2448 (1970).

- ⁴A. S. Jensen and C. Y. Wong, Nucl. Phys. <u>A171</u>, 1 (1971).
- ⁵H. Gauvin, Y. Le Beyec, M. Lefort, and C. Deprun, Phys. Rev. Letters <u>28</u>, 697 (1972).
- ⁶F. Videbaek, I. Chernov, P. R. Christensen, and E. E. Gross, Phys. Rev. Letters <u>28</u>, 1072 (1972).
- ⁷F. G. Perey, Phys. Rev. <u>131</u>, 745 (1963). An integration step length of 0.1 fm provided sufficient accuracy,
- as checked with the program LENS II.
- ⁸N. R. Fletcher, L. West, and K. W. Kemper, Bull. Am. Phys. Soc. <u>16</u>, 1149 (1971).
- ⁹R. L. Robinson, H. J. Kim, and J. L. C. Ford, Bull. Am. Phys. Soc. 17, 531 (1972).
- ¹⁰A. E. Bisson and R. H. Davis, Phys. Rev. Letters <u>22</u>, 542 (1969).
- ¹¹R. A. Chatwin, J. S. Eck, D. Robson, and A. Richter,
- PHYSICAL REVIEW C

Phys. Rev. C 1, 795 (1970).

- ¹²H. Feshbach, Nuclear Spectroscopy (Academic, New York, 1960), Part B, p. 625.
- ¹³K. A. Eberhard, P. Von Brentano, M. Böhning, and
- R. O. Stephen, Nucl. Phys. A125, 673 (1969).
- $^{14}\mathrm{B.}$ D. Watson, D. Robson, D. D. Tolbert, and R. H. Davis, Phys. Rev. C $\underline{4},$ 2240 (1971).
- ¹⁵G. Igo, Phys. Rev. Letters <u>1</u>, 72 (1958); Phys. Rev. <u>115</u>, 1665 (1959).
- ¹⁶M. C. Bertin, S. L. Tabor, B. A. Watson, Y. Eisen, and G. Goldring, Nucl. Phys. <u>A167</u>, 216 (1971).
- ¹⁷J. Orloff and W. W. Daehnick, Phys. Rev. C <u>3</u>, 430 (1971).
- ¹⁸B. C. Robertson, J. T. Sample, D. R. Goosman, K. Nagatani, and K. W. Jones, Phys. Rev. C 4, 2176
- (1971).
- ¹⁹H. Holm, private communication.

VOLUME 6, NUMBER 5

NOVEMBER 1972

Fission of ²³⁴U and ²³⁶U with 14.8-MeV Neutrons*

D. R. Nethaway and B. Mendoza

University of California, Lawrence Livermore Laboratory, Livermore, California 94550 (Received 23 June 1972)

We determined mass-yield distributions from fission of 234 U and 236 U with 14.8-MeV neutrons. We measured the yields of 24 products covering the mass range 66–161 for 234 U and for 30 products covering the mass range 66–172 for 236 U. We estimated total chain yields by correcting for the effects of nuclear-charge dispersion in fission. The mass-yield curves are similar to those for fission of 233 U, 235 U, and 238 U with 14.8-MeV neutrons. We measured the independent fractional chain yields of the following nuclides: for 234 U: 96 Nb, (1.54 ± 0.10) × 10⁻³; 136 Cs, 0.095±0.006; for 236 U: 96 Nb, (2.7±0.3)×10⁻⁴; 126 Sb, 0.096±0.010; 136 Cs, 0.022±0.002.

INTRODUCTION

In this study of the mass-yield distribution for fission of ²³⁴U and ²³⁶U with 14.8-MeV neutrons, the ²³⁴U products that were measured ranged from ⁶⁶Ni to ¹⁶¹Tb and, for ²³⁶U, from ⁶⁶Ni to ¹⁷²Er. No previous measurements have been reported for fission of these isotopes with 14-MeV neutrons. These measurements are part of a series that include ²³⁵U and ²³⁸U fission¹ and ²³³U fission² with 14-MeV neutrons. This paper deals specifically with ²³⁴U and ²³⁶U; we reported elsewhere³ on a detailed examination of the fission distribution for all five uranium isotopes. The ²³⁴U measurements were made as relative yields and then converted to absolute fission yields by adjusting the total area under each half of the mass-vield curve to unity. The ²³⁶U calculations are based both on that method and on the measurement of the number of fissions.

EXPERIMENTAL DETAILS

Our experimental details are similar to those reported previously^{1,2} and are described here only briefly. The 14.8-MeV neutron irradiations were made at the insulated-core-transformer (ICT) accelerator at the Lawrence Livermore Laboratory. The uranium targets were placed at 0° to the source of neutrons produced by the reaction of a 400-keV deuteron beam on a rotating titanium tritide target. The 14-MeV D-T neutron source strength was typically $1 \times 10^{12} \text{ sec}^{-1}$ or greater; the flux density in the uranium target was about $2 \times 10^{10} \text{ cm}^{-2} \text{ sec}^{-1}$, with very little decrease, if any, during an 8-h irradiation.

The ^{234}U target assembly consisted of about 48 mg U_3O_8 (99.33% ^{234}U , with ${<}5{\times}10^{-4}$ % ^{233}U , 0.36% ^{235}U , 0.11% ^{236}U , and 0.20% ^{238}U) wrapped in aluminum foil and sealed in a thin polyethylene bag. The assembly was placed in a 30-mil cadmium

can to reduce the low-energy neutron background. Five such targets were prepared from 240 mg of the uranium oxide, which was obtained from the Oak Ridge National Laboratory.

The ²³⁶U targets were prepared in a similar fashion from 480 mg U_3O_8 (99.21% ²³⁶U, with $<2 \times 10^{-3}$ % ²³³U, 5×10^{-3} % ²³⁴U, 0.57% ²³⁵U, and 0.21% ²³⁸U) obtained from Oak Ridge National Laboratory. Six targets were used, ranging in mass from about 40 to 150 mg each. In addition, two 10-mil uranium metal foils weighing 200 mg each were used as targets.⁴ The isotopic composition was 99.76% 236 U, 0.20% 235 U, and 0.03% 238 U. These foils were wrapped in aluminum and then sandwiched between monitor foils before being sealed in polyethylene bags. The monitor foils were niobium in one case and yttrium in the other.

The uranium targets were irradiated for either 8 or 16 h, producing up to 7×10^{11} fissions in the 234 U and 1.5×10^{12} fissions in the 236 U. The target foil was dissolved together with the aluminum wrapping, so that recoil losses were negligible. The dissolving was delayed for about 17 h, so that the bulk of the short-lived products could decay

TABLE I. Radio	activity and	counting-efficiency	measurements.
----------------	--------------	---------------------	---------------

Nuclide	Half-life (days)	Type of counter ^a	Discriminator settings (keV)	Basis for counting efficiency	$E_{\gamma}(I_{\gamma})^{\mathrm{b}}$	Uncertainty in efficiency (%)
⁶⁶ Ni	2.29	β	•••	β efficiency curve	•••	10
⁶⁷ Cu	2.56	β	•••	β curve and NaI PHA	184(0.43)	10
72 Zn	1.942 $^{ m c}$	β	• • •	Ge PHA ^d	835(0.96, ⁷² Ga)	3
⁸⁹ Sr	50.6	β	•••	4π counter		5
⁸⁸ Y	106.6	NaI	1600 - 1910	е	•••	3
⁹¹ Y	58.8	β	• • •	β efficiency curve	• • •	10
⁹³ Y	0.427	β	•••	β efficiency curve	· • •	10
⁹⁵ Zr	65.0	NaI	600-900	Ge PHA	765(0.99, ⁹⁵ Nb)	4
⁹⁷ Zr	0.701	NaI	600-900	Ge PHA	743(0.94)	6
⁹² Nb	10.16	Ge	•••	NaI and Ge PHA	935(0.99)	4
⁹⁶ Nb	0.975	Ge	•••	Ge PHA	778(0.97)	5
⁹⁹ Mo	2.752	NaI	600-900	NaI and Ge PHA	739(0.124)	9
105 Rh	1.476	NaI	200-400	NaI and Ge PHA	319(0.19)	8
112 Pd	0.875	NaI	520-700	NaI and Ge PHA	617(0.435, ¹¹² Ag)	5
¹¹¹ Ag	7,43	NaI	200 - 400	$4\pi\beta - \gamma$	•••	4
¹¹⁵ Cd	2,208	NaI	50-580	NaI and Ge PHA	$336(0.50, \frac{115m}{11})$	10
115m Cd	43.0	β	• • •	$4\pi\beta - \gamma$	•••	4
^{126}Sb	12.5	Ge	• • • •	Ge PHA	666(1.00)	4
^{127}Sb	3.87	Ge	• • •	Ge PHA	685(0.368)	6
¹³² Te	3.24	NaI	400-1000	NaI and Ge PHA	668 (0.98, ¹³² I)	9
¹³⁶ Cs	13.0	NaI	400-2200	Ge PHA	818(1.00)	4
^{137}Cs	10960.0	NaI	400-2200	Ge PHA	662(0.85)	4
140 Ba	12.80	NaI	1100-1700	NaI and Ge PHA	1596(0.96, ¹⁴⁰ La)	4
¹⁴¹ Ce	32.4	β	• • • •	4π and Ge PHA	145(0.49)	8
¹⁴³ Ce	1.379	NaI	200-400	NaI and Ge PHA	293(0.47)	5
¹⁴⁴ Ce	284.0	β	• • •	Ge PHA	134(0.11)	6
¹⁴⁷ Nd	11.04	NaI	470 - 650	NaI and Ge PHA	531(0.132)	7
153 Sm	1.928	β	•••	β curve and NaI PHA	103(0.28)	8
¹⁵⁶ Eu	15.19	NaI	800-2200	Ge PHA	812(0.108)	5
¹⁵⁹ Gd	0.773	β	•••	β efficiency curve	••••	10
¹⁶¹ Tb	6.96	β	• • •	4π counter	•••	-0
¹⁶⁶ Dy ^f	3.40	β	•••	4π counter	•••	5
¹⁶⁹ Er	9.5	β		4π counter	•••	5
$^{172}\mathrm{Er}^{\mathrm{f}}$	2.08	β	• • •	4π counter	•••	5

 ${}^{a}\beta$ refers to gas-flow β proportional counters, NaI refers to NaI(Tl) detectors with lower and upper discriminator settings given in the next column, and Ge refers to Ge(Li) detectors used with pulse-height analyzers.

^b The energy of the γ ray is given in keV, followed by the absolute photon intensity (photons/disintegration) in parentheses.

^c The value of the ⁷²Zn half-life was erroneously given as 2.45 day in Ref. 2.

^d By direct comparison with the 835-keV photon (I_{y} =1.00) in a standard sample (Ref. 7) of ⁵⁴Mn.

^e By direct counting of a standard sample (Ref. 7) of ⁸⁸Y.

^f The ¹⁶⁶Dy and ¹⁷²Er were measured as their daughter nuclides ¹⁶⁶Ho (1.116 day) and ¹⁷²Tm (2.65 day).

h

away. Aliquots of the target solution were added to 10- to 20-mg amounts of carriers for the various products. Conventional radiochemical procedures were used for the purification of each of the products.^{5, 6}

The rare-earth elements were separated on ionexchange columns, with α -hydroxyisobutyric acid as the eluant. The lowest-yield rare-earth nuclides (¹⁶⁰Tb and ¹⁶⁹Er) were further purified by a second column step. The nuclides ¹⁶⁶Dy and ¹⁷²Er were determined by separating and measuring the ¹⁶⁶Ho and ¹⁷²Tm daughters. The chemical separation of strontium-yttrium and samariumeuropium was delayed for several days following the irradiations in which ⁹¹Y and ¹⁵⁶Eu were to be measured. This was done to allow complete decay of the precursor nuclides ⁹¹Sr (9.5 h) and ¹⁵⁶Sm (9.4 h).

Details of the radioactivity measurements are given in Table I. The counting efficiencies are

TABLE II. Yields of products from fission of ^{234}U with 14.8-MeV neutrons.

Product nuclide	Ratio to ¹⁴⁷ Nd	Measured fission yield ^a	Estimated to- tal chain yield
⁶⁶ Ni	3.49×10^{-4}	$(4.6 \pm 0.5) \times 10^{-6}$	
⁶⁷ Cu	8.3×10^{-4}	$(1.09 \pm 0.11) \times 10^{-5}$	
72 Zn	8.1×10^{-3}	$(1.06 \pm 0.06) \times 10^{-4}$	1.07×10^{-4}
⁹³ Y	3.92	0.052 ± 0.005	
⁹⁵ Zr	3.98	0.052 ± 0.002	
⁹⁷ Zr	3.84	0.0506 ± 0.003	0.0514
⁹⁶ Nb	6.05×10^{-3}	$(8.0 \pm 0.3) \times 10^{-5}$ ^c	
⁹⁹ Mo	3.34	0.044 ± 0.004	
105 Rh	1.68	0.0221 ± 0.0018	
¹¹¹ Ag	1.03	0.0136 ± 0.0005	
112 Pd	1.15	0.0152 ± 0.0010	0.0153
$^{115m+g}\mathrm{Cd}$	1.02	0.0134 ± 0.0013 ^d	
¹³² Te	3.28	0.043 ± 0.004	0.050
^{136}Cs	0.373	$(4.91 \pm 0.20) \times 10^{-3}$	2
^{137}Cs	3.89	0.0512 ± 0.0023	0.0515
¹⁴⁰ Ba	3.00	0.0395 ± 0.0016	0.0401
¹⁴¹ Ce	2.91	0.038 ± 0.003	
¹⁴³ Ce	2.58	0.0339 ± 0.0017	
¹⁴⁴ Ce	2.10	0.0277 ± 0.0020	
¹⁴⁷ Nd	1.00	0.0132 ± 0.0009	
¹⁵³ Sm	0.143	$(1.88 \pm 0.15) \times 10^{-3}$	
¹⁵⁶ Eu	0.0369	$(4.86 \pm 0.22) \times 10^{-4}$	
¹⁵⁹ Gd	9.10×10^{-3}	$(1.20 \pm 0.12) \times 10^{-4}$	
¹⁶¹ Tb	3.60×10^{-3}	$(4.7 \pm 0.5) \times 10^{-5}$	

^a The experimental standard deviations given here do not include a systematic 5-10% uncertainty in the normalization of the mass-yield curve.

 $^{\rm h}$ Values of the estimated total chain yield are given where they differ appreciably from the measured fission yield.

 $^{\rm c}$ The ^{96}Nb and ^{136}Cs values are independent fission yields.

^d The measured 115m Cd/ 115g Cd ratio is 0.067.

based on several methods: (1) comparison with 4π and $4\pi \beta -\gamma$ coincidence counters, (2) comparison with calibrated NaI(Tl) and Ge(Li) detectors with pulse-height analyzers (PHA), (3) the use of calibrated standard solutions,⁷ and (4) the use of an experimentally determined curve of β counting efficiency versus mean β energy.

FISSION YIELD MEASUREMENTS

²³⁴U Results

Results of the ²³⁴U fission yield measurements are summarized in Table II. Each result is the average of about three separate measurements. The results were first calculated as the ratio to ¹⁴⁷Nd and plotted as a relative mass-yield curve. The absolute fission yield of ¹⁴⁷Nd (and hence also the other products) was then obtained by adjusting the total yield under each half of the mass-yield curve to unity. The mass-yield curve was then replotted and is shown in Fig. 1. The accuracy of this normalization technique is probably about ± 5 -10%. Corrections have been applied to the fission yields for independent formation of later members

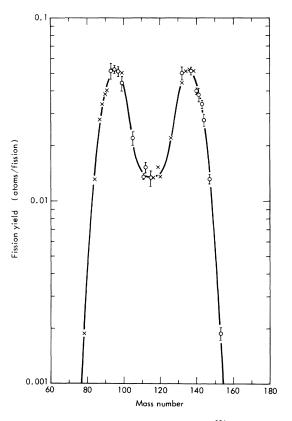


FIG. 1. Mass-yield curve for fission of 234 U with 14.8-MeV neutrons. Measured values are indicated by open circles with error bars; mirror points reflected about mass 115.5 are shown by crosses.

of the isobaric decay chains. The corrected mass yields are given in Table II when they differ significantly from the measured fission yield (the corrections are discussed later in this paper).

The low-yield products on the wings of the massyield curve are shown separately in Fig. 2. A Gaussian curve was fitted to these data and is also shown in Fig. 2. A least-squares procedure was used in which the data were weighted by the reciprocal of the square of their standard deviations. The Gaussian curve is given by yield = area $\times \exp\{-0.5[(A - A_0)/\sigma]^2\}/\sigma(2\pi)^{0.5}$, with area = 89 \pm 19, A_0 = 115.64 \pm 0.07, and σ = 9.55 \pm 0.10.

²³⁶U Results

The ²³⁶U fission yield measurements are summarized in Table III. Each result is the average of about four or five separate measurements. The results were first calculated as the ratio of each product to ¹⁴⁷Nd. Two separate methods were used to obtain the absolute fission yield of ¹⁴⁷Nd.

The first method was the graphic technique used previously for the 234 U results. The 147 Nd fission

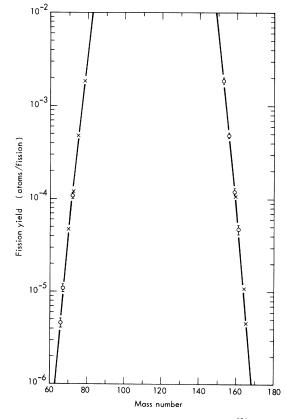


FIG. 2. Low-yield products from fission of 234 U with 14.8-MeV neutrons. Measured values are indicated by open circles with error bars; mirror points reflected about mass 115.6 are shown by crosses.

yield was found to be 0.0172 by adjusting the yields of both halves of the mass-yield curve to unity.

The second method involves the measurement of the total number of fissions in the two irradiations in which monitor foils were used. The cross sections of the ⁸⁹Y(n, 2n)⁸⁸Y and ⁹³Nb(n, 2n)⁹²Nb reactions at 14.8 MeV are 1060 ± 50 and 487 ± 24 mb, respectively.⁸ The integrated neutron fluence in the target foil was obtained by averaging the results from the monitor foils in front and back of the uranium. The fission cross section of ²³⁶U at 14.8 MeV is 1.59 ± 0.06 b.⁹ The number of fissions was calculated from the product of the number of ²³⁶U target atoms, the fission cross section, and the neutron fluence. The fission yield of ¹⁴⁷Nd was found to be 0.0197, based on the yttrium monitor, and 0.0185 based on the niobium monitor.

The discrepancy between the results for the two

TABLE III. Yields of products from fission of ²³⁶U with 14.8-MeV neutrons.

Product nuclide	Ratio to ¹⁴⁷ Nd	Measured fission yield ²
⁶⁶ Ni	1.07×10^{-4}	$(1.91 \pm 0.19) \times 10^{-6}$
⁶⁷ Cu	2.35×10^{-4}	$(4.2 \pm 0.4) \times 10^{-6}$
72 Zu	2.70×10^{-3}	$(4.82 \pm 0.15) \times 10^{-5}$
⁸⁹ Sr	2.11	0.0378 ± 0.0019
⁹¹ Y	2.47	0.044 ± 0.005
⁹³ Y	2.92	0.052 ± 0.005
95 Zr	3.04	0.0544 ± 0.0022
⁹⁷ Zr	3.11	0.056 ± 0.004
⁹⁶ Nb	8.10×10^{-4}	$(1.45 \pm 0.12) \times 10^{-5}$ b
⁹⁹ Mo	2,96	0.053 ± 0.005
105 Rh	1.45	0.0259 ± 0.0021
¹¹¹ Ag	0.626	0.0112 ± 0.0005
112 Pd	0.672	0.0120 ± 0.0006
$^{115m+g}Cd$	0.584	0.0105 ± 0.0010 ^c
¹³² Te	2.63	0.047 ± 0.005 d
¹³⁶ Cs	0.0671	$(1.20 \pm 0.05) \times 10^{-3}$ b
^{137}Cs	2,96	0.0531 ± 0.0022
140 Ba	2.37	0.0425 ± 0.0018
¹⁴¹ Ce	2.35	0.042 ± 0.003
143 Ce	2.28	0.0408 ± 0.0021
¹⁴⁴ Ce	2.02	0.0361 ± 0.0024
¹⁴⁷ Nd	1.00	0.0179 ± 0.0010
¹⁵³ Sm	0.162	$(2.90 \pm 0.24) \times 10^{-3}$
¹⁵⁶ Eu	0.0409	$(7.3 \pm 0.3) \times 10^{-4}$
¹⁵⁹ Gd	$9.5 imes 10^{-3}$	$(1.69 \pm 0.17) \times 10^{-4}$
¹⁶¹ Tb	$3.76 imes 10^{-3}$	$(6.7 \pm 0.4) \times 10^{-5}$
¹⁶⁶ Dy	2.43×10^{-4}	$(4.3 \pm 0.3) \times 10^{-6}$
¹⁶⁹ Er	7.0×10^{-5}	$(1.24 \pm 0.26) \times 10^{-6}$
¹⁷² Er	7.8×10^{-6}	$(1.4 \pm 0.6) \times 10^{-7}$

^a The experimental standard deviations given here do not include a systematic uncertainty of about 6% in the normalization of the mass-yield curve.

 $^{\rm b}$ The $^{96}\rm Nb$ and $^{136}\rm Cs$ results are independent fission yields.

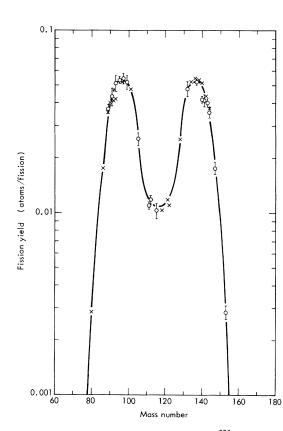
^c The measured ^{115m}Cd/^{115g}Cd ratio is 0.0735.

^d The estimated total chain yield for mass 132 is 0.049.

neutron monitors is probably due to the difference in excitation functions and the effect of lower-energy (scattered and fission-spectrum) neutrons. The ⁸⁹Y(n, 2n)⁸⁸Y reaction has a high threshold (11.6 MeV), and the cross-section curve does not resemble that of the ²³⁶U fission reaction as well as does that for the (n, 2n) reaction on ⁹³Nb. For this reason we discount the results based on ⁸⁸Y and use only those based on ⁹²Nb and on the graphic method. These results, 0.0185 and 0.0172, both have uncertainties of 5% or more; we chose to use the average, 0.0179±0.0010, for the fission yield of ¹⁴⁷Nd. The yields of the other products were calculated from the measured ratio to ¹⁴⁷Nd.

Corrections for independent formation of later members of the isobaric decay chains have been estimated and found to be negligible in each case except for mass 132 (these corrections are discussed later). The mass-yield curve is shown in Fig. 3, and the low-yield products on the wings are shown separately in Fig. 4. The parameters for the Gaussian curve that was fitted to the latter data are as follows: area = 113 ± 16 , $A_0 = 116.80 \pm 0.05$, and $\sigma = 9.34 \pm 0.06$.

FIG. 3. Mass-yield curve for fission of 236 U with 14.8-MeV neutrons. Measured values are indicated by open circles with error bars; mirror points reflected about mass 116.5 are shown by crosses.


In addition to the yields given in Table III, the ratio of yields ¹²⁶Sb/¹²⁷Sb was also measured to be 0.083 ± 0.006 . Difficulties with carrier-tracer exchange prevented us from measuring the absolute yields of both isotopes. The measured ¹²⁶Sb is that formed independently in fission, as it is shielded from β decay of precursors by 10^5 -yr ¹²⁶Sn. We estimate the independent fractional chain yield of ¹²⁶Sb to be 0.096 ± 0.010 , by using interpolated values for the mass-126 and -127 chain yields from the mass-yield curve.

Charge-Distribution Corrections

In another paper³ we describe an empirical method for estimating charge-distribution corrections that we have used to infer total chain yields from measured fission yields. The corrections are made by estimating the value of Z_p , the most probable charge for each mass chain, from the equation $Z_p = Z_p(\text{ref}) + \Delta Z_p$. $Z_p(\text{ref})$ is the reference Z_p function for fission of ²³⁵U with thermal neutrons. The values of ΔZ_p found for 14.8-MeV fission of ²³⁴U are 0.42 (light fragment) and 0.69 (heavy frag-

 $10^{-3} = 10^{-3}$

FIG. 4. Low-yield products from fission of 236 U with 14.8-MeV neutrons. Measured values are indicated by open circles with error bars; mirror points reflected about mass 116.8 are shown by crosses.

		Independent fractional chain yield	
Uranium target	Product	Measured	Calculated
²³⁴ U	⁹⁶ Nb	$(1.54 \pm 0.10) \times 10^{-3}$	2.0×10^{-3}
	¹³⁶ Cs	0.095 ± 0.006	0.069
²³⁶ U	⁹⁶ Nb	$(2.7 \pm 0.3) \times 10^{-4}$	2.8×10^{-4}
	¹²⁶ Sb	0.096 ± 0.010	0.016
	¹³⁶ Cs	0.022 ± 0.002	0.014

TABLE IV. Comparison of measured and calculated independent yields.

ment) and, for ²³⁶U fission, 0.10 (light fragment) and 0.29 (heavy fragment). We used these values of ΔZ_p , together with the Z_p (ref) values of Wahl, Norris, Rouse, and Williams,¹⁰ to estimate independent fractional chain yields of later members of each isobaric chain. We used a charge-dispersion curve with $\sigma = 0.56$.¹⁰

For the fission of ²³⁶U, the corrections are all negligible except for mass 132. We estimated the independent yield of ¹³²I to be 3.7% of the total chain yield. For the fission of ²³⁴U the corrections are larger, of course, and we estimated the independent yield of ¹³²I to be 14% of the total chain yield. The results of applying these corrections are included in Table II. In most cases the uncer-

*Work performed under the auspices of the U.S. Atomic Energy Commission.

- ¹D. R. Nethaway, B. Mendoza, and T. E. Voss, Phys. Rev. 182, 1251 (1969).
- $^2 D. R.$ Nethaway and B. Mendoza, Phys. Rev. C $\underline{2}$, 2289 (1970).
- ³D. R. Nethaway and B. Mendoza, following paper, Phys. Rev. C <u>6</u>, 1827 (1972).
- ⁴The ²³⁶U foils were obtained from Dr. R. D. Fowler, Los Alamos Scientific Laboratory.
- ^bM. Linder, Lawrence Livermore Laboratory Report No. UCRL-14258, 1965 (unpublished).
 - ⁶National Academy of Sciences National Research

tainties in the Z_{p} (ref) function, the value of ΔZ_{p} , and the value of σ have a negligible effect on the estimated total chain yields.

We measured a number of independent yields for fission of ²³⁴U and ²³⁶U (see Tables II and III). The independent fractional chain yields for these nuclides were calculated by estimating the total chain yields from the smooth mass-yield curves in Figs. 1 and 3. Table IV compares these yields to those calculated from the estimated Z_p values and the standard charge-dispersion curve with $\sigma = 0.56$ ± 0.06 .¹⁰ The calculated independent yields have an uncertainty of a factor of 2 in most cases (when the yield is small), because of the uncertainty in Z_p and in σ . The ⁹⁶Nb and ¹³⁶Cs yields are in good agreement with the measured values, while the estimated ¹²⁶Sb yield is much too low.

ACKNOWLEDGMENTS

We thank Hazel Perdue for her help with some of the chemical separations, and Lila Onstott and Norman Smith for their help with the radioactivity measurements and data reduction. Credit is also due to Ruth Anderson and Ray Gunnink for many γ -ray pulse-height analyses and the detector calibrations that were used for determining counting efficiencies. We are grateful to Calvin Wong and Roy Cedarlund for their assistance in providing the neutron irradiations.

Council, Nuclear Science Series Reports on the radiochemistry of the various elements (unpublished).

- ⁷The calibrated radioactive solutions were obtained from the International Atomic Energy Agency, Vienna. Austria.
- ⁸D. R. Nethaway, Nucl. Phys. <u>A190</u>, 635 (1972).
- ⁹W. Hart, United Kingdom Atomic Energy Authority Report No. AHSB(S)R169, 1969 (unpublished).

¹⁰A. C. Wahl, A. E. Norris, R. A. Rouse, and J. C. Williams, in *Proceedings of the Second International Atomic Energy Symposium on Physics and Chemistry of Fission* (International Atomic Energy Agency, Vienna, Austria, 1969).