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A method of constraining a shell-model-type nuclear bound-state calculation to give wave

functions that display physical asymptotic behavior is derived and subsequently used to get
an expression for the nuclear form factor. In this method one seeks the poles of the colli-
sion matrix rather than the eigenvalues of the Hamiltonian. We compare our method with

that of Lane and Robson, that of Pinkston and Satchler, and that of Nagarajan and Tobocman.

I. INTRODUCTION

The form factor of a given nucleus for a particu-
lar reaction channel is just the radial function that
results from calculating the projection of the wave
function of the nucleus onto the channel-state wave
function of the reaction channel. The nuclear form
factor plays a central role in nuclear-reaction cal-
culations. In these applications it is important that
the far asymptotic behavior of the form factor have
the correct exponential form. The nuclear wave
functions provided by conventional shell-model-
type nuclear-structure calculations will fail to pro-
duce the required accurate representation of the
nuclear surface unless a large number of configu-
rations are used.

Tobocman and Nagarajan' have proposed a meth-
od by means of which shell-model-type nuclear-
structure calculations may be employed so that the
resulting nuclear wave function has the correct
asymptotic behavior. The proposed procedure re-
quires the calculation of the poles of the collision
matrix rather than the eigenvalues of the Hamilto-
nian. The method represents an application of the
Wigner-Peierls R-matrix theory of nuclear reac-
tions. ' In subsequent papers' the related possibili-
ty of using the R-matrix formalism as a basis for
shell-model-type calculations of nuclear reactions
has been explored. These investigations have led
to the conclusion that the K-matrix formalism is a
more effective way than the R-matrix formalism
to use a shell-model-type calculation to evaluate
the nuclear-reaction collision matrix.

In this note the nuclear bound-state problem is
reconsidered. Following the procedure developed
for nuclear reactions, the R-matrix formalism for
nuclear structure is transformed into a K-matrix
formalism. An explicit expression for the form
factor in terms of the K-matrix operator is derived
in parallel with the corresponding expression for
the scattering-state radial wave function.

In Sec. II the problem is formulated and the rele-

II. FORMULATION OF THE PROBLEM

Let the SchrMinger equation for the relative mo-
tion of the system of A nucleons be

(z-a)e =0.

Associated with each way n of partitioning the A
nucleons into two groups is a set of channel states
4, (i =1, 2, . . . ). Each state ni corresponds to par-
ticular states of internal motion, /~i"I($'„) and

gj"a' (g'„'), being assigned to each of the two
'i

groups of nucleons, an orbital angular momen-
tum eigenstate YfI (0 ) being assigned to the rela-
tive motion of the centers of mass of the two

groups, and then coupling the three wave func-
tions into a total angular momentum eigenstate,

~. (5'., (" o ) =[0' "&(h')@""'((")r""(n )]'"
S

The form factor or radial wave function for chan-
nel ai is then

u, (r) =(4',($' $",0 )r '6(r —r)~4)
—= (ai; r[4'),

(sa)

(sb)

where r is the separation of the centers of mass
of the two groups of nucleons constituting one of
the o.-channel configurations.

For each partition we can decompose the Hamil-

vant quantities defined. The R-matrix formalism
is derived in Sec. III and transformed to the K-ma-
trix formalism in Sec. IV. In Sec. V explicit ex-
pressions for the scattering-state radial wave func-
tion and the bound-state form factor are presented.
The derivation of the Lippman-Schwinger equation

by the K-matrix formalism is given in Sec. VI.
In Sec. VII our formalism for the form factor is
compared with that of Lane and Robson, that of
Pinkston and Satchler, and that of Nagarajan and

Toboc man.
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tonian into a sum of terms:

(4a)

where H' is the Hamiltonian for the internal de-
grees of freedom of each of the two groups of nu-
cleons of partition a,

(E Ho )yJ. u yJ( u. ( —()
1

(4b)

H =H~+ Vs=He+ Vg = ~ (5a)

m is the reduced mass of the two groups of nu-
cleons, and V' is the interaction potential between
the two groups. It is often helpful to introduce an
optical-model potential T (r„) for each partition

Then we have for the Hamiltonian the following
decomposition for each partition:

III. DERIVATION OF THE R-MATRIX
FORMALISM

To implement the R-matrix formalism we divide
the 3A-dimensional configuration hyperspace of
our system into an inside region and outside re-
gion by means of a closed hypersurface called the
channel-entrance surface. This hypersurface con-
sists of the adjoining hyperplane segments r, = a,
rs =a8, . . . which are called the channel entrances.
The channel states 4; (i = 1, 2, 3, . . . ) form a com-
plete orthonormal set on channel entrance n.

Application of Green's theorem to (HA~4')
—(A~ H4 ), where 4 is a solution of Eq. (1), A is
an arbitrary state, and the bracket is understood
here and below to have the configuration space in-
tegration restricted to the inside region, leads to
the following result~:

(5b)

(5c)

(Ai(Z -H - L)'i e) = -(Ai g e),
dI.= ei;r 5 r —a —~;r .

2m dr

(9a)

(9b)

H is the optical-model Hamiltonian for partition
a, and V is the associated residual interaction.

The asymptotic behavior of a scattering-state
wave function 4 &,. is specified in terms of the ele-
ments U

& 8& of the collision matrix and the radial
wave functions u; 8,..'

The transpose is defined by

(10a)

where the adjoint state 4 is related to% by com-
plex conjugation of the radial wave functions,

(6a)

(6b)

u~a 8,.(r) = (o.i;r~4~, ),
u, 8&(r)-g, (r)5 z5,.&

—& ', (r)U, 8. &.

g, and ( '; are unit-current ingoing and outgoing
radial wave functions for channel n.

u, (r)+ = ( ai; r
~
4) .

Equation (9) can be rewritten to read

4 =G(L —L}4 r ~a

G =(Z -H')-'

(lob)

(1la)

(1lb)

(E H~)4'~q($~, &'„',-Qn)g'~I(r~)/r~=0, (fa)

(~r )- (m /hk~)'"exp(~ik, r q ,'i L, m}. (Vb)-
k~& is the wave number for channel nj. For closed
channels k„,. =i~ k~. 4'8& is a scattering state with
unit incident current in channel Pj and only out-
going current in all other channels. Coulomb dis-
tortions have been ignored for the sake of sim-
plicity.

For a bound-state solution%', we specify the as-
ymptotic behavior in terms of the channel ampli-
tudes U, , and the form factors u„, ~:

u~(, (r) = ( ni; r~ +,)——g'„",(r)Un. .. (8)

where all channels are closed.

This is one of the basic results of the R-matrix
formalism which is so named because it is usually
formulated in terms of (ai; a JG~ pja&) =, R„, 8&,
the R matrix.

Equation (11) relates the value of 4' at any point
in the inside region to the values and normal gra-
dients of 4 on the channel-entrance surface. This
equation provides a way of constraining the wave
function 4 to have the correct asymptotic behavior.
Equation (6) or (8) is used for 4' on the right-hand
side of Eq. (11). Then, to the extent we provide
an accurate representation of G and of U, the re-
sulting expression for 4 in the inside region has
the correct asymptotic behavior as the channel-
entrance surface is approached.

IU. TRANSITION TO THE E-MATRIX
FORMALISM

(12a)

We will next modify Eq. (11) so as to eliminate the explicit dependence on the channel radii a„,a8, . . .
contained in the operator L,. The partition n optical-model Green's function G is introduced:

G.= (E -H')-'
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For this Green's function we use the representation

(~'„, &'„', n, r.~G.g'., P'„, n„, r-„)= g 4., (t'. , t"., n„)r.,(r., r.) 4.,(t., t „,n„)*, (12b)

I' ,(r , r ) = ——f , (r ) g , (r ). ,
2

f~«(r)= —,[e' "'t + (r) —e ' ~ «g (, )(r}]ib

—(m, /k k„,)"'sin(k„, r+ 5„;—2 L;««), (12d)

g, (r)= —.. [(i —s )e' «&' (r)+(f+s )e ' ' g', ,)(r)]

- (mjk k„,)"'[cos(k,r+5„, ——,
'

L««) —s sin(k, .r+5„,——,
' L,«r)). . (12e)

The quantity 4,f,(r„)/r„.is the regular solution of Eq. (7a}; the 5,'s are the optical-model phase shifts.
Since the channel states 4, (i = 1, 2, . . . ) are normalized on the finite hypersurface segment channel en-
trance z, we must write

G&Ga '=Gn 'Ga=P
y

(13a)

(13b)

The quantity P is a projection operator onto a cylinder in configuration hyperspace whose cross section
is channel entrance n.

From the fact that The result is

and

V (14a) 4«)& =g g(1+GV&) @)««)«8
y 1

(16a)

GG '=G 'G= 1

and by using Eq. (13a) we find that

P G =G +G„V~G,

GP8 =G 8+GVg G g .

(14b}

(15a)

(15b)

()),. «)f =4„,($', $",0„)f„,(r„)r 'v„; ««, , (16b)

vzi, 8 (
&

—'«}e & 5&85i«(s), + z)e ' )' U„, «««

(16c)
Had we used Eq. (6) in place of Eq. (6), v, 8,.

would be replaced by vy„, and 48, by 4, :
Use of Eq. (15) imposes the requirement on G that
its asymptotic behavior at channel entrance n be
exactly the same as that of G . This asymptotic
behavior is controlled by the arbitrary coefficients
s introduced in Eq. (12e).

Now we use Eqs. (15b), (12), and (6) in Eq. (11).

v„, , =-(s~+i)e ' f«U„«, (i6d)

Equation (16) gives the wave function in the interior
in terms of the asymptotic behavior. Dependence
on the channel radii a, as, . . . is only implicit, no
longer explicit.

V. RADIAL WAVE FUNCTION AND FORM FACTOR

Substituting Eq. (15a) for G in Eq. (16a}we proceed to the evaluation of the raidal wave function:

" «. «)«(r) =ZZ ( «)'" ri 1 +G X „I4' «, s«)
y 1

(17a)

X~y= Vy+ V~GV

We substitute Eq. (12) for G in Eq. (17a) and find

(17b)

~n
.88( ) 1 Q(( l (8,88) )8

( f 8( )8, ( )( ' l+ 8l«8. 8))
y l

(is)

which is understood to be valid for ~ a . For application to bound states the subscript Pj is replaced by b.
Equations (16) and (17) are the principal results of this paper. For the choice s„=s«)

——~ ~ ~ ——0 the X
«)

op-
erator becomes the K-matrix operator. That is why we call this the K-matrix formalism.
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Now suppose we set r=a„so that the asymptotic form, Eq. (6b), can be used for u«()&. Then

2(','ta, )n ,,&,„-(",,!( )()„; »= PI (&„&;,f;( ) —
&

(l;( )&;,„,),, »,
l

(19a)

0 "( (x le """)).
0(S, yl OIS

CX y

(19b)

Substituting Eq. (16c) for v, ()& gives

(-) (+)Z a( ()y =Q Q Za; y, U), ( 8& )
y l

(20a)

the transformation'

X ~= V„+V (G~
' —V„) 'V„

= V~ + V (V„- V G V„) 'V~G~ V~ (21)
2Z',.'s, =g„,.(a„) 5 s5, , + —X; (),(s() +i) e'"».

(20b)

The corresponding equation for the channel am-
plitude is

0 =g g Z", , U)(((, .
y l

X' y= V~+ V~GVy . (17c)

The equivalence of X „and X' „ in Eq. (17a) and
the equations that follow it is an expression of
post-prior equivalence.

The evaluation of the operator's X 8 which seems
feasible is the use of a shell-model-type calcula-
tion to approximate G by inverting E -H in a finite
dimensional basis of configurations. The asymp-
totic behavior of the resulting G then depends on
the configurations used. In order to impose the
appropriate asymptotic behavior on G we make

To calculate radial wave functions for r &a we
use Eq. (18) after having solved Eq. (20a) to deter-
mine the elements of the collision matrix. To cal-
culate form factors for r&a we use Eq. (18) with
subscript Pj replaced by b after having solved Eq.
(20c) for the channel amplitudes. Being homoge-
neous, Eq. (20c} can be solved only at those ener-
gies E for which detZ ' = 0. These energies are
the positions of the poles of the collision matrix.
Then the resulting channel amplitudes will have an
over-all undetermined multiplicative factor which
is fixed by normalizing 4;. For r &a the asymp-
totic expressions Eq. (6b) or (8) are used.

When we choose s =ss= ~ ~ ~ =0, then X,- 8& will
be the elements of the K matrix (reactance matrix);
when s = sz = ~ ~ ~ =-z, then the X, &&

are the ele-
ments of the T matrix (transition matrix). The for-
malism presented here hinges on the X operators
X

&
defined in Eq. (17c). If our derivation had

been carried out in such a manner that Eq. (15a)
had been used before Eq. (15b), then we would find
X

y
replaced by X', where

so that we invert Vy- VyGy Vy instead of E -H. This
in effect forces GPy to have the same asymptotic
behavior as G independent of the asymptotic be-
havior of the basis states used to calculate the ma-
trix elements of Vy- VyGy Vy.

Note that the factor g«(a„) can be dropped from
the definition of Z(';) 8,. given in Eq. (20b} because
it occurs as a common factor on both sides of Eqs.
(20a} and (20c). Thus the only vestige of depen-
dence on the channel radii a, a&, . . . in our for-
malism arises from the fact that the configuration
space integration for the X„;&,. is restricted to the
inside region. This dependence is negligible for
sufficiently large values of the channel radii pro-
vided we restrict ourselves to two-body channels.

VI. LIPPMAN-SCHWINGER EQUATION

It is an interesting exercise to see how our for-
malism leads to the Lippman-Schwinger equation
for the wave function. Write Eq. (16a) in the form

4'(),. =gQ G(G '+V„)Q), & 8, .
y i

(22)

Then by use of Eq. (14a)

4's) =QQ GG), 'Q) ( ((g.
S

(23)

Pnks) = G a+ Q G) 4) y (.((g + G a Vng'eg .
S

(24)

Now if we choose s„=s((=~ = i, then E-q. (16c}
becomes

vy q g~
= -2z e y ay~5]~

~ ih (s =-i)
y (25)

Making use of Eq. (14a) again, we make the follow-
ing transformation:

Q Q GaG„'4))( ()) =GaG 'g'ss =Ga(Ga ' —Vn)CS&
5

= (Pa —G aVa}4'sy ~

Thus
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so that

Pz, s&
4—-;f;(r )r ' —.e' r' 6„s6&

= Q ] 5 85]). (26)

Then Eq. (16a) becomes

@sg = (1+GVs) $8&

and Eq. (24) becomes

(27)

Pn4'gy =GaGg 4g~+GnVa+gy y (28a)

Pg+s; —4sg+ GsVs+g;. (28b)

For the bound-state case v
& &,. is replaced by

v,-, with the result that

and

@, , =0 (s = i)—

PB+~ = GgVB+q.

(29a)

(29b)

Except for the presence of the projection opera-
tors, Eqs. (28) and (29b) are identical in form with
the Lippman-Schwinger equation, but the interpre-
tation of these equations is slightly different from
what is customary. These equations refer to the
finite inside region of configuration hyperspace.
Therefore all states are normalizable. The limits
of all quantities as the size of the inside region is
allowed to become infinite are well defined in the
sense of box normalization.

Eq. (24) is a generalization of the Lippman-
Schwinger equation to the case where the Green's
function operators G, G8, . . . fulfill arbitrary
asymptotic boundary conditions.

VII. COMPARISON WITH OTHER FORMALISMS

FOR THE FORM FACTOR

Finally, it might be well to compare our formal-
ism with other procedures that have been proposed
for evaluating the form factor. The Lane-Robson
comprehensive formalism' is based on Eq. (9)
with L replaced by

d'; )b( — .) b
—b.;)(

(3o)

where the b, are ar. bitrary. Then Eq. (9) is re-
garded as an inhomogeneous equation for 4, with
the right-hand-side inhomogeneity reflecting the
asymptotic boundary conditions. For a bound
sta, te 4'„one can set b,.=ik, so that the right-
hand side of Eq. (10a) vanishes:

(E —H —L') )lb, =0. (31)

Equation (31) is then solved by diagonalization of
(H+ L') in a finite dimensional basis with configu-
ration-space integrations restricted to the inside
region. This then provides representations for
4~ in the inside region which join smoothly with
the asymptotic forms given by Eq. (8).

This method is very direct. It is easy to use for
the type of problem where there is only one chan-
nel entrance. That would correspond to a case
where inelastic channels are included but not re-
arrangement channels. The difficulty with in-
cluding rearrangement channels is caused by the
fact that the explicit dependence on the channel
radii caused by L' makes it impractical to allow
the channel radii to become infinite. Then the in-
clusion of rearrangement channels causes the
channel-entrance surface to become so complex
that it is difficult to restrict configuration-space
integrations to the inside region.

The formalism of Pinkston and Satchler'(PS) for the form factor uses an inhomogeneous differential equa-
tion derived from the SchrMinger equation:

(ai;r IE -H l)11$ =(ai;r I V„ Iqbb}

= E E., + -——0—-- ' ' -V„'(r} ~, ,(r).
if~ j 1 d d 1 L;(L;+1)

2m r dr dr r r (32)

The formal solution to this equation can be constructed from Eq. (18) by replacing X „by V (1+GV„) and
using Eq. (16):

(33)

The first term of Eq. (33) vanishes for the asymptotic boundary condition choice s = s& ——~ ~ ~ —— i To im-pl.e-
ment the PS method one carries out a conventional shell-model calculation for the bound-state wave function

The form factor is then calculated from Eq. (32}or (33) using this 4', to calculate the inhomogeneity
( »; rl v.lq ,&.

Thus the PS method is seen to be based on essentially the same expression for the form factor as our K-
matrix method. Where they use a shell-model-type calculation to evaluate the bound-state wave function
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4', [for use in Eq. (32) or (31)], we use a shell-
model-type calculation to evaluate (V„—V„G„V„) '
in the expression for the operator

X„y = Vy+V~(Vy —VyGyVy) 'VyGyVy ——Vy+V GVy

(34)

[(for use in Eq. (18}].
The PS method appears to be somewhat easier

to use than ours. On the other hand, we think it
may be possible that our method will give superior
results. This possibility is suggested by the fact
that the bound-state energy levels we get from the

I

solution of detZ ' =0 required by our method will

be shifted somewhat from those resulting from the

diagonalization of H required by the PS method.
The shift results from the boundary-condition
constraints being present already at that stage of
our calculation.

We use gy+, X yQy, , to generate the form fac-
tor u, ,(r) in place of the mathematically equiva-
lent V Cb used by PS. In both cases the required
quantities can be generated by a shell-model-
type calculation. However, in our case the shell-
model-type calculation is constrained to conform
to the required asymptotic behavior. In the PS
method it is not.

We conclude by comparing our K-matrix method with the R-matrix method of Ref. 1. The R-matrix
formalism results when we work directly from Eq. (11)without making the substitutions derived in Sec.
IV. Thus if we substitute the asymptotic forms of Eqs. (6) and (8) directly into Eq. (11)we find

(-) (+)
Zac, sy

=QUIZ~;

y, Uy, sy,
l

0 =PP Z„', y, Uy. ..(+)

7

S2
&,",s, =d",(a',)t', s&;, —

2
('s'( s) R, s( ', s)-&, s( ', s) ysI( 8)),2m 8 dQ 8 dgg

R, sy(a', as) =(ai;a' I G IPj;as), a„'( a

(34a)

(34b)

(34c)

(34d)

(35a)

(35b)

8 d d
(a& (aa) d ~ d t &a&(aa) a&y&(aye an)Uy&, ps

7 $
cx

These equations are to be solved for the collision matrix elements U, » or channel amplitudes U, ,
Then these are to be used to calculate the radial wave functions or form factors in the inside region from
the expressions provided by Eqs. (11}, (8), and (6):

(+)u«8&(r) = g QR any, (r, ay) — (y, (ay)5ys5„—]y, (ay)U» s, ], .

y y y

d d (+)
a&i &(Y) QQR&&yt(r, ay) — [ (y, (ay)U-y, ~]

1 7 y '7
Eqs. (34) and (35}are to be compared with Eqs. (20} and (17}. By eliminating the R matrix in favor of X „
operator, the K-matrix formalism succeeds in eliminating explicit dependence on the channel radii.

In Ref. (1}it was not exactly Eq. (34b) which was derived for the bound-state case but rather

(36)
8 (+~, d d, d d ~ (+)(~,(an) —

d i Raiyr(a~ ay)
&

—~ ~ gy', ( y)Uy, »m pf Q~ Qy y y

which is more symmetric.
It is clear that Eqs. (35b) and (36) cannot be used for the outgoing wave boundary-condition choice s

= s8 = ~ ~ ~ =i, since that makes the right-hand side vanish identically independent of the values chosen for
the channel amplitudes. The same restriction applies to Eqs. (18) and (20c), because then ss+i =0,
Q» b

= 0, and X y
= T y

=~ at bound-state energies.
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The p-p cross sections relevant to a factorized-impulse-approximation treatment of (p, 2p)
reactions from 150 to 350 MeV are calculated. Several on-shell prescriptions are used and

compared with the half-off-shell prescription suggested by the Faddeev-Watson multiple-
scattering series. Four phenomenological potentials, Hamada- Johnston, Bryan-Scott III,
Reid hard core, and Reid soft core, are investigated as well as three potentials which are
phase-shift equivalent to the Reid soft-core potential. We find significant differences between
the various prescriptions for all of the potentials. We also observe a wide range in the pre-
dictions on the various phenomenological potentials for each prescription. However, the ratio
of the half-shell cross section to the on-shell cross section is remarkably insensitive to the
choice of potential, especially where the half-shell prescription is needed. This suggests a
simple method for extrapolating from the elastic scattering data to the appropriate half-shell
cross section.

I. INTRODUCTION

Most analyses of (p, 2p) reactions make use of
a factorized impulse approximation in which the
reaction amplitude is written as a product of a
proton-proton scattering amplitude and an integral
over distorted waves. ' ' In a previous paper' the
plane-wave impulse approximation was employed
to display the effects of various prescriptions for
the choice of variables in the proton-proton ampli-
tude. The conclusion of that work, in which the
Reid soft-core potential' was taken as a model of
the proton-proton interaction, was that the use of
the half-off-shell scattering amplitude suggested
by the Faddeev-Watson multiple-scattering theory
makes a marked difference for incident proton
energies below 200 MeV. The purpose of this
paper is to explore (a) the extent to which that con-
clusion is model independent, and (b) the extent to
which (p, 2p) reactions may be used to distinguish

among models of the proton-proton interaction by
probing their off-shell cross sections.

To investigate these points, we have calculated
the P-p cross sections relevant to the knock out
of a proton bound by 45 MeV by an incident proton
with energies ranging from 150 to 350 MeV. We
have calculated these cross sections with the half-
off-shell prescription as well as various on-shell
prescriptions for a number of different potentials.

The potentials studied include four phenomeno-
logical potentials which are fitted to nucleon-
nucleon scattering data with some theoretical con-
straints on their functional forms. They are the
Reid soft core (RSC),' the Reid hard core (RHC), '
the Hamada- Johnston (H J), and the Bryan-Scott
III (BS).' In order to focus on purely off-shell
differences, we also investigate three potentials
which are phase-shift equivalent to the RSC but
yield very different results when used in nuclear-
matter calculations. "


