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Deuteron-breakup coincidence cross sections are calculated in the prior-interaction formu-
lation of distorted-wave Born approximation (DWBA); both nuclear and Coulomb interactions
are included. The results disagree with experiment. This is attributed to incorrect treat-
ment of Coulomb distortion in the prior form of the outgoing wave function. Nuclear contri-
butions to breakup are found to be as important as Coulomb contributions. Numerical proce-
dures are developed that can also be used to include Coulomb excitation in DWBA calculations
of inelastic scattering.

1. INTRODUCTION

The breakup of deuterons by collisions with nu-
clei has received extensive experimental study' '
in recent years by coincidence observations of
neutrons and protons of definite momenta. Ear-
lier experiments4 studied only the low-energy pro-
ton backgound produced in deuteron-induced re-
actions.

It is generally believed that the breakup can be
attributed to interaction of the individual neutron
and proton of +e deuteron with the average Cou-
lomb and nuclear fields of the nucleus. The ear-
liest theories of deuteron breakup' treat it in ana-
logy to theories of photodisintegration; they take
the point of view that the process is caused by the
Coulomb field, which is treated as a perturbation.
More accurate theories that still treat only the
Coulomb field use Coulomb wave functions. "
Theories of diffractive breakup have also been de-

veloped. ' However, these theories are applicable
only for very high deuteron energies.

The theory given in the present paper is devel-
oped in the spirit of direct-reaction theories that
use distorted-wave Born approximation (DWBA).
The formulation resembles that of Ref. 7; how-
ever, both the Coulomb and nuclear interactions
are carried consistently, not only as transition
operators but as distorting potentials.

The basic formulation of the theory' is given in
Sec. 2. Detailed methods of calculation are dis-
cussed in Sec. 3; methods given there for han-
dling the long-range tail of the Coulomb interac-
tion can also be applied to DWBA calculations of
inelastic scattering in which Coulomb excitation
cannot be neglected. Further details of these
methods appear in the Appendix.

Numerical calculations and comparisons with
experiment' "for 12- and 17-MeV deuterons on
gold and 12-MeV deuterons on rhodium are given
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in Secs. 4 and 5. The results are seen to be very
poor. Reasons for the poor results and methods
for improvement are discussed in Sec. 5. The oft-
used notion of a well-defined "breakup radius" is
also discussed there and is shown to be unreason-
able. ~' Section 6 is a summary. Further details
can be found in the work of Rybicki. "

2. THEORY

interactions U„and U~ are approximated by optical
potentials. Although this choice is not the best
effective interaction in a three-body model of the
many-body deuteron-nucleus system, "it is a rea-
sonable and simple approximation. Problems of
the energy dependence of the optical potentials
are resolved by choosing these potentials as if the
neutron and proton have equal energy.

The cross section for breakup is'""
In our model the Hamiltonian that governs the

target-plus-deuteron system is approximated by
d 2 ' kk,

~

dQ„dQ~dE~ (2x)'I K,
(2.2)

0= T„+U„+ T~ + U~+ V~ + V~, (2 I)
where T„and T~ are kinetic energy operators, U„
and U, are nuclear nucleon-nucleus interactions,
V~ is the Coulomb proton-nucleus interaction,
and V~ is the neutron-proton interaction. The

where m is the proton mass, Sk„and Sk~ are the
magnitudes of the neutron and proton momenta af-
ter breakup, kK,. is the deuteron momentum before
breakup, and T is the transition amplitude. In
DWBA, the transition amplitude can be expressed

in two different ways, "
T"=( }(~«(k~, r~) g'„«(k„, r„)( V~(r) ~ P(r)y,"(K,, R)},
T~@ =(«i ~~ «(Ky, R) Q

~ '(k, r)
~ U„(r„)+ Uq(«'«) + V«(rp) ~ Q(r)g ~q+«(k, , R)),

(2.3)

(2.4)

where g~
' and y'„' are optical-model wave func-

tions with incoming wave boundary conditions, cal-
culated in the potentials U~+ V~ and U„, respec-
tively, Q' ' is the neutron-proton scattering wave
function with incoming wave boundary conditions,
calculated in the potential V~, X ~

' and g ~" are
deuteron optical-model wave functions with in-
coming and outgoing wave boundary conditions,
respectively. In Eq. (2.4), the optical potential
U, (R)+ V,(R), that is used to calculate )(', «(Kz, R),
does not appear as a transition operator. If this
operator is included, the integrals over r and R
decouple and the orthogonality of Q' ' and Q
makes the integral over r equal to zero. Thus,
the interaction U&+ V~ makes no contribution to
the matrix element in Eq. (2.4).

The amplitude T'", Eq. (2.4), is the one calcu-
lated here, since it is much more tractable than
T"«of Eq. (2.3). The integrand in T'" is oscilla-
tory for large r„and r~; there is nothing in the
integrand to provide an upper cutoff to the integra-
tion. Partial wave decomposition of the wave
functions in the integrand of T'" does result in
well-defined integrals. ' However, this decom-
position has difficulties: (I) The integrals are
very difficult to calculate, since the integrands
do not contain a damping factor; (2) the sum over
partial waves converges very slowly. In the case
of T'@, Eq. (2.4), the optical-model interactions
provide the damping factor. The Coulomb inter-
action provides numerical complications, which
can, however, be solved by known means. Thus,

from a computational point of view, one chooses
to calculate T"' and not T"'. Hereafter, the
superscript will be dropped from T". Another
initial simplification will be omission of the spin-
orbit parts of the nucleon-nucleus optical poten-
tials. The most interesting feature of including
the spin-orbit potentials would be their ability to
excite the 'S state of the unbound deuteron"; how-
ever, since only the difference between the spin-
orbit potentials for neutrons and protons can
couple the 'S state to the 'S unbound state, the
contribution of this excitation to the transition
amplitude would be small.

The bound deuteron is assumed to be in a pure
'S state and it is represented by the Hulthdn wave
function, "

(2.5)

where

go(k, «) = (kr) 'e' ~sin5

x (cot5 sink«+ coskr —e "), (2.7)

(2 g)

The phase shift 5 in Eq. (2.7) is obtained from ef-
fective range theory. " The parameter $ in Eq.

The unbound-deuteron wave function is represented
by the scattering wave function,

P'"(k, r) =4' i'Q, (k, r) Y«(k)Y«*(f),
l, m
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(2.7) is obtained by requiring that Qo(k, r) be or-
thogonal to (()(r}

In summary, the theory presented here can be
thought of as a theory of inelastic scattering which
utilizes the DWBA, but instead of exciting the tar-
get nucleus, the incident deuteron is excited into
an unbound state.

3. METHOD OF CALCULATION

Since the amplitude is calculated in the DWBA,
it is natural to write it as a form-factor sand-
wiched between optical-model wave functions.
Since two mechanisms, nuclear and Coulomb, are
being considered, it is desirable to split the am-
plitude into a nuclear part and a Coulomb part,

X~~(q) = dr r sinqr V~(r),
0

j, is the spherical Bessel function, and

(3.11)

4, (k, q) =q r'dr jj)((k, r)j, (2qr)(l)(r).
0

(3.12)

A((k) = (4)()'(21+ 1) ' r'dr p((k, r)(m}'(tj(r) .
0

The Coulomb form factor has a simple form for
large R; it is obtained by putting the multipole ex-
pansion of the Coulomb potential into Eq. (3.5),

(3.13)

where

T=T +T (3.1)
(3.14)

The nuclear transition amplitude is

The form factors in Eqs. (3.2) and (3.3) are de-
fined by

E '"'(k, R) —= (q) ' '(k, r) i U„(r„)+ Uj, (r(, ) i 4)(r)},

E' )(k, R) =((t ( '(k, r)i V, (r, )i(j)(r)).

(3.4)

(3 5)

T'"'=(X' (Kq R)IF (k R)IX' (K; R)), (3.2)

and the Coulomb amplitude is

T' ' = (X
' '(K~ 3 R) i F ( '(k, R) i X "(K;3 R)}. (3.3)

The integrals in Eqs. (3.9) to (3.12) and (3.14) can
be expressed in terms of elementary functions
(see Appendix).

The nuclear and Coulomb transition amplitudes,
Eqs. (3.2) and (3.3), are in the standard form of a
DWBA amplitude. ""The formulas below that
describe the calculation of the transition amplitude
T are the same or analogous to those of Refs. 19
and 20. The normalization is that of Ref. 19.

Both the nuclear and the Coulomb transition
amplitudes, Eqs. (3.2) and (3.3), can be expressed
as sums of standard multipoles,

T() gT() (3.15)
l

The brackets in Eqs. (3.4} and (3.5) i.mply integra-
tion over r. The form factors, Eqs. (3.4) and (3.5),
are expanded in multipoles,

where

T,'*' = (4(((21+ 1}]'"K~'g y( (k)lt"" (3.18)

E"(k, R) =g l (y(*(R)y((k)F('*'(k, R); (3 8)

here use of the superscript (x) means that the ex-
pression is valid for both the nuclear and the Cou-
lomb form factors. The partial form factors,
E',*'(k, R), , can be expressed as one-dimensional
integral. s over the Fourier transforms of the po-
tentials in Eqs. (3.4) and (3.5):

P(q)( = Q I"'"
~f ()', Pm (cos8 )

LyL1

where

(I & t 1/2it ((2L +1)'--
(3.17)

is the contribution of the 3th-order multipole.
The quantities P" ' are the DWBA matrix ele-
ments, "

F,'"'(k, R) =32' dq(X~(q)+(-1)'X„(q)]
0

xj (q()R4(3(kq), (3 7) and

x (L&100
i L(0}(L&l m -m ( L(0) (3.18)

3'', 'jk, 33)=33 J d X(qq)j, jqjq)q, jk, q), )3, 3)

where

f g~l(=K dR X(;~(Kiq R)F, (k, R}X(; (K(3R)

(3.19)

X~(q) = dr r sinqr U~(r),
0

X„(q)= dr r sinqr U„(r},
0

(3.9)

(3.10)

are the radial integrals. "
The nuclear radial integrals, Eq. (3.19), are

computed by numerical integration in code JULIK."
Since the nuclear form factors decrease exponen-
tially with increasing R, the integration can be cut
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off at some maximum value of R. Also, there ex-
ist moderate values of Lf and L,. above which
f~~"~~, do not contribute to P~"~'

The l =0 partial Coulomb form factor also de-
creases exponentially with increasing R; thus it
is in the same category as the nuclear form fac-
tors and is easily handled. However, for l o0 the
partial Coulomb form factors fall off like inverse
powers of R, Eq. (3.13). This behavior of the tail
has two consequences. First, the integral in Eq.
(3.19) converges slowly; numerical integration
will not be accurate. Second, the sum in Eq. (3.17)
converges slowly; therefore, the radial integrals
in Eq. (3.17) that have large values of L& and L,
must be obtained by a method that is more effi-
cient than numerical integration.

The Coulomb form factors for l g0 are handled
by a procedure pictured by the diagram in Fig. 1.
The diagram is a graph of R vs L, where L is
some average of Lf and L, . The R-L space is
divided into three regions, a different method of
evaluating the radial integral is used in each re-
gion. In region 1, the optical functions and the
form factors are known numerically; numerical
integration gives good values for their overlap in
the region 0 &R &R.

Region 2 in Fig. 1 extends the radial integra-
tions for the low partial waves; it gives nonnegli-
gible contributions to their overlap. In region 2,
the form factor is given by Eq. (3.13) and the op-
tical-model wave functions are given by their
asymptotic representation, ""

)i~(K, R) —e"I-,'i
[H~I (KR) —ql H~(KR)], (3.20)

where o~ is the Coulomb phase shift, g~ is the
reflection coefficient, and

Hz, = Gl + & F1 (3.21)

1 K
4 K. A (k)

dR HI. KfR —q~ H~ K~R R

X [EP~ (K;R) —ql H~ (K;R)]. (3.22)

The first term contains the integral across re-
gion 1 that is done numerically; the second term
contains the integral across region 2 that is done
analytically. To evaluate the integral in region 2

the Coulomb wave function is represented by its
asymptotic series, "

H (p)-e'el-'" Qa p
"

p=0

where

p=KR,

(3.23)

gl(p) = p-(nln2p) —(Lv/2)+a~, (3.24)

a„„=[n(2 p. + 1)+ i [rP + L (L + 1)-p, ( p, + 1)]}a~/2(p + 1),
(3.26)

is the Coulomb wave functions with outgoing waves.
The functions F~ and G~ are the regular and ir-
regular Coulomb wave functions, respectively.
Thus for L ~ L, the radial integral is expressed
as two terms,

R

L~I5

REGION I

JULIE

R~50 fm R

I

I

I

I

I

REGION 2
I

I ASYMPTOTIC EXPANSION
I

I

I

J

a~ =1.
The accuracy to which the asymptotic series rep-
resents the function is less than the first term not
used; the product of two asymptotic series is
again an asymptotic series. " The integral in re-
gion 2 contains four terms; there are two distinct
kinds of integrals, the other two are related by
complex conjugation. Denote the two distinct in-
tegrals by

REGION 3

COULOMB EXCITATION MATRIX ELEMENTS

I~ ~ =— dRR "'
H~ (KgR)HI, (K, R)

R

and

(3.26)

Ip~ =— dRR ' '
Hq (K~R)HI*, (K, R) . (3.27)

R Lb b I a a

FIG. 1. Graphical display of the methods used to cal-
culate the Coulomb radial integrals f ~ ~' . The methodLfL) '
used depends on the radius R and on the average partial
wave L.

The integrals in Eqs. (3.26) and (3.27) are eval-
uated by inserting the asymptotic series, Eq.
(3.23), into Eqs. (3.26) and (3.27) and by inte-
grating term by term. The results are asymptotic
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series, the limit as t L+ in ~-~, it approaches, ""
I(1)1 R -(l+ 1)ei(e LbLbLa K +Kb a

1(2) r ~ R-(1+1) i(eL -eL )

b

x gC""&"&'""[(fc,-Z )Z (n, n)], -

where

(3.29)

C(1)LbLa = ~ Lb La
v ~~p &v-p~

p =0
(3.3O)

x g C""~"&""'[(SC+ Z )Ã (n + n )]
v =0

(s.28)

[cosh(x) + e + i(e' —1)'" sinh(x)]"
[e cosh(x}+ 1]""

where

p, =L&- L.

$ =n~ —ni,

L = 2(L~+ L;),
n = ', (n~-+ n,.),
K= 2(K~+K;),

L(L+ 1)1+

(3.36)

(3.37)

(2)LbLa = ~ Lb La+
v ~ p &v p'

p =0
(3.31)

The function $ is represented by an asymptotic
series in inverse powers of the first argument,

1'(p + v + in)

, , (iu)'I'(p+in)' (3.32)

where I' is the gamma function. "
Consider Fig. 1 again. In region 3, the optical-

model wave functions are just regular Coulomb
wave functions,

q, (ff, Z) =—e"~~,(fee) . (3.33)

dRFL KyR R '" FL K

The integral in Eq. (3.34},

(s.s4)

For the large angular momenta that occur in re-
gion 3, the partial waves do not penetrate the cen-
trifugal barrier, therefore these partial waves
do not sample the nuclear potential and suffer
only Coulomb scattering. Since the optical-model
wave functions of large L are negligible at small
values of A, Eq. (3.13) can be used for the form
factor. Hence the radial integral can be written

f' ~' =——~A (u)e' 'I-f"14K
f i

Equation (3.36) is a good approximation for g~ ~
even for moderate values of L."

The criteria used to determine R and L in Fig.
1 are related. First, R is chosen large enough
so that the asymptotic expansions in Eqs. (3.28)
and (3.29} give a good representation of the inte-
grals in Eqs. (3.26) and (3.27). Once R is de-
termined, L is determined. The reason for this
is that for a fixed R the asymptotic expansions
are valid only for values of L & L. The relation-
ship arises because L must be large enough so
that the form factor is well represented by Eq.
(3.13) where the optical-model partial waves in
region 3 have appreciable magnitude.

4. CALCULATIONS

Calculations were performed for a gold target
with incident deuteron energies of 12 and 17 MeV
and for a rhodium target with an incident deuteron
energy of 12 MeV. The potential used for the deu-
teron optical-model wave functions has the form

&(r) = -&fw s (x) —iWf w s (x') + iW 'f ow s (x '),

(4.1)

where

fws(x) =(e*+1)-',

~s~L. = dRELy KgR R FL. K; R, 3.35

is known from the theory of Coulomb excitation, "
it has an analytic solution in terms of elementary
functions, gamma functions, and Appell func-
tions. ' For large L& and L,, the integral can
be well approximated by the classical limit. In

fows(x) = —(e'+1) ',

r -r0A 1/3
x=

a
A1/3

x'= a'

The Coulomb interaction is represented by the
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TABLE I. Deuteron optical-potential parameters, en-
ergies in MeV, lengths in 10 cm.

Target V r0 a r W W' r 0
a'

Au~37 105.5 1.15 0.81 1.15 0 69.1 1.38 0.68
Rhi03 96.05 1.15 0.81 1.3 20.12 0 1.242 0.778

Coulomb potential for a uniformly charged sphere
with a radius of y, A' '. The deuteron parameters
are listed in Table I. For the gold calculation at
12 MeV the deuteron optical parameters are the
Percy average" set for 12-MeV deuterons on gold.
The same parameters were used for the 17-MeV
calculation for the sake of simplicity in comparing
to the 12-MeV calculation. The parameters used
for the rhodium calculation are the best-fit pa-
rameters for 14.5-MeV deuteron elastic scatter-
ing on "'Mo, given by Hjorth, Lin, and Johnson. "
The parameters used for the proton and neutron
optical-model potentials are listed in Table II;
these are average Percy parameters. "

For both the 12- and the 17-MeV gold calcula-
tion, the multipoles of order i=0, 1, 2 for both
the nuclear and Coulomb interactions were in-
cluded. For 12 MeV, the relative momenta k
=0.126, 0.130, 0.140, 0.150, 0.160, 0.180, 0.200
were used. For 17 MeV, the relative momenta
k =0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40
were used. For the calculation of 12-MeV deu-
terons on rhodium, the nuclear monopole, the
Coulomb dipole, and both the nuclear and Coulomb
quadrupole were included. The relative momen-
ta k=0.13, 0.18, 0.277, 0.288 were used.

leaves the region of breakup.
Qne can gain some understanding of the discrep-

ancy between theory and experiment by examining
the final-state wave function in the matrix element
in Eq. (2.4}. The final state contains a. deuteron
optical-model wave function; this implies that the
Coulomb interaction in the final state acts on the
center of mass of the outgoing particles, whereas
in reality it should act only on the proton. There-
fore the structure of Eq. (2.4} has the consequence
that after breakup both the neutron and proton are
accelerated, rather than just the proton. This ef-
fect tends to upset the division of energies. The
magnitude of the cross section is affected in a sim-
ilar fashion: The deuteron center-of-mass wave
function is severely damped by the Coulomb bar-
rier, whereas the proton alone would experience a
smaller barrier.

To investigate further the way the DWBA model
treats the Coulomb effects just described, two ad-
ditional calculations were performed in which the
final-state Coulomb effects were expected to have
less importance. Qne, for l7-MeV deuterons on
gold involves raising the incident energy, the other,
for 12-MeV deuterons on rhodium involves a de-
crease of the target nucleus charge.

Table III presents the results of the calculations

I
lo 80

8 8

5. RESULTS AND DISCUSSION

Figure 2 shows the theoretical and experimental2
proton energy spectra for a gold target with E,
=12 MeV, 8„=20', and 8~=50'. The predicted
spectrum disagrees with experiment; the energies
at which the peaks occur differ by 3.7 MeV and
the magnitudes at the peaks differ by a factor of
16.5. Also, the theoretical spectrum peaks at an
energy 1.9 MeV below half the total energy of the
two outgoing particles. From physical considera-
tions it is more likely for the proton to have more
than half the available energy, because the proton
is accelerated by the Coulomb potential as it

Io0

io'—

4

Ed= l2 MeV

e =so
P

ENT

RY

Target Projectile V r0 a r, W W' r 0
a'

Au"'
Au"'
Rhi 03

Rhi 03

Proton
Neutron
Proton
Neutron

58 1.25 0.65 1.25 0
42 1.25 0.65 ~ 0
57 1.25 0.65 1.25 0
47 1.25 0.65 . - 0

40 1.25 0.45
40 1.25 0.45

0 ~ ~ ~

0 ~ ~ ~ ~ ~ ~

TABLE II. Nucleon-nucleus optical-potential param-
eters, as in Table I.

Io
I I I I I I I I I I I

I 2 3 4 5 8 7 8 9 I 0 I I

EP (INeV)

FIG. 2. Comparison of the theoretical and experimen-
tal proton energy spectra, cr(E&, 6&, 8„), for Au~97(d, pn)
with Ez ——12 MeV, 0&

——50', and 0„=20'.
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TABLE III. Calculated proton spectrum for Au~sv-

(d, Pn) with E~=17 MeV, 8„=20', and Op =50'. Ener-
gies in MeV, cross sections in mb/sr2 MeV.

o(Ep, Op, 8„)

3.93
5.02
9.45

10.54

1.965
2.656
6.538
3.587

for gold at 17 MeV, with 0„=20' and 8&
——50 . Corn-

pared with the 12-MeV Calculation, the 17-MeV
cross section is 10 times larger and the energy
sharing between neutron and proton is more nearly
as expected.

Columns 1-6 in Table IV give the results of the
12-MeV rhodium calculation. Column 8 gives ex-
perimental cross sections' integrated over proton
energy. For Hp =30' and 50 there is good qualita-
tive agreement. For ep = -50 the theoretical cross
section is small by a factor -20. The energy shar-
ing is more nearly as expected, with a larger cross
section for protons that have more than half the
available energy.

The improved results obtained in the two cal-
culations that have reduced Coulomb effect sup-
port the previous claim that the discrepancies in
the 12-MeV gold calculation are caused by an in-
correct treatment of the Coulomb barriers in the
exit channel.

Coulomb-nuclear interference can be discussed
to some extent in terms of symmetries of the
DWBA matrix element. We see in Eq. (2.4) that
in the prior form of this matrix element, the
starting point of the present article, the only dif-
ference between the roles of the neutron and pro-
ton is the direction of k, the relative momentum.
It is interesting that the Coulomb and nuclear con-
tributions in the transition amplitude behave very
differently with respect to changes of the sign of
k. The Coulomb contribution to the transition am-
plitude comes predominantly from the dipole term.
The monopole term is suppressed by the orthog-
onality of the bound and continuum deuteron wave
functions. The quadrupole and higher-order multi-

poles make decreasing contributions to T; in other
words, the multipole series converges. (The con-
vergence of the series is seen by considering the
overlap of the bound-state wave function with a
particular partial wave in the expansion of the un-
bound deuteron wave function; the higher the par-
tial wave the poorer is the overlap with the bound
state if (k( is not too large. ) For the nuclear in-
teraction the even multipoles are more significant
than the odd multipoles. Eq. (3.7) shows that only
the difference between the proton-nucleus and the
neutron-nucleus interactions contributes to the odd
multipoles, therefore these are strongly sup-
pressed. The contribution of the monopole term
is reduced somewhat by the orthogonality of the
deuteron relative wave functions. However, the
reduction is not as severe as in the Coulomb case,
because the nuclear potential changes magnitude
fairly rapidly as a function of radius in the region
of the nuclear surface. Thus, the dominant multi-
poles for the nuclear interaction are the monopole
and the quadrupole. Under these conditions we
see that if either the Coulomb or nuclear contribu-
tion to the breakup were to dominate over the other,
T(k, K&) would be symmetric under the transforma-
tion k- -k. The lack of this symmetry in the
transition amplitude is a measure of interference
between the Coulomb and nuclear contributions.

Another kind of Coulomb-nuclear interference
manifests itself in the distorted waves for the mo-
tion of the deuteron center of mass, in that both
interactions give rise to the distortions in these
wave functions. Interference of this type does not
affect the symmetry of T(k, Kz).

As an example of interference between Coulomb
and nuclear breakup, Figure 3 displays

~
T ~' as a

function of 8~ . The target is gold with E,=17
~ ~

MeV and k = 0.1; the direction of k is chosen so
that ) T ~.

' is a maximum. The graph of ) T )
2 for

-k is also plotted. The angular distributions are
out of phase; this is indicative of interference be-
tween the nuclear and the Coulomb amplitudes.

Detailed studies of the contributions of the var-
ious multipoles in our numerical calculations are
given in Ref. 11. A brief review of the remarks

TABLE IV. Comparison of theory and experiment for Rh (d, pn) with E& =12 MeV and 8„=20'. Columns 1-6 show
theoretical proton energy spectra for Op =50, 30, and -50', respectively. Column 8 shows the experimental cross sec-
tion, o(8„, Op), from Ref. 2. Units as in Table III.

Op =50'
o(Ep, Op, 8„)

Op =30'
o(Ep, Op, 8„)

8 —-50'
p

Ep (r(Ep, Op, 8„) o(8p, 8„)

2.04
3.80
5.57
7.35

0.616
1.654
5.600
3.757

1.46
2.32
7.05
7.93

1.821
3.511

12.956
4.782

1,82
3.22
6.20
7.61

0.059
0.120
0.241
0.131

50
30'

-50'

5
12
5.5
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IO
IO ALI (d, Pn) Ed= l7MeV k=O. IO

Ie7

&k= 20 )k&0
9- =l60 lt) = l80k k

in Ref. 11 follows: The nuclear and Coulomb am-
plitudes, Eq. (3.15), are of the same order of mag-
nitude. The dipole contribution dominates the
Coulomb amplitude; the monopole term is indeed
negligible, as was argued from the notion of wave-
function orthogonality. For the nuclear amplitude,
the monopole and quadrupole terms contribute
about equally and the dipole term is negligible.
Therefore, in the transformation k to -k, the
magnitudes of the nuclear and Coulomb amplitudes
barely change, but the sign of the Coulomb amp-
litude reverses. Therefore a peak in the distribu-
tion for k corresponds to a minimum in the distri-
bution for -k and vice versa.

A very good example of symmetry under the
transformation k - -k was found in a calculation
for 17-MeV deuterons on gold with k=0.4. The
nuclear quadrupole dominates the amplitude in
this case. It can be seen that symmetry with re-
spect to the sign of k is equivalent to symmetry in
the energy sharing between the neutron and proton,
if their momenta are perpendicular. Just this
symmetry is seen in the calculated curve in Fig. 4
derived from the k = 0.4 results. Unfortunately,
the corresponding experimental spectrum does not
have a peak for low proton energy, another exam-
ple of our incorrect treatment of Coulomb effects.

It has been customary in experimental articles' '

to use the unsymmetrical energy sharing between
the neutron and proton as evidence for a most
probable radius at which breakup occurs. This
"breakup radius" is often thought to be fairly large
It is most convenient to study the breakup radius
theoretically by examining the distribution of an-
gular momenta' that contribute to the breakup
amplitude. Let us define a quantity eL" ', such
that the amplitude of Eq. (3.17) is

p(x) lna g ~(x) im ym (lt )Ly Lg f (6.1)
Iy

The explicit expression for n~ ' then is
Lg

(6.2)
f

where I'I, I, is given by Eq. (3.18) and f z*ii',, is
given by Eq. (3.19). Figs. 5 and 6 show the mag-
nitudes of e~L" ' for the nuclear and Coulomb con-Lf
tributions, respectively. The target is gold, the
incident deuteron energy is 12 MeV, and the rela-
tive momentum, k=0.13. This value for the rela-
tive momentum corresponds to the peak in the
theoretical proton energy spectrum, Fig. 2. Look-
ing at Fig. 5, one sees that there is no one domi-
nant partial wave for the nuclear breakup. Angular
momenta from 2 to 8 contribute significantly. We
note that in the expression for the transition amp-
litude, Eq. (3.16), the P' 's are weighted by a
factor of (2l +1)'I'. For the Coulomb contribution
to the breakup, Fig. 6, there is no localization at
all. The magnitude of nL' ' for L& =25 is di-

Au (d, Pn) Ed= l7 MeV
I97

I

IO

e„s48 e =-4o
P

EXPERIMENT

THEORY

Ios—

I I I I I I I I I

0 IO 20 50 40 50 60 70 80 90

f

FIG. 3. Angular distribution of ~T~t, the absolute
square of the transition amplitude, as a function of 0~,
the angle between the unbound deuteron center-of-mass
momentum and the incident deuteron momentum. The
reaction is Au 9 (d, pn) with E =17 MeV. The two curves
correspond to the two unbound deuteron relative momen-
ta k and -k, where k is specified by k=0.1, 6&=20',
and Q&

——0'.

C4
I

E lo'—

UJ

b

IO

E (MeV)

IO

I

12

I

l4

FIG. 4. Same as Fig. 2, except that E~ =17 MeV, 0&

=-40', and 8„=48'.
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minished by only a factor of -10 from the maximum
value, which occurs at Lf =6. Thus from the point
of view of angular momentum localization, there
is no well-defined region of space in which the
breakup reaction takes place.

6. SUMMARY

We see that breakup cross sections calculated
with the prior DWBA amplitude disagree with ex-
periment, apparently because the Coulomb poten-
tial affects the center-of-mass coordinate of the
outgoing particles instead of the proton coordinate.
Despite this defect of the calculations we are able
to conclude that nuclear interactions contribute as
strongly to breakup as the Coulomb interaction,
even for 12-MeV deuterons incident on a high-Z
target nucleus such as gold, contrary to former
belief.

We see that the breakup does not occur in the
vicinity of any particular characteristic radius,
despite frequent use of that concept.

The numerical procedures used here to include
Coulomb excitation can be generalized for use in

ia7
Au (d, Pn) Ed=I2 MeV k= O. I 30

any DWBA calculation of inelastic scattering.
Finally, we note the inherent defects of a theoret-

ical model based on average Coulomb and nuclear
potentials: Such a model neglects internal coordi-
nates of the target nucleus. Recent measurements
of breakup cross sections show resonances and
rapid variations with mass number, ' effects that
cannot be produced by a potential model. The ex-
istence of these effects is in good accord with the
importance found for nuclear interactions in the
present calculations. Qf course, the potential
model retains its interest, despite resonance
effects, because it is expected to describe the
average amplitude on which the resonances sit.
For this reason more accurate calculations with
the potential model should help provide further
understanding of the importance of the resonance
effects.

Improved DWBA calculations in the potential
model are underway, using the post form of the
amplitude, Eq. (2.3). The poor convergence ot'

the numerical integrations in this amplitude is
handled by the method of contour integration in the
complex radius plane. "

Note added in p~oof: Meanwhile, calculations
using the post form of the transition amplitude
have been performed by Lang, Balzer, Jarczyk,
Muller, and Marmier and by Baur and Trautmann.
Encouraging agreement with experiment is found.

104
I07

Au (d, Pn) Ed=12 MeV k=O. I30

IO'—

IO 2

lo 2

IPI
I I I

0 2 4 6 8
I I

IO I2 I4 I6

Lf

FIG. 5. Contributions to the nuclear amplitude, P~+
for the L,

& partial wave in the final-state deuteron optical-
model wave function. The reaction is Au~9'(d, pn) with
8~=12 MeV and @=0.130 fm ~.

IO~
I I I I I I I I I I I I

0 2 4 6 8 Io I2 I4 I6 I8 20 22 24 26 28

FIG. 6. Same as Fig. 5, except that the contributions
are to the Coulomb amplitude, P
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APPENDIX

The Fourier transforms for the terms in the optical potential, Eq. (4.1), are:

f„,(q) = xacsch(vaq)x[ xact nh(w aq)sin(qr) —r cos(qr)J-2a'q g (-)" +» e "" '
rP+ a'q')'

(Al )

00 2

fn„~(q) = xa' csch(vaq) x [(1—xaq ctnh(xaq)) cos(qr} —qr sin(qr) J -2a'q g (-)"
(n'+ a'q ')'

(A2)

where 7 = r,A' '. The Fourier transform for the Coulomb potential is

X,'(q) =, q, (qr-),
3Ze
q'r

where 7 = r„A' ', and j, is the spherical Bessel function.
The integral in Eq. (3.12) is expressed in terms of elementary functions as

(A3)

Xe' sin(6), „( }
n'+ (k+ ~ q)'
n'+(k- l q)'

2 1i, (t)6„lp+( +.q)
P'+ (k —k q)'

+ tan (A4)

N n'+ k'+ (~q)' P'+ k'+ (-,' q)'
(A5)

The parameters N, n, P, 6, and $ are from Eqs. (2.5) and (2. 1). Q, is the Legendre function of the second
kind"; Q, (x) has a pole at x= 1; but, it is analytic for x) 1. The arguments of Q, in Eq. (A5) are always
greater than one. Eqs. (A4} and (A5) are not defined at k=0; for this special case the integrals are

e, (a=0, }= t
- —-t - ———.. .—.. . -t -' * t -' *~)&q

~4m n p a' n'+ (-.'q)' p'+ (-,'q)' n+ ] p+ k

4, ~ 0(k = 0, q) = 0 .
(A6}

(A V}

(A8)

The quantity a in Eq. (A6) is the neutron-proton triplet scattering length, defined by ka=-tan6, where 6
is the triplet s-wave phase shift.

Finally, we give the result of the integration in Eq. (3.14}:

A, (k) =32m'(2l+1) '2 ('+' (2k)'l![(n +k )
"' —(P +k ) "' ]
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