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An optical potential for elastic scattering of mesons on a nucleus is developed theoretically
which is self-consistent at all distances from the center of the nucleus. Application is made

to the case of scattering of pions on 0 in the (3-3)-resonance energy region for the Fermi-
gas model and the shell model of the nucleus. Pair correlations are included. Energy-
dependent empirically fitted parameters are used as inputs for the pion-nucleon interaction.
For the shell model a downward energy shift of 30-45 MeV, as well as considerable broaden-

ing, is predicted for the (3-3) pion-nucleus resonance. Graphs of the differential cross-
section for various energies are included, with discussion of some significant features. Ef-
fects of inclusion and exclusion of the self-consistency requirement are considered.

INTRODUCTION

Recent experiments' on the scattering of pions
with laboratory kinetic energies near the (3-3)-
resonance energy on "C have renewed theoretical
interest in pion-nucleus scattering, ' a topic dis-
cussed primarily for lower energies in the 1950's.'
The problem is often discussed in the framework
of an optical model, 4 and one often uses techniques
appropriate, at first glance, only to high-energy
scattering. ' This paper reports on calculations
for scattering of pions with energies near the (3-3)
resonance on "0described by the shell model
and the Fermi-gas model. An optical potential is
used which is self-consistent at every pion-nu-
cleus distance. The energy-dependent fit of Roper
and Wright' for the pion-nucleon scattering ampli-
tudes and phase shifts is used as a given input. In
this article the theoretical basis for the optical
potential employed and the argument for requiring
a self-consistent energy for evaluation of the pion-
nucleon scattering parameters are given in the
first section. Also included in this section are
the derivation of density and pair correlation func-
tions for the shell model and the Fermi-gas mod-
el of "0, a short discussion of the calculation of
scattering amplitudes, and the procedure used
for evaluating the shell-model parameter v. In
the second section results of the calculations are
discussed, with particular reference to differences
between predictions based on the shell model and
the Fermi-gas model. The Appendix investigates
the approximations used and attempts to evaluate
the probability of their causing significant error.

Experiments, of which Ref. 1 is representative,
have shown that the energy at which the (3-3) reso-
nance produces a resonance in "C is considerably
lower than the pion-proton (3-3)-resonance energy.

By using the excellent fit of Ref. 6 and the self-
consistent approach, the author has obtained what

appears to be a reasonable shift for the "0 case,
at least for the shell model.

The present calculations (self-consistent results
of which were first recorded in 1968') differ from
the later ones of Ref. 2 in their use of the exact
fit to the pion-nucleon scattering and in the ex-
tensive calculations imposed by the point-by-point
imposition of self-consistency. Further discussion
of the resonance shift can be found in the section
on results.

BASIC THEORY

From many-body multiple scattering theory'
one can derive the following expression for an
"optical potential" V,«which describes the elas-
tic scattering of an incident particle from a target
system assuming that at most two-body correla-
tions in the target are important:

V, =t+6 + 0 I . I 0
1

fXIa - y +iq fX

CX2 CX y

We now define the symbols:

where t is the transition operator for scattering
of the incident particle on the bound ~th particle
of the N-particle target system,

and t, is the average of the sum of these operators
over the ground state of the target. 4 is an oper-
ator which represents the effects of true absorp-
tion.
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I is an inelastic scattering operator. It has
only those matrix elements of I; which refer to
inelastic scatterings (i.e., those which correspond
to a change in nuclear excitation energy}. We de-
fine operators (t ) which have matrix elements
only for elastic scattering. Thus the matrix ele-
ments of t are decomposed into those of I and
(t.).

a —= Wo + cp -H„-h + ig,

where W, is the energy of the ground state of the
target; eo is the energy of the incident particle
(when it is far from the target system); II„ is the
Hamiltonian for the target system; h is the Hamil-
tonian for the incident particle; and g is the cus-
tomary parameter, which we allow to approach
zero at the end of the calculation.

Throughout the calculation (until the end} the
Coulomb force is "turned off." The effects of the
Coulomb force have been included by using an ap-
proximate method which is an extension of Bethe's
work. '

Since all operators in the "energy denominator"
term of V„, are diagonal with respect to the un-
perturbed target states, one can write

v„,=g (olt. lo&+A„

+ g (olt, lx&
ay +a2, ~&

Q„„(r} r-= q„,(s) ds

and the direction of Q„, is that of the dynamical
path at r. The factor

I:q.,(-)]"'
[Vq„,(r)]"'

will often be suppressed in writing lnjo& It i.s
useful to expand the expression for V„, in terms
of the states l0 j), where the zero for n refers to
the ground-state energy. Reasonable arguments
can be made for the ideas that the most significant
terms in the double sum are those for which Vc»

V pp and W& ——Wp. It is also possible to neglect
true absorption (thus allowing one to set b. =0}. If
there are several definable types of particles (e.g. ,
neutrons and protons}, it is productive to write

jth state of the incident particle); o, denotes the
dynamical path corresponding to the jth state; s(r)
is the path-length variable; and X,, contains in-
formation about spin, isospin, etc. The states are
normalized as follows:

(njc I
nlo'& = 5, , 5„.;

furthermore,

h In jo) = q„ ln jo) .
It will be convenient to define a vector function

Q„& (r) such that

&s(r)

W, +C, -W„-h+Sg- Vc» (alt Io).

Consider an expansion of the double sum in terms
of a set of wave functions of the %VKB form normal-
ized in a box of volume V:

I:q. ,(-)]"Injo) =[
"' ~„„,exp t I q„,(s)ds }(&(]),

along o&

where q„,'(r) =E, —V,„„(r)(E, is the energy of the

t =gt A (a),
I

where tI is a transition operator for particles of
the Ith type; AI(a) is a projection operator for
type-I particles [i.e., A, (a) operating on a prod-
uct wave function yields 1 if the nth particle is of
type I and zero otherwise]; and Ivaries over the
number of types of particles. Let

t«g. = &i o
I 4AI(ct) Ii-'o'&.

Then

lio&(jul (0 1 tiAi(~) I 0& li'o'&&j'o'I+ g lio&, , +,„gag 'a'as Z Z' Z~,I.„,a~~a2

"f(0 It»"- t.'"~ Io& —(ol t« i., I o&&o I t, ,„,„ I o&](i.o-I

(x) (2)= Vcoo + Vcoo ~

First consider V„',. It consists of man& terms, each of which represents the scattering of the incoming
meson with a nucleon in the nuclear ground state. Furthermore, it often happens that the vast bulk of the
contributions to this scattering come from the region in the immediate neighborhood of the nucleon doing
the scattering. As is shown in the section on approximations, if q» and Q, vary slowly over the region
near each nucleon in which the scattering contribution is significant, in

I njo) one can use the approximation
~-&Oya(r) 'r e &~pa(ra) ra g-kqgfy(ra) (r-ra)

y

when tzA, (a) operates on the wave function. Keeping in mind that the matrix elements of tz between plane-
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wave states are just the scattering amPlitudes 4-mf, letting X« =-(Ij, -q. ...X«. = lX«. l, and Z« ———Q„-Qj...,
one obtains under the stated conditions

«N1 =I Zlj )N fd e„'*( )e *-"'-'""(-1 )j„(e„.)(j'e (,
I

where

p„(x)-=—Q &0 l Az(a )t) (x —r ) l 0},
a

and E =pion energy near bound nucleon =e, —V,M(x} (as will be shown in the discussion of V('00').

Under the same assumptions about q, and Q„, and adding the terms in T' for which o.', = a, (which are,
at most, of order 1/N, or I/N~ compared with the entire sum}, one obtains

VP' =g ljc& (T" --T") -)&i "o"I,COO
~ +Zg

gg tg Jl O

where

1" ='1 «f d'*d'*'e '

x Qfs(4g (~))fA&g d-(~')) Ni(Nd 1)P'i'o (»,—x')+ Q Q fj(l «(x))f84 d.(x')) &sNi Pro( )P~(x')
I L&l

T~~ ~ ~ =(4)j}'g J
d'xd'x'e ' «"" "e '~~ " "fd(A«(x))fr, (Ad ~ (x'))N, Nl, p„(x)pz (x'),

I,L

with the P" relating to two-nucleon correlations and defined by

N (N —1)~
Pgii(x, x') —= Q 5(r„-x)5(r() -x')A, (a)Ai(P),

NN

P„)(x, x ') —= &0 l PP) l 0) .
It is customary to define a function g, (x, x') via

N~(Nq —1)P (x, x') —Nq2Pg(0) (x)PI'o) (x') —= N~2pro(x)pdo(x')[gl(xj x') —I] . (4)

If g, is a function only of lx -x l, if the radius of the matter described by pz, (x) is much larger than the
distance over which (gz —1) is large, if fr is a slowly varying function of x, and assuming that the functions
qj, (x) vary little within the target, one can recall the expression for l jo) in terms of Q to write

=Q Nr (4&) Q Q lfo)&i

elfin(4z')fr(4v")pro

~r(&z'g") lf"o")&f"c"
lI ~e 0

where

(5)
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Consider the dependence on j"a.". To discuss
this, one should recall that V~2~~ operates on Q,
the wave function for the incident particle. For
reasonably high-energy scattering, we expect Q
to be of essentially WKB nature, say )t) =

I joog;
thus (j"o"

I P) is a "nearly-5" function, eliminating
all j"o"except j"cr"=jp(xp.

Furthermore, in several eases of interest (nu-
clear scattering, particularly) the product f,flCl pro
is a relatively slowly varying (i.e, nearly constant)
function of x. One therefore expects its "WKB-
Fourier" transform, which appears above, to in-
clude a "nearly-5" function which eliminates all
jo except jo= j"v".

The presence of the combination of these two
"nearly-5" functions leads to the approximation

V(o) Q N 2(4)r)2

Iko I
= Ikr I

= ~eo .
In this case

2m' A.

E'0

Voodoo
= Q Nr pr ~ Cr(&)fr (&}&d&~

E'0

Under certain common conditions one can further
simplify the expression for V~o)~o of Eq. (1), par-
ticularly since it acts on nearly WKB state (t).
If IQ) = Ijooo) and pl, varies slowly with r, one
can set q„/qr;. = 1 and replace Ij rr) in Ell. (1) as
follows:

1
X . fr(Xr rO)fr(XrOre)pIO Cl(4 rO) .

Ep 6g'+Zg

If fr(&«.(r)) is a very slowly varying function of r,
one can then obtain

Using the standard transformation Vow =ZZ ( 4'}Nr -e ' '~'(frr
I pro I jorrgfr(4~, (r)) .

I J'

1
(2,). J o~EdEdfl)

giving the Dirac" meaning to the energy denomina-
tor, and neglecting the principal part integral, one
obtains

(9)

The behavior of Virgo at high energies is interesting.
In this case QI, and q, approach some k„which is
independent of r. The dependence on j, o is through

A,qq
——k)~ -k)~.

V,~ =Q Nr'pl'(x) Me, (-r') Jt dO Cl ('r)r er)fr'(urer) .
(6}

Note that the energy 5 function yields an inter-
esting result for the energy at which f, should be
evaluated, for it tells us that e&. = ~p throughout.
But

Using this in Ell. (9), one obtains

Vt~) = —
2 o QNr JtSl(A)fr(r))e ' 'do%,

I
where

s (e)= Je'ee e

(10)

qr '(r}= er ~ —V,oo(r) .
Thus for a particular value of r, only those qI
enter for which e~ = cp. This implies that at each
position r, one must evaluate the two-body scat-
tering amplitudes f, at an energy such that

Combining Elle. (6) and (10), one obtains at high
energies (with no true absorption)

I

Vooo = +Nl o Sr(A)fr(X)e ' 'd X

I
e, = q'(r)+ V,~.

It is interesting to examine the high-energy be-
havior of this expression. In the high-energy
limit, the WKB wave functions approximate ex-
ponentials. Thus,

(XCl. (rxor))- e ' '[g-1]d'r,
p 0

where

A. =kp -k) r

(8)

1-2rlr Nl pr (r) ~ C (X)f '(A}hfx
60 J

Throughout the calculations, this equation will be
the basic one used. f, is evaluated at the self-
consistent energy of E|I. (7). Although various
authors have attempted to justify use of the con-
venient high-energy formula at energies which
seem too low for obvious applicability, the basic
factor in its favor seems to be that it, to an un-
expected degree, works.
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DENSITY AND PAIR DISTRIBUTION FUNCTIONS

FOR DETERMINANTAL WAVE FUNCTIONS

If the wave function for the target can be written
as a Slater determinant,

1
I p& =~) Q eQ I(vQ(g)(1)) ~ ~ ~ I(dq(„)(N)&,

Nu q

where the sum extends over all the permutations,
Q, of the numbers 1, . . . , N, and

even
eo =(sl) if Q is an permutation,

odd

(v, represents particles of ape I for v(, +1 I v„

where v, =g,'=, N/, and the orthogonality relation

&~((o) I ~/(o)& = ();/

holds. It can be readily shown that

vg

P/" (X) =— & &&.(I) I ()'(ri -X)~.(I)& .
N, , ; ~+

If one can write &a, in the form (v, (r, 5) =A, (r)X,(5),
one obtains

VI

P/" (X) =—g IA. (X)I'.
NI vr x+&

Under the same conditions, one can show that
VI VI

P", (x, x')= Q Q I IA, (x)I'IA, (x')I' —A,*(x)A,*(x')A,(x)A.(X')&x, Ix.)(x.Ix, &].
Nq(N/ —1

b=vr &+ 1

To proceed further in evaluating p,') and p/a), one must know the specific form of the (d,.
Consider a (Fermi-gas) model of a nucleus, for which the individual particle wave functions have the

form.

a),(X, 5) =~ e'"'"S,(5)T,(t ),

where normalization is in a box of volume V, S, contains the spin dependence, and r, contains the iso-
spin dependence. One can show that use of such wave functions leads to

~,) 1 1 1 2t /'F)o(X) =— —=—=—
l I sin8d8

N, V V N, g, 4p
d3K= — K 31 1

N 3&I
(12)

where K~ =maximum permitted value of K. Similarly, use of these wave functions in the expression for
P", leads to

—Nl Ng

P".(x, x')= —.2 Zl I-ZZ -""-"a""-""1&xIx &I'
a=1 b=l a b

With the standard conversion to an integral (keeping in mind the I(X,IX,) I' factor), one obtains for large
Nl

(fc, Ix -x'I)'

For a simple shell model of the nucleus the calculation of I/') and Pz) is somewhat more complicated.
In the work which follows "0 is considered as an example. A simple choice for the single-particle func-

tions in the shell-model wave function is obtained by taking the eigenfunctions of the isotropic 3-dimension-
al harmonic oscillator. (This choice neglects spin-orbit forces. ) The radial functions which enter are

(V)a/4 ur
r ~ '

( a )i/a(v)a/4are ur a1

If one combines these with the spherical harmonics and uses them, one obtains the same expressions for
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protons as for neutrons:

1 2v»'("(r,e, d)= —
(
— (1 4 r')4 '"' (12a)

[1+Sv(r'+~' }+32v r re —Svr ~ r' —16v (r ~ r')2],
28

3

P'"(&)P'"(~')[g(r r')-1]=-——(1+4vr r')'8 '"'"""".
32 7T

Using the expression for P ", one obtains

1 (1+4vr ~ r'P
4 (1+4vr )(1+4vr' )

'

For these calculations the Fourier components of the density and correlation functions are required.
For the shell model one can show that

Ks„.„(.) = —„((—-;,16v

For the Fermi-gas model, the calculation is trivial:

(14)

SFo(~) = —6'(~)
V

(16)

(this disregards the finite dimensions of the nucleus}.
For a Fermi gas the calculation of C(ic) is relatively straightforward. The result is

9&2 2 1

C(g) = 2K/rs 8 2 K/1 24 Kv ~ f F
K'& 2E~

0

For the proposed shell model, calculation of C(z} is considerably trickier. Since g(r, r ) is not a function
of r —r' only, the Fourier transform of p(r)p(r'}[ g -1] does not reduce to C(/()(p')« . For the particular
case of interest, nevertheless, one can write an effective C(/() which should lead to approximately correct
results when inserted into the expression for V pp Under the conditions that the scattering amplitude for
angles less than, say, ~& be peaked near 0 and that the magnitude of the square of the incident momentum
be considerably greater than Sv, it can be shown (Ref. 7, pp. 66-67) that a reasonable C(/() can be obtained
by requiring that

C(K' —K) d K (K(ld(K') ='f"d'K (N(N —1)&K(&K'IN'' IK")IK') —

N'&KIN�

"IK'&&K'(N"(K"&).
4

Use of the expressions for P'& and P ') from the proposed "0 shell model leads to

C(+) I ()//2v)3/2e-K~/av

(17)

(18)

CALCULATIONS OF SCATTERING AMPLITUDES

With the condition indicated by E(l. (7) in mind,
one can now calculate the optical potential of Eq.
(11}using the density functions and their trans-
forms and the correlation function transforms of
Eas (»)-(18).

E(luation (7) expresses an intuitively plausible
notion. If one regards the nuclear matter as pro-
ducing a nuclear potential describing an averaged
effect of the nucleons, it seems reasonable that
within the range of this potential the "effective

total energy" of the meson should be its energy
outside the range of the potential plus the averaged
potential energy.

The procedure adopted for calculating the optical
potential is as follows:

(1}For a given r regard V,M as a function of e,
the energy at which the single-particle scattering
amplitudes are evaluated. Calculate V,~ as a
function of e.

(2} Proceed by iteration to find a value e,„„„,„,
such that s, + V,»(r, s,„„„,„„)=e

There is some difficulty with this equation be-
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f(8) = —. I( Jo(2Kb sin ,'e}(e"—'—1)bd b,
Z J

where

(19a}

cause V,oo has both a real and an imaginary part.
Although it might be possible to use dispersion
relations to estimate the scattering amplitudes at
complex energies, such a procedure would prob-
ably not be very accurate. For co ImV«„one
would not expect large errors from neglecting the

imaginary part in iterating the equation. Since

V,«- eo would lead to many other difficulties,
this requirement probably adds little new to the
limitations of this calculation.

From scattering theory with WEB wave functions

(Ref. 7, pp. 71-76) or Glauber's work, one can

show that in the high-energy limit

target, and Jo is the zeroth-order Bessel function.
Equation (19a}, with (19b), was derived for

small-angle scattering. Nevertheless, there are
several cases for which it can be expected to give
reasonable results for relatively large angles. "
Because of its simplicity this equation is used
throughout this paper. Work is currently in pro-
gress on better treatment of the larger-angle
scattering. Equations (19}have been discussed
by many authors. In particular, Glauber' has
discussed some of the errors and limitations in-
volved.

In this paper Eqs. (19) have been used only to
obtain the purely nuclear part of the scattering.
As previously noted, effects of the Coulomb force
have been included by an approximate method"
based on extension of work by Bethe.

V oo b +Kz' z',
2Iv

(19b) EVALUATION OF THE SHELL-MODEL

PARAMETER

l =Kb ——,', 0 is the laboratory scattering angle,
K is a unit vector in the initial direction of the in-
coming particle, b is a vector orthogonal to K and

such that r =5 +Az, v is the speed of the incoming

particle with respect to the center of mass of the

In the calculations the value

has been used throughout for the parameter in the
"0 shell model. ro is the familiar parameter such

o FERMI GAS r=l.3I fm
~ FERMI GAS r el.68 fm
& SHELL MODEL

I.50— SHELL MODEL

AS g*l.68 fm

GAS r, *l.3I fm

I.3—

l.2-

I-
I.I—

LIJ

V)
M
X
oO

I
4

LLI
Co

0.9—
a
O

z 0.95—I-
Co

COz
O
O

I

U

LLI

V)

z 0.85—0

0
0

b

0.8— 0.75—

0.7—

0.6
IO0 I20

I I I I I

I 40 I 60 I 80 200 220
ENERGY (MeV)

Oo65
Ipp

I

l50

ENERGY (MeV)

I

200

FIG. 1. Self-consistent total cross sections of Fermi-
gas model and shell model as a function of pion incident
laboratory energy.

FIG. 2. Non-self-consistent total cross sections as a
function of pion incident lab energy.
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that rpA'" is the approximate radius of a nucleus
of A nucleons. This expression results from
equating the expectation value of the oscillator
potential energy with half the total energy of the
outermost nucleons. " We have used rp 1 31 X10
cm." An alternative method suggested by Mayer
and Jensen, requiring that rms radius implied by
the shell-model density function equal the mea-
sured rms radius for "0, was rejected because
the unrealistically long "tail" on the shell-model
distribution tends to make v evaluated by this
method considerably smaller than would seem
warranted.

RESULTS OF THE CALCULATION

Examination of the results of the detailed cal-
cu1ations shows that, if the choice were limited
to the two models considered here, one could de-
termine the correct nuclear model from reasonably
straightforward experiments, performable with
available equipment. Although the choice of mod-
els is not so limited, it is useful to examine the
differences.

Total Cross Section

Figure 1 shows a plot of the total cross section
for the two models as a function of the initial va1-

ue of the pion kinetic energy in the laboratory sys-
tem. There are two major features to discuss:
first, the placement of the peaks relative to one
another and relative to the position of the peak for
the (3-3) resonance in the pion-proton system,
and, second, the width of the peak.

The peak in the shell-model total cross section
appears to be at about 145-160-MeV laboratory
kinetic energy. If there is a peak in the Fermi-
gas-model cross section it must be at or below
120 MeV. Both the full self-consistent calcula-
tion and non-self-consistent calculations (see Fig
2) show a shift of the resonance energy such that
the resonance in the nucleus appears at a lower
incident pion energy than that for the (3-3) pion-
proton resonance. It is noteworthy, furthermore,
that for a given model the shift is greater for the
self-consistent calculation than it is when self-
consistency was not imposed. [In the non-self-
consistent case the resonance appears at about

10 I

10'-

10 .
0 10'

101— 10-1

Cl

10

b

b

10-'—

10-4— 10-4

(ps I I I

0 10 30 60 90 120
eI b {deg)

150 180
10-'

0
I

30 60
i I

90 120
eI b (deg)

I

150
I

180

FIG. 3. Pion on O. Differential cross sections—
Fermi-gas model and shell model. 120 MeV.

FIG. 4. Pion on ~60. Differential cross sections
150 MeV.
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172 MeV -for the shell model, representing a shift
of about 20 MeV down from (3-3) resonance; does
not appear for the Fermi-gas model with nuclem'

radius 1.31 F A'"; and appears at about 135 MeV
for the Fermi-gas model with nuclear radius 1.68
F ~its

In a recent paper, ' Ericson and Hiifner analyze
the downward shift in the position of the (3-3)
resonance in pion scattering by nuclei in an ap-
proximate, but relatively general, way. Using a
p-wave dependence on momentum and an energy-
dependent resonance function, and noting that a
carbon nucleus is strongly absorbing near reso-
nance energy, they conclude that one can attribute
almost all (according to them, within 10% to 30%%d)

of the downward shift to the momentum and energy
dependence of the index of refraction. This is
equivalent to the requirement of self-consistency
imposed in the calculations reported here. Locher
et al. ' deal with the pion-nucleus resonance shift
from the viewpoint of the sequential multiple-
scattering form of Glauber approximations. Noting
that near resonance the first terms of the Glauber
series do not converge, they rearrange and sum
the series to include contributions from all terms.
Correlations among nucleons are not considered.
Simplifying assumptions for the density and for
the angular dependence of the pion-nucleon scat-
tering amplitudes lead then to a more or less
readily differentiable expression for the total
cross section. Using the fit of a slightly later
version of Ref. 6, they obtain a shift which ap-
pears from their graph to be a reasonable 30 MeV
or so for "O. They do not seem to deal in any
transparent way with the question of a self-consis-
tent energy at which to evaluate the pion-nucleon
data for use in calculating pion-nucleus scattering.
(Though this problem may not be in the spirit of
the adopted treatment, it appears to be significant
for this scattering. ) Glauber himself" has noted
(p. 327) that the difference between his treatment
and the standard optical-model approach used
here is that between (1+iX)'A)" and e'". In the
case of '0 with A=16 and Xnot very interesting
when greater than about unity, the difference is
quite small (around 10% for X = 1, less than 1%
for X =0.1). By summing their Glauber series,
Locher et al. have included the kind of multiple
scattering implicit in the exponentiation of g of
this paper. Their assumptions, however, seem
more drastic, and they do not appear to include
self-consistency conditions.

From the results of the present calculations it
seems clear that two mechanisms each producing
significant effects are responsible for the fact that
the resonance energy is lower in pion-nucleus
scattering than it is for a pion on a single proton.

These mechanisms are multiple scattering as
expressed through exponentiation of the Born term
and the requirement of self-consistency (which

might be interpreted as the effect of the potentials
of more distant nucleons on the energy of the inci-
dent pion}. Certainly, for the case in which nu-

cleons are sufficiently far apart that

1
V dz «1

hv

for all incident energies of interest, one can
readily obtain that the total cross section for a
pion on a nucleus would be just the sum of the
cross sections of the pion on the individual nu-
cleons of the nucleus. In such a case, the nuclear
resonance would be essentially at the energy for
the (3-3) pion-nucleon resonance. (Self-consis-
tency requirements would not significantly affect
this because the optical potential would be small
everywhere. ) Even without the requirement of
self-consistency, these calculations showed a
significant lowering of the resonance energy when

1
il V dz

ev g

is not small compared to unity. In this case
exp[-(i/Rv} J V, , dz] includes sequential multiple-
scattering terms. Even without elaborate analy-
sis one can see how the self-consistency require-
ment results in a lowering of the resonance energy
for the present calculation, if one keeps in mind
the fact that the scattering cross section for pions
on nucleons is skewed when plotted against energy.
When iteration is completed, one discovers that
a plot of the real part of the optical potential ver-
sus the pion incident energy is nearly a straight
line. [This reflects the fact that, to first approxi-
mation, V, , is proportional to f(0), the real part
of which goes through zero in a reasonably linear
way near the resonance. ] Thus the energy at
which phase shifts are evaluated to obtain the opti-
cal potential employed differs from the incident
laboratory energy by an amount linear in energy
and going through zero near the resonance. But
the below-resonance side of a plot of the scatter-
ing cross section for pions on nucleons has a con-
siderably greater slope upward than the above-
resonance side has downward. Thus, a change in
the evaluation energy by a similar amount on each
side will cause a greater shift upward in the cross
section on the low-energy side. This will shift the
resonance downward.

This effect will be more pronounced for the Fer-
mi-gas model because the nucleons in such a mod
el tend to be more tightly "bunched" near the nu-
clear center than they would be in a shell model
of the same radius. Thus contributions from re-
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the density via its dependence on V,~. To lowest
order of approximation, V,~~ p. In this lowest
order of approximation, one can show that for a
Fermi gas 5,(b) is of the form (R' —b')'" for b&R
and is zero for b &R. For the shell model, 5, (b)
is of the form De '"'(I+2mb'). For the values
of K corresponding to energies near the (3-3)-
resonance energy, e" ~ -1 for a Fermi-gas mod-
el will vanish for l&5. Since terms corresponding
to a particular I give rise to peaks of angular width

v/I, one would expect no peaks with angular width
&5r. The graphs of Figs. 3-7 show that this is
true. For the shell model, on the other hand, one
might see peaks of any width but of very small
height compared to the central maximum, since b

corresponding to all l are available. For example,
one can consider the peak which appears at about
115' with an angular width of @v to —,'s (15-20') in
the shell-model curve at 150 MeV. It should,
therefore, correspond to l, between 9 and 12. One
notes that the peak in the same graph centered at
approximately 95' has a width which corresponds
to L= 6 or 7. Although considered as a function of

io0—

L the relative peak height does not decline as rapid-
ly as one might expect from the crude approxima-
tion considered here, it should be noted that the
height of the peak at 155' is considerably lower
than that at 95' as one would expect from the l de-
pendence of the approximate 5, chosen.

Thus, the shell model used here gives rise to
a more complex structure than the Fermi-gas
model. This can be qualitatively understood, in

part, by a simple density dependence for V~.
The precise details, however, are not consistent
with such a simplified treatment.
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APPENDIX: APPROXIMATIONS
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In arriving at optical potentials and using these
potentials to derive scattering amplitudes, the
author has made a number of approximations, the
validity of which can be investigated. In general,
as Glauber' has emphasized, the accuracy of the
treatment improves with increasing energy.

Possibly the most severe error comes at large
scattering angles. In deriving Eq. (19a) the ap-
proximation has been made that

(K —K') HZ=0.

This clearly becomes invalid for 8 such that

2KR sin'~8& 1.
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FIG. 7. Pion on ~ O. Differential cross sections
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FIG. 8. Diagram indicating sense in which f (X)C (X) is
almost symmetric about K' = q„.
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For pions of 170-MeV kinetic energy, and a nu-

clear radius of 3.3 x10 "cm, this limits the re-
gion of obvious applicability to

6)« ~.
Glauber' (p. 345) has argued that the use of
[J&&(2l+ I) sin~a] to replace P, (cos8) may increase
the accuracy at large angles, but the author knows

of no convincing analytic proof that this is so. Re-
cent experiments' seem to indicate, nevertheless,
that similar approximations work fairly well even
at relatively large angles.

Another source of error is the neglect of third-
and higher-order correlations. For the Fermi-
gas model this certainly causes no problem, since
one can readily verify that with or without higher-
order correlations the nucleus will act as an es-
sentially black body. For the shell model, on the
other hand, the correlation contribution might be
seen even in the near-resonance region, since
the density goes to zero comparatively slowly.
Now for constant or slowly varying densities,
Eq. (2) suggests that a reasonable measure of the
importance (P, ) of a correlation term of the ith
order is

i-1
P, = Imf(0}p(y} 8,', '

where R„ is a "correlation length" for the ith-
order correlations (and is typically of the order
of I F). One assumes that Ref(0)« lmf(0) to ob-
tain this. For second-order correlations, for
example,

R„=— r —1 d~.
0

For our "O shell model R„=-0.924 F. Since the
region of the "O nucleus within about 3 F of the
center is effectively "black" to pions with energy
near the (3-3) resonance, one need look only at
r &3 F to study the importance of higher-order
correlations. Assuming that R„ is of order unity,
one can show that for the energies considered P,
is always less than (0.2)' '. Thus, higher-order
correlations should not be very significant.
In the derivation of Eq. (2), the difference be-

tween V~0 and V,~, the averages of the total nu-
cleus-pion potential over the ground and yth
states, respectively, of the nucleus, has been
neglected at certain points. For the case of matter
extending uniformly to infinity this is exactly true.
For further discussion see Ref. 7 (p. 94), where
it is pointed out that only states y reasonably
similar to the ground state contribute significantly.

Use of the approximation

ps(r ) s(x )

q„ys ds — q„g s ds +q~x ' r —x

is valid under the same conditions as those re-
quired for the %KB approximation. To see this
one notes that the approximation can be regarded
as a Taylor expansion with respect to the path-
length variable s, since

s(x)
q„,(s')ds' = q„,(x) .

Then if higher derivatives of q„~ are small com-
pared to q„&, the approximation is valid. This im-
poses the condition

dq„,. 1 dV ~
q„, dr 2(E, —V~) dr

Thus, the approximation is good if the pion energy
is high or if the potential varies slowly and is dif-
ferent in magnitude from the pion energy —the
%KB restrictions.

The Fourier transform of Eq. (8) shows that
this approximates the expression for g- 1 of Eq.
(4b) by --,'e "". For r=r'=0, the two expres-
sions agree. As r- ~ the expression of Eq. (4b)
yields —,

' &g + 4, reflecting the influence of the
exclusion principle. The approximate expression,
of course, yields g = 1 as x- ~. It has been shown

(Ref. 7, pp. 66-6V) that for incident wave number

K, »A v the C(x) given by Eq. (8) should be rea-
sonable for those values of v which are most
heavily weighted by other factors in obtaining the
scattering amplitudes. Since K02/8p is of the order
of 2.5 for the energies considered, and since the
laboratory scattering amplitude is peaked strongly
forward for scattering angles &60, as required
from the discussion in the reference, one expects
relatively little error from this approximation.

Neglect of the Principal Part Integral

In the Va~i, part of the V~, of Eq. (2), a contri-
bution which can be written in the form

(4,).~ ~ P tdsK, f'(Iq. -K'l)C(lq. —K'I)

has been neglected. Close examination of the in-
tegral justifies this for both the Fermi-gas model
and the shell model of "0 in the near-resonance
region. Because the product of f' and C is vanish-
ingly small otherwise, one needs only consider K'
such that (q„—K'

~
is near zero. Thus the denomi-

nator in the integrand can be approximated by

1 i
2q„q„-K'

and the K" in the d'K' can be replaced by q„'.
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One then has to evaluate

(the lower limit can be extended to -~ since for
regions with K'«q„ the integrand is very small).

Let

If this were true, the integral would vanish be-
cause of subtraction to zero for each K', K" pair.
Although the conditions cannot be met exactly,
they can be met approximately to high accuracy
for A. «q„. Referring to Fig. 8, one can show that
for [K'- q„l «q„and 8 «1,

One could prove that the integral vanishes by show-
ing that, for each K' such that l

K'
l
= q„and A(K')

«q„, there is another wave vector K"which satis-
fies the same requirements vis-a-vis q„and for
which

q„

Thus by choosing K" to be along the same direc-
tion as K' and with magnitude such that

and

q„-K"=K'- q„ one sees that if the product f'(X)C(X) is a slowly
varying function of X for small A., the integral will
approximately vanish. Thus neglect of the princi-
pal-part integral is justifiable.
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