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Four-particle scattering equations are obtained that are analogous to the Lovelace or Alt-
Grassberger-Sandhas equations in the three-particle case: They are equations whose kernel
is connected after one iteration, in which the unknown quantities are the transition operators
for the various elastic, inelastic, and rearrangement processes. The equations couple to-
gether only the transitions to the two-body channels, exactly as in the three-particle analogs,
so that there are seven coupled integral equations, corresponding to the seven two-body chan-
nels (four of nucleon+triton type, and three of deuteron+deuteron type). Transition opera-
tors to the three- and four-body channels appear as integrals over the transition operators
to the two-body channels.

I. INTRODUCTION

The celebrated Faddeev equations' for the three-
particle problem have the essential property that
the iterated kernel is connected (for complex en-
ergies), so that at least in principle they can be
solved with ordinary numerical techniques. How-
ever, the solutions of the original Faddeev equa-
tions are not related in any very simple way to the
amplitudes for the various elastic, inelastic, and
rearrangement processes that can occur. For
this reason, the variants of the Faddeev equations
proposed by Lovelace' and by Alt, Grassberger,
and Sandhas' have often been preferred in practice.

The subject of this paper is the four-particle
scattering problem, and the principal aim is to
obtain four-particle equivalents of the Lovelace-
AGS equations, i.e., equations with connected ker-
nels in which the quantities that appear are the
transition operators for the various scattering pro-
cesses. As far as we are aware, such equations
have not previously been given. These equations
have the advantage that they make the formulation
of scattering problems much more direct, and we
believe might bring the simplest four-particle
problems within the range of modern computers.

The four-particle problem is considerably more
complicated than the three-particle, and it is
therefore hardly surprising that it has not reached

the same stage of development. However, many
authors' "have written down connected equations
for the four-particle problem, using a variety of
techniques" to cure the disconnectedness problem.
In only one case, that of the Yakubovskii equa-
tions, "has it been proved that the solutions of the
homogeneous equation at negative energies are al-
ways solutions of the Schrodinger equation. It is
therefore possible for the other formulations that
the homogeneous equations have additional solu-
tions, which might cause difficulties in bound-state
studies. On the other hand, the Yakubovskii equa-
tions, which are sets of eighteen coupled equations,
appear extremely difficult to use in any practical
calculation. And if one's interest is in scattering
rather than in the bound states, as in the present
work, then the possible ambiguities in bound-state
calculations are not of direct concern.

The four-particle equations of greatest impor-
tance for the present work are those obtained in-
dependently by Rosenberg, ' Mitra et al. ,

' Taka-
hashi and Mishima, ' and Alessandrini. ' These
are sets of six coupled equations (one for each of
the six pairs), in which the kernels are the con-
nected parts of the amplitudes for the three-parti-
cle subsystems, and also for the subsystems con-
sisting of two noninteracting pairs. The equations
we obtain at the end of this paper (which are sets
of seven coupled equations) are related to these
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(a) Channel 4 (b) Channel a

0
I (4)= {(12),(13),(23) }
E (4) = {(14),(24), ( 34)}

(c) Channel (l2)

I (a ) = {(12).(34) }
E( a) ={(13),(14)(23),(24) }

(d) Channel 0

0 0 0
0 0 0.

I((12)) = {(12) } r(o)= {}
E ((12 )) = {(13),(14),(23)(24)(34)} E(0) = {(12),(13),( 14),(23) (24),(34)}

FIG. 1. Diagrammatic representations of the four dif-
ferent types of channel in the four-particle system.
(a) Channel 4, a two-body channel of 1+3 type; (b) chan-
nel a, a two-body channel of 2+2 type; (c) channel (12),
a three-body channel; (d) channel 0, the four-body chan-
nel. The internal interactions in a particular channel u
are represented by lines. The set I(n) contains the pairs
corresponding to internal interactions, and the set E (o.)
contains the remaining pairs, those corresponding to
external interactions in channel n.

equations as the Lovelace-AGS equations are to
the Faddeev equations in the three-particle case.
The number seven is the number of two-body chan-
nels in the four-particle scattering problem, as
will be clear from the following discussion.

One of the difficulties of the four-particle prob-
lem is the great variety of channels available for
initial and final states. There are essentially four
different types of channel, and these are shown

diagrammatically in Fig. 1. First, in Fig. 1(a}we

show a two-body channel" of the 1+ 3 type, for ex-
ample, a nucleon-triton channel. Obviously, there
are four channels of this sort, which we label by

1, 2, 3, or 4, according to the label on the free
particle. Next, there are two-body channels of
the 2+2 or deuteron-deuteron type, as shown in
Fig. 1(b}. There are three channels of this sort,
which we find it convenient to label according to
a definite code:

channel a is (12}+(34},

channel b is (13}+(24},

channel c is (14}+(23}.

Next, there are six three-body channels, in which
a single pair is bound, and which we label by the
bound pair, as shown in Fig. 1(c}. And finally, in
Fig. 1(d} there is the four-free-particle channel,
channel 0, making fourteen channels in all.

However, by analogy with the three-particle
case, we would not expect the integral equations

Ga(s} = (s —H, } ', (1.2}

where Hp is the kinetic energy, and s is the com-
plex energy parameter.

If N=3, then the kernel of (1.1} is connected after
one iteration (if s is complex), but if N =4 then the
iterated kernel still contains disconnected terms

to couple together all of these channels. In fact,
we shall see that the integral equations couple to-
gether only the various two-body channels, just as
happens in the three-particle problem, and that
the amplitudes for transitions to three- or four-
body channels appear as integrals over the ampli-
tudes for transitions to the two-body channels. It
is evident, then, that the seven two-body channels

play a particularly important role in the theory.
We shall use the labeling convention that the

Greek letters o., P, . . . range over all the 14 chan-
nels defined above, wherea. s o (and o', o", . . .} rang-
es over only the 7 two-body channels. The letters
i, j, . . . range over the six pairs (12},(13},. . . , and

as in these examples, whenever a pair is written
explicitly it will be enclosed in parentheses, to
avoid possible confusion with repeated channel
labels.

With respect to any particular channel n we find
it convenient to divide the six pairs (12},. . . into
two sets I(o.}, E(a}, corresponding to what we
shall call "internal" and "external" interactions in
channel n: The internal interactions (shown by
lines in Fig. 1}are the interactions within the sep-
arated groups in the particular channel, while the
external interactions are those connecting the vari-
ous groups; e.g. , in channel 4 the internal interac-
tions are V(y2) V(]3) V(23) and the external inter-
actions are V(„), V(„), V(„). In channel (12}the
only internal interaction is V&»&, and all the re-
maining interactions are external. The sets I(a}
and E(n} are given explicitly in Fig. 1 for each of
the four channels illustrated there.

The integral equations introduced in this paper,
like those of Refs. 7-10, have in their kernel the
amplitudes for the internal scattering problem in
each two-body channel o. (The internal scattering
problem in channel p, of course, is that in which
all the external interactions in channel p are
switched off.}

To understand the reason for the occurrence of
these amplitudes in the kernel, it may be useful to
consider the Faddeev equations' for the N-body
problem,

Tq (
= ()q ( t~ +Q t~ G a T),( .

k&j

Here t, is the two-body T. matrix (operating in the
N body space} fo-r the pair j, and G, is the free-
particle propagator,
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like t(»}Got(2s}GO or t(»}Got(34}G,. In the first case
particle 4 is not involved at all, so that the matrix
element of this piece of the iterated kernel has a
5 function in the momentum of particle 4. In the
second case there is no interaction between the
pairs (12) and (34), so that the relative momentum

of the pairs is conserved, again giving a i5 function.
Furthermore, these difficulties are not cured

by further iteration, since repetitions of t(»}G,
x t(23}GO and similarly of t(12}Got(34}GO, will occur.
The first corresponds to internal scatterings in

channel 4, and the second to internal scatterings
in channel a [see Fig. 1(b)].

One way around the disconnectedness problem is
to solve the internal scattering problems in ad-
vance, so that these troublesome sequences of two-
body scatterings do not appear in the iterations of
the kernel. In this way we are led to the equations
of Refs. 7-10, in which the amplitudes for the in-
ternal scattering problems appear explicitly in the
kernel. Of course, only the parts of the amplitude
that are connected with respect to the internal mo-
tion in the particular channel should appear in the
kernel, since otherwise the disconnectedness prob-
lem would still be as bad as ever.

The reason for the special role of the two-body
channels in the theory, as opposed to the three-
and four-body channels of Figs. 1(c) and 1(d), be-
comes clear if we consider iterations of the ker-
nel: The special property of the two-body chan-
nels is that the product of the scattering ampli-
tudes in two different two-body channels is con-
nected. This is obviously not true for the three-
and four-body channels.

The situation is actually entirely analogous to
that in the three-particle problem. In that case
the two-body channels are 1+(23), 2+(31), and
3+(12), and the internal scattering problem in
each channel is just the problem of the scattering
of a pair. The corresponding amplitudes are just
the two-body T matrices, and it is these that form
the kernel of the Faddeev or Lovelace-AGS2' equa-
tions.

So far we have not made any distinction between
the three-particle formulations of Lovelace' and
AGS. ' They are very similar, in that in both cases
the unknowns in the equations are the transition
operators linking the various channels, but they
differ in their inhomogeneous terms. The differ-
ence arises from the fact that there is a degree of
choice available in the definition of the transition
operators, corresponding to the fact that the physi-
cal scattering amplitudes are defined only on the
energy shell. AGS' have exploited this freedom to
obtain three-particle equations with a particularly
simple inhomogeneous term. In the present work
we exploit the similar freedom in the four-parti-

cle problem, with the result that our final equa-
tion [ Eq. (5.26)] has almost as simple an appear-
ance as the three-particle equations of AGS. '

In Secs. II and III we consider the internal scat-
tering problem for the two types of two-body chan-

nels in Fig. 1. First, in Sec. II we consider the
three-particle problem, both to establish the nota-
tions and the relations that we shall need later,
and also to remind us of the various integral equa-
tions that have been used in the three-particle
problem. Next, in Sec. III we briefly consider the
rather simpler problem of the internal motion in

channel a, i.e., the problem of two noninteracting
pairs. Then in Sec. IV we establish useful nota-
tions and definitions for the four-particle problem,
and rewrite in this notation the useful results of
the preceding sections. The essential heart of the
paper is in Sec. V, where we obtain the desired
integral equations for four-particle scattering.
The first step in the argument is an alternative
derivation of the equations of Refs. 7-10. From
there we go on to obtain integral equations for the
actual transition operators between the various
channels in the four-particle problem. Finally, in
Sec. VI we give a brief summary of the principal
results.

or

t;(s) = V;+ V;Go(s)t, (s)

(2.1)

t, (s) = V, + t, (s)G,(s)V, , i = 1, 2, 3,

where

G,(s)=(s-H, )
' (2.2)

and

s =E+tf . (2.3)

In this section 00 denotes the three-particle kinet-
ic energy, and E the total three-particle energy.
(Later, however, we will reinterpret B, and E as
the corresponding four-particle quantities. Oper-
ators such as Go and t, will then become operators
in the four-particle space, but the formal struc-
ture is otherwise unchanged. )

Vfe denote the full T matrix for the three-

II. THREE-PARTICLE EQUATIONS

In this section we review the scattering problem
for three particles 1, 2, 3. We use (in this sec-
tion only) the usual three-body notation (12) = 3 etc.
for the three pairs, so that the interaction between
particles 1 and 2 is denoted by either V(»} or V3.
The two-body T matrix for the pair i (regarded as
an operator in the three-body space) satisfies the
Lippmann-Schwinger equation,



1948 IAN H. SLOAN

particle system by M(s),

M(s}-=V+ VG(s) V,

where

(2.4)

and

G(s) =(s -H, —V)-', (2.5)

V=+V,
i=1

(2.6)

Following Faddeev, ' we decompose M(s) by writing

initial and final channel, i.e., 4, satisfies

[Ho+(V —tr, )]4( =Eked . (2.iS)

The two operators defined by (2.11}are of course
different, but it is easy to prove with the aid of
(2.1S) and the similar equation for 4

&
that they

yield the same value for the on-shell scattering
amplitude &«.

For the particular case of the three-particle
problem, if the pair i is bound in the initial chan-
nel and the pair j bound in the final channel, then

the transition operators (2.11) become

M(s) =g M„(s),

where

M. f
——5jf Pj + PjGPf .

(2.V)

(2.6) or

U); =(1 —6)(} ' + Q V~+ Q V~G Q V, ,
~j j~k&f k &j

(2.14)

Then the amplitudes Mj, satisfy the Faddeev equa-
tions, ' Vf

U~(
——(1 —5, ,) + W~(,

j
(2.15)

or

M, (
= 6)(t&+ Q t)GOM~(

k&j
(2.9} where with the aid of (2.6) we can write

Wii=Z 5 Mai ~

k&j l~f
(2.16)

%~=6~ 6+2 My&Got, .
k&f

(2.10)

U~f — + vjGvf, (2.11)

where v, and vz are the external interactions in
the initial and final channels. The physical scat-
tering amplitude V'« is then the matrix element of
Uk

&y( =(4~, Uy'((E+ie)4(}, (2.12)

where 4 f and 4f are physical channel states in the

The multiple-scattering interpretation of Mj„
obtained by iterating (2.9) or (2.10), is that M&, is
the sum of all multiple-scattering terms (i.e.,
terms of the form ~ ~ ~ t,G, t, ~ ~, with ~ ~ c kw la. ~ -),
that begin on the right with tf, and end on the left
with tj It is useful to keep this and similar multi-
ple-scattering interpretations in mind, since with
their aid it becomes easy to understand the rela-
tion between the various operators that arise.

As we noted in Sec. I, the solutions of the Fad-
deev equations (2.9) are not immediately related
to the physical scattering amplitudes for the vari-
ous elastic, inelastic, and rearrangement process-
es that occur in the three-particle system. We
now turn to the problem of obtaining the transition
operators for these physical processes, using the
approach of Lovelace. '

The general expression for the transition opera-
tor from an initial channel i to a final channel f is
given by Goldberger and Watson'4 in two alterna-
tive forms,

Then it follows immediately from the Faddeev
equations (2.9) that the W&, satisfy the equations

Wy& = g t~+ Q t~GoW~&,
j+kve f k~j

(2.1"I)

and hence, with the aid of the Lippmann-Schwinger
equation, Eq. (2.1), that U&, satisfies the Lovelace
equation, '

U7, = g V~+ g t~GOU~g .
k~f k~j

(2.i6)

Lovelace' also obtained a similar equation, essen-
tially the transpose of this one, for the operator
Uj+f .

The equations of the preceding paragraph have
been derived only for elastic and rearrangement
collisions, but as pointed out by Lovelace, ' they
apply equally to the breakup case if we introduce
an additional value of j to label the breakup chan-
nel, say j=0, and define

po=to=M0; =Mjo =o ~ (2.19)

We follow this convention in the remainder of this
section, and later on we shall use similar ideas
in the four-particle problem. From Eq. (2.16),
the multiple-scattering interpretation of Wjf for
any values of j and i is that it is the sum of all
multiple-scattering terms that begin with the scat-
tering of a pair other than the pair i, and end with
the scattering of a pair other than the pair j. For
the particular case j= 0 the second of these re-
strictions is effectively absent.

We have seen already that there is a degree of
freedom in the definition of the transition opera-
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U((
——(1 —6(()(s —Ho) + W(; . (2.20)

Remembering that s =E+ie, it is very easy to
show with the aid of the Schrodinger equation for
the initial and final channel states that this gives
the same on-shell scattering amplitude [see Eq.
(2.12)] as the Lovelace operators of Eq. (2.15).
Then from Eq. (2.1'I), we see that U(( satisfies

tors in Eq. (2.11), because the final scattering am-
plitudes are required only on the energy shell.
This degree of freedom has been further exploited
by AGS, ' in order to obtain a set of integral equa-
tions with a simpler inhomogeneous term than that
in the Lovelace equation (2.18}. It is interesting to
follow this through explicitly, because later on

(in Sec. V) we shall be taking advantage of a simi-
lar degree of freedom in the four-particle problem.

The AGS transition operator corresponding to
the Lovelace operators Uj'f is

sum in Eq. (2.24) into two parts,

M„= Q M(, (+M(,
l + haft

(2.26)

Then (2.25} follows easily with the aid of the re-
lations

~~G0 = Vmc~

G.=G, +G,t.G„
where

G~=(s —Ho- V )

which are standard relations of two-particle scat-
tering theory.

and then in the second term use (2.22) and the Fad-
deev equation (2.10), so obtaining

M(, = Q M(((1+Got }+(1—6~ ) t~Got . (2.2'I)

U, , = (1 —6(()(s —Ho) + Q t(,G,U»
k&j

(2.21) III. EQUATIONS FOR NONINTERACTING

PAIRS

This is the three-particle equation of AGS.' It has
the same kernel as the Lovelace equation (2.18),
but has a considerably simpler inhomogeneous
term.

We conclude this section with some further rela-
tions and definitions that will prove useful in the
four-particle problem. We denote by Mk, the con-
nected part of M» [Eq. (2.9}], and by W, , the con-
nected part of W, , [Eq. (2.16)], so that

Mkl ™kl—&kr I'k

W((= Z Z M((r
k~ j 1+f

(2.22)

(2.23)

It is also convenient to define a quantity M~,
M~ =Q Mq(,

l
(2.24)

so that Mk is the sum of all connected multiple-
scattering terms that end with the scattering of
the pair k, but with no restriction on the begin-
nings. (The dash in M» serves simply as a place
keeper, since obviously we could also define anal-
ogous operators M „with unrestricted endings.
But we make no use of the latter in this paper, so
that if desired the dash can be omitted. )

The M„and Mk, satisfy a relation that will be
useful to us later on,

M~ Go= Q M~(+(1-6~ )t(,GOV (s —Ho —V ) ',
l~m

(2.25)

for any m =1, 2, 3. To prove it, we first split the

Here we consider the system obtained by switch-
ing off all the interactions except those that are
internal in channel a [see Fig. 1(b)], i.e., all ex-
cept V(12) and V(34). This is a simpler problem
than the three-particle problem, but it has a very
similar formal structure, so that we shall be able
to treat it very briefly.

As far as possible we use the same notation as
in the previous section. Thus we define amplitudes
M(, exactly as before, i.e., by Eqs. (2.8) and (2.5),
with V given in this case by

V = V(12)+ V(34) ~

These amplitudes satisfy the same (Faddeev) inte-
gral equations (2.9) and (2.10), the only difference
being that now the indices range over only the two
pairs (12} and (34), so that there are only two cou-
pled equations, and the iterative solutions for say
M(,2)(12) and M(34)(12) are just

(12)(12) (12) (12)GO~(34)GO (12) )

(34)(12) —~(34)~0~(12) + ~(34)G0~(12)G0~(34) 60~(12) +

Similarly, we can define quantities W&„$'j„
M„, M, in exactly the same way as before [Eqs.
(2.16), (2.23), (2.22), and (2.24)], and since the
proof of Eq. (2.25} requires only the integral equa-
tion and these definitions, it too also applies to
the present case.

Though this problem is formally similar to the
three-particle problem, it is much easier to ac-
tually obtain the Mjf in this case, since they can
be expressed" " in terms of quadratures over
the two-body amplitudes. The problem of two non-
interacting pairs is of course algebraically equiva-
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lent (apart from its extra degrees of freedom) to
that of two noninteracting particles in a static po-
tential.

IV. FOUR-PARTICLE NOTATIONS

AND RELATIONS

(4.1}V = Q V(.
kC I( n)

[We recall from Sec. I that I(o() is the set of pairs
corresponding to the internal interactions in chan-
nel n. ]

With this notation, we naturally denote the full
T matrix for the internal scattering in the two-
body channel (( by M', where [cf. Eq. (2.4)]

M'=V +V'(s-H, -V )-'V . (4.2)

It is not necessary for us to define these ampli-
tudes in the three- and four-body channels. (We
recall our convention, that the letter o ranges only
over the seven two-body channels. )

In a similar way, corresponding to Eqs. (2.7}
and (2.9) we introduce amplitudes M(„

M~= Q Mg(,
y, ter(a)

(4.3)

In the previous two sections we have discussed
what is essentially the problem of the internal mo-
tion in the two types of two-body channel shown in
Fig. 1, and we have defined various operators re-
lated to the scattering in the corresponding subsys-
tems. It is now necessary to somewhat extend the
definitions and the notations for these quantities,
so that we can incorporate them into the four-par-
ticle problem. (The discussion of true four-parti-
cle scattering equations does not begin until the
next section. )

The first extension that is needed is to recognize
explicitly the existence of all four particles and all
degrees of freedom, so that all of the operators of
the preceding sections become operators in the
full four-particle space. All that we need to accom-
plish this is to reinterpret Hp and E as the total
kinetic energy operator and the total energy for
the four-particle system; and this we now consider
done.

Obviously, we will also need labels on the oper-
ators defined in the previous sections to tell us
which subsystem they refer to. More generally,
on many quantities we will need labels that range
over all of the fourteen channels discussed in Sec.
I (in which case we recall that our convention is to
label by Greek letters n, (8, . . .). We use the con-
venient notational device that a superscript Greek
letter on any quantity refers to the internal motion
in the particular channel. For example, we define
V to be the total internal interaction in channel a,

which satisfy the Faddeev equations,

(4 4)M(( = 6((t(+ Q t(GoM(o(, i,j, kH I((() .
k&j

The multiple-scattering interpretation of M&, is
that it is the sum of all internal multiple scatter-
ings in the two-body channel o, that begin with the
scattering of the pair i, and end with the scatter-
ing of the pair j. The part of M&', that is connected
with respect to the internal motion in channel g is
[cf. Eq. (2.22)]

Mq~( M(—-( —5((t(, j, i & I(((} (4.5}

and the corresponding operator with no restriction
on the first scattering is [cf. Eq. (2.24)]

M; = g M;(, jai(a).
iver(a)

(4.6)

It is also convenient to introduce generalizations
of the operators W„defined in Sec. II. We can
loosely characterize the WI, in Sec. II as the sum
of connected three-particle multiple-scattering
terms that begin and end in ways appropriate to
the particular channels i and j of the three-parti-
cle problem. Now we want to define similar oper-
ators that are made from the same ingredients,
but that begin and end in ways appropriate to the
channels of the four-particle problem. Specifical-
ly, we define [cf. Eq. (2.23)]

W((a = E Z
gEE(S)nr(a) teE(n)nr(a)

(4.7}

so that W& is the sum of all connected internal
multiple scatterings in the two-body channel cr,
that begin with an external interaction in channel
a, and end with an external interaction in channel
P

From the definition it follows that

=08n if p=o, or if a =o. (4.8)

For the particular case a = 0, i.e. , when a is the
four-free-particle channel, the definition reduces
to

W((o= Q Q M
)ATE(g)nI (a) her(o)

(4.9)

Maj» 7

jeE(8 nr(o)
(4.10)

so that in this case the first scattering on the right
can be between any internal pair in channel o, with-
out restriction. It follows that the terms in Wz
are always a subset of those in Wsp, and similarly
of those in W,' .

Since the W& play an important role in the final
four-particle equations in Sec. V, it may be help-
ful to give some examples of Eq. (4.7). Represen-
tative examples for the two types of two-body chan-
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nel a [see Figs. 1(a) and 1(b)] are
4 4 4 4~00™(12) ( 13)- M (23)

4 4 4
%30 W P 8 ( 12)P

4 4=M(13) +M (23)

4 4 4
(13)(12) (13)(13)™(13)(23)

4 4 4
(23)(12) (23)(13) (23)(23) &

(4.11)

8~a ~a ~a~a

(4.12)

for any channels P and n, where

~8a— 4
keE(8) AE(a )

and

(4.13)

(4.14)V&" = Q V(, yW o.

i EI(y ) A I(a)

The proof of Eq. (4.12) is given below.
The last equation defines Vy as the interaction

that is internal in both channel y and channel n.
We recall that in the three-particle problem none
of the interactions are internal in two different
channels, so that this is one respect in which the
four-particle problem is more complicated. In
the four-particle problem many of the Vy vanish,
for example,

rrr4 4 4 4 4
W31 ™(13)(12)™(13)(13) (23)(12) (23)(13) )

Wm=WbP =TV.P
a a=M(12) +M(34)

a a a~10 —~20-M(12)- ~

The 8"~ and 5'~ satisfy a relation that we shall
find useful in Sec. V,

Wg, Go(s —Ho —V )= Q W(( +ra GOV",

This is trivial if V' =0. In the other cases, let
m be the single pair that is internal to both g and

a, so that V' = V„, and then use Eq. (4.10) and
the identity (2.25} in the form

Mg G, (s —Ho- V ) = g M;, +(1 —5~ ) t~GDV

V. FOUR-PARTICLE SCATTERING

EQUATIONS

Let us denote the full four-particle T matrix by
T(s),

T=V+VGV,

where

G =(s —Ho —V)

(5.1)

(5.2)

k, I, m& f(o}.

The sum over l in the first term is the sum over
all I in E(n)A I(o), so that on using Eqs. (4.7) and

(4.18), Eq. (4.17) is obtained.
The last step of the proof of Eq. (4.12) is to sum

Eq. (4.17) over all two-body channels (( different
from P and n. The second term can be simplified
by using Eqs. (4.14) and (4.18) and interchanging
the order of summation, so obtaining

r((„G,V' = g t,G, Q V, m„. ,
8~a+a &ATE(8) nE(n) & pl(a)

where m~, is the number of two-body channels 0
for which the pairs k and i (k ((i) are both internal
It is easily verified that m„,. = 1 for all pairs k and
i (In .other words, specifying two different inter-
nal pairs k and i uniquely determines a two-body
channel o.) Then on using Eqs. (4.13) and (4.1)
this term becomes r(( GDV~, and Eq. (4.12) is
proved.

Vab Vl(12) Vb(12)

V(14)(12) = Vyp =0 (4.15)

and V =g(V, , the sum being over all six pairs in
the four-particle system. We decompose T in the
Faddeev manner,

In other cases, however, Vy" is not zero; for
example,

T= g T(( (5.3)

V21 Val Vl(34) Va(34) V(34) . (4.16)
where

W((DGO(s —Ho —V ) =W((~+r((~GQV, P(( gt a,
(4.17)

where

Tan ta.
&ATE(8)nE( n) nr(fy)

(4.18)

In all such cases, Vy consists of a single pair in-
teraction.

To prove Eq. (4.12), we first prove that for any
channels p and a, and any two-body channel 0 dif-
ferent from P and o.,

T~] = 5;;V; + V)GV;, (5.4)

and then in exactly the same way as in the three-
particle case, the T&, satisfy the Faddeev equa-
tions

T, ( = 5((t(+ Q t(GOT(, (
A&g

(5.5)

In the four-particle case, however, in contrast
to the three-particie case, the iterated kernel of
the Faddeev equations still contains disconnected
pieces. These correspond to internal scatterings
in the various two-body channels discussed in Sec.
I, and give rise to 5 functions in the kernel even
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after any number of iterations.
A natural way to avoid this problem is to solve

the internal scattering problem for these two-body
channels in advance, which of course is what we
have already done in the preceding sections, and
then try to rearrange the four-particle problem so
that the kernel contains only the summed-up am-
plitudes for these internal scatterings. This prob-
lem has already been solved, ' "but it is instruc-
tive to rederive these equations, using the appara-
tus set up in the previous sections.

Letting 0 be any one of the seven two-body chan-
nels, we treat Eq. (5.5} for the moment as an equa. —

tion not for all of the T~, , but just for those with j
in I(a). That is, we rearrange the equation as

T~» = 5g»t)+ t)Go Tk» + ~)GoTk»,
kCE(o) kyar(O),

jH I(a), (5.6)

and for the moment treat the first two terms as
inhomogeneous terms.

Then on comparing this with Eq. (4.4), which

has the same kernel, but an inhomogeneous term
that is just the first term of Eq. (5.6), we can
write down the solution of (5.6) in terms of the M,'„

T;; =Mq(+ Q M(, G() Q Tp( ) I&I(a}.
l E I(&) kEE((y)

On using (4.5) and (4.6), this becomes

T(( = 5((t( ™~(+ Q t(GpT)(( + Q M~ GpT))(
kEE(o) kEE(a)

This is valid for any initial pair i, if we adopt the
natural convention that M~» vanishes when i is not
in I(a).

Keeping i and j fixed, we now sum Eq. (5.7) over
all two-body channels a for which j &I(a), i.e. ,
over all two-body channels for which V& is an in-
ternal interaction. Since there are three such
channels for any pair j, the left-hand side and the
first term of the right-hand side are simply multi-
plied by three. The hardest term to work out is
the third term on the right-hand side. After chang-
ing the order of summation it becomes

Ug
V8

+ vBGv~ y (5.10)

where v is the external interaction in channel a,
v„= Q V;.

» EE(a )
(5.11)

Clearly v„ is related to V [Eq. (4.1)], the intern-
al interaction in channel n, by

where to simplify the notation we have adopted the
natural conventions that M& vanishes if j is not in

I(a}, and M(, vanishes if either j or i is not in I(a)
Equation (5.8) is equivalent to the four-particle

equations obtained previously in Refs. 7-10. Clear-
ly there are six coupled equations (one for each
pair j}for a, fixed initial pair i W. ritten out ex-
plicitly, the equation for the j = (12) pair and any
initial pair i is

T(~2)»
= t()2)5(12)» +ivI(12)» +zvI(12)» zvf(~2)»

3
M(lp)-Gp(T(13)i T(p3)( T(34)i)

+M(yp) Gp(T((e( + T(p4)( + T(34)()

+M()Q} Gp(T((3)( +T((@(+ T(p3)( +T($4j }(~

(5.9)

Evidently Eq. (5.8) solves the disconnectedness
problem, since there are no 5 functions in the ker-
nel after one iteration. (The once iterated kernel
contains only terms of the form M& G, M„Go, with
a((a'. ) In this respect the equations are analogous
to the Faddeev equations for the three-particle
system, Eq. (2.9). They are also like the Faddeev
equations, as we have noted before, in that the so-
lutions are not immediately related to the physical
amplitudes for the various elastic, inelastic, and
rearrangement processes that can occur. In the
three-particle problem, as discussed in Sec. II,
Lovelace' and AGS' have modified the integral
equations so that the quantities that appear in the
equations are the actual transition operators for
the various scattering processes. We shall now

carry out a similar procedure for the four-particle
problem.

According to Eq. (2.11), the transition operator
for the transition from channel a to channel P is"

t(G() Q Tp(n)(q, v =V-V (s.12)

where n» is the number of two-body channels o
in which the interaction V, is external, and the
interaction V& is internal. It is easily verified that
this number is 2 for all 0 j. Then on using Eq.
(5.5) this term becomes 2T(, —25((t(, so that on
solving for T&» we finally obtain

The two different operators defined by Eq. (5.10)
give the same values for the physical scattering
amplitudes. '4

Using our discussion of the three-particle case
in Sec. II as a guide, we rewrite Eq. (5.10) in a
form analogous to Eq. (2.14),

T(, = 5g(t(+AM)(+Q Q M( GpTp(,
a o keE(o)

(5.8)
Vg —Vs f}I

Usp =(1 —58(()
Vfy

—V8 f}f

+ v8 p + VSGvp ) (5.13)
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V8n
to E(8)nE(a )

V;. (5.14)

Then using Eqs. (5.11) and (5.4) we can write

V8 —V8n
Ua„=(1 —68o) +Xa„,

Vn V8n
(5.15)

where v8 denotes the interactions that are ex-
ternal in both channel P and channel n,

case to make the inhomogeneous term as simple
as possible.

As in the three-particle case, it turns out to be
better not to use either of the definitions in Eq.
(5.15), but instead to obtain a new expression by
using the Schrodinger equation for the initial or
final asymptotic state. The physical asymptotic
state 4 in channel a satisfies

where
(FIo+ V")4o =Ego, (5.21)

x,„= Q Q T„.
f EE(8) iEE(n)

(5.16)

Xo =r|t„+ Q Wo„+ Q WooGoxoo, (5.17)

These four-particle operators X8 are directly
analogous to the three-particle operators Wf, in
Eqs. (2.15) and (2.16). Our next step is to find the
equations satisfied by the X8, just as in the three-
particle case it was to find the equations satisfied
by the Wf, . These equations are easily obtained
from Eq. (5.8). With the aid of Eqs. (4.7), (4.10),
and (4.8) they become

where V is the total internal interaction in chan-
nel a [see Eq. (4.1}]. Now for any pan we can
write

vB —Usa= Q vi-
i &E(8)

t eE(8)nr(a)

i GE(8) AE(n )

v,

—Vn VBn p~ +

where V8 is the interaction that is internal in
both channels p and n [see Eq. (4.14) and related
discussion], so that from (5.21) we obtain

where

8&a &a
(v, —v«)to =(E -Ho —V")4 o, P ~ a. (5.22)

T8a
t eg(8)nE(n)

Corresponding to the two inhomogeneous terms
in Eq. (5.17), we can split Xo into two parts,

X8n =X8a+X8

where X8n and X8 satisfy

X'ao =7 so+ Q WaoGoxo„,
f1~8

Xs Q WB + Q WsoGox" „.
8&aoen a&8

(5.18)

(5.19)

(5.20)

We shall find this separation useful below. In
multiple-scattering language, the distinction be-
tween X8 and X8 is that X8 contains all terms
that are partof terms of form WNIoGoW;oGo ~ ~ ~ W;
(with P v o v o' e x o" v o" e n}, whereas Xa „con-
tains all terms that cannot be written in this way
because they have a single two-body T matrix left
over at the right-hand end. It is not too hard to
see that these are the only possibilities.

Our final task is to find equations similar to
Eq. (5.17) for the full transition operator from
channel o. to channel p [see Eq. (5.15)]. We recall,
however, that there is a degree of freedom at this
stage, corresponding to the fact that the physical
scattering amplitude is only required on the energy
shell. We also recall that in the three-particle
case this freedom was usefully exploited by AQS
to obtain an equation with a remarkably simple in-
homogeneous term [Eq. (2.21)]. In a similar way,
we will exploit this freedom in the four-particle

We therefore define a transition operator U8n,
analogous to the AGS operator in the three-parti-
cle problem, by

U,.=(1-6,.)(s-Ho —V' )+X, (5.23)

The Schrodinger equation (5.22) then assures us
that Ua„has the same on-shell limit as Uz [Eq.
(5.15)] when s=E+ie and e-0+.

The desired equations for U8„are obtained by
substituting (5.23) into (5.17), the equations for
X8 . The only difficulty is in simplifying the re-
sulting inhomogeneous term. To simplify this
term we use Eq. (4.12), which was derived pre-
viously for just this purpose. The equations then
become

Ua =(1 — s)a(s Ho Va )+ra„-(1—G, V )

+ Z WsoGoU. .
fyw8

(5.24}

(1-G,v )c„=o, (s.2s)

A feature of this equation, compared to Eq.
(5.17), is that there are no longer any three-par-
ticle amplitudes in the inhomogeneous term. There
is also another simplifying feature, however, that
may not be apparent at first sight, namely, that in
any practical calculation the second inhomoge-
neous term in Eq. (5.24) disappears. This is be-
cause one solves in practice not for the operator
U8, but for U8 4, where 4 is a physical asymp-
totic state in channel a. But for such a state it is
an obvious consequence of the Schrodinger equa-
tion (5.21) that
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and which obviously gives the same physical am-
plitudes as U& . We can write down the formal
solution of Eq. (5.26) with the aid of Eqs. (5.24)
and (5.19),

Us „=Us ~ —Xs ~(1 —Go V ) . (5.27)

Then on using (5.23) and (5.18) we obtain

Us~ =(1 —6s„)(s -Ho —Vs")+Xs~GOV" +Xs„,

(5.28}

which now replaces Eq. (5.23) as the formal defini-
tion of the off-shell transition operator.

Equation (5.26) is our final set of four-particle
scattering equations. The transformations car-
ried out in the previous paragraph remind us that
the inhomogeneous term in the equations is far
from unique, because of the great freedom that
exists in defining the off-shell extension of the
scattering amplitudes, but Eq. (5.26) is much the
simplest one we have found. This equation has in
fact a striking similarity to the three-particle
equations of AQS' [Eq. (2.21)], particularly if we
remember that the Vs" [the interactions that are
internal in both channels P and n, Eq. (4.14)] all
vanish in the three-particle case.

in the limit e-0+. Therefore the second inhomo-

geneous term vanishes when it operates on C

Since the second inhomogeneous term in (5.24)
never appears in practice, it may seem cleaner
to leave it out from the start. Thus we are led
to define a new transition operator Us„, which

satisfies

U, ~=(I —6s~)(s -Ho —V")+ Z @'eoGOUan
a&5

(5.26)

VI. SUMMARY

The principal result is Eq. (5.26}, a, set of four-
particle scattering equations for the operator Us,
where U8~ is a conveniently defined off-shell ex-
tension of the transition operator from channel n
to channel P. Here n and P can be channels of any

of the four types discussed in Sec. I, and shown

diagrammatically in Fig. 1. Thus Eq. (5.26) gives
the transition operators for all possible processes
in the four-particle system, including those to
three- or four-body final states.

However, the summation index o in Eq. (5.26)
ranges only over the seven two-body channels
[four of them of the 1+3 type shown in Fig. 1(a),
and three of the 2+2 type shown in Fig. 1(b)], so
that for any fixed initial channel n, the only tran-
sition operators that appear on the right-hand side
are the operators U, for transitions to these sev-
en channels.

Therefore the first step in the calculation of
transitions from channel a to any final channel P
is to solve the coupled integral equations for the

U, „. If P is a three-body channel, as in Fig. 1(c),
or is the four-free-particle channel of Fig. 1(d),
the transition operator Us is then obtained by a
second application of Eq. (5.26), where now the
quantities on the right-hand side are all known.
This two-step procedure is directly analogous to
the way three-particle breakup is calculated in the
Lovelace' or AGS' formulation of the three-parti-
cle problem. The second step is of course not
necessary if P is one of the two-body channels,
so that the formulation is more direct for the case
of two-body final-state channels.

It may be helpful to write out the coupled inte-
gral equations for U explicitly. For the particu-
lar case n =1, corresponding to particle 1

incident on abound state of 2, 3, 4, the equations are

U11

Ua1

U31

U41

Ua1

Ub1

U,1

0
s -Ho —V21

s-Ho —V 31

s -Ho —V 41

s -Ho —V'
s -Ho —V bl

s -Ho —V'

0 W1@

w21 0
W31 W32

+ W41 W42

Wa1

Wb2

Wc1

W13 W 14

W23 W 34

0 W34

w43 0
Wa3 Wa4

Wb3 Wb4

Wc3 Wc4

W1a

W2a

W3a

W4a

0
Wba

Wca

W1b

W2c

W3b W3c

W4b W4c
W ab Wac
0 Wbc

Wcb

U21

U31

Go U41

Ua1

Ub1

U, 1

(6.1)

where we have used the notation

0
w&, —W» (6 2)

to simplify the writing of the kernel.
The ingredients V and W» ———w ~, in the equa-

tions are defined by Eqs. (4.14}and (4.9). Loosely,
Vs is the interaction (if any) that is internal in

both channels P and n, and W» is the connected
part of the three-particle amplitude for the inter-
nal scattering in channel 0, with the restriction
that the last interaction on the left is an external
interaction in channel I8. The classification into
internal and external interactions with respect to
a particular channel is discussed in Sec. I. We
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observe that the existence of interactions that are
internal in two different channels P and n is one
respect in which the four-particle problem (and
in general the N-particle problem for ¹ 4) is
essentially more complicated than the three-par-
ticle problem.

We have not discussed the consequences of par-
ticle identity in this paper, but by analogy with

the three-particle case, we can anticipate impor-
tant practical simplifications if some or all of the
particles are identical.
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