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Results of calculations on the three-nucleon system are presented for two potentials: a
spin-dependent square well potential acting in s waves, and a spin-dependent rank-one sep-
arable potential, which gives exactly the same s-wave phase shifts and deuteron binding en-
ergy as the square well. Significant differences between the T matrices arising from these
potentials occur as soon as one goes off the energy shell by 40 or 50 MeV (c.m.). In the
three-nucleon system the square well produces a triton binding energy of 9.11 MeV, a dou-
blet scattering length of 0.414 fm, and quartet scattering length of 6.31 fm. The correspond-
ing parameters for the separable potential are 9.92 MeV, —0.165 fm, and 6.33 fm. The re-
sults of calculations on the doublet and quartet s-wave elastic scattering amplitudes are pre-
sented for neutron lab energies up to 14.1 MeV. It is found that the doublet amplitudes are
quite sensitive to off-shell effects, while the quartet amplitudes are not. A previously de-
veloped off-shell effective range theory for the half-off-shell T matrix is extended to the fully-

off-shell case.

I. INTRODUCTION

It is by now well known in nuclear physics that
elastic nucleon-nucleon scattering determines the
on-shell T matrix, T,(k, k; ¥*+ic), while what is
needed to carry out many calculations is knowledge
of the off-shell T matrix T,(p, ¢; s). In order to
study the sensitivity of the results of calculations
to the off-shell T matrix, several authors have
turned their attention to the problem of construct-
ing T matrices with the same on-shell values but
different off-shell values.

It has been known for some time that knowledge
of the S matrix does not uniquely determine the
Hamiltonian of a system. In particular, Ekstein'
demonstrated the existence of a large class of uni-
tary transformations which produce Hamiltonians
leading to the same S matrix. Necessary and suf-
ficient conditions that must be fulfiled by unitary
transformations in order to give phase-shift-equi-
valent potentials have been found by Mittelstaedt
and Ristig.? Unitary transformations have been
used to transform hard-core potentials into mo-
mentum-dependent or nonlocal potentials.?

Ristig and Kistler? have applied this transforma-
tion technique to Hartree-Fock calculations of nu-
clear matter, and found very different saturation
curves for phase-shift-equivalent potentials. Oth-
er authors®™ have also used unitary transforma-
tions in order to study off-shell effects in nuclear
matter. In particular, a very convenient unitary
transformation has been introduced by Coester et
al.® and applied to nuclear matter calculations,
which assume local s-wave potentials with hard
as well as Yukawa cores. In their work the differ-
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ence between the unitary transformation and the
identity is a short-range operator of rank two.
This transformation has also been applied to nu-
clear-matter calculations with the Reid soft-core
potential.® The general result of all these calcula-
tions is that off-shell effects are very important in
nuclear matter.

The relation between the T matrices that arise
from phase-shift-equivalent potentials produced by
unitary transformations has been derived by Mona-
han, Shakin, and Thaler.® They have also con-
structed unitary transformations that leave the
phase shifts unchanged and lead to a prespecified
bound-state wave function, as well as transforma-
tions that leave both the phase shifts and the bound-
state wave function unchanged.®

Another approach for studying off-shell effects,
which eliminates explicit reference to the potenti-
al, has been introduced by Baranger et al.’® They
have shown that if the T matrix corresponds to a
complete orthonormal set of two-particle wave
functions, then the fully-off-shell T matrix can be
obtained from the phase shifts and the symmetric
part of the half-off-shell T matrix. This result
assumes no bound states are present and does not
take account of tensor forces. Extensions to bound
states'™!? and tensor forces'? have been developed.
Amado®® has shown how these techniques can be
used to construct a 7 matrix that is separated in-
to a term that gives the exact phase shifts and
binding energy, plus a term that vanishes on shell.

The approach of Picker, Redish, and Stephenson'*
also avoids dealing directly with a potential. They
parametrize the wave function, and use it and the
on-shell T matrix to calculate the half-off-shell
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T matrix. In their approach the T matrix does
not correspond to a complete orthonormal set of
wave functions.

Several of the separable potentials that have been
introduced' lead to an S matrix which is a ration-
al function of the momentum. It has been known
for some time'® how to construct a local potential
with a given rational S matrix. Using this proce-
dure Kok, Erens, and van Wageningen'” have car-
ried out calculations on a model triton using the
Yamaguchi potential’® and the phase-shift-equiva-
lent local potential. Their model triton consisted
of three identical spinless bosons. They found dif-
ferences of about 1 to 3 MeV in the triton binding
energy, depending on which two-body parameters
the potentials were fitted to. The separable poten-
tial always gave the larger binding energy. Sriv-
astava et al.’® have constructed the local potentials
that are phase shift equivalent to the Tabakin and
Mongan potentials and used them in nuclear-mat-
ter calculations. They only find significant differ-
ences in the case of Tabakin’s one-term separable
potential.'®

Yet another approach to studying off-shell effects
is based on the fact that the inverse scattering
problem for rank-two separable potentials does not
have a unique solution.'®*?* In particular, one of
the two form factors in the potential can be chosen
almost arbitrarily and the other one can be deter-
mined from the phase shifts. If the bound-state
wave function is specified the arbitrariness is
somewhat reduced. A unique potential is obtained
if the form factor of the repulsive part of the po-
tential is forced to be orthogonal to the given
bound-state wave function. Using these rank-two
separable potentials Fiedeldey?! has calculated the
binding energy of a model triton and found values
ranging from 7.5 to 15.88 MeV.

Here we shall study off-shell effects in the three-
nucleon system by comparing the results of calcu-
lations with two potentials: A spin-dependent
square well potential acting in s waves and a spin-
dependent one-term separable potential that gives
the same S, and 'S, phase shifts as the square
well. The method for constructing the rank-one
separable potential that is phase shift equivalent
to a purely attractive or repulsive local potential
has been given previously,?® and is based on choos-
ing the Fredholm determinants corresponding to

TABLE I. Values for the off-shell lengths.

State Al (fm) Ajeparsble fr)
3s, 0.8884 0.9359
1s, 1.1299 1.1650

the two potentials to be the same. The square-
well model used here is somewhat realistic in that
it ‘s known®* ® to give good results for the low-en-
ergy properties of the three-nucleon system. The
three-nucleon properties that we compare are the
triton binding energies, the doublet and quartet
scattering lengths, and the elastic s-wave scatter-
ing amplitudes up to a neutron lab energy of about
14 MeV.

In Sec. II we compare the T matrices arising
from the two potentials. Three things are com-
pared: the parameters in off-shell effective range
theory,!® 20.24 the half-off-shell extension func-
tions,?® and the fully-off-shell T matrices at nega-
tive energies. We find big differences as soon as
one goes off the energy shell by 40 or 50 MeV
(c.m.). In Sec. III we compare the three-nucleon
quantities. The general result is that the doublet
state is quite sensitive to off-shell effects, while
the quartet state is not. Section IV is a summary
and discussion of the results and gives some sug-
gestions for future work. The generalization of
off-shell effective-range theory from the half-off-
shell case to the fully-off-shell case is given in
the Appendix. Throughout we work in units in
which 7% and the mass of the nucleon are one.

II. COMPARISON OF THE 7T MATRICES

The T matrix in partial wave ! that arises from
the one-term separable potential

Vi(p, @)= g, (PN, g,(q) (2.1)
is

Tp,q;s)=V,(p,q)/D,(F), s=RK+ic, (2.2)

we
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FIG. 1. Values of the S, half-off-shell extension
function defined by (2.13).
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where

Dy(k)=1+ J‘m X & (x)4nxdx 2.3)

b X =K —ie

It is shown in Ref. 20, that in order for this T ma-
trix to have the same on-shell (p =q = &) values as
those of a local potential, we must have

A, g,2(k) = (27%k) " Imf, (k)
=—(27% k)| £, (B)| sind, (k) . (2.4)

Here, f,(k) and §,(k) are the Jost function and
phase shift for the local potential. It follows?®
from a dispersion relation for the Jost function
that this choice of g;(k) implies that

D,(R) =f,(R) . (2.5)

Thus the separable potential T matrix is easily
obtained from the Jost function of the local poten-
tial. We see from (2.4) that sing, (k) must be of one
sign for all real &, otherwise g;(k) will be real for
some k and pure imaginary for others.

For a square well of depth V, and width b, the
s-wave Jost function is

fo(k) = e'*®(K cosKb - ik sinKb)/K ,
K=(Vy+ )2,

The parameters that appear here were taken in
the triplet state to be V,, =34.406 MeV and b,
=2.0719 fm, which correspond to the scattering
parameters q, =5.425 fm and 7y, =1.749 fm. In the
singlet state the potential parameters were taken
to be V,,=14.017 MeV and b, =2.5895 fm, which

(2.6)
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FIG. 2. Values of the ‘So half-off-shell extension
function defined by (2.13).

were obtained by using a,=-23.714 fm and 7,
=2.704 fm. The T matrix that arises from the
square-well potential has been given previously®
and will not be repeated here.

In order to compare the two T matrices in the
low-energy region, it is convenient to use off-
shell effective-range theory.!®?*2¢ According to
this theory the low-energy T matrix is given by

T (b, q;)=(p/R)' T\ (k, k; s)(q/R)
x[1+502(2R2-p% =47
+higher-order terms in p, g, and k],

(2.7

where for s waves the off-shell length, 1,, is giv-
en by

)\02=2f r[1-v/a-u@)]dr. (2.8)

Here u(r) is the solution of the zero-energy s-
wave Schrédinger equation with the boundary con-
dition

ulr) ~ l1=vr/a. (2.9)

rreo

This low-energy approximation for the T matrix
has been given previously for the half-off-shell
case (p=kor g=F),2*2* and is developed for the
fully-off-shell case inthe Appendix. The corre-
sponding theory for the s-wave K matrix has been
developed by Srivastava and Sprung.’® The param-
eter I in their theory is related to the parameter
X by

AS==21/a. (2.10)
For the square well, the off-shell length is giv-
en by

3a V.0 (2.11)

vy (1-2 L)

TABLE II. Values of Ty(p, ¢; s) for the 3S; state
with p =0 fm~! and g =0 fm™1,

s (fm™) Square well Separable
0.00 0.27482 0.27482
-1.00 —0.19307 —0.18242
-2.00 —-0.16164 —0.14783
-3.00 —0.15042 —-0.13443
—4.00 —0.14452 -0.12694
-5.00 —0.14087 -0.12202
-6.00 -0.13838 -0.11849
-7.00 -0.13657 -0.11579
—8.00 -0.13519 -0.11366
-9.00 —0.13410 -0.11191
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TABLE II. Values of T(p, q; s) for the %S, state with
p=0fm1and g=2 fm™1,

s (fm™?) Square well Separable

0.00 0.02952 0.08853
-1.00 -0.01562 -0.05877
-2.00 -0.01182 -~0.04762
-3.00 —-0.01040 -0.04330
-4.00 -0.00965 -0.04089
-5.00 —-0.00918 -0.03931
-6.00 —0.00886 ~0.03817
-7.00 -0.00863 -0.03730
-8.00 —0.00846 -0.03661
-9.00 -0.00832 -0.03695

For the separable potential obtained from (2.4)
and (2.6), this parameter is given by

1 b\
separable - e
Ao ”(2{/,,1;2 *6a > :

A comparison of these parameters, using the num-
bers given above is made in Table I. It is seen
that the off-shell lengths in a given angular mo-
mentum state differ from each other by only a few
percent. It should be kept in mind that in the low-
energy region the second term in the square brack-
et on the right-hand side of (2.7) is typically no
more than 10% of the first term, therefore a dif-
ference of a few percent in the off-shell lengths
means a difference of a few tenths of a percent in
the low-energy T matrices. We therefore conclude
that the two T matrices are almost identical in the
low-energy region.

In order to compare the T matrices farther off
the energy shell, we have calculated the so-called
half-off-shell extension function® as well as the
fully-off-shell T matrices. The half-off-shell ex-
tension function® is given by

(2.12)

Fy(p, ) =T,(p, k;s)/T,(k, k;s) . (2.13)
The values of this function are shown in Fig. 1 for
the S, state at the energy of the deuteron and in
Fig. 2 for the 'S, state at a c.m. energy of 10 MeV.
It is seen that the functions are very similar to
each other as long as one does not go off the ener-

TABLE IV, Values of Ty(p, ¢; s)x 10° for the 1S, state
withp =1 fm~! and g =2 fm™1,

s (fm™?) Square well Separable
0.00 23.7225 -167.697
-1.00 —0.8814 —15.9304
-2.00 —0.9120 ~14.4256
-3.00 -0.9042 -13.7691
-4.00 -0.8938 -13.3814
-5.00 -0.8848 -13.1184
-6.00 -0.8774 -12,9252
-7.00 -0.8714 -12,7756
-8.00 —0.8665 -12.6553
-9.00 -0.8624 —12.5559

gy shell by more than 40 or 50 MeV. Beyond this
point the functions differ significantly. We have
found this pattern repeated for values of k%k*/M
ranging from about —40 MeV up to about +40 MeV.
One can show that F(p, k) falls off for large p with
k fixed like p 2 cospb for the square-well potential
and like p~* for the separable potential. Thus the
two potentials lead to very different off-shell be-
havior at high momenta. It is worth noting that in
the upper half of the % plane and on the real axis®

FB) ~ 1-(2ik)-1f°°drV(r). (2.14)
0

lk|—>e

From this and (2.4) it follows that for the one-term
separable potential that has the same phase shift
as the local potential V(r)

g(R) ~ (21rk)"l:5tfa° drV(r)]m, Imk=0.

1k 1>
(2.15)

Using (2.1), (2.2), and (2.13) it is easy to see that
the half-off-shell extension function for the sepa-
rable potential will fall off like p~'. This behavior
for large momenta is quite different from that of
the Yamaguchi potential®® which leads to a p~2 be-
havior for large p.

We now turn our attention to the fully-off-shell
T matrices. The two T matrices are compared in
Tables II-IV. These tables illustrate what we
have found to be true in general; i.e., when both

TABLE V. Three-nucleon parameters.

Square-well Separable
potential potential Experiment
Triton binding energy (MeV) 9.11 9.92 8.49
Doublet scattering length (fm) 0.414 -0.165 0.65+0.042
Quartet scattering length (fm) 6.31 6.33 6.35+0.02 2

2 These values are taken from Ref. 30.
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of the momenta p and q are small (s1 fm “1) the
two T matrices are quite similar to each other;
when one or both of the momenta become larger
than about 1 fm there are large differences be-
tween the two T matrices.

In summary, we have found that when all of the
momenta (p, g, and k) are less than, or approxi-
mately equal to 1 fm ™!, the two T matrices agree
quite closely with each other. Reasonable agree-
ment also occurs over a large range of £ when
both p and q are small. For almost all other mo-
menta, significant differences between the two T
matrices exist. We shall see in the next section,
the effect these differences produce in a calcula-
tion of the properties of the three-nucleon system.

III. RESULTS FOR THE THREE-NUCLEON
SYSTEM

For both of the potentials described in Sec. II,
we have calculated the low-energy properties of
the three-nucleon system using the Faddeev equa-
tions. As is well known, the separable potentials
of the type we are considering reduce the Faddeev
equations to coupled integral equations in one
continuous variable. The properties of the three-
nucleon system which arise from the square-well
potentials given in Sec. I, have been calculated
below the breakup threshold by Brayshaw and
Buck?? and have been calculated below and above
this threshold by one of us® using the Osborn-
Fuda® separable expansion of the 7 matrix. In
order to check the previous results, we have re-
peated the calculations using the Weinberg series?
for the T matrix. We found no significant differ-
ence between the results obtained with the two
series, except in the case of the doublet scatter-

T T T T T T T
L]
L
-025- . - B
Local - -
. -
e -0501 __———""Separable 4
< -
— 4
o /
£ /
g -0.75 .
& /
- ]
8 I
* -100}H! .
1
U
'l breakup threshold

1 1 - 1 1 1 1
005 Qlo Qs 020 Q25 030 035
K2 (fm?)

FIG. 3. Values of kcot[Re(6)] for the doublet n-d
scattering states versus k22, where & is the relative
wave number. Solid circles are from the phase-shift
analysis of van Oers and Seagrave (Ref. 32).

|

ing length. As was pointed out in Ref. 23 some
difficulty was encountered in calculating the dou-
blet scattering length with the Osborn-Fuda ex-
pansion, so the discrepancy was not unexpected.
The results for the inelastic parameters which
are given here, have not been given previously.

In Table V we give the calculated results for the
triton binding energy, and for the doublet and quar-
tet scattering lengths, as well as the experimen-
tal results. The experimental results for the scat-
tering lengths are those of Dilg, Koester, and Nist-
ler.®® We see that the separable potential gives
more binding in our model triton than the local
potential. This is consistent with the results of
Kok, Erens, and van Wageningen'’” who found that
the Yamaguchi separable potential'® gave more
binding than the phase-shift-equivalent local po-
tential. The difference between the doublet scat-
tering lengths is quite dramatic in that they differ
in sign. The fact that the larger scattering length
goes with the smaller binding energy is consistent
with the Phillips line,*! which is an approximate
linear relation between calculated values of the
binding energy and doublet scattering length. We
see from Table V that the calculated quartet scat-
tering lengths are almost identical. We shall see
that this insensitivity of the quartet results to the
off-shell T matrix occurs also at nonzero neutron
energies.

In Figs. 3 and 4 we give the calculated as well
as the experimental values®? for kcot[Re(5)] for
neutron lab energies ranging from 0 to 14.1 MeV.

k is the relative wave number and is related to the

neutron lab energy by %% =(0.02141 MeV ")E,,, fm™2.
The results for the doublet inelastic parameter are
given in Fig. 5; those for the quartet state are giv-
en in Table VI. The inelastic parameter is defined

T T T T T T T

0.20r 4
e o.lo- J
Aot Local—;y -~
—_— z
80.00_ z ‘\Separable . ]
& .
S
o
x -0.10f 4

breakup treshold
_J

005 < Glo 0I5 620 025 030 035
KR (fm2)

FIG. 4. Values of kcot[Re(6)] for the quartet n-d
scattering states versus k2, where k is the relative
wave number. Solid circles are from the phase-shift
analysis of van Oers and Seagrave (Ref. 32).



6 OFF-SHELL EFFECTS IN THE

as
v=|exp(2:6)| . (3.1)

Figures 3 and 5 show that the doublet scattering
amplitude is quite sensitive to the off-shell T ma-
trix. Figure 4 and Table VI indicate that the op-
posite is true for the quartet amplitude. The fact
that the separable potential results for kcot[Re(d)]
lie below those for the local potential is consistent
with the binding energy results, since one would
expect the more attractive potential to give the
larger phase shifts. We note that our results for
the inelastic parameter are inconsistent with the
phase-shift analysis of Van Oers et al.,** in which
the doublet and quartet inelastic parameters are
constrained to be the same. Our results suggest
that one would do better to take the quartet inelas-
tic parameter from a calculation, since it appears
that it is not very model-dependent. The values of
kcot[Re(d)] in the doublet state calculated with the
square well show good agreement with the phase-
shift analysis below the breakup threshold but
poor agreement above. In the quartet state, both
potentials lead to good agreement below the break-
up threshold and poor agreement above. The use
of the constraint in the phase shift analysis®®
might account for the deterioration of the agree-
ment between theory and experiment as one goes
above the breakup threshold.

IV. SUMMARY AND DISCUSSION

For the phase-shift-equivalent potentials that
we have considered, we have found that off-shell
effects are important in calculating the triton
binding energy, the doublet scattering length, and
the s-wave doublet elastic scattering amplitudes.

0.9

0.8

0.7~

2y°
P

0.6]

05+

04

1 1 1 1 1
005 0l0 a5 020 025 030 035
K (fm?)
FIG. 5. Values of the inelastic parameter for the

doublet n-d scattering states versus k2, where k is
the relative wave number.
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The quartet s-wave elastic scattering amplitudes
appear to be quite insensitive to the off-shell T
matrix; at least for neutron lab energies up to
about 14 MeV. This insensitivity in the quartet
state is probably a result of the Pauli exclusion
principle. The spin function that arises in this
case is symmetric under the exchange of any pair
of particles, therefore the spatial part of the
three-particle wave function must be antisymme-
tric under exchange of the two neutrons. This
means that the relative orbital angular momentum
of the two neutrons must be odd. In our calcula-
tions we have used potentials which act in only rel-
ative s states, thus in the quartet state there is
no potential acting between the two neutrons. This
suggests that before drawing firm conclusions
about the unimportance of off-shell etfects in quar-
tet n-d scattering, one should carry out calcula-
tions with forces in higher partial waves. It is
our feeling that this would not make any differ-
ence in our results for the quartet state. The
square-well calculations of Brayshaw and Buck®®
include d-wave forces and their results are very
close to ours.

The explanation just given for the unimportance
of off-shell effects in the quartet state can prob-
ably also account for the quartet s-wave inelastic
parameter being so close to one in the low-energy
region. Since breakup of the deuteron can be
thought of as a transition to one of its continuum
states, the highly elastic nature of low-energy
quartet scattering suggests that the deuteron is
not very distorted in quartet scattering.

It is clear that calculations of the breakup am-
plitudes should also be carried out with phase-
shift-equivalent potentials. We have seen that the
inelastic parameter for doublet s-wave scattering
is quite model-dependent even at the low energies
we have considered, therefore one expects the
doublet breakup amplitudes to be sensitive to the
off-shell T matrix. Techniques for carrying out
breakup calculations with separable potentials
have been developed,*® and it should be possible
to apply these techniques to the separable expan-
sions considered.

TABLE VI. Inelastic parameters 4y0 for the quartet
state.

k% (fm™?) Square-well potential Separable potential

0.10 1 1.
0.15 1 1.
0.20 1. 1.
0.25 0.99 0.99
0.30 0.97 0.98
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In studying off-shell effects one should also con-
sider potentials which besides producing the same
on-shell T matrix also produce the same deuteron
wave function, since this wave function can be ob-
tained in principle from knowledge of the electro-
magnetic form factor. Using the results of Refs.
19 and 20 it should be fairly straightforward to
construct a rank-two separable potential that pro-
duces the same bound state wave function and
phase shifts as the square well. Our guess is that
such a separable potential would give almost the
same results for the low-energy properties of the
three-nucleon system as the square well, since
the two T matrices would have exactly the same
residue at the deuteron pole. We are planning to
carry out such a calculation.

Another problem that needs to be studied in con-
junction with off-shell effects, is the dependence
of nuclear properties on the high-energy nucleon-
nucleon phase shifts. Some work has been done
along these lines. In particular, Monahan, Shakin,
and Thaler®* have developed a systematic proce-
dure for producing two-nucleon interactions which
have exactly the same phase shifts below a certain
cutoff energy but different phase shifts above this
cutoff. Also, Fiedeldey®® has done a study of the
influence of the high-energy phase shifts on the
triton binding energy. He finds that the triton
binding energy is not very sensitive to large dif-
ferences in the high-energy tail as long as the
phase shifts are obtained from a reasonable poten-
tial. However, for arbitrary variations of the
phase shifts there are large effects.

Clearly, much more work needs to be done in
studying off-shell and high-energy effects in the
three-nucleon system.

APPENDIX

Here we extend the derivation of the off-shell
effective-range theory from the half-off-shell
case to the fully-off-shell case. We begin by in-
troducing the free waves whose space representa-
tion is

(F| plm ) = (20%) 72 5,(p7) Y, o(7) - (A1)
With these basis functions the on-shell T matrix
has the normalization

(klm | T(R* + i€) | kim) = —(272k) "*e*1® sins, (k) .

(A2)
The fully-off-shell T matrix can be written in the
form

T,(p, q; s)=(plm| T(s)| qlm)

=f(plm|?)d'f<?| T(s)| FYdF' (F'| qim) .

(A3)

AND M. G. FUDA 6

From this and the power series representation of
the spherical Bessel functions, it follows that

P plm| T(s)|qlm)q~" is a function of p* and ¢%. If
we expand this function in a two-dimensional Tay-
lor series about the point p2= k2, q®= k%, we ar-
rive at

T (p,q;8)=(p/R)'T,(k, k; s)(q/R)

x[l +525 (/P Fy(b, B) a7 - 29

e /0 Fila, Blyoala® =0+
(a9

where we have used (2.13). From (2.9), (2.10),
(2.12), and (2.14) of Ref. 20 it follows that

5;’?(k/p)'F,(p, ) pon— =302, (A5)
kR—0
where
. .
MG TTOROdr. 8e)
s J0

Here u,(k,7) is the solution of the radial Schro-
dinger equation for the Ith partial wave with ener-
gy k2 which outside the range of the force becomes

18, (1)
u,(k,7) = k! 1’[6 sinbjl ;ekr) + h(f)(kr)}
1

u+1)11 1 it
poo (21+1) @D ¢
(A
The parameter c, is defined by
c;t=-lim k2 *!cots, (k) (A8)

k=0

and is the usual scattering length for I=0. We can
eliminate the potential from (A6) by using the
identity

Vr)u, (0, ,,)z[ az l(1+1)]

dr? r?

r+1)11
21+1) !

1 yi*t
NI J (A9)

X l:u,(O, ¥) -

which follows from the zero-energy Schrdinger
equation. Putting (A9) into (A6) and integrating by
parts we arrive at

2 oo
2____ & 1+1
A (21+1)nfo dry

2r+1)11 _
X[ TS

1 7,.l+l.

e e~ O ")] :
(A10)
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