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The unitary-transform method of Coester efal. is modified, for uncoupled partial waves in
which there are no bound states, so that empirical phase shifts rather than a potential fitted
to them may be used as the basic input. This is accomplished by invoking the Gel’fand-Levi-
tan inverse scattering formalism to generate a complete orthonormal set of scattering wave
functions from the phase shifts. The result is a convenient formal framework for analyzing
the uncertainties in the off-energy-shell behavior of the two-nucleon interaction. Variations
in the off-energy-shell T matrix arising from changes in the phase shifts, as well as those
due to different short-range nonlocalities, may be studied directly using the method presented

here.

I. INTRODUCTION

The unitary-transform method of Coester et al.!
provides an elegant and straightforward procedure
for studying the arbitrariness in the two-nucleon
T matrix off the energy shell (hereafter called the
off-shell T) once the on-energy-shell T matrix
(on-shell T) has been specified. As such, it has
already been applied in several calculations to in-
vestigate the dependence of multinucleon observ-
ables on specifics of the two-nucleon interaction.?
However, because this scheme takes as its basic
input a potential fitted to the empirical nucleon-
nucleon elastic scattering phase shifts, the re-
sulting off-shell 7°s are related only indirectly to
the available data. Moreover, reliance on a pa-
rametrized potential introduced at the outset is a
disadvantage in the following practical sense: The
elastic scattering phase shifts at high energies
are unknown and almost certainly unknowable. It
is therefore important to determine the sensitivity
of the off-shell T to variations in these ambiguous
quantities. A calculation which adopts a particular
potential commits itself to a fixed set of high-en-

ergy phase shifts, and a different potential must
be introduced in order to change them. Not only
does this entail cumbersome recalculation, but it
also introduces additional uncertainties because it
is unlikely that the second potential gives the same
fit to the empirical low-energy phase shifts as the
first one. Of course, since the low-energy phase
shifts are not known to arbitrary accuracy, it is
of interest to test the sensitivity of the off-shell T
to changes in these quantities as well. However,
the uncontrollable differences which result from
the ad hoc substitution of one potential for another
do not seem well suited to such studies.

In this paper, we present a pedestrian remedy
for the above difficulties. We eliminate the input
potential by merging the unitary-transform meth-
od with the inverse scattering theory of Gel’fand
and Levitan,® which generates a complete ortho-
normal set of scattering wave functions directly
from the phase shifts. The resulting formalism
provides a complete framework for analyzing the
sources of uncertainty in the off-energy-shell be-
havior of the two-nucleon interaction, assuming
that this interaction is well represented by an en-
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ergy-independent potential (local or nonlocal) in
conjunction with the nonrelativistic Schrédinger
equation. Specifically, our emendation of the pro-
cedure of Ref. 1 makes it possible to:

(1) Go directly from phase shifts to off-shell
T’s without explicit introduction of a potential.

(2) Investigate the arbitrariness of these off-
shell T’s subject to the constraints that the long-
range part of the interaction is given by a local
potential suggested by meson theory and that the
scattering wave functions form a complete ortho-
normal set (in the absence of bound states).

(3) Study in a direct way the influence of high-
energy phase shifts on off-energy-shell behavior.

Our discussion is restricted to uncoupled partial
waves in which there are neither bound states nor
Coulomb effects.

The idea of using inverse scattering theory to
study the two-nucleon interaction is by no means
novel. However, previous papers® have been di-
rected towards computing a local potential from
the phase shifts. Since their appearance, it has
been pointed out by Baranger et al.’ and by Mongan®
that it would generally be preferable to eliminate
the potential in favor of the off-shell 7, which has
closer links with experiment. This is the point of
view we have adopted here. To us, the local po-
tential which is determined by the Gel’fand-Levitan
procedure is a largely irrelevant by-product of an
algorithm which furnishes a convenient basis of
scattering wave functions from which all necessary
T matrix elements are easily computed. Except
for its long-range part, which has been fairly well
determined, we never concern ourselves with the
explicit form of this local potential. The short-
range part of the true interaction is probably non-
local in any event, and it is to simulate this non-
locality that the unitary transforms are introduced.

In Secs. IT and ITI, we assemble known but pre-
viously unrelated results into a coherent formalism
for going from empirical phase shifts to off-shell
T’s. A summary of the Gel’fand-Levitan deriva-
tion of scattering wave functions from phase shifts
is given in Sec. II. Section III presents the formu-
las for constructing 7 matrix elements half off the
energy shell (half-shell 7°s) from the Gel’fand-
Levitan wave functions. From these Gel’fand-
Levitan half-shell 7’s, it is easy to obtain the
families of half-shell 7’s generated by various
short-range unitary transforms. The subtracted
Low equation®® may then be used to find the cor-
responding 7 matrix elements completely off the
energy shell (fully off-shell 7°s). Explicit formu-
las giving the response of the half-shell 7’s to
changes in the phase shifts are developed in Sec.
IV. Again, the subtracted Low equation then pro-
vides the corresponding alterations in the fully off-
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shell 7”’s. In Sec. V, we indicate how meson-theo-
ry constraints on the long-range part of the inter-
action may be incorporated. We discuss the pros-
pects for application and generalization of our ap-
proach in Sec. VI.

II. FROM PHASE SHIFTS TO A COMPLETE
ORTHONORMAL SET OF SCATTERING
RADIAL FUNCTIONS

We work in the center-of-mass frame of the two
nucleons, with units such that #=1=M, where M
is the nucleon mass.

Given a set of empirical /-wave phase shifts,
6,(k;), at momentum data points &;, our first task
is to construct a function §,(k), 0<k<w, which in-
terpolates smoothly between the prescribed data
points and which extrapolates them to high mo-
menta. Both interpolation and extrapolation are
clearly nonunique. For the time being, we assume
that the necessary curve fitting has been done and
that one particular phase-shift parametrization,
6,(k), has been chosen. (We shall show, in Sec.
IV, how the effects of phase-shift ambiguities may
be investigated; considerations in the choice of
functional forms for §,(k) are discussed briefly in
Sec. V.) From this function, a complete orthonor-
mal set of scattering radial functions may be con-
structed by the method of Gel’fand and Levitan.®
In order to define the terminology of this proce-
dure, we digress momentarily to discuss the ra-
dial equation in the Ith partial wave for a local po-
tential.

The equation in question is

[ d? . li+1)

) o (1a)

- L(r)]w,(k, 7)=0,
where L(r) is a local potential subject to the usual
conditions that [y ’dr 7| L(r)| < and [7dr v?| L(r)|
<o, and

w,(k,7) ~ sinfkr - In/2+5,(k)]

r -

(1b)

is the “physical” radial function. Here 6,(k) is the
usual scattering phase shift generated by the po-
tential L(r). When L(r)=0, w,(k,7) =u,(kr), the
lth Riccatti-Bessel function. It is convenient to
define the Jost regular radial function ¢,(%,7) as
that solution of Eq. (1a) whose behavior at the ori-
gin is

@k, r) ~ Y /(214+1)11

r =0

(1c)

¢,(k,7) is an entire function of % for fixed finite 7,
and the connection between ¢, and w, is

w, (b, 7) =k £,(0)| Jo, (, ), @)
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where f,(k) is the I-wave Jost function.® The sin-
gularities in % of w,(k, ) are thus isolated in the
factor |f,(k)|~'. The free-particle regular solution

@O%k, v) =u,(kr)/k' (3)

is also useful.

With these definitions, we may now pose the
problem which the Gel’fand-Levitan theory an-
swers for us: Given §,(k), 0< k<, and the pre-
sumption that there are no bound states in the Ilth
partial wave, construct a complete orthonormal
set of functions w,(k, ) such that w, (&, r)

. sin[ky - ln/2+6 (B)], with the 6,(%) in this as-
ymptotlc form guaranteed to be the prescribed
phase shifts. The construction proceeds as fol-
lows:

First, calculate the Jost function using the rep-
resentation

ft=emp( -2 [ 4200 ) @)

where the continuation of 6,(q) to negative momenta
is defined by

6,(-q)=-5,(q). 4"

Next, define the spectral density p,(E) and its free-
particle counterpart p{°(E) such that

E 2

BufE) 2paies oy p (52)

and

dp(o)(E) 2

dE k21 + 1 (5b)

From these, construct the Gel’fand-Levitan driv-
ing term g,(r, ") given by

w070 [ T dlp®E) - py(E) 0k, 7)o Ok, 7)

(6)

or, more explicitly,
g0, 7")=(2/7) j:dk E2(1 - [ £,(k)]72)
X ¢k, )@k, 7). (67)
Then solve the Gel’fand-Levitan equation
K,r,r)=g,0r,7")+ j:dr"K,(r, rg, ", r") (1)

for the Gel’fand-Levitan kernel K,(r, »’). Finally,
obtain ¢, (%, ) according to
T
01k, 7)= 0k, 7)+ [ dr K G, 7)o Ok, 1),
o

(8a)

|o»

which translates into
w,(k,r)=If,(k)l'l[u,(kr)+fdr’K,(r,r’)u,(kr’)] .
(o]

(8b)

As a by-product of the Gel’fand-Levitan analysis,
it can be shown that w,(k, r) satisfies a radial equa-
tion of the form (la) with a local potential L(r) giv-
en by

L(r)= 2 K, 7). (9)
The resulting w,(k,7) are orthonormal,
f drw, (e, )w, (&', 7)=(1/2)6(k =k"),  (10a)
0

and complete,

[ e, 7w, e, 7Y = (/2000 = 7). (10b)

III. FROM RADIAL FUNCTIONS TO FAMILIES
OF PHASE-SHIFT-EQUIVALENT
OFF-SHELL T°S

A. Gel’fand-Levitan Off-Shell 7’s

The off-shell partial-wave T matrix ¢,(p, k; s2)
is defined by the Lippmann-Schwinger equation’

(P, k;s?)=v (b, k)

’

+gf°°dqqzv,(l’, q)tl(q)k;sz)
7J, s?—q%+ie

(11)

where
v,(l),k)=f drr"’j,(pr)] Ulr,v")j,(kr")r"2dr’,
0 0

117

and j,(x) is the usual spherical Bessel function.
U(r,7’) is in general a nonlocal potential; the lo-
cal Gel’fand-Levitan potential is inserted in (11/)
by writing U(r,»")=6(r —#")L(r)/rv’. When p, k
and s are all different, ¢, is fully off-shell; when
either p =s or k=s, ¢, is half off-shell; and when
p=k=s, t, is on-shell. t,(p, k;s?) also satisfies
the Low equation,” which, in the absence of bound
states, reads

tx(p, k;sz)zvx(p; k)

+3f dgq t(p,q, ik, g;07)
T Jo s? - q?+ie

(12)
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As pointed out in Refs. 5 and 6, by taking the dif-
ference of (12) and the expression

t;(p’k; kz)zvl(p, k)

’

2 f"“ dqq®t,(p, 4; ¢*)tf(k, 45 4°)
+ 2 T
T Jo k* - q*+ie

we obtain the subtracted Low equation,

t(p,k;s?)=t,(p, k; k%) + (k? = 5?)

<2 f” dq q°4(p, g; 4*)t(k, ; 4°)
T Jo (s®-q%+i€)(k® - q® +i€) ’

(13)

which provides an explicit recipe for calculating
the fully off-shell T from the half-shell 7. Thus
all off-shell information is contained in the quan-
tities ¢,(p, k; £?).

It has been shown®'® that ¢,(p,%; k%) may be eval-
uated without explicit use of a potential by means
of the relation

t(p,k; ) =1, () p/R) +(pk) ™ (k® - p?)
Xeiél(")fm dru,(pr)a,k,r), (l4a)

where

t,(k)=t,(k,k; k%)= —=(1/k) sind,(k)e'$1® | (14b)

and the difference function A,(k,7) is
Ak, 7)=w,(k,7) - cosd,(k)u,(kr) —sind,(k)y, (k7).
(14c)

Here y,(x) is the Riccatti-Neumann function de-
fined such that

v,(x) ~ cos(x —Ir/2).
x>e0

Equations (14a), (14b), and (14c) permit us to cal-
culate a set of half-shell T matrix elements direct-
ly from the parametrization of the empirical phase
shifts, 5,(k), and the Gel’fand-Levitan radial func-
tions w{l (k,7). Using (8b) for the radial function,
we see that the Gel’fand-Levitan difference func-
tion AP (%, 7) is given by

AS(k, 7) = |1, ()| f'dr'K,(r,rf)u,(kr')

+[17,)| 7 = coss, (k)] u, (kr)
- sing, (k)y, (k7). (15)

The off-shell T matrix elements obtained from
Eqs. (14a)-(15) we call the Gel’fand-Levitan T’s,
or G-L T’s for short. By construction, they satis-
fy the constraints imposed by the empirical phase
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shifts and by the requirement that the scattering
wave functions form a complete orthonormal set.
Once §,(k) is specified on 0 <k<w, the G-L T’s
are uniquely determined (when there are no bound
states) by the Gel’fand-Levitan algorithm. How-
ever, while the Gel’fand-Levitan potential is nec-
essarily local, there is every reason to believe
that the two-nucleon potential should be nonlocal
at small distances. Consequently, the G-L T’s
must be regarded as only one set out of an infinite
class of physically plausible off-shell T’s satisfy-
ing identical phase-shift constraints. Until a reli-
able theoretical model of the short-range nonlocal -
ity is found, it is necessary to try to isolate the
resultant ambiguities and to examine their prac-
tical implications for multinucleon calculations.
Since we now have at our disposal a complete
orthonormal set of scattering wave functions, we
can study the changes induced in the off-shell T’s
by the short-range unitary transforms of Coester
et al.,' which correspond to nonlocal modifications
of the potential at small distances. Although such
a procedure cannot exhaust all imaginable altera-
tions of the off-shell T’s compatible with phase-
shift equivalence, it should provide a good indica-
tion of the importance of such variations.

B. Families of Phase-Shift-Equivalent Half-Shell 7’s

Following Coester et al.! and Haftel and Taba-
kin, consider the functions ,(%,r) generated
from the G-L w{"(k, ») according to the rule

w,k,7r)=wil(k,r) +f ar'A(r,r" Wbt (, 7).
)

(16a)
If
lim|7A,(r,7")| < (166)
and
wil(k,r) ~ sin[ky - In/2 +5,(k)],
then also
w(k,7) ~ sinfkr —in/2 +5,()]. (16¢)

r—> o

The w,(k,r) may therefore be viewed as an alter-
nate set of scattering radial functions satisfying
the same phase-shift constraints as the G-L
wf(k,7r). From them, we may compute another
set of off-shell T’ s which has as much phenom-
enological validity as the set of G-L 7T’s. In order
that the £,(p,%;%%) calculated from these functions
fulfill the requirement of half-shell unitarity,

Im,(p,k;k?) = —kE,(p, k; R2)iKE),
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(where “Im” denotes “imaginary part of”), w,(k,r), are
and hence also A,(r,r’), must be real. Since the w
transformed radial functions must be sufficiently Ay v") + Ay, 7) +f ar"Ay(r,v")A (v ,7")=0
regular at the origin to be compatible with the cen- ° (16e)
trifugal term in the radial equation, A;(r,»’) must
behave as and
A, v') ~ritt. (16d) .
r—=0 f dr”A,(T,r")A,(?",?’")=f d’V”A,(T”,T)AI(fu,YI),
Finally, the necessary and sufficient conditions o o
which guarantee that the w, obey the same ortho-
normality and completeness relations as the w (161)

J

as may be verified by direct substitution. Any real kernel A,(r,7’) which satisfies (16b), (16d), (16e), and
(16f) may be used to generate from the Gel’fand-Levitan radial functions another complete orthonormal set
of radial functions correspondingtothe same prescribed phase shifts. Particularly simple examples of suit-
able s-wave kernels have been presented in Refs. 2 and 10. Variation of the parameters in the transforms
given in these papers generates families of radial functions having identical phase shifts.

The correspondingly transformed half-shell T’s are easily related to the G-L T’s by means of Eq. (14a)
applied with both transformed and untransformed radial functions:

L (b, k3R = E,(R)( p/R) +(pk) ™ (R = p?) i 81® fmdru,(pr)&,(k,r), 1)
0
where
Ak, 7)=i0,(k, 7) - cosd,(k)u,(kr) - sind, (k) y,(kr) 17
and
ti(p, ks k%) =t,(R)(p/R) +(pk)™* (kz—pz)e"‘"""f dru,(pr)aft(e,r). (18)

Since 5,(k)=6,(k), f;(k)=t,(k). Subtracting (18)from (17), we find
D, ks )= (0, s k) + () 6% = pe S [ druy(pr[Aite, ) - A6, 7). (19)
0

According to (14c), (17’), and (16a), we have

Ak, 7) = AF (ko 7) =1 (R, 7) —wCL (k, 7)

- f dr' A, 7w (e, 77) (20)
0
so that

B(p ks R?) = t,(p, ks ) +( pk) (k% = p?) €151 f " dru(pr) f T A, S (e, 7). (21)
4] 1]

An operator version of Eq. (21), relating the half-shell T’s for two phase-shift-equivalent potentials, has
previously been derived by Monahan, Shakin, and Thaler,' by means of an operator two-potential formula.

With the help of the subtracted Low equation, (13), we may also relate the transformed fully off-shell 7’s
to their Gel’fand-Levitan counterparts. Let us write

Dy(p, k)= f drudpr) [ arn o,y it e, ) (222)
0
and

Ti(p,k)=e 810 (p ks k2) . (22b)
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T (p b V2 Ben?) e <2 2 (" daa’h(p, a;a)EF(k,q54%)
tl(p:kys ) tl(p)ksk )+(k S ) ;j; (sz —q2+i€)(k2 —q2+i€)

yields

E(p,k; s?) =t,(p,k; s%) +(pk) (R = p*)et®i® Dy(p, k)

2 2 % ® dq r q(q*-p*)
e —S)n,f; (s? —g®+ie)| p(k® —g° +i€)

—%Tl(paq)Dl(k:q)+

The above analysis shows that once the Gel’fand-
Levitan equation has been solved for a particular
parametrization of the empirical phase shifts,
whole classes of off-shell T’s which are phase-
shift-equivalent to the G-L T’s may be calculated
simply by a series of quadratures. As in Refs. 1
and 10, the transform kernel A,(r,»') may be cho-
sen to facilitate some of the integrations. More-
over, Eqs. (21) and (23) provide simple, direct
relations among the various transformed off-shell
T’s (it is clear that these equations can be rewrit-
ten to relate two transformed T’s, say {, and {,,
by mere relabeling) and also show just how the
transformed T’s differ from the T matrix corre-
sponding to the unique local potential determined
by the phase-shift parametrization.

IV. RESPONSE OF THE HALF-SHELL 7°’S
TO CHANGES IN THE PHASE SHIFTS

As mentioned at the beginning of Sec. II, there
is considerable latitude in the choice of a parame-
trization of the empirical phase shifts. Most of the
freedom lies in the extrapolation beyond the range
of the data —reliable phase-shift analyses do not
extend to center-of-mass momenta much above
2 fm™ —but there is also some leeway in fitting
the phase shifts at lower energies. It is clearly
useful to have a systematic procedure for assess-
ing the variations which reasonable changes in the
phase-shift parametrization may produce in the
off-shell T’s.

Suppose, then, that we vary §,(k) according to

6;(k)~ 5,(k, 1) = 8,(k) + 11, (k) . (24)

What is the concomitant variation in the G-L half-
shell T’s? From the answer to this question, we
can eventually deduce, by means of the formulas
of the preceding section, the changes induced in
all other off-shell T’s under consideration.

Let ¢,(p,k;%% 1) be the G-L half-shell T corre-
sponding to §,(k,A). Equation (14a) allows us to

Dy(p,q)7,(k, q)

EZE DD 23)

write

t(p ks k%, 0) =t \)(p/R) +(pk) T (R* = p°)

X gt 81k )) fo dru,(pr)aft(k,r; \),
° (25a)

where
t,(k,A) = =(1/k) sind, (&, A)ei 8:&: ) (25b)

is the new on-shell T and A{'(k,7; ) is the new
Gel’fand-Levitan difference function determined
by 6,(k,\). Subtracting (14a) from (25a), we have
the change induced in the G-L half-shell T by the
variation (24):

tl(p)k;kz’ )\) - tt(p9k;k2)
=[t,(k, X) = 8,(R))(p/R) +(pk) ™ (R% - p?)

xeibil® f dru,(pr)D,(, 7;\),
0

(26)
where

Dk, 7; 1) = e A M®ACL (6, 75 %) ~ ATV (R, 7). (267)

The only quantity on the right-hand side of (26)
which is not immediately obtainable in terms of
6,(k, 1) and 5,(k) is D,(k,7;A). According to Eq.
(14c),

Dk, 7;0) =M@y Sl (k3 x) —w L (k,7)
- [e?*"1® coss,(k, A) — cosb, (k) u,(kr)
-[e*m®sing, (k, \) - sind, (k)] y,(k7),

where w{l (&, r; 1) is the Gel’fand-Levitan radial
function constructed from 5,(k,1). Since

cosdu,(x) +sindy,(x) = e ¥[u,(x) - ktz,(x)],

(27a)
where

t==(1/k) sinde’® (27b)
and

z,(x) = y,(x) +iu,(x) (27¢)
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is a Riccatti-Hankel function, the above may be written in slightly more compact form as

D,(k, 73 1) =X ® Lk, 1 1) —wCl(k, 7) +ke TP [t (k, ) —t,(k)] 2, (k) . (28)

Finally, w{"(k,7; 1) may be generated from the initial w Sl (%, 7) by a variant of the procedure of Sec. II.3

From 5,(k, ) compute a new Jost function

Silk,\) = exp[— (7 da g, ) A)], (29a)

m)_.q—k+ie

which may also be written as

filk,\) =f(R)F (R, 2, (29b)
where
F,(k,h)=exp[—-%f_m-:i_%—%)z]. (29¢)

Define a new spectral density p,(E, A) such that

dpx(E,)\):Z k21+l
dE m |f1(ka}t)|2

- |7y, 0| = 22LE) (30)

Then construct a driving term

Agz(r,r’;h)=fmd[px(E) -pi(E, V] ke, )k, 7)

=2 [Tk @ = | Fue, ] S G S G, ), (31)

where ¢,(k,7) and w " (k,7) are the regular and physical radial functions constructed from §,(k) by means
of Eqs. (4)-(8b). Next, find the kernel AK,(r,7’;\) which solves

AK (r,7'; ) =ag,(r,7';)) +f ar" AK (v, v"; DA, (r" ,v'3 1) . (32)
9]
The new regular function ¢,(%,7;2) is then given by
@k, 7; A)=<p,(k,r)+f ar'aAK,(r,r'; Mgk, 7). (33)
0

Replacing regular radial functions by physical ones in (33), we have the desired expression for w " (k, 7; 1)
in terms of w S (k, 7),

w (R, 7;0) = | Fy(k, \)| _‘[wf"“(k,r)+f dr' AK (7, r’;A)w?L(k,r’)jl . (34)
0
In view of this result, we may rewrite Eq. (28) as

Dk, 7;))=[F,(-F, )\)]"%[1 = Fy(=k, )Wt (&, 7) +fr ar'AK (v, v ;s Dw St (R, r’)s

o

+he W [1,(k, A) = ,(k)] 2, (k7) , (35)
where we have used the fact that, for real %,
Fi(=k, ) =| Fy(e, 1) e m®), (35")

which may be deduced from Eq. (29c).

Equations (26) and (35), together with the rules embodied in Egs. (29a)-(34), provide an explicit prescrip-
tion for calculating the change in the G-L half-shell T’s when the phase-shift parametrization is altered
according to Eq. (24). It is quite clear how the corresponding variations in all other off-shell T’s may be
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found with the help of the results of Sec. IIl. For example, in an obvious notation, Eq. (21) gives

(b, k3 k%N =1,(p, Ry k2, A) +( pk) T (k? —pz)e"é‘(’a'”fo«° dru,(pr) J; ar' A,y WSt (B, 75 N), (36)

so that the response of f,(p,k;k?) to the change in phase shift is

t-,(p,k;kz,)\) —f,(p,k;k2)=t,(p,k;k2, A) =t,(p, k3 k%)

+(pk)"(k2—p2)e‘5'(“)f dru,(pr)f ar' A, v )[erM®w bl (e, 7', A) —wit (R, 7))],
0 0

(37

where wSt (&, 7; ) is given by (34). Fully off-shell T°s may be studied in like fashion by invoking the sub-

tracted Low equation.

It is easy to reduce Egs. (26)-(37) to analogous formulas valid to first order in . These could conceiv-
ably be of use in checking the stability of a given set of off-shell T’s against small changes in the input
data. However, we found the resulting equations to be no more transparent than the general relations just
given, so we do not reproduce them here. At any rate, if a computer program has been written to solve
the Gel’fand-Levitan equation, (7), it should not require much additional effort to modify it to solve the
similar equation (32), with which the stability of the off-shell T’s against phase-shift changes of any mag-

nitude may be investigated.

V. INCORPORATING LONG-RANGE
POTENTIALS SUGGESTED
BY MESON THEORY

The description of the two-nucleon force in
terms of various meson-exchange processes in-
dicates that the long-range part of this interaction
is well represented by a superposition of local
Yukawa potentials.'? By a judicious choice of
phase-shift parametrization, the G-L T’s can be
made to conform with this theoretical constraint.
Simple restrictions on the range of the unitary
transforms then suffice to guarantee that all the
phase-shift-equivalent off-shell T’s generated ac-
cording to the rules of Sec. III will have the effects
of this prescribed long-range behavior built into
them.

In order to understand how the Yukawa form of
the long-range potential manifests itself in the
Gel’fand-Levitan construction, wé establish a re-
lation between the analytic properties of f,(k) in
the complex & plane and the large-r» behavior of
the Gel’fand-Levitan potential L(»). This may
then be translated into a connection between the
functional form of §,(%) and that of the long-range
part of L(») by means of the relation

8,(k)=ImInf,(k), (38)

which may be read from Eq. (4).
Suppose for the moment that we know L(») and
that we can write it as the Yukawa superposition

Lo)= [ daC(ae™. (39)
i
As elsewhere in this paper, we assume that L(r)

does not support any bound states. Then, as Mar-
tin has shown,'3 f,(k) is analytic everywhere in the

—

k plane except on a branch cut along the positive
imaginary axis running from k=ip/2 to k=ic.
There is, in fact, a one-to-one correspondence
between the potential weight function C(a) and the
discontinuity of f,(k) across the cut such that the
long-range (small «) part of the potential is com-
pletely determined by the discontinuity of f,(k)
across the segment of the cut closest to the real
axis. It is therefore an immediate consequence
of Martin’s analysis that specification of the dis-
continuity of f,(k) for £ =iu/2 to k=ibu/2, where
b is some real constant, is equivalent to prescrib-
ing C(a) for a=p to a=bu, and thus, to fixing the
longest-ranged components of the potential. With
the hindsight provided by Martin, we show here,
in a decidedly nonrigorous way, how this corre-
spondence emerges naturally within the present
formalism.

We use the representation'*

K7 = [ dloOE) = pu(E)]gu ke, 1) gk, )
0
(40)

to investigate the link between the analytic proper-
ties of f;(k) in the & plane and the behavior of
K ,(r,r) for large . Differentiation of the latter
function with respect to » then gives us L(r) for
large », according to Eq. (9).

Inserting the relations (5a) and (5b) in (40), we
have

9 (=
K,(r,r)=;f AR - | £,(6)| 20k, ) Ok, 7).«
0
(41)
The integrand on the right-hand side of (41) is an
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even function of 2,'® and for real &,'®

fik)=1,(-k) (42)
so that

K, (r, r)=lf°° dk k2'+2[f;(k)fz(-k) - 1]
77w F1&) F,(=k)

x @ik, 7)™k, 7) . (43)
Now, ¢,(k,r) may be decomposed into'’
@ik, 7)=2ik 7' T fi(=R) (o, 7) = (<) 1 (R)fi( Ry 7)],

(44)

where f,(2,7) is an irregular solution of Eq. (1a)
which goes as’®

f,(k,r) ~ ile—ilzr .

7r—> 00

(44')

Similarly, we write
@3k, 7) = 3 ik T £k, v) = (<) f Nk, 7],
(45)
where

Nk, 7) = y,(kr) —iu,(ky) ~ ite™i*,

r—> o

Using (44) and (45) in Eq. (43), we find that
K, r,7)=(-1/40)[K; "(r,7) +K; " (r,7) = (=)'K; ~(r,7)],
(46)

(45')

where

. - &) f,(~k) -1 .
K, (r,r)=f_mdk [f( )ff,((k) ) ]f,(k,r)f,( ke, 7),
(46')

ki) = [ an [LERED L ) 0, )
(46")
and

e (7 (LR =R) = 1
K (r,r)—f_”dk ["’_"‘"—f,(k)f,(-k) ]

X[f;(-k)fx(kyr)fl((’)(_k)r)

P AAC ROV CRAIP
(46”1)
Now, according to (44’) and (45’),

K “(r,r) ~ (—)’f°° dr

r—> ©

[f,(k)f;(—k) —1]
f,(k)fx("k)

x [f1(=R) +f,(R)], (47)
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i.e., K; “(r,7») becomes, for very large », a con-
stant independent of ». [Since we have a good deal
of freedom in parametrizing f,(k) from the data,
and since it is consistent with the properties of
f,() for potentials satisfying the regularity cri-
teria cited above Eq. (1b), we can certainly ar-
range things so that this constant is finite.] We
see then, from Eqgs. (9) and (46), that

L(’)’) ~ —'1— d

57 2y K1) KT, 7)]. (48)

7>

In fact, since for real £ Eq. (41) holds, as well as'®

f";(-—k,'r)=(—)'f,(k,r) (493-)
and
fl( 0)*(_k, 1") = (—)‘f[(O)(k’ T) ) (49b)
Eq. (48) simplifies slightly to
1 d ..
L(r)r':; —;Rez;Kl (7",7’), (50)

where “Re” denotes “real part of.”
What is the form of K; *(r,r) for large » ? We
have

K; (r,r) ~ (=) fm dk [f—‘—‘—(k);((k_)k) -1]6_2“"-
o 1

r—> o -

(51)

If we make specific assumptions about the analytic
properties of f;(k), we may consider the right-
hand side of (51) as part of a contour integral. With
all due hindsight, we suppose that f,(%) is analytic
for all & except on a branch cut extending from
k=iu/2 to k =iw along the positive imaginary axis.
Then the continuation of f;(-k) off the real axis is
analytic everywhere except on a cut along the nega-
tive imaginary axis from —iu/2 to —i=.® Consider
a contour C consisting of the real £ axis from -K
to K and a semicircle of radius K in the lower half
plane, indented to avoid the branch cut of f,(-k).
Since no singularities of the integrand are en-
closed by C,

fiR)f,(=R) =17 _
1 r)=f dk l:—‘—‘-—— e 2k =Q
”)=), 7
In the limit K - , the contribution to I(r) from the
two quarter-circle arcs vanishes, leaving the non-
zero contributions from the real axis and from the
indentation around the cut to cancel one another:

[ an [LOLR 1] e

= f__iw dk e™?* disc[f,(=k)],

ip/2

(52)
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where

dise[f,(=k)]= 1im [£,(~k +¢€) —f,(=k — )],

€0+

(527)
Re(k)=0, Im(k)<-p/2.
Because®®
Y (=k*)=f,(R) (53)

for k£ not on either branch cut, disc[f,(-&)] is pure-
ly imaginary. If, on the branch cut from —ip/2
to —iwo, we let

k=-ix, x>u/2 (54)
we have
disc[f,(~-k)]=2¢ lim Imf,(ix +¢€), (55)
€0+

and Eq. (51) becomes

o

K/ (r,r) ~ (—)‘Zf dxe'zx’[slgrgl+ Imf, Gy +€)].

7> p/2
(56)
Then, defining
a=2y (57a)
and
p,la)=(=)*1x lim Imf,(ix +€) (57b)
€—>0+
we may write Eq. (50) as
L) ~ —%f dap,(a)e @, (58)
7 —> L H

which shows that the long-range potential is in-
deed a superposition of Yakawa components. Equa-
tion (57b) also shows that the weight function p,(a)
for small @, which determines the Yakawa com-
ponents of longest range, is given by the discon-
tinuity of f,(~k) along the segment of the cut
nearest the real axis.

The foregoing discussion leaves us with the prob-
lem of designing the phase-shift parametrization
8,(%) so that upon insertion in Eq. (4), it automat-
ically yields a Jost function having the desired
analytic structure. It would appear to be simplest
just to work backwards, as indicated as the begin-
ning of this section: Choose an appropriate func-
tional form for f,(k) [containing factors of the type
f,f“da B(a)1In(1 +2ik/a), for example] and fix its
free parameters by fitting the phase shifts, via
Eq. (38), and the discontinuity across the nearby
segment of the cut.

Finally, it is clear that the effects of the long-
range potential (58) will be incorporated in the
families of off-shell T’s generated by the unitary
transforms (16) if the transform kernel A,(r,7’)
is only allowed to modify the Gel’fand-Levitan

radial functions at sufficiently small distances.

This restriction can be enforced by replacing Eq.

(16b) by a condition of the form
lim|A,(r,7")/L»)| < |C]|,

r—o

(16b’)

where L(r) is given by Eq. (58) and C is some con-
stant whose magnitude will depend on the signifi-
cance one attaches to the given long-range potential.

VI. CONCLUDING REMARKS

We have shown how families of off-shell T’s may
be constructed from a parametrization of the em-
pirical phase shifts by solving one Volterra inte-
gral equation [Eq. (7)] and performing a series of
integrations. The response of these off-shell T’s
to alterations in the phase-shift parametrization
may then be found by solving another Volterra
equation [Eq. (32)], quite similar in form to the
first, and carrying out another set of integrations.
Since Benn and Scharf* have already demonstrated
the numerical feasibility of solving integral equa-
tions of essentially the same type as Egs. (7) and
(32), we believe that the computations required to
implement our formalism will be relatively
straightforward. There is no doubt that a full-
scale, quantitative study of the uncertainties in
the two-nucleon T matrix off the energy shell in-
volves considerable effort in calculation no matter
how it is done; our approach offers economies at
least in the organization of such an undertaking.

The tools required to generalize our analysis to
encompass both the existence of bound states and
the coupling of orbital angular-momentum chan-
nels are readily available. As first applied to
scattering theory by Jost and Kohn® and by Levin-
son,® the Gel’fand-Levitan theory already includes
the possibility of bound states. The Gel’fand-
Levitan radial functions are then no longer unique-
ly determined by the phase shift. However, one
would hope to minimize the added ambiguity in the
two-nucleon problem by using data to help delin-
eate the deuteron wave function. The generaliza-
tion of Gel’fand-Levitan theory to coupled partial
waves was carried out by Newton and Jost.?! Fuda??
has recently extended the expressions (14a)—(14c)
to coupled channels containing bound states, and
unitary transforms have been written for such
channels by Haftel and Tabakin.? The subtracted
Low equation for this case was developed by Mon-
gan.® In principle, then, the contents of this paper
can be extended to cover all two-nucleon partial
waves without difficulty, omitting Coulomb effects.
Inclusion of the latter in a convincing way promis-
es to be very difficult.?®

It should be noted that the regularity conditions
stated above Eq. (1b) specifically exclude hard-
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core and other truly singular potentials. Since
most standard results of scattering theory must
be amended for such potentials,” this limitation is
not peculiar to our method.

An inverse scattering theory distinct from that
of Gel’fand and Levitan, but actually rather sim-
ilar in construction, has been devised by Marchen-
ko.2* It could be used equally well as the starting
point of our development.

Although a parametrization of high-energy phase
shifts is a necessary ingredient of our method, we
recognize that the interpretation of data at center-
of-mass momenta as low as 2 fm™ in terms of a
nonrelativistic, energy-independent potential is
exceedingly suspect on general physical grounds.
If such a model of the two-nucleon interaction is
to be at all self-consistent, the hope must be that
there exists some parametrization compatible with
the data for which high-momentum T matrix ele-
ments play a minor role in determining low-energy
multinucleon observables. An important prospec-

lo

tive application of our formalism is an orderly
search for that ideal model.

Note added. After the present paper had been
submitted for publication, we learned of related
work of Karlsson.?® Karlsson uses the Marchenko
method to formulate a momentum-space procedure
for going directly from the phase shifts to the off-
shell T associated with the local potential defined
by the inversion scheme. We thank S. Coon for
bringing the preprint to our attention, and B. Karls-
son for a copy of the paper.
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