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We have compared the usual impulse-approximation and the elementary-particle treatments
of nuclear processes using nuclear P decays as examples. Both treatments are shown to lead
to essentially equivalent results for allowed transitions and for natural-parity forbidden trans-
ition of the types AJ ' =1 and possibly 2', 3, ... . There exist, however, some differences
in detailed structures in small correction terms. In the case of unnatural-parity forbidden
transitions, in particular, J; '(0 ) J&f(0+) +e + v~, there exist some discrepancies between
the two approaches, suggesting an important role of meson-exchange corrections in the im-
pulse approximation.

I. INTRODUCTION

There are two alternative methods used to de-
scribe nuclear weak processes such as nuclear
P decay and muon capture in nuclei. The first
method is to apply the usual impulse-approxima-
tion treatment (IAT); the second' is to treat the
nuclei as "elementary particles" (EPT). The first
method involves the use of model-inspired nuclear
wave functions and various other approximations
such as the neglect of meson-exchange and nu-
cleon off-mass-shell effects. The second method
involves, in principle, no approximation. The

nuclear structure, in this case, is contained in
nuclear form factors.

The two approaches are complementary in the
sense that IAT is appropriate for the study of
nuclear models and structures, and EPT is con-
venient for the study of basic ideas in weak inter-
actions such as the conserved-vector-current
(CVC) and the partially-conserved-axial-vector
current (PCAC) hypotheses. In view of the fact
that IAT involves the above-mentioned approxi-
mations, the use of IAT is expected to be some-
what limited, in particular in the treatment of
forbidden transitions where meson-exchange cor-
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rections are expected to be large. '
In this work we examine the question of validity

of IAT by comparing the two approaches and using
nuclear P decays as examples. Instead of using
the conventional classification of P decay, we

divide the transitions into three groups; allowed
(aJ ) ~ =0', 1'}, natural-parity forbidden (t) J ' t
= 1,2', 3, . . . ), and unnatural-parity forbidden

(&J ' ~ = 0, 2, 3', . . . ) transitions, where t),J
is the change in nuclear spin, and P, and P& are,
respectively, the initial and final parity.

In Sec. II we review IAT results for the sake
of comparison with E PT results. Self-consistent
conditions on the nuclear matrix elements im-
posed by the CVC and PCAC hypotheses are dis-
cussed in both IAT and EPT. In Sec. III we pre-
sent the EPT versions of the transitions discussed
in Sec. II and compare the IAT and EPT results.
The results are summarized in Sec. IV.

For the sake of simplicity we neglect the final-
state interaction between the outgoing electron
and the final nucleus, which modified the electron
wave function. The Coulomb corrections to CVC
and PCAC, however, will be taken into account.

and q = pt - p,. = - (p, + p, ) .
In the usual IAT, one replaces V„"(x,0) and

A ')(x, 0) in Eq. (1) by'

A

V„"(x,O) = gr'; 6")(x-r ')),
a=1

A

+( ) g () (8( ( ).
a=1

I -iy y g 8 Bg T )
0(a) qr. g~-2 g~ T+ y

P

(a) ~ (a) (a) ~ (a) (a)I A
= ijg P gA+i P (II| gP +5 T

m +q-

(2)

II = ~ [u, (p, )y „(1+y, )v, (p, )]

where g~, g&, g„, and gp are, respectively, the
vector, weak-magnetism, axial-vector, and in-
duced-pseudoscalar nucleon form factors. For
nuclear P decay it is sufficient to treat the form
factors as constants, i.e., g~ =1, g& =3.7, gA
=1.23, and g~=-1.23.' When Eq. (2) is substituted
into Eq. (1), the transition matrix element 3Rbe-
comes

II. IMPULSE-APPROXIMATION

TREATMENT

The transition matrix element for the process
i-f+e + v, is given by

% = ~[u, (p,)y „(1+y,) v, (p„)]

x p dxJ ') x, 0 e'q " i p;

J". (x, t) = V". (x, t) +A". (x, t),
where G=10 '/m~', and V„')(x, t) and A ' (x, t)
are, respectively, the charge-raising vector and
axial-vector strangeness-conserving hadron weak
currents. Also p, , p&, p, , and p, are the mo-
menta of the particles denoted by the subscripts,

A

)-=(«)E&&)" " v )a=1

a =(a, ia),

(4)

A ( )
&fIv."I'), , -=(&, rr„".e' ''

&,), &ra)
a=1

&flA"
I )„,=-(v, Zr'„"„"'' ' &,), &3b)

a=1

where P,. and g& are, respectively, the initial and
final nuclear wave functions; replacement of )i)
and (f) by appropriate nuclear wave functions and
the integration over the nucleon positions r ',
implicit in Eqs. (3a) and (3b), are part of the IAT
procedure.

Using the notations

and properties of Dirac matrices, we rewrite
Eqs. (3a) and (3b) as follows:

&f ~
V pt ~ t),AT =g)(&ae'

' "), i&e' p
' ' )) — "

(iq x &oe'
' " ) + IVp&yne'p' ' ), —i&y &e'p ' ) q),

P
(6a)

&f ~A„' ~i),AT=g„(-&ae' '), i&y,e' ' ')}—,,((y4y, e' ' ')q, iq, &y, y, e' ' ')),
where

&&)p (pt p(}p =mz —m (—= —Wp ~

(6b)

(6)

Next, we shall obtain self-consistent relationships among the matrix elements in Eqs. (6a) and (6b), im-
posed by the CVC and PCAC hypotheses. We assume the CVC hypothesis to be given by'

V"(x, t) =*[j'„(x,t},I"(t)],
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(9)

(10)

and

H, =—const+6, I',
where IJ'., is the charge-dependent part of the Hamiltonian and I" the third component of the isospin

operator.
In Eq. (11), Ac represents the energy difference arising from the Coulomb interaction and the n pdi-f-

ference, i.e.,

where j' (x, t) is the electromagnetic current and I '(t) is the isospin-raising (-lowering) operator. In

the absence of electromagnetic and weak interactions I'~(t} does not depend on time, i.e. , it is a constant

of motion. From Eq. (8) we have, since 8 „I' (x, t) = 0,

s.v.' (x, t) =~ j,™(x,t),

=+i[g (x, t), [H, I"(t)]] .

For practical purposes we further assume'

[H, I"(t)] =- [H„I"(t)]

(12a)when i and f are members of an isomultiplet

(i2b)

Wo
&c—=

—m +m when i and f are not members of an isomultiplet,
If P

where a is the fine structure constant, Z the charge of the initial nucleus, and R =0.8A'"/m, is the nu-

clear radius. Substituting Eqs. (10) and (11}into Eq. (9) leads to

S „V"(x, t) =+tA [j,' (x, t), [I"',I&'(t)]]

=iA,[j,' (x, t), I"(t)], (13}

which reduces to, when Eq. (8) is used,

8 V~'&(x, t) = wibc V,"(x, t) for &6' decay. (14}

Equation (14) is the modified CVC relation to be used in the following discussion; in the absence of electro-
magnetic interactions the right-hand side of Eq. (14) vanishes, leading to the usual CVC relation.

Multiplying the matrix element of Eq. (14) by e"'* and taking the integration over d x, we have

After integration by part of the left-hand side of Eq. (15) and with use of Eq. (3a), we obtain

-i&I „(f f
V~'

/ i) &A~ 27&5(E, —Eq —E,—E„)= +iAc2w5(E, . —Eq- E, —E„)(fJ
Vo'& ji },~, A

which reduces to, since the energy is conserved, i.e., S(E, —E~- E, E„)=6(0)—e0,

q (f ~
V ' ~t)&Aq=+Ac(f (Vo' ~&i)&AT for p' decay.

(16)

(i7)

Note that the matrix elements in Eq. (17) are precisely the same as the ones given in Eq. (6a). Combining
Eqs. (6a} and (17), we find

(ae'' ') q+W, (e' '') =—+Ac (e'~' ')+ "
(y, o.e'' ') q

P

(18)

Equation (18) is the self-consistent condition on the nuclear vector matrix elements imposed by the CVC
relation (14). Importance of the modification of the CVC relation due to the electromagnetic interactions
is evident from Eq. (18); the correction term (the right-hand side) is as large as the individual terms on
the left-hand side. The contribution of the g„ term in Eq. (18}is negligible; hence it will be dropped in
the following discussion.

The numerical value of gp quoted below Eq. (2) is an estimate based on the application of the PCAC
hypothesis to nucleon case. As in the case of the vector current, one can apply the PCAC relation directly
to the nuclear axial-vector matrix element of Eq. (6b) to obtain a self-consistent condition. In this work
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we assume the Gell-Mann-Levy version of PCAC'.

S A " (x, t ) = a, m, 'q,' (x, t ), (19)

where a, =0.94 is the pion decay constant and q)", )(x, t) is the pion field. Following the procedure given
in Eq. (15), we obtain

0
iq -(f ~A~ ~i),„~=,™,f dx j,' (x, 0)e'~ " i

q +m,

where

(20)

(-D +m, )q)~,
' (x) =j,' (x) .

The left-hand side of Eq. (20) is the IAT result, but we have not yet used IAT on the right-hand side. In
contrast to the application of IAT to the matrix elements of weak currents, the use of IAT in the evalua-
tion of strong interaction matrix elements such as the one on the right-hand side of Eq. (20) is, in general,
not justified. Assuming, nevertheless, that IAT is a valid one, we can write

(21)

where f„„~(q') is the pseudovector v-n-p coupling form factor.
From Eqs. (6b), (20), and (21), we obtain'

2 2m-(oe' ') q+W (y e'"' ')+2m» (y4y, e') ') =-2m, ', (y y, e') "),0 5 (22)

where we have used the nucleon Goldberger- Treiman relation, '

g„=a,f,„~(0)=—a,f,„~(q'} for ~q'~ s Wo2«m, '.
Equation (22) further reduces to

(oe'~' ') q —Wo(yse'q' ') =2m&(y4y, e'4 ') . (23)

+(a) +( a) &( a),
q

P
(24)

This is the self-consistent condition imposed by
the PCAC relation (19) on the nuclear axial-vector
matrix elements provided that the use of IAT for
the strong-interaction matrix element, Eq. (21),
is justified. In contrast to the case of the vector
current, however, Eq. (23) does not lead to any
useful relationship between nuclear matrix ele-
ments. Since we have, nonrelativistically,

in e, '

(s +ieCx )A „') = a,m, 'q),' for p' decay,

(26)

where 8 is the electromagnetic vector potential.
To estimate the order of magnitude of this correc-
tion, we consider only the Coulomb correction
and assume for simplicity that 8 is effectively
given by'

which may be verified from
8 -=Oi— (27)

a(pf) y4y4&(p;) =&~ & '(pf pf)Xm p

(25)

Eq. (23) reduces to

W,(y, e'q ') —=0.
Equation (25) simply indicates that (y, e'I ") = 0
within the accuracy of Eq. (23), i.e. , in the ap-
proximation of neglecting the meson-exchange
and electromagnetic corrections. To be consis-
tent with the vector case, we consider the elec-
tromagnetic corrections to Eq. (19).

In the presence of the electromagnetic interac-
tion, Eq. (19) is modified as, to the lowest order

W.(y,e'" ')—= +
R (y, e" '). (28)

Since RW, —oZ, for )8' decay Eq. (28) is a trivial
identity and for P decay Eq. (28) is again equiva-
lent to Eq. (25). At any rate, as pointed out in
Ref. 8, the PCAC relation when applied to nuclear
cases in IAT, does not lead to any useful relation-
ships between nuclear matrix elements, unless
meson-exchange corrections are explicitly worked
out. [If we take Eq. (25) or (28) seriously, this

It is easy, then, to see from Eqs. (26) and (27) that
Eq. (25) is modified as
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would imply that the space part is dominant over
the time part in Eq. (39b) below and f,(0) = 0 in
Eq. (69b) below. We do not, however, consider
this possibility any further ].

&o'lv'.-'lo'&,„,=a„&)&( g™) o, '), (29a)

A hJ sf —0

For simplicity and definiteness we take ' O(0')
—"N*(0')+ e'+ v, , where "0 and "N* are mem-
bers of an isotriplet.

When only the leading terms are kept, Eqs. (6a)
and (6b) reduce to

C. hJ ' ~ =1,2', 3, .

We consider the transition 1 - 0 + e + v, as
an example. From Eqs. (6a) and (6b) we obtain

(0+
I V."I

I -)
IA T

——g„((o.), i (i I ) q),
(o'

I
A". I

I & IA T =gA(a (io x r& X q 0) .

The CVC relation (18) is given by"

(33a)

(ssb)

the case of the superallowed transitions of very
light nuclei, the correction is of order 5-10$.
Very little is known about the correction for
medium and heavy nuclei, but it is expected to
be small compared to (&T&.

&0' IA'a' I0'& IAT (29b) (34)
The CVC relation (18) becomes, with Eq. (12a),

(i&7. r) q '+ W (I) —= W (1), (30)

implying that (io& r& =0 to order of the accuracy
of Eq. (18). This estimate is not inconsistent with
the estimate" q ~ ((i&7 x r) x q) = 0 (35)

which fixes the ratio of the two matrix elements
in Eq. (33a). The PCAC relation (23) is, in this
case, a trivial one, since

(i(7 Qr 10
(Wo fi)II

or more generally

(oe" ').q=(y, e"' '& =(y,y,e" ') =0. (s6)

since the terms of order (ic7 r&q' may have been
dropped in Eq. (18) because of the approximations
involved in Eqs. (10) and (11).

When the initial and final states are not mem-
bers of an isomultiplet such as "Ga(0') — Zn(0')
+ e'+ v, , we have (1) =0, so that the CVC relation
(18) yields, as in the previous case, no informa-
tion on (io& r) except that it is very small. When
J;=Jzo'-0, we have, in addition to Eq (29), .a con-
tribution from the axial-vector part.

B 6J+~ ~f —1'

We consider the decay 1'-0'+ e + v, as an ex-
ample. We find from Eqs. (6a) and (6b), keeping
again only the leading terms,

&o'lo' l)'), , = — a" t)" &o), o), &ooa)
+ (+) + (I +ge

P

&0' IA &'a I
I'& IAT

=—(-gA&o&o 0),
where we have used the relation which holds true
between nucleon spinors,

However, it is interesting to note that in this case
(f IA

'
I i),AT

—-0 even in the presence of the
electromagnetic interactions. In fact, for all tran-
sitions of the types ~J ~ f =1,2', 3, . . . , we have

qa&f IA 'Ii) IAT 0 ~

This can be seen from the fact [Eqs. (20) and

(21)] that

q~&f I
A'a'

I i& IAT &y.y, e' '
&

(37)

D 5J ' =0 2 3'

=0 for ~ ~ f=1,2, 3, . . . .

(38)

(Remember that the final nuclear recoil is ne-
glected in IAT. ) The electron spectrum calculated
from Eq. (33), with the modifications due to the
Coulomb interaction is known to be in agreement
with experiment, " implying that the meson-ex-
change correction is probably insignificant in this
case.

&(a) [p(a) +p(a) iq XO(a)]-2m
P

The CVC relation (18) becomes trivial, since
both qa(0'

I
Va')

I I'),AT and (O'
I

V('
I 1'),„T vanish.

We remark that for transitions of the type AJ ~ ~

=1', q (f IAa) Ii),AT w0 in general, since
q (f IA„') Ii &IAT(coyy,ae' 'I&oo0. It is well known
that the axial-vector matrix element in Eq. (32)
is subject to the meson-exchange correction. In

We use the transition '"Pr(0 ) —"'Nd(0')+ e + v,
as an example. From Eqs. (6a) and (6b), we have

(0'Iv' Io &...=o, (39a)

(O' IA+ (0) I0 & (AT
——g„(-(io r)q, i(yo&)

=gA&y, &
— q, i (39b)

(i&I ~

In Eq. (39b) we have neglected the contribution of
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the gv term, since from Eq. (24)

(2m~W, /m, ')
l &y ys& I-(Wo/m. )' «

1 &ys& I (m, /m), ) .

(o'
(
A'.-'(o) [ o'& „,= o;

Q =(p;+p,).,
(42b)

(ia r& R 1

(y5& RWO Wo
' (40)

The usual estimate" of the ratio (sa ~ r&/(y, ) based
on the Ahrens-Feenberg approximation is

where m,. and m& are the initial and final nuclear
masses. In contrast to IAT, the final nuclear re-
coil effect is included in EPT.

The CVC relation (14) when applied to Eq. (42a)
becomes

implying that the space and time components in
Eq. (39b) are comparable in their magnitude.
However, since the nuclear matrix elements in
Eq. (39) are small, the meson-exchange correc-
tions are expected to be relatively large. In this
connection we wish to point out that for the transi-
tion AJ i=0, q~(f ~A(„') ~i& (ATeo. In fact, the
relation q (f ~A(' ~i& A~(xo holds true, as can be
seen from Eq. (38), for all transitions of the types
dJ ' ~=0, 2, 3+, . . . .

III. ELEMENTARY-PARTICLE

TREATMENT

In EPT the transition matrix element for the
process i -f + e + v, is given by, from Eq. (1},

=
~2 (»)'6(P; —P, —P. —P.)

x [u, (p, )y, (I+y ) v„(p„)1

or

(,)( q )v, '
) (44)

This is the EPT version of Eq. (30} for the 0'-0'
transition. Since we do not expect E2(q') to have
a, pole at q' =-W, ', Eq. (44) yields

F,(q'}=0. (45)

Taking p, =0 (i.e., Q =q), we find, from Eqs.
(42a) and (45},

(0'l)*.''(0)IO'), , —=+(e*) ",). (48)
m ~+my

The nuclear form factor F,(q ) can be written as

2 W
W, F,(q')+F, (q') =—W, F,(q') — ' F,(q')

m +mf ' ' m;+mf

(43)

E,(q ) =F,(0}[1—-'aq A' m, + ], (47)

(41)

hence the hadron part is characterized by

(f ( V '(0) )i),p~ and (f (A"(0))i&„T [compare
with Eqs. (3a) and (3b)]. Note that the over-all
momentum conservation was absent in IAT. The
exact forms of (f ~

V(„')(0) ~i&E» and (f ~A')(0)~i&E»
depend on the spins and parities of the nuclear
states. In EPT the use of the CVC relation (14)
and the PCAC relation (26) is straightforward.
For convenience, we use, as examples, the same
transitions as those used in IAT.

where the constant a depends on the nuclei in-
volved and is expected to be of order of unity.
For ~q'~ s W, '«m, ', it is reasonable to take
E,(q'} -=F,(0). In the following we denote F,(0}as
F, We now compare Eqs. (29a) and (46}. Since
1/(m, +m&) 10 Wo ', Eqs. (29a) and (46) are
numerically the same if we identify F, as gv(1&.
The general agreement within the accuracy of
order 10 ' is due to the approximate conservation
of the vector current, i.e., CVC hypothesis. We
observe, however, that the structures of the coef-
ficients of q in Eqs. (29a) and (46) are different
in detail, for we have

A. AJ ' ~ =0'

The most general hadron matrix elements, con-
sistent with general invariance arguments, for
the transition "0-"N*+e'+ p, are

and

-(W()R)R- 2A'
(I&

' m, '

1 1

m;+mf 2m'

(48)

(49)

(0'Il". )(0)lo'&E»= [F (q')Q +E.(q')q ],

(42a)

Equation (49) simply represents the nuclear re-
coil effect which is absent in IAT and hence in
Eq. (48). The disagreement is partly due to the
approximate nature of the CVC relation (14).
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B. hJ ' f =1'

The most general matrix elements for the process 1'-0'+ e + v, are

&o l'."(0)l&') ="„es(„Q, "= ''x( ",o),m «+mf mp mp
(50a)

&0'IA". (0&II'&, =~.F„+q.g q =-(t'F„,o),m. ' (50b)

where $ is the polarization four-vector for the initial state. Comparison of Eqs. (32) and (50) shows that

they can be placed in a one-one correspondence. Indeed, they are in complete agreement if we identify

(51)

(g. + I)/g. = (F./F. ) . (52)

Equation (51) may be regarded as a defimtion of the nuclear form factor F„within the accuracy of neglect
of the meson-exchange correction. It is interesting to note that Eq. (52) holds true to the same accuracy,
since the left-hand side is 3.8 and the right hand side is, e.g. , 4.0 for ' B- "C+e + v, and 4.2 for 'He

- 'Li+ e + v, . Thus, we can conclude that IAT and EPT are in agreement to the accuracy of neglect of
the meson-exchange correction in this transition.

In Eq. (50b) we have neglected the contribution of the F~ term as in the case of IAT. When Eqs. (26)
and (27) are applied directly to Eq. (50b), we have

2 2

F,(q')+, F,(q') —= :, '.f„&(q')+ CFr(q'), (53)

whe re

(54)

and

&fli, (0)I &=
' "'.;~(q')

(55)

The second term on the right-hand side in Eq. (53) represents the Coulomb correction. Since we have

~ F„~-
( Fr ) in the normalization of F~ as given in Eq. (50b) [see Eq. (60) below] and a Z/RWo - I, the cor-

rection term is small compared to the leading term, i.e. , F„, but does effect the estimate of F„, since
the correction term is of the same order as that of the F~ term on the left-hand side in Eq. (53).

First, the Goldberger-Treiman relation is given by, setting q =0 in Eq. (53),

F„(0}= a, f„.~(0) + CF~(0) .

Solving Eq. (53) for Fp, we obtain

2 2

F (q')= —,,F„(q'} 1+, , (1+C)—

Since F„(q') and f„~(q') are nuclear . form factors, we can write"

(56}

(57)

f„~(q ) =f„;~(0)[1 a+q'R']—=—f„&(0)[1+aq'A'"m, '],
F„(q') —= F„(0)[1+bq A m ], for (q (sWo (&m, ',

(56)

(59)

2

F&(q') —=—:,F,(q')[1+ (b —a)A' '].

wh~re a and b are constants of order unity which may vary from nucleus to nucleus. Substituting Eqs. (56)
and (56} into Eq. (57) and neglecting terms of order (Wo/m )~, we obtain

2

Fp(q ) = —
2 2F„(q ) 1+, 2, 2 C 1+ +(b —a)A m 2q

In the absence of the Coulomb correction, i.e., C=O, Eq. (59) reduces to
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In the case of a = b, which is realized when F„(q') and f„z(q'}have the same q' dependence, Eq. (60}be-

comes the well-known Nambu PCAC relation"
2

F (q') =-; F (q').m„+q
We note that a combination of IAT and the nucleon PCAC relation also leads to Eq. (61)."

In the absence of the Coulomb correction, the ratio of the contributions of the F„and F~ terms in the

matrix element is given by, from Eqs. (50b) and (60),

(61)

1+ b —aA (62)

Since Wo & 15 MeV for nuclear P decay, the above ratio is always small, provided that the factor (5 —a) is
not unusually large. For example, the ratio in Eq. (62) is -10 ' for W, = 15 MeV, A = 12, and (b —a) = l.

In the presence of the Coulomb correction, the (5 —a)A'" term in Eq. (62) is to be modified. From a
glance at Eq. (57) and from the fact that -W,'&q'&0 and C-(W,/m, )', it is clear" that the Coulomb cor-
rection does not change the term (5 —a)A'" by an order of magnitude. Thus, we neglect the F~ term un-

less F„(0)= 0 or (5 —a) is unusually large.

c. aJ ~ ~=i- z' 3-

The most general matrix elements for the process 1 -0'+ e + v, in EPT are

(0'~V„' (0)(I-),~=5.F (q~') Q+$oq '
2 +q„h q

m~+mf mp m

&o'IA'&o)ll )„,=-'' s, &se„Q —= & "e 0).(,) . F„(q ) F„
m;+my m. '

The F~ term is absent in Eq. (63b). Direct application of Eq. (14) to Eq. (63a) yields

')+&V ' + E&q')—= —6 ' —tV ',
)

(63a)

(63b)

(64)

where we have used the fact that $0=0, independent of the spin projection when the nucleus with spin one
is at rest. Rewriting Eq. (64), we have

(65)Fi(q')+(Wo+&c) ' =- '
o [q' —Woac].F.(q') F,(q')

2m m

Since it is unlikely for the left-hand side to have a zero at q' = W, nc, Eq. (65) implies that F,(q') should
have a pole at q = W, nc, which is in contradiction with experiment. Thus we have from Eq. (65)

F,(q') =O, F,(q') =-(W, + ~c)
F
m p

Substituting Eq. (66) into Eq. (63a), we obtain

&o
I
v„"«&)I &-)„,=(~&, t& & 2

* ),
with

(66)

AZ FF, —= — 8'0+ —m„+mp (67)

which is to be compared with the IAT result given in Eqs. (33a) and (34); they are in agreement if we identi-
fy Fg =g~(c&) The agreem. ent between the two approaches for the vector matrix elements is ensured by
the CVC hypothesis and will, of course, hold true for all transitions of the types AJ t f=1,2, 3, . . . .

Comparison of Eqs. (33b) and (63b) shows that the matrix elements of the axial-vector current are of
the same form in the two approaches and that the vector and axial-vector matrix elements are related as

(i(r x r&/(n) =2(gy/g~)(F~/F, )m, '. (66)

As mentioned already, the meson-exchange correction to this case is probably not important, at least
not necessary to explain experimental data. This implies that the meson-exchange corrections would not
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change Eq. (68) significantly.
The divergencelessness of the axial-vector current in the matrix element is self-evident from Eq. (63b),

since a~8 ~q„)sq Q(;=0. In general, in EPT, the matrix element of (8 +feQ )A'=a, m, 'q&,') for the tran-
sitions ~J' t ~ = 1,2, 3, . . . vanish when the nuclear recoil effect is neglected. %'hether or not the fact that
the axial-vector current is "effectively" conserved has any relevance to the absence of significant meson-
exchange corrections in IAT remains to be seen.

D bJ c /=0-, 2-, 3

The EPT version of Eq. (39) is given by

(o'I v". (0) lo-}„,=o,

&o'(AU(o)lo &„,=(, ) (A(q*lq. f(e*)e.l.1

Applying Eq. (26) to Eq. (69b), we obtain

2 2

fi q')+(, )W f2 q') =—s. 2, 2f. ;& q') C'f, q'-)+C', ' f,(q')

(69a)

(691 )

(vo)

where

and

C'= - 1
RTVO

(vl)

(0'I j.(0) lo ) -=1,
)f...(q') =f ' f„(q'). (72)

Following the procedure given in Eqs. (56)-(59), we obtain'7

2

[m /Wo(m +m~) ]f2 ([(q'/m. ') —c) (I+ c )f,
(73)

where C was defined in Eq. (54).
In the absence of the Coulomb correction, i.e. , C= C'=0, Eq. (73) reduces to

2

(v4)

~hence the ratio of the contributions of the f, and f, terms in the transition matrix element is given by

(v5)

The right-hand side of Eq. (75) is in agreement with that of Eq. (62). As discussed already the Coulomb
correction does not change Eq. (75) by an order of magnitude. The ratio in Eq. (75) is, e.g. -10 for
W, = 3.5 MeV, At = 144,and I I) —a I

= 1; and -10 for Wo = 3.5 Me&, & = 144, and a = I).
Rewriting Eq. (69b), we have

&o'IA' &o)lo& =f, (l(, ,) '(1 ~)q, '(1 — ' ~')
l

—=
foal (m;+my) ' '

q (v6)
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which is to be compared with Eq. (39b)." After
identifying f, =g„(y,), Eqs. (39b) and (76) are of
the same form. However, there is a significant
difference between the values of the coefficients
of q. As mentioned already, the space and time
components in Eq. (39b) are comparable in their
magnitude. On the other hand, the space part in
Eq. (76) is, in general, smaller than the time part,
as can be seen from Eq. (75). ln particular, if
IAT is valid in estimating the nuclear pseudoscalar
form factor f„we have a=5 in Eq. (75) and the
contribution of the f, term and hence the space
part are negligibly small, as mentioned below
Eq. (75).

The difference between Eqs. (39b) and (76) is
then to be interpreted as due to the absence of the
meson-exchange correction in IAT. To bring Eqs.
(39b) and (76) to an agreement, the meson-ex-
change correction is expected to modify Eq. (39b)
or Eq. (40) in such a way that the space part be-
comes smaller than the time part. It is possible
only when the meson-exchange correction is as
large as the leading nuclear matrix elements.
Detailed calculation of the meson-exchange cor-
rection is necessary to verify that this is indeed
the case. At any rate, the above discussion casts
some doubt on the previous IAT estimate" of the
electron spectrum shape for the transition 0 -0'
+ e + v, , since the shape factor is sensitive to
the ratio of the space and time parts.

IV. SUMMARY

We have reviewed briefly the IAT results for
nuclear P decay and compared them with the EPT
results. " Implications of applying the CVC and
PCAC relations to nuclear matrix elements have
been discussed in detail in both IAT and EPT. In
contrast to the CVC relation, the PCAC relation
does not lead to any useful relationship between
nuclear matrix elements, the only prediction being
that of the value of gp. In EPT, application of the
CVC and PCAC relations leads to relationships be-

tween nuclear form factors.
For allowed and natural-parity forbidden tran-

sitions, no apparently significant discrepancy be-
tween the two approaches has been found. There
exist, however, some differences in detailed
structures in small correction terms. The gen-
eral agreement in the vector part is attributed to
the CVC hypothesis. Meson-exchange corrections
in the axial-vector part are not important in the
allowed transitions (which is well known to be
5-10% of (o)) and do not seem to play significant
roles in the natural-parity forbidden transitions.
It is interesting to note in this connection that for
the natural-parity forbidden transitions the axial-
vector current is "effectively" conserved, i.e.,
the matrix element of the divergence of the axial-
vector current between the initial and final states
vanish.

In the case of unnatural-parity forbidden tran-
sitions, at least in the case of 0 - 0 + e + v„ it
is shown that neglecting of the meson-exchange
correction leads to serious discrepancies between
the two approaches in the axial-vector current.
To reach an agreement between the results in the
two approaches, it is necessary to introduce a
significant amount of meson-exchange corrections
in the matrix elements. In contrast to the case
of natural-parity forbidden transitions, the axial-
vector current in this case is not "effectively"
conserved. Whether or not the fact that the axial-
vector current is "effectively" conserved has any
relevance to the absence of significant meson-
exchange corrections in IAT remains to be seen.

In conclusion, in view of the foregoing discus-
sion, the IAT results previously used for analysis
of the electron energy spectrum shape for the
transition 0 -0 + e + v, should be reexamined.
An EPT calculation of the electron spectrum shape
for the transition 0 -0'+e + v„ including the
effects of the final-state Coulomb interaction and
the possibility that (yg —= 0 or f, (0) —= 0 will be pub-
lished elsewhere.
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The bound states of ~5N have been studied by the ~4N(d, p) reaction. Absolute differential
cross sections were measured at E& =3 MeV for the 9.05-, 9.152+9.155-, 9.22-, 9.76-, and
10.07-MeV states and at E~=3.6 MeV for the 9.76-, 9.83-, 9.93-, 10.07-, and 10.45-MeV
states in N. The target was natural nitrogen confined in a differentially pumped gas target.
Distorted-wave Born-approximation analysis and Hauser-Feshbach calculations indicate that
l„=1 is involved in the formation of the 9.22-, 9.76-, and probably 10.45-MeV states, where-
as l„=2 transfer is associated with the 9.155-MeV level. An l„=0 transfer was discerned for
the angular distribution associated with the 9.05-MeV state and l„=0+2 for the angular dis-
tribution associated with the 10.07-MeV and probably the 9.93-MeV ~SN state. Spectroscopic
factors have been obtained. The correspondence between mirror levels in N and 0 and
those predicted within the framework of the weak-coupling model is discussed.

I. INTRODUCTION

In recent papers, "the negative- and positive-
parity states for A =15 have been investigated in
a weak-coupling model. The over-all agreement
with experimental energies, structure information
from direct reactions, and electromagnetic transi-
tions is good for all the known levels below 10 MeV.
In addition, several predictions have been made
and a one-to-one correspondence between all lev-
els of the A =15 nuclei below 10-MeV excitation
energy is suggested. This implies spin and parity
assignments of —,

"for the J=-,' member of the 9.16-
MeV doublet, —,

' for the 9.22-MeV level, and ~
for the other member of the 9.16-MeV doublet.

The experimental spectra' for "N and "O and

the positive- and negative-parity states below 10.5
MeV predicted by Lie et al."are shown in Fig. 1.

The present work was undertaken to complement
experimental information on neutron transfer to
"N states between 9.05 and 10.45 MeV and to clar-
ify the spin-parity assignment of these states.
Many experimental studies have previously been
reported on the "N(d, p) reactions and correspond-
ing information is compiled in Ref. 3. In particu-
lar, a recent investigation' of the "N(d, p) reaction
was devoted to levels up to 10.80 MeV excitation
in "N. However, very few experimental data have
been reported on the levels in "N near 9 MeV ex-
citation, probably owing to experimental difficul-
ties associated with the contaminants present in
solid targets which obscured these levels. In the


