by the author
for a study of quasielastic electron scattering
from 3He and ®*H.'®''" The two-nucleon interaction
is represented by an s-wave, spin-dependent,
separable potential of the Yamaguchi form.!® The
strength and range parameters are determined by
fitting low to medium energy properties of the two-
nucleon system.!® The ground-state wave function
of 3He, which is taken to be the spatially sym-
metric %S,,, component, is computed from an aver-
age of the singlet and triplet s-wave, two-nucleon
interaction. This interaction gives 9.33 MeV for
the three-nucleon binding energy. The corre-
sponding wave function, when used to compute
the charge radius, yields 1.75 fm for a proton
charge radius of 0.80 fm. The charge-form-factor
prediction agrees reasonably well with the data
out to four-momentum transfer of ~4 fm™2, Agree-
ment is obtained with all the *He and °*H quasi-
elastic electrodisintegration data except the *He

J
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coincidence data; this includes 3He(e, e’) and
3H(e, e’) at 248.8 and 398.4 MeV, and the tritium
coincidence data, ®H(e, e’p)nn. Further details
and the values of the parameters used are given
in Ref. 17.

Since a great deal of emphasis has been placed
on the fact that the propagator essentially deter-
mines the shape of the coincidence data, we com-
pare the separable-potential model He—~ p +d
momentum distribution with the constant vertex
form and extract |[(4M,)/3]A%He|2/(27)3. The two
distributions are compared in Fig. 7 with the con-
stant-vertex parameter determined to be 8.9 X102
fm~! from the separable-model distribution at g
=0. The curves have similar shapes and in the
region of maximum difference, ~0.2 to ~0.5 fm™,
differ by 15-20%. If the separable-model value
of B,, 7.10 MeV, is used in the propagator of the
constant-vertex calculation, the shape of the re-
sulting momentum distribution is indistinguishable
from that of the separable-model distribution.
Therefore, a 3He wave function with a binding en-
ergy closer to the experimental value would be
expected to give a higher value at 4=0 and a shape
essentially the same as the propagator form cal-
culated with the experimental binding energy.

Comparison of the separable-model to the con-
stant-vertex case indicates what to expect when
comparing the separable model to the *He( p, 2p)d
and *He(p, pd)p results. At 35 MeV, we predict
the *He( p, 2p)d momentum distribution to have
roughly the shape of the data, but it is a factor
2.5 too high. The 155-MeV prediction has its
maximum at the same value as the data, but does
not reproduce the shape of the data as q increases
beyond 0.2 fm~!. For *He(p, pd)p at 587 MeV, the
separable model is ~40% too high. These results
are shown as the dashed curves in Figs. 4-6.

The only *He( p, 2p)pn data published to date are
at 155 MeV.® We compute the cross section on
the basis of Eq. (9), with the 3He~ p +(pn)° vertex
determined by the separable-model wave functions.
The cross section comes from the incoherent sum
of two amplitudes: one where the spectator pair
is coupled to singlet spin and the other, triplet
spin. The momentum distribution is

[ a0 @k, D H , (20)

*.3
*3

where cp({.)’(}‘() is the spin-s, incoming wave, two-nucleon scattering wave function in momentum space.
When only the plane-wave part of (p({s (k) is used in Eq. (20), this means the final-state rescattering be-
tween the spectator particles is neglected. To demonstrate the importance of the rescattering, we com-
pute both cases. The results’ are shown in Fig. 8. The cross-hatched region around ¢ =0 is kinematically
inaccessible (see Appendix). The plane-wave calculation yields a cross section more than a factor of two
higher than the calculation which includes the rescattering.2° Also, the shape of the plane-wave curve
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is different than the rescattering curve. Atten-
tion should be given to the small contribution of
the triplet rescattering by comparing the full re-
scattering curve (singlet plus triplet) with the
singlet rescattering curve (triplet contribution
set equal to zero). Moreover, the factor of four
difference between the 3He(p, 2p)d and *He(p, 2p)-
pn cross sections is roughly reproduced. These
two results combined reflect the relative impor-
tance of the p-d, p-(pn)°=°, and p-(pn)°~! wave
function overlaps with the *He ground state. The
p-d overlap is the most important, while the
p-(pn)®~! overlap is of least importance. This
result is compatible with the fact that the d and
(pn)S=! wave functions are orthogonal. The factor
of 4 difference between the *He( p, 2p)d and 3He-
(p, 2p)pn cross sections can thus be attributed
mainly to the d being more like the ( pn) pairing
in 3He than the (pn)S=° is. It should also be men-
tioned that though a large portion of the p-(pn)S=°
overlap comes from the region of low relative ( pn)
momentum, it is not concentrated at zero relative
(pn) momentum. The maximum relative energy of
the spectator (pn) pair ranges from ~5 MeV at
q¢=0.1fm™! to ~30 MeV at ¢=0.5 fm ™.

V. CONCLUSIONS AND DISCUSSION

The survey of the available p-*He coincidence
data presented above draws us to three conclu-
sions: (1) The shape of the coincidence cross sec-
tions is predominantly describable by the pole
mechanism with a constant *He vertex. In a non-
relativistic Schrédinger-equation description of
the ®He vertex, this means only the large-distance
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FIG. 7. Comparison of constant-vertex and separable-

model momentum distributions at low-momentum transfer.

behavior of the *He wave function is being tested
in low-momentum transfer experiments. (2) Final-
state rescattering between the spectator pair in
the *He(p, 2p)pn reaction is very important. In-
clusion of the rescattering reduces the calculated
cross section more than a factor of two compared
to letting the spectator particles move freely rela-
tive to one another. This is an indication of the
relative importance of the various wave function
overlaps with the *He ground state. For example,
the p-d overlap with He is large compared with
the p-(np)S=! overlap. (3) Initial-state rescatter-
ing (distortion) is important, especially at the
lower energies. This is seen by comparing the
constant-vertex values of the 35- and 155-MeV
data, and the result from Ref. 3 that the effect
reduces the cross section by 25-30% at 155 MeV.
As more experimental data of this type become
available, the consistency of the data at different
energies can be checked by extracting the He
vertex constants in the approximation of a constant
3He vertex. If the initial-state rescattering cor-
rections are included, the extracted vertex con-
stants should all be the same. Thus, the problem
of including the initial-state rescattering corre-
sponding to diagrams like those in Fig. 9 will

T T T T T T T T T T T T
o6 1
051
04 1
03 4
02
—
>
@
E=1P=
=
o~
- Ol | 1
—> 009 ]
—a 008 1
w -
bt 007
= a - 4
bl 006
©| T 005 - 1
% 004 |- ————Plane Wave (x0.5) 4
—— — Singlet + Triplet
003 |- Sinqlet i
0.02 * 4
0.0l T B 1

1 1 1 l 1 1
05 04 03 02 0l 00 OJ 02 03 04 0.5 06
q(fm-1)

FIG. 8. *He(p,2p)pn cross section at 155-MeV incident-
proton energy. The curves are computed with the separ-
able-potential model described in the text. The data are
from Ref. 3.
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FIG. 9. Initial-state rescattering diagrams.

become more important. One way of including
this effect is through the conditions of unitarity
and dispersion relations.?! This leads to an equa-
tion of the Omnes-Muskhelishvilli type. Either
from elastic p-°He data or an appropriate model,
the necessary amplitudes (phase shifts) can be
inserted and the initial-state rescattering effects
computed.

It is desirable to begin obtaining data for a larg-
er range of q. At the same time, however, it is
very important to determine when the pole-domi-
nance approximation is no longer valid. That is,
by means of the Treiman-Yang test when it is
applicable,??’ 2 determine at what ¢ this breakdown
occurs. This is crucial to determining what must
be understood as more sensitivity to the *He wave
function is gained. Of course as g becomes larger,
off-shell effects in the p-p and p-d vertices be-
come more important. However, the question
remains whether these experiments are really
sensitive to these effects and whether off-shell
effects can be studied in this way.

Finally, there is always the question of Coulomb
effects which manifest themselves in numerous
ways; 3He replaced by °H or (p, pn) instead of
(p, 2p). Nevertheless, progress in these investi-
gations depends on what complications arise and
how they can be handled to maximize the extrac-
tion of information about 3He and the two-nucleon
interaction. One must not lose sight of the fact
that this work is on the edge of the four-body prob-
lem.
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APPENDIX: KINEMATICS

As an example of the kinematical relations in-
volved, we consider the SHe( p, 2p)d and 3He(p, 2p)-
np reactions at 155 MeV. Conservation of four-
momentum yields three kinematical equations:

2
€p +Egy, €4 +E) +e;'+(5——), (A1)
M’
k, =qcos6, +k,cosb, +k; cosb, , (A2)
0=gsiné, +k; siné, — k; sinb} . (A3)

The notation is defined in Fig. 1 and Sec. II, and
the angles are referred to the incident-proton
direction in the laboratory. The parenthetical
term arises only when the deuteron is disinte-
grated. In that case, €/ is replaced by €.

The fixed quantities in the experiment are k,(¢,),
kj(€;), and 6;, while 6, is varied. This leaves
three unknowns, q(e!), 6,, and kJ(e}), with three
equations to determine them. As 6, varies from
28 to 72° q decreases from 0.528 fm ™! to zero
and then increases again to 0.855 fm™!.

The case where the deuteron is disintegrated
introduces another unknown into the kinematics —
the relative momentum of the spectator pair, «.
To compute the cross section, an integral over
the appropriate range of x must be performed.
The maximum value, k..., is determined by the
fact that for fixed g, k increases at the expense of
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k}(e}) [see Eq. (A1)]. Therefore, the minimum
value of &/ allowed by Eqs. (A2) and (A3) is deter-
mined, and then «k,_, from Eq. (Al).

It is straightforward to show that, for the con-
ditions of the Orsay experiment, g has a minimum
value, ¢,;,#0, in the 3He(p, 2p)pn case. An im-
portant observation is that as g— ¢, Kpax— 0.
Thus, the range of k integration becomes smaller
and smaller, until finally, ¢, is reached. Then

the cross section is zero. This is the explanation
of the sharp drop in the calculated *He(p, 2p)pn
cross section as q.;, is approached. (¢, was
computed to be ~0.018 fm ™! for the Orsay experi-
ment.)

All transformations from laboratory to center-
of-mass quantities and for computing appropriate
energies at the p-p and p-d vertices were done
using relativistically invariant expressions.
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