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We use the Faddeev formalism to investigate the variation of the trinucleon binding energy
and electromagnetic form factors with phase-equivalent transformations of the Reid soft-
core potential. The transformed nucleon-nucleon interactions used in our calculations are
the same as, or slight variations of, those considered by Haftel and Tabakin in studies of
nuclear matter. The corresponding transformed two-nucleon wave functions are essentially
unchanged for nucleon separations greater than 1 fm. The variation of the trinucleon binding
energy follows the same trend as (but is generally much smaller than) the corresponding
variation of Eg/A for nuclear matter. The largest increase in E g (trinucleon) is 0,19 MeV,
which gives E g(total) ~ 6.9 MeV. The position of the minimum of the calculated Icm{;‘e(Qz)|
(experimental value: Q?=~ 11.87%) varies between @°= 14 .4 and 18 fm™2.

I. INTRODUCTION

Two-nucleon data provide only limited informa-
tion about the nucleon-nucleon interaction. Elastic
scattering data and the deuteron binding energy de-
termine only the asymptotic nucleon-nucleon wave
function (or equivalently, the on-the-energy-shell
nucleon-nucleon T matrix). The deuteron electro-
magnetic moments and form factors at low momen-
tum transfer depend weakly on the behavior of the
wave function for nucleon separations less than
about 0.7 fm. The only theoretical constraint
(aside from symmetry constraints) that we may
presently impose with some confidence on the two-
nucleon interaction is that it have a one-pion-ex-
change tail.

Several elegant techniques have recently been
used for studying the effects on nucleon systems
with A >2, resulting from variations of the off-
shell two-nucleon T matrix. The method of uni-
tarily equivalent Hamiltonians!™® is probably the
most straightforward one. Let H =(p?/M)+V be a
center-of -mass two-nucleon Hamiltonian (with v
having a one-pion-exchange tail) which gives a
good fit to nucleon-nucleon phase shifts for E
<350 MeV and the deuteron properties. Now con-
sider the unitary transformation A =UHU" = (p?/m)
+V, with

V=v+WU-DH+HU -1)+(U -1DHU' -1),
(1.1)

and (F|U —1(F’) arbitrarily small for » >», (=1 fm).
The transformed potential ¥ has a one-pion-ex-
change tail and, since the transformed-state vec-
tor [§)=U|y) has (F|§)= F|y) for » >7,, the scatter-
ing phase shifts and deuteron binding energy for A
are the same as those for H.

o

The method of unitarily equivalent Hamiltonians
has been applied to nuclear-matter calculations in
the Brueckner approximation by Miller et al.,*
Coester et al.,’*® and by Haftel and Tabakin.” Mil-
ler et al.* considered phase-equivalent transforma-
tions (induced by radial scale distortion?) of a hard
core 'S, nucleon-nucleon (NN) interaction. They
found the binding energy per nucleon E /A to in-
crease by as much as 2.4 MeV per nucleon.
Coester et al.® used simple S-wave Yukawa inter-
actions (with and without hard cores) and phase
equivalents of these in which U -1 is a rank 2 (sep-
arable) operator or U is induced by distortion of
the radial scale. With rank 2 forms for U -1,
they found that E;/A always decreased relative to
the value for U=1, with some deviations as large
as T MeV per nucleon. Positive and negative devi-
ations in E /A up to 10 MeV per nucleon were
found for the case of U induced by radial scale dis-
tortion. They also showed® that the large differ-
ences in E;/A computed with different phase-
equivalent potentials are not significantly reduced
by the addition of three-particle-correlation cor-
rections to the saturation curve.

Haftel and Tabakin’ studied the effects of phase-
equivalent transformations of the realistic Reid
soft-core potential.® They used rank 1,2 forms
with exponential form factors for U —-1. The form-
factor parameters were chosen so that the calcu-
lated deuteron quadrupole moment and electromag-
netic form factors did not deviate by more than the
experimental uncertainties from the values given
by the Reid potential. They found values of E /A
between 1.1 and 10.7 MeV per nucleon. The un-
transformed Reid interaction gave E,/A=10.0
MeV /nucleon.

An alternative approach to off-shell effects has
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TABLE 1. Form-factor parameters and sin@ for nucleon-nucleon interactions which are phase equivalent to the Reid
soft-core potential.

1S, 38,-°D,
@ Bo ) Bo oy B
Potential (fm™Y) (fm™?) (fm™) (fm™) (fm™1) (fm™1) siné
R Reid) ... ..
1 3.0 1.2
la 2.4 0.8
3 3.0 1.0
4 4.0 1.0 coe ce e cen
8 e Y 2.4 0.8 Y c e 1
11 oee cee oo “ee 2.4 0‘72 0
1+11 3.0 1.2 2.4 0.72 0
14 .o . .o e 3'6 0.90 0
18 4.0 1.3 e o 1
18a 4.0 1.5 1
18b 4.0 1.1 1
18c 4.0 1.4 1

been formulated by Baranger et al.® They derived
a method for continuing the two-body T-matrix off
shell without the explicit use of a potential. They
showed in particular that the off-shell T matrix
could be expressed in terms of a function of two
variables, ¢(p’,p), where ¢(p,p) is given in terms
of the elastic phase shift, and that the symmetric
part of ¢(p’, p) may be arbitrarily specified and
the antisymmetric part calculated in terms of it.

Haftel'® has extended the analysis of Baranger et
al. to include the case of bound states.

The main drawback of the approach of Baranger
et al. is the difficulty of translating the one-pion-
exchange constraint on the potential tail into a re-
striction on the off-shell T matrix. Picker, Red-
ish, and Stephenson'' eliminate this problem by de-
riving an expression for the half-off-the-energy-
shell T matrix in terms of the on-shell T matrix

TABLE 0. The ®H binding energy, the °H, *He charge and magnetic radii, and the saturation momentum % ,, and bind-
ing energy per nucleon Eg/A for nuclear matter, calculated using the phase-equivalent nucleon-nucleon interactions
indicated in Table I. The values for k5 and Eg/A are taken from Ref. 7. Only the [ pg(00)00 WA:~ 19,] Faddeev

1/2 2

components were retained in solving the Faddeev equations in the “two-component” approximation. The additional
[pq(20)2W3), £d,] component was retained in “three-component” calculations, but its contribution to the wave func-
tions used in form-factor calculations was dropped (see Ref. 27).

H binding
No. R, (He) R, CHe) R ,CH) Ry oo CH) energy Ep/A ky
Potential comp. (fm) (én) (fm) (fm) (MeV) (MeV)  (fm™Y)
R 2 1.99 2.03 1.83 1.96 6.71 10.0 1.36
1 2 2.09 2.13 1.89 2.04 5.92 3.5 1.20
la 2 6.60
3 2 1.98 2.02 1.82 1.95 6.90 10.2 1.37
4 2 2.04 2.08 1.86 2.00 6.43 8.2 1.29
8 2 2.00 2.04 1.84 1.97 6.60
11 2 1.99 2.03 1.83 1.96 6.70 4.3 1.10
R 3 2.04 2.08 1.86 2.00 6.37 10.0 1.36
11 3 2.04 2.08 1.86 2.00 6.19 4.3 1.10
1+11 3 2.04 2.08 1.86 2.01 5.28 1.1 1.05
14 3 2.06 2.10 1.88 2.02 6.37 9.5 1.33
18 3 2.03 2.07 1.85 1.99 6.52 10.7 1.38
18a 3 6.13
18b 3 6.37
18¢c 3 6.41
Experimental
values 1.88+0.05%  1.95+0.112 8.49
1.87+0.05> 1.75+0.10% 1.7020.05> 1.70+0.05P

2 Reference 24.

bReference 25.
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and the difference between the full scattering wave
function and the phase-shifted free wave function.
By using this relationship, one can construct a
class of half-off-the-energy T matrices which are
compatible with a specified on-shell T matrix and
a prescribed local potential tail. Of course, the
same end result may be achieved by the method of
unitarily equivalent Hamiltonians.

Another approach to off -shell effects is that of
Lomon'? who used a pseudopotential version of the
boundary condition model (BCM)'® to obtain phase-
equivalent nucleon-nucleon interactions, and found
that they gave a large variation in E /A for nuclear
matter. Hoenig!* used these interactions in trinu-
cleon calculations and found similarly large varia-
tions in the binding energy and electromagnetic
form factors. There are some difficulties of inter-
pretation of these results which require further
study. Different phase-equivalent BCM interac-
tions have different point spectra, i.e., differ with
respect to singularities of the off-shell T matrix,
and thus their associated Hamiltonians are not uni-
tarily related. A unique off-shell continuation'®:!¢
of the BCM T matrix may be derived if certain
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mild analyticity constraints are imposed.!”

Generalizations of the method of unitarily equiva-
lent Hamiltonians have been given by Monahan,
Shakin, and Thaler.'®*'® They constructed'® phase-
equivalent interactions for which the bound states
are either identical or differ in some preassigned
way for small nucleon separations. They also de-
rived!® two classes of Hamiltonians for which the
energy eigenfunctions of the members of each
class are identical below some cut-off energy E,.
For energies greater than E_, the eigenfunctions
of Hamiltonians of one class differ for small inter-
nucleon separations but are identical in the asymp-
totic region. In the other class, the eigenfunctions
also differ asymptotically for energies greater
than E_.

In this paper, we use the Faddeev formalism® to
investigate the variation of the trinucleon binding
energy and electromagnetic form factors with
phase-equivalent transformations of the Reid soft-
core potential.® The transformed nucleon-nucleon
interactions used in our calculations are the same
as, or slight variations of, those used by Haftel
and Tabakin. The comparison of our results with
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FIG. 1. (a), (b) *He charge form factor calculated with phase-equivalent interactions as indicated in Table II.
The experimental points are taken from Ref. 24.
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theirs should give a good indication of the relative
magnitudes of off-shell effects in nuclear matter
and in the trinucleon system. The sensitivity to
off-shell variations of the NN T matrix is expected
to be smaller for the properties of trinucleon sys-
tems than it is for those of nuclear matter. How-
ever, the great precision with which one can now
solve the three-nucleon problem? (in comparison
with present uncertainties in nuclear-matter calcu-
lations) partially compensates for this smaller
sensitivity.

It should be noted that the investigation of off-
shell effects described in this paper is not very
comprehensive, since we have limited our class
of unitarily equivalent Hamiltonians to those re-
lated by rank 1,2 forms for U - 1. In a future pub-
lication, we will present results obtained with
U -1 generated by radial scale distortion and the
class of Hamiltonians discussed by Monahan et
al.18.19

The rank 1,2 forms for U -1 used in this paper
are given in Sec. II and the results of calculations
are presented in Sec. III. The results are dis-
cussed in Sec. IV.

|

II. PHASE-EQUIVALENT NUCLEON-NUCLEON
INTERACTIONS (REF. 7)

The short-range unitary operator used by Haftel
and Tabakin is of the form

U=1-2A, (2.1)
where A is a Hermitian projection operator:
A*=A. (2.2)

The transformed phase-equivalent potential V of
(1.1) may be written as

7=V =2AV =2VA +4AVA - 2AT - 2TA +4ATA .
(2.3)

It is assumed that (F|A[F’) —~ 0 faster than 1/» so
that the bound-state energies and phase shifts of
the transformed Hamiltonian are the same as those
of the original Hamiltonian.

The rank 1,2 form of (¥ |A[f’), which is consis-
tent with the symmetries of the two-nucleon
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FIG. 2. (a), (b) *He magnetic form factor calculated with phase-equivalent interactions as indicated in Table II.
The experimental points are taken from Ref. 24.
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system, is metrization,
N J=-1 J+1
FAF)Y= > girgd ) )
LL oM T, [A%,.]= J-1 ( sin®g sin9cos€> 2.7)
1- ’ - . ’ .
X‘szTS(;)‘y:‘yTS AL, , (2.4) LL'l g+ 1\sinfcosé cos?f

where the form factors g § are real. L and L’ are
orbital angular momentum quantum numbers, and
a denotes the quantum numbers J (total angular mo-
mentum), S (total spin), and T (total isospin). M
and T, are, respectively, the quantum numbers
for the third component of total angular momentum
and total isospin. The 'y,‘j” TS are normalized eigen-
functions with the indicated quantum numbers.
If we normalize the g{(r) to unity,

L Pdr g %(r)g ) =1, 2.5)
then unitarity (i.e., A®*=A) requires that A;; =1 for
uncoupled channels and that

EAgLIIAgIIleéLHLI (2.6)
"

for coupled channels (L, L', L”=J+1). The para-
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with ¢ real, satisfies the unitarity requirement
(2.6).
The momentum-space matrix elements of A are

e 2

BpY=2 3 T gi(plgi(p)

LL'aM Ty
XYM Ts(pyysr ™ (pag,
(2.8)

where

g3(p)= [ 7drg5oipm. (2.9)

[}

We assume that the nucleon-nucleon interaction
is effective only in the 'S, and 3S,-%D, states. The
form factor

-
g8=Coe (1 =By) (2.10)
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FIG. 3. (a), (b) °H charge form factor calculated with phase-equivalent interactions as indicated in Table II.
The experimental points are taken from Ref. 25.
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is used for the 'S,. For the 3S,-%D, states, we use
£8=Coe (1 -By7),

- 2.11
g3=Cyore T (1-B,7). 211

The constants C,; are determined by the normaliza-
tion condition (2.5).

The parameters of the phase-equivalent interac-
tions for which trinucleon calculations were done,
are listed on Table I. We have used the same
identifications as Haftel and Tabakin for interac-
tions 1, 3, 4, 8, 11, 14, and 18. 1a and 18a,b,
and c are slight variations of their interactions 1
and 18, respectively.

III. CALCULATION OF TRINUCLEON BINDING
ENERGY AND ELECTROMAGNETIC
FORM FACTORS

In this section, we present the results of Faddeev
calculations of the trinucleon binding energy and
electromagnetic form factors based on the phase-
equivalent interactions given in Sec. II.

The Faddeev amplitude was expanded in compo-
nents with respect to center-of-mass trinucleon

HARPER, KIM, AND TUBIS 6

basis states |pg(L)EW]d9,), where p=(k, -k,)/2,
4= (k, +k, - 2k,)/(12)/?, k, = momentum of nucleon i
and W] is a normalized spin-isospin state with to-
tal spin 8= or 3 and total isospin d = |,|=3. The
index » =A, S, +, — denotes, respectively, complete
antisymmetry, complete symmetry mixed over-all
symmetry with symmetry under 23 exchange, and
mixed over-all symmetry with antisymmetry
under 23 exchange.

With the nucleon-nucleon interaction effective in
the 'S, and S,-3D, states, there are five indepen-
dent components of the Faddeev amplitude. These
components of the homogeneous solution of the
Faddeev equations determine the trinucleon bound-
state wave function.??+2

Because of the large amount of computer time re-
quired to solve the five coupled two-dimensional
Faddeev integral equations, we have made the ap-
proximation of retaining only the [ pg(00)0W#,34,],
[pq(00)0W[,,34,], and [ pg(20)2W;,,39,] Faddeev
components. In previous calculations,?! it was
found that one can calculate the trinucleon binding
energy E g to within ~0.3 MeV, the charge radius
to within ~0.04 fm, and the electromagnetic form
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FIG. 4. (a), (b) °H magnetic form factor calculated with phase-equivalent interactions as indicated in Table II.
The experimental points are taken from Ref. 25.
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factors for momentum-transfer squared <16 fm™2,

by solving the Faddeev equations retaining only the
first two of the above-mentioned components. Our
method of solving the Faddeev equations is de-
scribed in Ref. 21.

In Table II, we give the *H binding energy, the
°H, °He charge, and magnetic radii, and the nu-
clear matter parameters k. and E B/A calculated
by Haftel and Tabakin, for the phase-equivalent
interactions indicated in Table I. The trinucleon
electromagnetic form factors calculated with these
interactions are plotted in Figs. 1 through 4 along
with the experimental values of McCarthy et al.**
and Collard et al.2®> The analytic forms of Janssens
et al.®® were used for the nucleon electromagnetic
form factors. In the calculation of the trinucleon
form factors, the contributions to the wave func-
tions from the [ pg(20)2W;,,39,] components of the
Faddeev amplitudes were dropped.?’

IV. DISCUSSION OF RESULTS

We see from the results given in Sec. III that the
properties of *H, *He are generally much less sen-
sitive to variations of the off-shell nucleon-nu-
cleon T matrix than are those of nuclear matter.
For example, the phase-equivalent interaction
(1+11) gives a value of EB/A for nuclear matter
which is about 10 times smaller than the value
given by the Reid potential; on the other hand,
(1+11) gives a value for the 3H binding energy
which is only about 20% less than that given by the
Reid potential. In all cases for which both nuclear-
matter and trinucleon calculations have been done,
the variations of E,(*H) and E /A (nuclear matter)
from their values for the Reid potential are of the
same sign.

There are considerable variations in the °H, °He

electromagnetic form factors for @*2 8 fm™, but
all of the minima of |F ¢(Q?)| are substantla.lly
larger than the experimental value®* of Q%>~11.8
fm™2. The variation of the low-Q? behavior of the
form factors is represented by variations of a few
percent in the charge and magnetic radii.

An analysis somewhat similar to the one report-
ed in this paper was done by Hadjimichael and
Jackson?® for phase-equivalent interactions R, 3,
4, 14, and 18. They calculated the *H binding en-
ergy and wave function using a vaciational tech-
nique?®:2° with harmonic-oscillator basis states.
Unfortunately, they did not include a sufficiently
large number of terms in their wave functions and
had to make very rough extrapolations for the val-
ues of the binding energies. Thus a detailed com-
parison of their results with ours is not very
meaningful.

Another study of phase equivalent nucleon-nu-
cleon interactions in trinucleon systems, based on
a simple Yukawa form for the “untransformed”
interaction, has been reported by Haftel.*

As was mentioned in the Introduction, our pres-
ent investigation of off-shell effects in the trinu-
cleon system is very limited, and must be greatly
expanded. Only after one has a clear picture of
the variation of trinucleon parameters with a
broad class of phase-equivalent and phase-semi-
equivalent'® nucleon-nucleon interactions, will we
be able to quantitatively assess the importance of
relativistic effects and three-nucleon forces.
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The Glauber theory of multiple scattering is extended so as to include the contributions of
N* production and is applied to the elastic scattering of a nucleon from various nuclei for in-
cident momenta in the range from 1.7 to 30 GeV/c. The momentum dependence of the nucleon-
nucleus total cross sections is discussed. The influences of the inclusion of N* effects on the
structure of the second maximum in the differential cross section is also investigated.

I. INTRODUCTION

There is a great deal of interest in high-energy
hadron-nucleus scattering. It is hoped that hadron-
nucleus scattering experiments provide new infor-
mation on the elementary particle interactions, as
well as on the structure of nuclei. More precise-
ly, first from the point of nuclear physics, we ex-
pect to obtain information on nuclear wave func-
tions in general and particularly correlations
which cannot be obtained from the electron scatter-
ing data. For light nucleus, the electromagnetic
interaction is reasonably well described by the
first Born approximation which depends only on
the charge distribution in the nucleus, i.e., ona
proton density function.’ If we use hadron-nucleus
scattering experiments, we may obtain some know-
ledge about a neutron distribution in a nucleus.
Moreover, hadronic interactions — or strong inter-
action — are so intense that multiple collisions are
quite a strong influence on the cross sections we
observe. An incident particle has a large probabil-
ity of interacting more than once as it passes
through the nucleus, and thus it is possible to ob-
tain information on nucleon-nucleon correlations
in the nucleus, although this approach is still in a
very preliminary state. Second, from the point of
particle physics a nucleus is a convenient system

in which rescattering of short-lived particles, or
resonances, can be studied. Namely, if a reso-
nance is produced inside a nucleus, then it has a
chance to strike nucleons on its way out of the nu-
cleus. Then, if we have a good theory of particle-
nucleus interactions, we are able to extract the
resonance-nucleon scattering amplitude from the
nuclear production amplitude. Further, if the
cross section for a particular process of particle-
hydrogen collision is oy, then the cross section
for that of particle-nucleus with mass number A
may be o, =0yA", where n>0. Thus if we want to
examine rare production modes, we look at the
production from a nucleus, and then using the theo-
ry, we may extract the production from a single
nucleon.

In the hope of discovering more about the struc-
ture of nuclei, the Brookhaven group performed
a series of experiments with a beam of 1.7-GeV/c
protons and the elastic differential and total cross
sections in H, D, *He, 2C, '°0, were measured
with high precision.>3 As to nucleon-nucleus total
cross sections some data have been accumulated
lately in nuclei such as Be, C, Al, Cu, Cd, W,
and Pb bombarded by neutron beams in the mo-
mentum range 10 to 30 GeV/c.4™®

The theoretical work on this problem has been
carried out on the basis of the multiple-scattering



