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The variational principle in quantum mechanics gives an upper bound on the energy eigen-
value EI, of the kth state if its trial wave function is orthogonal to the eigenfunctions of all the
lower states, A lower bound on EI, has been derived assuming that: (i) its upper bound be
less than+/~ f and (ii) the energy fluctuation ((H ) —(H) ) be less than 2(EI, +&-E~). An

upper bound on the error in the wave function of the kth state has also been derived. The for-
mulas for the bounds have been applied to calculate the accuracy of the energies and wave
functions of the various J states of the ground and excitedK =0 bands in Ne. The intrinsic
wave functions of theK =0 bands were taken from the earlier calculations performed by us-
ing the deformed Hartree-Fock and Tamm-Dancoff approximations. Techniques for calcu-
lating (H~) have also been discussed. Our results show that the energies and wave functions
calculated by these approximations are fairly accurate for a number of states. The wave
functions of the ground and first excited J=0 states are accurate at least to the order of 92.5
and 87.3% respectively.

I, INTRODUCTION

The exact solution of the Schrodinger equation,
which determines the energy of the stationary
states of a physical system, is possible only for
some very simple or idealized potential fields. In
the investigation of real atomic and nuclear sys-
tems, it becomes imperative to resort to approxi-
mate methods of calculating the eigenvalues and
eigenfunctions of the Hamiltonian operator. Per-
turbation theory provides an analytical method
for calculating the approximate eigenvalues and
eigenfunetions of the real physical systems. How-
ever, the practical application of perturbation
theory is limited to only those real systems which
do not differ very much from the idealized sys-
terns which can be solved exactly. In fact, in
many atomic and nuclear systems the perturba-
tion theory cannot be applied conveniently, be-
cause the first approximation is not accurate
enough, while the labor of calculating higher-or-
der perturbation terms is extremely great. For
many such systems the method based on the vari-
ational principle provides a good approximate
scheme for calculating, especially, the ground-
state energy and wave function. ' The method can
also be used to calculate the excited-state energy
and wave function, but it becomes quite inconveni-
ent in practice. '

It is interesting and important to test the accur-
acy of the variational wave function and energy.
A convenient method of testing the accuracy con-
sists in calculating the bounds on the errors in the
approximate wave function and energy. The pur-

pose of this paper is to discuss some formulas
for the bounds and consider their application to
examine the accuracy of the wave functions and
the energies obtained by the Hartree-Fock (HF)
and Tamm-Dancot'f (TD) approximations for the
nucleus "Ne."

The nuclear shell model provides the basic
framework for calculating the spectroscopic prop-
erties of the nuclei. The shell model reduces the
problem of the calculation to solving the Schrb-
dinger equation or, equivalently, diagonalizing
the n atrix of the effective Hamiltonian operator
in an appropriately chosen finite basis. The
choice of the appropriate effective Hamiltonian
and the appropriate basis is a complicated and
difficult problem and is far from being settled.
However, even if one has the right effective Hamil-
tonian and the right basis, the shell-model calcula-
tion can, in general, turn out to be a prohibitive
task because the number of configurations can be
very large even for only a few particles outside
the closed shell.

In recent years the variational approach of the
HF theory together with the angular momentum
projection technique has been successfully used
as a substitute for the complete shell-model diag-
onalization program for the deformed nuclei in the
lower half of the 2s, ld shell. 4 A number of cal-
culations have also been performed to estimate
how accurate the projected HF wave functions are
compared to the wave functions that can be ob-
tained by the complete shell-model calcula-
tion. '" The results of these calculations pro-
vide only some semiquantitative estimates on the
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accuracy of the projected wave functions. In the
opinion of this author the formulas for the bounds
are very useful in providing some definite quanti-
tative estimate on the accuracy within definite
limits. Formulas for the upper and lower bounds
on the energy will be discussed in Sec. II. Section
III will contain the discussion of the formula for
the upper bound on the error in the wave function.
In Sec. IV we will present the method for calculat-
ing the bounds for the projected wave functions.
Results and conclusions on "Ne will be presented
in Sec. V.

II. UPPER AND LOWER BOUNDS

ON THE ENERGY

I et H denote the Hamiltonian operator and 4'„
4„... , 0 „,. . . its complete set of eigenfunctions
so that we have

for n=0, 1, ... , n, .. . ,

Wo = Q a„'E„.
n=O

(5a)

Subtracting Eo from both sides gives

Wo —Eo= Q a„(E„—Eo).
n=O

From Eq. (5b) it is clear that

&o- EO ~

(5b)

(6)

In the case of the kth state, the approximate wave
function 4k is chosen in the following form:

4»= P a„4„
n=k

with

For simplicity we have assumed the expansion
coefficients a„ to be real. The approximate ground-
state energy S', is given by

w=&c hei ~&

for an arbitrary wave function 4 gives an upper
bound to the lowest eigenvalue E„' i.e.,

TV-E .

(2)

where E„ is the eigenvalue belonging to the eigen-
function 4 „. According to the variational princi-
ple in quantum mechanics the expectation value

ao=a = ~ ~ =a„,=0.
Clearly then,

W»= Q a„E„
n=k

W„-E,=P a„'(E„-E,).
It follows immediately from Eq. (8b) that

(8a)

(8b)

To use this principle to determine the ground
state of the system we use a trial function 4 that
depends on a number of parameters which are
varied until 8' is a minimum. If good judgement
has been exercised in choosing the trial function
4, it is hoped that the minimum of W may be very
close to E„and the 4 which gives the minimum
will have good overlap with 4'o. For a number of
physical systems the trial function 4 can be chos-
en in the form of a determinant. The minimiza-
tion of 8' with a, determinantal form of 4 leads to
the well-known HF equation. ' The variational
principle ca,n also be used to obtain an upper
bound for one of the higher eigenvalues if the trial
function is orthogonal to the eigenfunctions of all
the lower states.

To prove the inequality in Eq. (3) for a,n arbi-
trary eigenvalue Ek, let us denote the approxi-
mate eigenvalue and eigenfunction of the kth state
by 8'k and 4„respectively. First, consider the
case of the ground state. Since 4o is not equal to
C„one can expand 4o in terms of the complete
set 0 p 0 y obtalnlng

40= p a„4'„
n=0

with

(9)

It is also possible to obtain a lower bound for
E„ if the following conditions are satisfied:

and

~k Ek. ~ (10a,)

(E —E ), —

where Ak is given by

(lob)

B,'=&C, ie'i e„&. (12)

Using the definition of 4, in Eq. (7) we can write

B» ga»E2

Subtracting W,' from both sides of Eq. (13) gives

„'=B»' —W» =Z a„E„—W

= g a„E„—2W» Q a„E„+W» P a„
n=k

= Q a„(W» —E„) .

The quantity B»' in Eq. (11) is the expectation val-
ue of H', i.e.,

n=O

a„' =1. (4b)
In view of the conditions (9) and (10a), (W» —E„)'
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will have its smallest value when either

E -Ek+, (15a)
III. UPPER BOUND ON THE ERROR

IN THE WAVE FUNCTION

or
E -E (15b)

provided that the other eigenvalues are not degen-
erate with E, or E„,.

In the first case, Eq. (15a), we get

A.,' - (E„,-W, )' g a„'

or

which gives

8'k+4k Ek (17)

a, =-.'(E„,-E,), (19)

which is in violation with condition (10b).
To be consistent with conditions (10a) and (10b)

we can consider only the second possibility, Eq.
(15b), which, when used in Eq. (14), gives the
lower bound for Ek:

Now it will be shown that the above inequality vio-
lates condition (10b).

In order that (Wk —E„)' be smallest for E„=Ek„
we must have

Wk-Ek+2(Ek+i

Using this in relation (17) we get

The calculations of the upper and lower bounds
on the energy eigenvalue provide important in-
formation regarding the accuracy of the approxi-
mate methods. If the two bounds are close, one
can claim to have a good estimate of the energy
eigenvalue. However, one can say nothing about
the discrepancy between the approximate wave
function and the exact eigenfunction. Eckart has
derived a formula for calculating the upper bound
on the error in the ground-state wave function by
using S', and the experimental values of E, and

E,.' This formula can be generalized to the excit-
ed states also if the approximate wave function of
the excited state is orthogonal to the eigenfunctions
of all the lower states. ' Eekart's formula, though
useful in atomic physics, has some distinct dis-
advantages in applying it to nuclear-structure cal-
culations, as pointed out by this author in a recent
publication. ' In the same publication a new formu-
la has been derived for the upper bound which ean
be conveniently applied to the HF wave functions
of atoms as well as nuclei. This formula will be
briefly discussed here.

Let us first consider the case of the approximate
wave function 4k of the 4th state. We have

W =(4 ~H~4 ) =a„E + Q a„'E„
Ek-Wk -A.k. (20)

It may be noted that conditions (10a) and (10b)
for the validity of the lower bound (20) can be
lumped into one condition, where

n=k+1

=a„E„+bX

=E, +b'a, (22)

Wk Ek "(Ek+i -E—.). (21)

However, in this form the condition is very diffi-
cult to test for the Hamiltonians used in the nu-
clear shell-model calculations, because it re-
quires the knowledge of the eigenvalues E, and

E„,. One cannot use the experimental values of
E, and Ek, because, in general, the shell-model
Hamiltonians can, at the most, only reproduce the
low-lying experimental energy spectrum and not
the actual experimental energies. Conditions (10a)
and (10b) are more suitable for such calculations.
It is quite often possible to test condition (10a) by
approximately calculating Ek+, . Condition (10b)
depends only on the energy difference E„,-E„
which can, to a very good approximation, be taken
from the experiment.

These remarks will be more clearly understood
in Sec. V, which discusses the application of for-
mula (20) to the results of HF and TD calculations
in "Ne.

b2 P s2
n=k+ 1

2E
X g &nEn

n=k+ I

(23a)

(23b)

and

(23c)

g 2(E E )
k+2 k+ ~ 2bn=k+ 3

+2+ 1. (Ek+ 2 Ek+ 1)
Q2

Squaring Eq. (22) gives

W 2=(Ck~H~C )2=E,2+b4a2+ 2E ab2

a„'(E„-E„i)6 —X —Ek —Ek —Ek+ Z
n=k+ 2

6
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Further,

Bp'=&@gIH'Ic'g&=so'E&'+ Q &.'E.'
n=k+ 1

a 2g 2+b2 Y2
k' k'

=E,'+ b'(F' -E,'),
where

(26)

a„'(E„—E,)E1 -Eo+

ft ( 1I 2) 4 ( 2 g) (3yb)2 0+~ b2 b2
1l=3

n=k+1

a'E'an En
b2 (26) IV. CALCULATION OF ENERGY FLUCTUATION

FOR PROJECTED STATES

It can be shown' that Y' &I', so that we can
write

Y =X +Q

where 5 is some positive quantity.
Now subtracting Eq. (24) from Eq. (25) gives

(27)

A ' =B ' —W ' = b'5+ b'(X' —E ') —b'6' —2E Ab'

b26 ~ g2(b2 b4) (28)

b2 ( g 2/g2 (30)

With the aid of Eq. (23c) the above inequality can
be further simplified to give

b'- a,'/(E„, —E,)'. (31)

If the amplitude ak„ is of the same order of mag-
nitude as a„with n& 0+1, or not much larger than
them, and also if the energy level density does
not rapidly increase above E„„then the third
term is greater than the fourth term on the right
side in Eq. (23d). Under this condition one can
further improve the upper bound given by inequal-
ity (31), obtaining

b'- a,'/(E„, E,)'. — (32)

The equality sign in relations (29) to (32) is appli-
ca.ble only when A.k'=0, i.e., when 4k is an eigen-
state.

The ground state is, generally, the most inter-
esting case for testing various approximate meth-
ods. Formulas (30) to (32) are, clearly, valid in
this case also and are written as

Since b'5/6' is a positive quantity, it follows from
Eq. (28) that

(29)

If b4 is negligible compared to b', we can write

Hlc '& =(c 'lHle'&le'&+pa„y„, (38)

where P„p„.. . , P„, . . . define a complete set of
two-particle-two-hole (2p-2h) states. The lp-1h
states do not contribute, because (1p1hlHlC ~& =0.
Further, particle-hole configurations of higher
order than two also do not contribute, because H
is a sum of only one-body and two-body operators.
The quantities a„a„.. . , a„, .. . , etc. , are the ma-
trix elements defined as

~.= &a.lHIC'& = &v, ~. l ~l ~,~.& (39a)

with

The HF and TD approximations have been used
by several authors to calculate the intrinsic states
of the ground and the excited K=O bands in "Ne."
The energy levels calculated with the angular mo-
mentum states projected out of these intrinsic
states reproduce fairly well the low-lying experi-
mental energy spectrum in ' Ne. ''

In order to apply the formulas in Secs. II and III
to estimate the accuracy of the projected angular
momentum states and the energies calculated with
them, one first needs to calculate the difference
&H'& -&H&' for the projected states. Because of
the projection operator the calculation of (H'& can
turn out to be a difficult task. However, in the case
of the HF ground states of the closed-shell nuclei
the calculation of &H'& is quite straightforward and
simple because the HF wave functions, in such
cases, are the eigenfunctions of J2 with eigen-
value J= 0. Let us first consider this case. Let
4~ be the HF wave function which describes the
ground state of a closed-shell nucleus. Operating
on 4 ~ by H we get

b2 (g 2/g2

b' (a,'/(E, —E,)',
b'( a,'/(E, —E.)',

where

O'=Pa„', Co = Q a„'4'„,
n=1

(33)

(34)

(»)

y„=bq bq bq bx, lC' (39b)

Here p, , and g, are empty one-particle (1p) HF
orbits belonging to the same space as the filled
1p HF orbits X, and X2. 3 is the two-body part
of H.

Squaring Eq. (38) and then subtracting the HF
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energy of 4 J we get

A =(4 (H ~4 &
—(4 ~H~e

where a„and P„are defined in a similar way as in
Eqs. (39a) and (39b) and E"„~ is the HF energy de-
fined by

=pa„',
n

(40) EHt' (@FIF I HI@;p & . (46)

which can be easily computed using Eq. (39a).
The number n of the 2p-2h states contributing to

the summation in Eq. (40) can be greatly reduced
by using symmetry properties of H and 4 . This
point will be discussed in some detail in connection
with the calculation of (H'& for the deformed HF
states of the even-even X=Z nuclei.

To extend the discussion of the calculation of
(H'& to a deformed nucleus, it is necessary for
us to introduce the projection operator which ex-
tracts out the observed angular momentum states
of the nucleus from its intrinsic states. Let M
and K be the projection of J along the laboratory
(lab) and the body-fixed z axis, respectively; then
the angular momentum projection operator P~~K is
defined by

P~«= —,'(2 J+1) d„z(8)e ' ~~ sin8do, (41)
p

where d~„(8) is the reduced rotation matrix.
One can always choose the lab z axis to coincide

with the body-fixed z axis; then Eq. (41) becomes

Pz~-——,'(2J+1) t dz~~(6)e 'e~~sin8d8,
Jp

(42)

The projection operator defined in Eqs. (41) and

(42) is applicable only when the deformed intrinsic
states are axially symmetric and have, therefore,
K as a good quantum number. The quantum num-
ber K is commonly known as the band quantum
number. If CK is the intrinsic wave function of a
band with band quantum number K, then the ener-
gy EJ of the angular momentum state O' J belong-
ing to the band is given by

E' = (C '~ P~H ~C "&/X'

where

yJ PJCK
K

PKPK ——PK

and

(C,Ei Pzi4 K&

(43)

(44a)

(44b)

(44c)

H4 =HPsc4HF E„FPE@HF + P~Q a„Q——„,
n,

(45)

In its most general form, 4K may be very com-
plicated in structure, which can make the calcula-
tion of EJ a prohibitive task. In the HF approxi-
mation 4 K is simply a Slater determinant, and
consequently the calculation becomes quite simple.
If 4«denotes 4 in the HF approximation, we
have

Using Eq. (45) in Eq. (43) we get

1E' =EHt ~g Q&.(+~p IPrl g.&.
J n

To obtain the expectation value of H' we square
both sides of Eq. (45) and then divide by the nor-
malization (4'~

~
4~&.

=(E~y)'+~ (E~'(A. l~'l0. )
J n

+2E«g ~.&C'H& I
Pr'I 0.&

+2 Z a„a„(4,1&rlt,)).
n

n'&n

(48)

Since PKJ cannot connect states with different ra-
dial quantum numbers and H is rotational- and
space-reflection-invariant, only those 2p-2h
states P„contribute in Eqs. (47) and (48) which
belong to the same major shell as 4H~ and also
have the same band and parity quantum numbers
as CHp.

K

In the case of even-even N = Z nuclei we always
have K=O for the HF ground state. Consequently,
we have some additional symmetry properties of
4'„~ and Pp which can simplify the computation in
Eqs. (47) and (48). Let G, denote the following
symmetry operators:
(i) G, —the time-reversal operator,
(ii) G, —the operator which changes a neutron into
a proton and vice versa,
(iii) G, —the product of G, and G, .
The symmetry properties of 4'„~ and P, are then
given by

G(IC'HF&= I HF&,

[G, ,P~]=0 for i =1, 2, 3.
(49)

(50a)

It should be noted that H is also invariant under
G, . By carefully using these symmetry properties
of H, P, , and 4'„~, various summations on the
right sides in Eqs. (47) and (48) can be reduced
to include contributions from only a number m of
2p-2h states, where m is generally much smaller
than n. Incorporating the effect of G in Eqs. (47)
and (48) we get

1

J m
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= (E'„)'+~.( P a.~.'&e. I I".(I +PG;)le.&

+2E',pPg ~ &4"Hp II", ly &+2 g g «&0 I&.'(I+QG;)le
m

m'&m

(50b)

where g is equal to 1, 2, and 4 according to
whether P is invaria. nt under both G, and G, or
under only one of them or none of them. The sum-
mation Q,.G, excludes the G,. for which G,.lp„&

In the case of the excited K=O bands of the even-
even N= Z nuclei calculated by the TD approxi-
mation, expressions similar to Eqs. (50a) and

(50b) can be also derived for E~ and (H'& because
the symmetries used earlier are applicable in
this case also. However, the calculations of EJ
and (H'& are now more laborious because, in addi-
tion to 2p-2h states, 1p-1h states also contribute,
as 4TD is composed of more than one Slater de-

terminantt.

V. RESULTS AND CONCLUSIONS

and

EHp BHFIHI+;p&=&~J @J„,

I+ To& =Po IC'To&i&C'~DI &014'~o& '

n=2

where

HIIJ &=Em lip &i (|I'z lid &=0
p

forms appropriate for the present discussion:

I+HF&-&, l@H~&/(O'Hv I& Ic'HF&

(51)

(52)

(53)

(54)

(55a.)

The Hamiltonian II and its HF and TD wave func-
tions for the ground and excited K=O bands in "Ne
were taken from the Ref. 2. The expressions of
(H) and (H') for the J' states projected from the
HF and TD wave functions contain terms of the
types a„, (&,II', l&p„&, and &p„ II', lp„&. These were
calculated by using the techniques discussed by
Tewari and Grillot. " The upper and lower bounds
on the energy eigenvalues calculated by using the
J states projected from the HF wave function are
presented in Table I. In Table II are listed the
corresponding results for the J states from the
TD wave function.

It should be noted that formula (20) for the lower
bound is applicable only under conditions (10a) and
(10b). We will now show that these conditions are
satisfied in the case of the J=0 states in Tables
I and II.

Let us write Eqs. (4a) and (5a) in the following

~'ly, „&=~(~ 1)ls,„&. (55b)

Since we are interested only in the states of iso-
spin T =0, all the eigenstates P~„P~, etc. , have
T =0. The subscript n distinguishes the different
eigenstates and eigenvalues of H with the same
quantum number J. The ordering of n for a given
value of J is according to the increasing value of
EJ starting with n =1 for the lowest EJ .

It should be noted that in writing Eq. (53) we
have assumed 4'~To to be orthogonal to g~ . This
is a justified assumption because, as shown later
in this chapter, $~ can be represented by O'H~t; to
a very good approximation. The overlap (4 ~Ht; I+~To&

is likely to be small because O'„F is orthogonal to
04 ~D.
From the discussions in Refs. 2 and 9 it is clear

that the TD method is a good approximation for
calculating the energy of the 0, state and there-

TABLE I. Upper and lower bounds on the energy eigenvalues of the J=O&, 2&, 4&, 6& states calculated by using the
projected HF wave functions of the ground A =0 band. The projected HF wave function 4 JHF is defined by Eq. (51).

Upper bound EHF
HF I HI +HF&
(Mev)

«HF)'
(Mev )

(a'& J
=&+HFIH I+HF&

(MeV )

A2

= (~'&J —(E.F)
(MeV2)

Lower bound
J=EHF-A

(MeV)

Og

2i
4(
6g

—42.2925
—41.0385
—38.2822
-34.4845

1788.656
1684.158
1465.527
1189.181

1793.456
1687.397
1469.102
1190.634

4.800
3.239
3.575
1.453

—44.4835
-42.8383
—40.1730
-35.6899
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Eq. (52) the amplitude a is not larger or more
important than the amplitudes a0, ao, etc.03t 04t

We further note that the energy density of the
J= 0 state does not increase rapidly after the 0,
state. It is clear, therefore, that the conditions
required by formula (32) are satisfied to a good
approximation in the case of 4 '„F. However, to
compensate for the errors arising from the ap-
proximate validity of the conditions, we will take

Eo, -E„to be 8 MeV, which is smaller than the
value predicted by Halbert et gl. Now, using for-
mula (32) the upper bound on the error in% OHv is
predicted to be 4.8/64, i.e., 7.5%.

It may be asked how useful the estimates of the
various bounds for the different J states of the ex-
cited K=O band are, since the formulas used for
calculating them are seriously tied to the assump-
tion that 4~~n is orthogonal to P~ . This question
led us to find a reliable estimate of the overlap
(4'~~nIP~ ) and determine if it is small enough to

1
not affect the validity of the formulas for the
bounds.

It is clear that if +To is not orthogonal to P~
and 4H~~ is a reasonably good approximation of P~,I
a reliable estimate of the contribution of 4 TD to

can be found by diagonalizing H in the 2X 2 ba-J1
sis spanned by 4 HF and 4 TD. Such a calculation
has been performed. The nonorthogonality of 4 HJF

and 4TD was duly taken into account. The calcula-
tion shows that the contribution of 4 ~~o to g~ for
J=O, 2, 4, 6 states is, respectively, 1.7, 0.07,
7.8, and 40.5%. The large contribution in the case
of the J=6 state is due to a large overlap between
O'TD and 4 „F. The diagonalization of II in an ex-
tended basis including other high-lying states will
certainly yield an improved approximation for Pz,J1t
but it is highly unlikely that it will significantly
change the contribution of O'Tn to P~ in the case
of J=0, 2 states and possibly the J=4 state also.
The effect of the overlap of 1 to 8% on the formulas
for the upper and lower bounds has been examined
in the Appendix. We have demonstrated in the Ap-
pendix that our estimates for the various bounds
are sufficiently accurate in the case of J=0 and 2
states of the excited K=O band and quite likely in

fore we are justified to assume ETD&E0 ~ Fur-
ther, a complete shell-model calculation by Hal-
bert et al."for "Ne in the basis of the 2s, 1d shell
predicts E„-E„to be 6.5 MeV, and E„-E&&3.5
MeV. We can use the same values in our calcula-
tions of the bounds without any significant error,
because their effective Hamiltonian is very simi-
lar to the Hamiltonian used by us in the present
calculations as discussed in Ref. 8. One can see
from Table II that the value of A for the 4 ~D state
is less than —,'(3.5) MeV. Therefore both conditions
(10a) and (10b) are satisfied and hence the value
of -38.0 MeV is truly the value of the lower bound
of E, . The same statement is true also for the02'
lower bound of EO in Table I because both condi-
tions (10a) and (10b) are satisfied in this case.
One can see from Table I that EHF is less than the
lower bound of E02 and hence EHF &E02t which is
the requirement in condition (10a). One can fur-
ther see from Table I that A is less than 2(E,, E—

o, ), —
i.e., &6.5/2, which is the requirement in condition
(10b).

The values of the lower bounds on the energies
of the J =2, 4, 6 states of the HF and TD bands
should be taken with some reservation because all
the required values of EJ are not known from a
complete shell-model calculation to test conditions
(10a) and (10b) in these cases.

We will now estimate the errors in the wave func-
tions O'H~ and O'To by using formula (31). Using
the value of 4.8 MeV for A. from Table I and tak-
ing E02 —E01 to be 6 MeV, we predict the upper
bound on the error in 4 oH~ to be 4.8/36, i.e., 13.3%.
In the case of 4» the upper bound is predicted to
be 16.5/0, where we have taken the value of A' as
2.05 MeV2 from Table II and E, -E, has been
taken to be 3.5 MeV. If E,, -E,, be taken to be 4

MeV, the upper bound turns out to be 12.7/o. In
the case of O'„F the estimate of the upper bound
can be further improved by using formula (32).

We note from our results that g, can be, to a
02

0good approximation, represented by 4». As
pointed out earlier in this chapter, the overlap be-
tween 4 T~ and 4 „F is likely to be very small and
therefore we may be justified to assume that in

TABLE II. Upper and lower bound on the energy eigenvalues of the J=02, 2z, 42, 62 states calculated by using the
projected TD wave functions of the first excited E =0 band. The projected TD wave function 4&D is defined by Eq. (53).

0)
22

62

Upper bound ETD

(Mev)

—36.5686
—33.7953
—32.0852
—32.3244

(ETD)'
(MeV2)

1337.262
1142.122
1029.460
1044.867

(a'& ~
= (+T'D I &'I +T'n&

(MeV2)

1339.310
1146.147
1042.699
1060.184

A2

= (H &~
—(ETD)

(MeV2)

2.048
4.025

13.239
15.317

Lower bound
J=STD -A

(Mev)

—37.9996
-35.8013
—35.7238
-36.2382
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the case of its J=4 state also. The estimates for
its J=6 state are perhaps not very useful, be-
cause the formulas for the bounds cannot be used
in this case with sufficient justification owing to
the large overlap between +To and g~ .

1
Some comments may be necessary on the behavi-

or of A' in column 5 of Tables I and II. The ener-
gy spread between the upper and lower bounds
measured by A decreases more or less with in-
creasing J in Table I, but in Table II it increases
with increasing J. The contrasting behavior of A
in Tables I and II appears quite puzzling. However,
this gives rise to no- contradictions, because the
exact amount of error in the wave function is not
related to A in a straightforward way. A large or
small A. does not imply a large or small error in
the wave function.

Finally, we would like to conclude our discus-
sion with the remark that the HF and TD methods
together with the angular momentum projection
technqiue provide a very good approximation for
calculating the energy eigenvalues and eigenfunc-
tions of the ground and first excited J=0 states of
"Ne in the basis of the 2s, 1d shell. Results for
the upper and lower bounds in Tables I and II sug-
gest that these methods may be fairly accurate in
the case of other J states also.
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APPENDIX

By including P~ in the expansion of 4 ~To given
by Eq. (53) and following the arguments of Sec. II
we get

ETo —E~ =Q ar (E~ —E~ )
n=l

= a~ '(E z E~ ) + P a~ '(E-z Er ) . —
tt= 3

(Al)

First consider the case of J=0. Using the value
of a~ ' = 0.01V and E~, —E~ = -6 MeV from Sec. V

1
in Eq. (Al) we get

E~o —E~ =-0.102++ a~ '(E~ —E~ ).
tf= 3

(A2)

From this equation it follows that

ETDo- E, , (A3)

It is quite likely that the second term is greater
than the first term in Eq. (A4), which implies that
Eq. (A3) for the upper bound can be used in the
case of the J=4 state also.

The derivation of the formula for the lower
bound on the energy of the excited states is based
on Eq. (14) of Sec. II. It can be easily verified that
this equation remains valid even if we assume a„
a„a„.. . , a„, to be nonzero in Eq. (7), i.e.,

4„=Pa„4„.
n=p

Hence, our estimate for the lower bound on the
energy of the states of the excited K=O band is
fully justified despite the lack of complete ortho-
gonality between 4' fo and $~ .

The effect of a small overlap between 4~~~ and
on formula (31) can be examined in a similar

1
way, and it can be demonstrated that we are justi-
fied in using this formula for calculating the upper
bound on the error in the wave functions of the
J=O and 2 states of the excited K=O band.

unless the second term on the right side in Eq.
(A2) is smaller than 0.102, which is highly unlike-
ly. For example, assuming E~ -E~ to be 3.5
MeV and P„,a~„' to be 0.03, we get from Eq.
(A2)

E~D-E, &0.003.
2

The case of J=2 needs no discussion, because in
this case a~,'=0.0007, which can be taken as zero
for all practical considerations. For J=4 we get

Efo —Ez ——-0.08(Ez —Ez )+ P az ~(Ez —Ez ).
1k=3

(A4)
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The structure of the low-lying levels in odd-mass gallium isotopes is investigated within
the framework of the semimicroscopic model, assuming three protons coupled to a quadru-
pole vibrator, A detailed comparison with experiments is performed for 6~Ga.

I. INTRODUCTION

The present investigation was stimulated by the
following facts:
(1) In recent years, the structure of odd-mass Ga
isotopes has been studied experimentally using
different methods: the nuclear reactions ('He, d), "
(d, n),"and (n, n'y)', P' decays' '; nuclear reso-
nance fluorescence' and other spectroscopic tech-
niques. ' The electric quadrupole moment and
magnetic dipole moment for the ground states are
also known from previous measurements. "
(2) Intermediate coupling between particle field
and collective modes has been successfully ap-
plied to account for the structure of nuclei near
closed shells. " " In particular, it is a generally
accepted point of view that the low-lying states in
the odd-mass Cu isotopes can be described in
terms of multipole structure and the mixing of
multiplets. " " This fact has also been confirmed
in a recent comparison with a shell-model calcula-
tion using a realistic effective interaction. " It
is the purpose of the present analysis to take a
further step in the application of the semimicro-
scopic model and propose it for the description
of the gallium odd-mass isotopes.

From the above-mentioned experiments it can
be seen that the distribution of the single-particle
strengths and electromagnetic properties are simi-
lar for the low-lying states in odd-mass gallium
isotopes (from A = 65 to A = 71) even if their energy
spectra change gradually as the N=40 subshell is
filled up. This effect is due to the excitation modes
not contained in the particle-vibrator picture (for
example, pairing- vibrational mode).

We shall discuss mainly the "Ga isotope, whose
energy spectrum is better known. Obviously,

many results and conclusions will also be valid
for the other gallium nuclei.

II. MODEL

H= Ho+ Bp+ H;„, ,

where K, represents the energy of the quadrupole
harmonic vibrator and that of the extracore pro-
tons. The residual interaction between protons,
H~, is approximated by a pairing force. It will
affect only the seniority-one states. " The inter-
action Hamiltonian H;„t is linear in collective and
particle variables and has the form

I/2 2

P [but+( )vb
2C

x gk(r~) I;~*(&~, &jb~), (2)

where the summation p extends over the outside
protons and k(r) = rdV(r)/dr. The potential V(r)
is the average shell-model potential usually taken
as a Woods-Saxon potential. The symbols b"t (b")
are the operators for the creation (destruction) of
the quadrupole phonon field.

The quantity (a&/2C)'", where k&u is the energy
of the phonon and C is the restoring force of the
vibrator, measures the amplitude of the vibration-

Since a detailed description of the model can
be found in several review articles, "only a brief
survey of the main formulas and notation will be
presented in this section. In particular, a calcula-
tion with three extracore particles has been pre-
viously performed by Alaga and Ialongo for the
gold isotopes. "

The total Hamiltonian of the system is written
as


