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An interaction of the form Vi ysp(7) =) (v;/7;)6 (v —7;) is used to make a fit to the Liver-
more X phase shifts (0—460 MeV). Only states with L=2 are considered; coupling between
states is at present neglected but effective central 3S; and °D, interactions are given. No
more than four terms (per state) are required. In states which have a repulsion the position
of the innermost 6 function can be chosen arbitrarily within wide limits; e.g., for the ‘So
state 0.1542 =7, =0.95 F. Families of hard-core interactions in which 7, and »; are arbi-
trary are also determined. We find 0.1542 <7,=<0.7 F for the !5, state. All !S; interactions
give essentially the same D-state phase shifts within the same energy range (these differ
from 1D2 experimental phase shifts). The main virtues of this type of potential are the ease
with which the parameters may be determined and its relative simplicity in calculations for
A =3 and nuclear matter. It may also be written in the separable form (rLJST| V| LJST)

=23 (0 /73)8 (v =7 )8 (¥ —7y).

I. INTRODUCTION

By far, the most important sources of our knowl-
edge of the two-nucleon interaction which is used
in many-body investigations are the properties of
the deuteron and the elastic scattering data for
two nucleons for laboratory energies below ~400
MeV. An interaction which is compatible with these
data is by no means unique; restrictions have to
be imposed and a variety of assumptions can be
made. There are two very fundamental and well-
founded restrictions: (1) The interaction pos-

sesses the strong-interaction symmetries and (2)
the one-pion-exchange (OPE) interaction domi-
nates at relative distance greater than about 2 F.
Equivalent restrictions on the two-nucleon scat-
tering matrix have proven indispensable in ob-
taining a unique reduction of the scattering data
to phase parameters.

As a matter of principle, the phase shifts, even
if known at all energies, can give no indication of
the degree or type of nonlocality which is present
in the interaction. As a consequence a variety of
forms for the interaction have been constructed;
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some are based on particle-theoretical considera-
tions; all are in a large part phenomenological.
The usefulness of a particular interaction is de-
termined by the extent to which it is compatible
with as many nuclear properties as can be calcu-
lated accurately. Surveys of these general mat-
ters have been given by Moravesik,' Signell,? and
Moszkowski.?

There are additional uncertainties in the form
of the two-nucleon interaction which arise as a
consequence of pion production at high energies.
One cannot use the scattering data above =450
MeV for the purpose of constructing a nonrelativis-
tic energy-conserving Hamiltonian. The resulting
indeterminancy in the potential will be discussed
under the assumption that nonrelativistic quantum
mechanics applies and that the phase shifts for
energies above a maximum (400-500 MeV) are in
principle unobtainable. We shall restrict our-
selves solely to the case where the assumed po-
tential is local.

The first uncertainty applies to the innermost
region of the potential. Briefly, a limited energy
range implies limited penetration into the inner-
most region; hence little detail can be obtained;
as the angular momentum is increased the situa-
tion becomes worse.

The second uncertainty applies to the detailed
spatial variation of the potential. The amount of
detail which can be obtained for a radial region
of dimension A» depends on the range of wave
numbers employed in the scattering. If only very
small wave numbers are used then only an aver-
age range and average strength are determined
(effective-range theory). If all wave numbers
could be used then the potential would be deter-
mined everywhere (Gelfand-Levitan theory; the
potential is not unique if there is a bound state).
If the wave numbers are restricted to an interval
of size Ak then one expects that only gross infor-
mation is determined in Ay, where

Ar AR =const. (1)

If the region in question is repulsive, the local
wave number is smaller than the incident wave
number; if the region is attractive, the local wave
number is greater. Thus less information is ex-
pected for a repulsive region, especially when it
is also an inner region, than for an attractive re-
gion. Since there is only one weakly bound state
in the two-nucleon system, one expects, at the
maximum usable energy, that the average local
wave number in an attractive region has the same
order of magnitude as the incident wave number.
For E,;, =500 MeV, k., ~2.5 F'= Ak. The uncer-
tain principle suggests that the constant in (1) is
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of order unity; we have then
Ar=04 F, (2)

These crude estimates indicate that one can divide
the potential into several regions in each of which
only gross properties of the interaction need be
specified. One of the simplest ways of doing this
is to assume that the interaction is concentrated
at one radial value within each region; we are
thereby led to a 6 -function interaction.

In this paper we consider, then, an interaction,
which for the central case can be written

M LTS
72 V0= ; %‘ 6lr—7r,). (3)

M is the nucleon mass, the v; are dimensionless
strength parameters, and the »; are the concen-
tration radii. These latter will henceforth be re-
ferred to as interaction points since we shall work
primarily in the space defined by the radial co-
ordinate ». The main virtue of this interaction
is, of course, its simplicity. The two-body prob-
lem, even with tensor forces, is solved by finite
linear algebra. The few-body and many-body
problems are inherently difficult; one expects
however, that if a reasonably accurate solution
can be obtained, it would be done more easily
with a 6 function than with continuous local inter-
actions. Recent calculational progress in the so-
lution of the three-body problem has been made
possible, in part, by the use of nonlocal interac-
tions which are the sum of separable terms. More
generally the 6-function interaction can be written
as follows:

%(rl VIV’)=242 Vr)o(r —»") (4a)
=i%‘6(r—ri)6(rl—r’). (4b)
i=1 4

Equation (4b) shows that the 6-function interaction
also possesses the separable form. Nonlocal gen-
eralizations of (4b) are briefly discussed in Sec. VI.
The main objections to a 6-function interaction
will probably stem from its discontinuous nature.
Even though this form of the interaction can be
made to reproduce the two-body data quite well,
we do not suggest it as a candidate for the “true”
two-nucleon interaction but rather as a useful
model. The argument given above and the results
of this paper do suggest that the detailed spatial
structure of an assumed local potential are to a
certain extent inconsequential as long as we are
dealing with nuclear systems in which nucleon en-
ergies are less than those considered here. We
believe it is a matter of determining how many 6
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functions are needed, rather than whether they can
be used at all. Further discussion on this matter
will be found in Sec. VII. It is important to re-
member that the above discussion assumes that a
local potential is adequate; this of course need

not be the case.

A brief sketch of our results will now be given.
Since previous determinations of a local two-nu-
cleon interaction have all required a strong state
dependence, we have considered each state sepa-
rately. In Sec. V we give evidence that state de-
pendence is necessary.

A list of two-nucleon states for J <4 is given in
Table I. We do not anticipate a need to consider
states for which J = 4 since the interaction in these
states is presumably dominated by the OPE tail,
in applications a perturbation treatment is pre-
sumably adequate. In the present paper we shall
only consider J < 2. The coupling between the %S |
and ®D, states is neglected; the *P,-°F, state is
not considered at all. Work on these important
omissions is in progress. The derived %S, effec-
tive central interaction, along with that for the
'S, state (“S-state interaction”) should prove use-
ful in those investigations in which it is desirable
to avoid the full complexities of the two-nucleon
interaction. We have used the phase parameters
of MacGregor, Arndt, and Wright* which will be
referred to as MAW-X.

We have sought the minimum number of inter-
action points for which a good fit to the data could
be obtained. The interaction divides naturally
into a strong inner region and a relatively weak
tail region. The division occurs between 2 and 3
F. We find that the inner region requires a mini-
mum of two interaction points in all states except
the 'D, state, which requires only one. In those
states which require a repulsion in the inner re-
gion (because of negative phase shifts at high en-
ergies) we found that the position (»,) of the re-
pulsion could be chosen within wide limits; the
remaining parameters were then uniquely deter-
mined. For the S, state, for example, 0.1542
<7,<0.95 F. At the lower extreme v, is infinite.

TABLE I. Two-nucleon states for total angular mo-
mentum J =4, listed according to charge state and spin,
parity (S, ) designation.

(np—pm) (np +pn), nn, pp
J 0,— 1,+ 0,+ 1, -
0 1S, P,
1 Py 5,°Dy P,
2 ‘D, 'D, Py, °F,
3 'Fy ’D3,%G,4 Fy
4 %G, g, %F4,°H,

For the °D, and 'D, states, which do not require

a repulsion, we find that the interaction parame-
ters in the minimal determination are essentially
unique. This difference is in accord with the crude
analysis given below.

The tail region requires a minimum of two in-
teraction points in all states except the 3S,, which
requires only one. The parameters for this re-
gion are essentially unique for each state. Since
the tail region has indefinite extent, a represen-
tation by a finite number of & functions must fail
in some respect. We find this to occur only when
L >0 and at the lowest energies; for this situation
the very outermost part of the tail cannot be ne-
glected. We doubt that a refined description of
this outermost region is worthwhile; in applica-
tions it would enter as a very small perturbation
which would be overwhelmed by the S-state inter-
action at low energies.

Since the innermost region is rather obscure we
also consider interactions which contain a hard
core of arbitrary radius »,, we find that the mini-
mum number of interaction points and the param-
eters of the tail region do not change. In those
states which require a repulsion both », and r»,
can be chosen arbitrarily within limits. For ex-
ample, in the 'S, state 0.1542<»,<0.7 F.

A detailed presentation and discussion of the
results are given in Sec. IV. In Sec. V we report
certain observations which we feel are interesting
for the general problem of nuclear forces. In Secs.
IT and III we present the necessary mathematical
apparatus which is needed for determining phase
shifts and interaction parameters. In Sec. VI we
consider formal matters such as the construction
of the off-shell T matrix. Finally in Sec. VII we
suggest how the 6 function interaction model might
be used in nuclear problems.

b-functions interactions (with nonzero ranges)
were employed in 1957 by Raphael® and in 1959
by Bosterli.® Raphael applied the Gauss-Jacobi
mth-order quadrature method to the scattering
integral equation; this became formally identical
to the m -5-function interaction problem. The posi-
tions of the 6 functions, except for scale, were
given by the zeros of the orthogonal polynomials
associated with the quadrature method. The
strengths of the 6 functions could be determined
if the (continuous) interaction was known. In
Raphael’s method they were determined by fitting
the experimental data; he considered only the 1S,
data current in 1957 and maximum m =3. In our
approach, the positions of the § functions are
chosen to give a good fit to the data. Bosterli con-
siders only the 'S, and °S,-°D, states; the inter-
action is assumed to take place at one point, but.
consists of central and tensor parts. The low-
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energy (E < 30 MeV) and bound-state properties
were used to determine the parameters.

II. BASIC EQUATIONS

Strong interactions are invariant with respect
to spatial rotations, spatial inversion, time re-
versal, nucleon permutation, and rotations in
isotopic spin space. A complete set of good quan-
tum numbers which specify a state of the two nu-
cleon systems are J, M, (total angular momentum),
S (total spin), T, M, (total isotopic spin); these
will be denoted collectively by «. Parity is given
by (-1)S*T*!, We shall use the set of basic states

larLy, (5)

which are eigenstates of the magnitude of relative
position |¥, - F,| and magnitude of orbital angular
momentum f, neither of which are conserved.
The specific nuclear interaction will be assumed
to take the form
m oarLL’
%(mll Viar'L')=6(r - r')z U"r'

i=1 4

6(r -7,

aLr’
'V dr=r)o(r'=7r,).

1 i

v

(6)

Invariance with respect to spatial rotations and
rotations in the isotopic spin space (charge inde-
pendence) imply that these matrix elements are
independent of M ; and M, respectively. The
weaker assumption of charge symmetry, i.e.,
only n-n and p-p alike, implies a dependence on
M ;2. The dimensionless strength parameters
0¥t are real and symmetric in L, L’; they van-
ishunless L=L’=Jor L, L'=J+1, J¥1. The
latter case occurs only when a tensor force is
present.

The state of relative motion satisfies the equa-
tion:

(P o527) 190 = 10), ()

where D is the momentum conjugate to ¥, - F,, M
is the nucleon mass, k®>=(M/2i%)E, E is the labo-
ratory energy and is twice the energy of relative
motion. We also have

n? .
27 = 4147 MeV F?,

E(inF~')=0.1098[E (in MeV)] /2, (8)

The symbol E will always indicate the laboratory
energy. We now write Eq. (7) in the arL repre-
sentation: As usual we introduce

u(k, r)/vr={arL|¥,) (9)

|

and suppress the index « throughout. We have

<i_£‘(‘,‘—+2+k2> uy(k,7)

dr? 7?2
-2

i, L’

vkt
L 6(r=7;)uy (k,¥)=0.
Vi

(10)

Although we shall now only treat the uncoupled
case, the formalism for the coupled case can be
obtained by a straightforward generalization.

W e proceed to replace the Schrodinger equation
(10) by boundary conditions at »;. To this end it
is only necessary to consider the neighborhood of
the point #,, for which Eq. (10) can be written

[=t+ 8 Jull, ) — = 6(r = r Julle, ) =0. (11)

¥

For convenience the angular momentum labels
are suppressed. For »,<v<w.,, ulk,r)=u;(k,7),
where the latter is a solution of the free-particle
equation

(=t+R)uky7r)=0, (12)

and is continuous everywhere. We now assume
that everywhere in the neighborhood of »;, u(k,r)
takes the form

ulk, v)=[1= 0(r —v)]u,_(k,»)+ 6(r = v)u,(k,7).
(13)

The unit step function 6(» — #,) is defined along
with its derivatives in the sense of distribution
theory.

Upon substituting (13) into Eq. (11), making use
of (12) and the linear independence of 6(» — »;) and
8'(r —7,), the following boundary conditions are
found to hold at »;:

ik, v))=u;_ (R, v,) =ulk, v,), (14a)
d _4a =
[dru‘-(k,r) dru“‘(k’ 7)]r=r¢ ,,i“(k:”i)-
(14b)
We now define
¢k, 7) = F, (kr) +tand (k)G (kr), (15)
where
Fp(x)=xj,(x), (16a)
G (x)==xn (x), (16b)

are the standard regular and irregular solutions
of the free-particle equation. We may now write

(R, v)=A,0,(k, 7). 1)
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Since this form contains two arbitrary constants,
it is a general solution of the free-particle equa-
tion. The condition of regularity at » =0 implies

U (r) = AgF (Rr) ; (18)
thus
tand,(k)=0. (19)

We shall also consider the case where there is a
hard core with radius »,<»;. We have then

uolr) =1 % TS0 (a)
° A [Fo(ky) +tand G, (kr)], v,s7v <7y,
where now
tand, = - F, (kv,) /G (ky,) . (21)

The non-hard-core case is simply obtained from
Eq. (21) by taking the limit »,-0.

Beyond the final interaction point we employ the
standing-wave asymptotic form

uy(kyv) = Fp(ky) +tand (B) G (kr) . (22)
Thus
Ag=1. (23)

The desired phase shift is 6,(k). The outgoing-
wave case may be treated similarly.

We now derive the equation relating tan;_, (%)
and tand;(k). From Egs. (14a) and (17) we have

u(kyri):Ai—l‘pi—l(k’ 7{)=A‘<P{(k97i)~ (24)

We now multiply Eq. (14b) by u(k, »,). With appro-
priate use of Eqs. (24) and the derivative of (17),
the factors A;_,A; appear on both sides of the
equation and may be canceled. We have than

§0;-1(k,1’.-)[d—iq0,(k, r)]

r=r;

- <p,(k,r,)[d—’i @; 1k, 7)]

rErg

=1;1 (pf—l(k’ 7’4)‘P4(k: ;).

(25)

In this we substitute the definition (15) and then
employ the Wronskian relation

d d
G(kr) a F(kr) - F(kr) ar G(kr)=F. (26)
Quite straightforwardly we arrive at
tans, (k) — tans, _, (k) = -kﬂri— @iaty 7)oy 7,).
i

(27

This is the single most useful equation in this

paper. We can easily solve for tand,(k):

tand; _, (k) = (v, kr JF 1 (kr )@ (R, 7))
1+(vi/kyi)GL(kyi)‘P{_1(’?,7“) ’

(28)
0ok, 7)) = Fp(kr,) +tand, _ (R)G (k) . (287

tand, (k) =

If we know v;,...,v,and 7,,...,7, we can find
tand, by repeated use of this equation. We start
with tand,, which either vanishes or is given by
Eq. (21) when a hard core is present. The quanti-
ty 6,(k) is clearly the phase shift which would re-
sult if the interaction beyond »; were not present;
we shall refer to it as the variable phase.

The constants A, are easily found from the con-
tinuity equation (24),

A=Ak r)o, k7)), (29)

and the asymptotic condition A,=1. We shall re-
fer to the above as the sequential form of the solu-
tion. Other forms will be discussed in Sec. VI.

In the next section we shall relate the param-
eters v, to the final phase shifts Gf(k). We need
to express tand,;(k) in terms of tand,, ,(k), which
in turn will be expressed in terms of tané,,,, etc.
From Eq. (27) we obtain, after a change of in-
dices and notation,

tang, (&)

:tan6i+1(k)+(uH‘/kyi“)FL(kr,,,)(?,-ﬂ(k,r“,,)
1- (vi+1/ky(+l)GL(kri+1)(7i+ 1(k, 7’(+1)

(30)
where
D11 (kyv) = F (ky) +tand,, (R)G(k,7) . (31)
If we know tand,, vy, Us_iy...,Vgsyy ¥y Vogyeo oy

7;+1, then tand (k) can be found. Numerically,
tand, (k) =tand,(k); however, we shall have need to
distinguish between the two methods of deter-
mination.

It should be clear from the above treatment that
if we include a Coulomb potential in addition to the
6 functions, that the results are modified only by
replacing F,(kr) and G, (kr) by F,(n, kr) and
G.(n, k7), which are the standard regular and ir-
regular Coulomb functions. The phase shift ob-
tained is then relative to these functions.

In the above development we have made special
provisions for the presence of a hard-core inter-
action. We now inquire to what extent a 6-function
interaction with very large strength can be inter-
preted as a hard core. The phase shift resulting
from a single interaction point is given by

= (v,/kr ) Fi(kr,)

tans, (k) = 1+ (v,/kr )G (k7 ) Fy (b)) "

(32)
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The amplitude of the wave function for »<v, is
easily found to be

1

AO:1+(v1/kr1)GL(krl)FL(krl) ’ (33)

For sufficiently large values of v, the hard-core
values are obtained except when G, (kr,) or F (kr))
have zeros. For very large values of v,, devia-
tions from hard-core values occur when |k - ky|7,
<C/v,, where ky, is the zero and C is of order
unity. Under these conditions the deviation of
5,(k) is quite small since tand,(k) assumes ex-
treme values (~« or 0) at these zeros. On the
other hand, the amplitude goes from zero to unity
as a zero is approached. A long as we are dealing
with phase shifts we need not distinguish between
a very large-strength 6 function and a hard core.
The hard-core formalism is conveniently ob-
tained by simply taking the limit ¢, - .

Continuous Variable-Phase Equation

Let us consider the limit in which the interac-
tion becomes continuous. To this end we rewrite
Eq. (3):

%V(rh%z"(ri)é‘riﬁ(r— 71), (34)
where
AV =V =V (35)

Upon comparing Eq. (34) with Eq. (3) we find

M _— )

72 Vir,)ar, =4 (36)
£

We now write tand (k) =tans(k, »;) and tané,_,(k)

=tand(k, »,_,) and define

Atand(k, ;) =tand(k, »,) — tand(k, r,_,) . (37

(This is the change that occurs at the interaction
point »,.) Equation (27) can now be put in the fol-
lowing form:

M

Atand(k, —
ﬁ(—_y“‘) PEn V(). (k, )@k, 7).

Ary

(38)

The number of interaction points is now increased
in a fashion such that Ay, becomes infinitesimal;
the right-hand side of Eq. (34) becomes an integral
which yields V(r) = V(»). Since v,/v, is now in-
finitesimal, so is Atand(k, ;). In the limit we
have

d M
— tané(k, 7) :_ﬁ_"’;

o V)2 (R, ¥), (39)

AVILES 6
where
@k, 7)=F(kr) +tand(k, ») G (kr) . (40)

The variable-phase equation (39) is usually de-
rived by other means.” It is a first-order non-
linear differential equation of the Ricatti type.

It requires one boundary condition, which for a
well-behaved potential is tand(k, 0) =0; for a hard
core we use

tand(k, v,) ==F (k, )/ G (kr,) .

The phase shift is obtained from tané(k, ») for a
value of » sufficiently beyond the range of the in-
teraction.

Effective-Range Theory

The effective-range formula
1
kcotd(k) =-;+%rm ¥ (41)

adequately describes the phase-shift behavior of

S(n, p) states for energies up to 40 MeV. Accord-

ing to Noyes,®?

Soln, p): a=-23.679+0.028F, »,=2.51+0.11F;
(42)

3S,: a=5.397+0.011F, 7, =1.727+0.014F.

Equation (41) implies

§=-[kcoto(k)] , (43)

k=0

Vit =2|:d—zzkcot6(k)] . (44)

k=0

From Eq. (28) we obtain, for S states,

_kcotd,;_ (k) + (v;/7,) coskry;_,(k, r;)

kcotd,(k
i(R) 1= (v,/v)sinkr /R, (k7))
(45)
where
‘l)i-;(k,ri)=kcot6l._l(k)smTkri+coskV,-- (46)
We define
1
z:-[kcoté,(k)]wo, @
_ 2_‘1
pi=| 275 kcotd, (k) re” (48)

Thus a=a, and 7 =p,. Straightforwardly we obtain

1 II: 1 7, :l
—=—| = 1-—+ 49
a; Dyl ay, 7’i< ai-l) ’ (49)
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1 v
o, o113 )
1
-7y <1——y‘— 1-=- 4
a;_, 3 a

where
D=1 < —ﬁ> (51)
;=l-vyl 1= .
Ay

For a hard core we have a,=v,, p;= o

At sufficiently low energies an interaction with
a single 6 function can reproduce the phase shifts
if we choose

1/v,==(1=3r,/2a)""?,
ri=a(1+1/v,).

(52a)
(52D)

However, the single-6-function phase shifts begin
to deviate from the two-nucleon experimental val-
ues at energies less than 10 MeV.

11I. DETERMINATION OF THE
INTERACTION PARAMETERS

The procedure we used for determining the in-
teraction parameters is relatively simple. Its
success is attributed to the simplicity of the &
function and to the fact that only three or four in-
teraction points are required for each state. The
determination of the »; depends to a certain ex-
tent on the state being considered and will be dis-
cussed under the proper heading in the next sec-
tion. The p; are determined by a general proce-
dure which will now be presented.

As it will appear in Eq. (113), tand,(k) is a ration-
al fraction in the m strengths v;. By choosing m
distinct wave numbers %), one obtains m non-
linear algebraic equation from which the v, can
be found. The method by which we solve these
equations is given below; however, certain gen-
eral consideration will first be given. In princi-
ple, all but one of the v; can be eliminated by
Sylvester’s method. The resulting polynominal
equation in the one remaining v; has degree 1, 2,
8 for m=1, 2, 3, respectively; for higher m the
degree increases rapidly. We have handled the
multiplicity of solutions by simply disregarding
those which did not possess characteristics com-
monly attributed to the interaction; e.g., the 'S,
interaction consists of a repulsion followed by an
attraction which goes to zero monotonically as the
distance increases.

The process of elimination is excessively te-
dious even for m=3. For large m it is more
practical to consider an iterative method of solu-
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tion based on Eq. (27). For m wave numbers &,
we can write the m equations

tang, (k") - tand;_,(¢'")
90(_1(’3“), ’V{)@,’(k(i); V{)

in which tand;_,(k) is given by Eq. (28) (with ¢
~i=-1); itis a function of v;,...,v,;_, only. In
addition, tan3,(k) is given by Eq. (30); it is thus
a function of v,,,, ..., v, and the final phase shift
6,(k).

We have used the Gauss-Seidel iteration scheme
for which the nth approximation is

v, =-k7, ) (53)

oA =f 1Y, Y k),
( - .
o =, Y R®), (54)
(
W =f P R,

etc, Convergence to four decimal places is ob-
tained after about 10 iterations and is not particu-
larly sensitive to the initial guesses v, 0®, ... .

W e have also used another means of solution
which starts by solving for v, and v, in terms of
Uy U4y - .. . This requires only the solution of a
quadratic equation. The equations to be solved
by iteration are then

3 RD),
(55)
Uy =f4(111, Upy Usy « « 5 RW),

etc. The sign of the radical in the solution of the
quadratic equation has to be chosen to give the
desirable solution. This method converges more
quickly, but involves rather cumbersome ex-
pressions.

V3= f3(vy, Vg, vy, o« 3 BD) =g, (g, v, -

G R®) =g,(v,,0,, ..

IV. NUMERICAL RESULTS

In constructing the 6-function interaction using
the MAW-X* phase shifts, we rather arbitrarily
chose to fit the energy-dependent values rather
than the energy-independent values. We have
fitted the 'S,(x, p) phase shifts and have neglected
the 1S,(p, p) values. MAW-X gives two analyses
of the n-p data. The “unconstrained” solution
gives a slightly negative value for the 3S,-3D,
mixing parameter, €,, below 80 MeV; since this
is contrary to expectations based on OPE con-
siderations, “pseudodata” were introduced to con-
strain €, to be positive. We consider here only
the “constrained” solution. We have not taken
the coupling into account in the present work. In
MAW-X,* Table VII contains the relevant data for
1S,(n, p), 3S,, 'P,, ®D,, and °D, states; Table IV
contains the *P,, P, and 'D, data.

The data for the latter group of states (7=1) a
are obtained from p-p scattering. The phase
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shifts of MAW-X are the nuclear bar phase shifts
defined and discussed by Stapp ef al.®. They are
approximately the phase shifts that would be ob-
tained if the Coulomb and other weaker electro-
magnetic potentials were not present. This is
more truly so when L >0, for then the Coulomb
potential is quite small relative to the centrifugal
barrier within the range of the nuclear force
[ratio=0.0347»/L(L +1)]. Since the phase shifts
derived from the available »n-p data are consistent
with the more accurate p-p (nuclear bar) phase
shifts for L >0, we shall use the latter as if they
were the “pure” nuclear T =1 phase shifts. We
believe that the uncertainties introduced by this
procedure are much less than those which occur
in the application of the derived interaction to nu-
clear systems with more than two nucleons. With
regard to the charge splitting in the lower-energy
'S, phase shifts, it should be remembered that the
near zero energy resonance in this state magni-
fies the effect of small differences in the interac-
tion. We have chosen to derive a 'S, interaction
only from the n-p phase shifts because the above
manner of accounting for Coulomb effects does
not apply quite as well to the S state at low ener-
gies. A more detailed analysis of Coulomb ef-
fects will be given in the future.

S States

For the 'S, state 2 minimum of four interaction

TABLE II. 1So(n,p) range (7; in F) and dimensionless
strength parameters v;. All members have r;=2.60,
v;=3.80, v,=-0.058.

7, 7y vy v, Vg
MRC

0.1542 1.226 © -0.971 -0.165
0.155 1.226 197.5 -0.971 -0.165
0.300 1.223 1.166 —0.979 —0.165
0.500 1.208 0.669 -1.028 —0.165
0.700 1.172 0.765 -1.182 —0.166
0.950 1.054 4.019 —3.439 —0.168

¥9=0.423 (Reid hard core)

0.450 1.249 -15.497 -0.897 —0.164
0.500 1.259 -5.389 —0.866 —-0.164
0.900 1.610 —1.564 —0.253 —0.155

79=0.5 (*HJ and Yale hard cores)

0.550 1.286 -10.086 -0.782 -0.163

0.600 1.307 -5.190 —-0.722 -0.162

0.800 1.497 -2.260 —0.363 -0.158
r=0.7

0.750 1.669 -14.736 -0.233 -0.152
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points are required to give a good fit to the data.
The interaction parameters were determined as
follows: », was set at 0.5 F; v, v,, v, were ob-
tained as discussed in Sec. III with ¢, given and
no hard core; the experimental data at E, =360,
E,=100, and E;=3 MeV were used. The value
of », was adjusted (and v,, v,, v, redetermined)
until the scattering length, a=-23.68, was re-
produced from Eq. (49) with i =4. The values of
vs, 74, and v, were adjusted (and other parameters
redetermined) such that a good over-all fit was
achieved.

A family of 'S, interactions was obtained by vary-
ing »,. The tail parameters, »,, »,, and v, were
fixed at the values found above and v,, v,, v,, and
v, were determined as described above. The
smallest possible value of », is associated with
v,=%. For values of », somewhat beyond 0.95 F,
the scattering length, and hence the low-energy
behavior, could not be fitted. The set of interac-
tions obtained in this manner will be called the
minimal repulsive-core (MRC) family. The values
of the interaction parameters are given in Table
II. It should be noticed that v, does not vary much;
thus each member of the family possesses essen-
tially the same tail.

When we introduce a hard core of arbitrary
radius »,>0.1542 F we find that four attractive
interaction points are required to give a good fit
to the data; however, 7, is arbitrary within limits.
The parameters of the hard-core families are de-
termined as follows: Fix r, and r,; use the MRC
values for the tail parameters »;, »,, v,; proceed
to determine v, v,, v;, 7, as in the MRC case.

For a given value of »,, the value of », can range
from 7, to a value for which the fit to the low-en-
ergy data begins to fail. As #, is increased the
range of », becomes more restricted; no solution
can be obtained somewhat beyond »,=0.7 F. The
limit », - 7, is associated with v ; -~ —; this limit-
ing interaction is qualitatively different from the
other members and most likely implies a boundary
condition in which the wave function just outside
the core does not vanish.

In Table III we compare the phase shifts of one
member of the MRC family with experiment. For
other sets of parameters (MRC and hard-core
families) the phase shifts differ from each other
at high energies but still remain within the experi-
mental error.

The MRC and hard-core families represent ex-
treme cases. For a given core radius, 0.1542
<7.<0.7 F, one can give the repulsion any value
between the MRC and hard-core values; by the
procedure given above, the other parameters can
be determined such that a good fit to the data is
achieved.
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TABLE III. Comparison of S(z, p) experimental phase shifts (degrees) with MRC phase shifts at various energies (in
MeV). The scattering lengths and phase shifts at 3, 100, and 360 MeV are in agreement. The first interaction point,

7y, isin F.
E 1 10 60 160 260 460
1'1\
Sy exp. 62.41+0.01 60.85+0.26 40.14+1.10 20.04+2.02 5.89+ 2,05 —-14.95+3.70
0.1542 62.44 60.86 39.88 20.02 5.99 —14.82
351 exp. 147.84+0.01 102.12+0.16 55.63+0.46 25.46+0.50 5.76+0.80 —24.77+ 2,48
0.3000 147.83 102.24 55.88 25.49 5.88 —24.47

In comparing 6,(k) for the MRC family we find
for all energies (<460 MeV) that greater », im-
plies more repulsion. The second interaction
point must then be correspondingly more attrac-
tive since the tail is essentially the same for all
members. The least repulsion (in the present con-
text) is thus given by a hard core with »,=0.1542 F.

For the 3S, state we have neglected the coupling
to the ®D, state and have derived families of effec-
tive central interaction which yield the %S, experi-
mental phase shifts. The procedure for deter-
mining parameters and families is the same as
in the 'S, case except that now only a single inter-
action point in the tail is required. The results
are found in Tables IV and III. The smallest hard
core is at »,=0.3 F.

P States

For the 3P,, ®P,, and 'P, states, a minimum of
four interaction points are required to give a good

TABLE IV. 3, range (7; in F) and dimensionless
strength parameters »;. All members have »;=2.54 F.

74 7y vy vy v,
MRC
0.3 1.245 o -1.550 -0.264
0.31 1.245 30.080 -1.550 -0.264
0.500 1.236 1.974 -1.598 -0.263
0.700 1.203 1.735 -1.808 -0.264
0.900 1.123 3.870 -2.,958 -0.267
7¢=0.5 (*HJ and Yale hard cores)
0.550 1.256 -9.141 -1.489 -0.262
0.800 1.299 -1.707 -1.221 -0.261
1.000 1.440 -1.769 -0.584 -0.258
7¢=0.548 (Reid hard core)
0.600 1.265 -10.073 -1.435 -0.261
0.800 1.313 —2.342 -1.143 -0.261
1.000 1.509 -2.114 -0.443 -0.255
7,=0.7
0.750 1.334 -14.331 -1.037 -0.260
0.900 1.490 —4.360 -0.507 -0.256

fit to the data. The interaction parameters were
determined as follows: », was set at 1 F; v, vy,
vs, v, were found as discussed in Sec. III (no hard
core). The data E, =400, E,=200, E,=100, E,
=60 MeV were used. The values of »,, »;, and
v, were adjusted (and the v, redetermined) such
that a good over-all fit to the data was achieved.
The MRC family was obtained by varying »,; the
parameters »,, 7,, v, were held fixed at the val-
ues obtained for »,=1 F; v,, v,, v, were then found
by using the data at E,, E,, E,; », was adjusted
(and the v; redetermined) until v, acquired the
same value as in the ;=1 F case. The param-
eters are given in Tables V, VI, and VII. The
smallest possible », is associated with v, =<,
The upper limit to 7, is reached when it becomes
impossible to reproduce v, for any value of 7,.
All L>0 phase shifts are given in Table VIII.
For all P states (and D states as well) the mag-
nitudes of the 20-MeV phase shifts are too small.

TABLE V. 1P1 range (in F) and dimensionless strength
parameters. All members have v;=3.50, v3=0.039,
74=4.55, v,=0.032.

7y Yo vy Uy
MRC
0.646 1.688 o 0.540
0.650 1.688 155.09 0.540
0.8 1.706 4,173 0.500
1.0 1.783 2.121 0.348
1.2 2,105 1.780 0.119

79=0.428 (Reid hard core)

0.7 1.689 10.477 0.537
1.0 1.741 1.423 0.423
1.2 1.875 1.187 0.234
7,=0.5 (*HJ and Yale hard cores)
0.7 1.689 9.553 0.538
1.0 1.725 1.081 0.455
14 2.200 0.982 0.067
79=0.7
1.0 1.674 -0.624 0.579
1.4 1.591 -0.810 1.167
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This could be remedied by adding another & func-
tion at about 5 to 6 F with a strength smaller than
vy, however, at still lower energies the same
situation remains. The difficulty lies in the finite-
ness of the tail. Variable-phase calculations show
that the outer region of the tail becomes increas-
ingly influential as the energy is lowered. We be-
lieve that the correction of the interaction which
remedies this behavior (e.g., an OPE tail begin-
ning at 5 F) would be a quite negligible perturba-
tion in any application in which these interactions
are likely to be used.

The minimal hard cores for *P,, *°P,, and 'P,
states occur at 0.6736, 0.723, and 0.646 F, re-
spectively. One should note that these hard cores
have more than twice the size of the S-state mini-
mal hard core cores and are also larger than the
Reid!® (,=0.4283-F) or Hamada-Johnston!! (HJ)
and Yale'? (r,=0.5-F) values.

We do not believe that an exhaustive survey of
hard-core families is as useful for P states as
for S states. We have considered the Reid and
Hamada-Johnston and Yale hard cores for the sake
of comparison. We have also given an example of
one hard-core family for a value of », greater
than the minimal hard core. For the P, and 'P,
states, which have only negative phase shifts, one
should notice that an attractive & function is re-
quired when the hard core is greater than the mini-
mal value. This is a general feature; hard cores
greater than the minimal require a compensating
attraction.

TABLE VI. °P; range (in F) and dimensionless strength
parameters. All members have »;=3.32, v3=0.083,
v4=4.53, v,=0.033.

74 Y2 vy Uy
MRC
0.723 2.052 L) 0.261
0.728 2.052 144.06 0.261
0.900 2.100 3.992 0.230
1.100 2.321 2.053 0.142

¥;=0.428 (Reid hard core)

0.8 2.057 8.348 0.257
1.2 2.350 1.319 0.131

7y=0.5 (*HJ and Yale hard cores)

0.8 2.056 7.827 0.258
1.2 2.265 1.103 0.152
¥¢=0.8
0.9 2.044 —3.986 0.267
1.2 1.995 —0.627 0.317
1.6 1.822 -0.912 0.938

D States

The coupling of the 3D, state to the %S, state is
neglected. An effective °D, central interaction re-
quires four interaction points. The phase shifts
are all negative. The procedure for determining
parameters is the same as for P states. We have
only determined the MRC family. The parameters
are found in Table IX. Note that the minimal hard
core (r,=0.924 F) is significantly larger than for
the S and P states.

The °D, state, unlike any state considered thus
far, has phase shifts which are all positive; thus
no repulsion is required. A minimum of four in-
teraction points are required to obtain a good fit.
Parameters are found in Table X, »,=0. There
is very little arbitratiness in the choice of »;. A
good fit was found for »,=1.65 F. For », some-
what greater than 1.7 F, v, could not be repro-
duced. As 7, was decreased from 1.5 F the quali-
ty of the fit steadily deteriorated. We conclude
that a four-interaction-point fit to the D, state
is essentially unique for a fixed tail. The differ-
ence between the D, state and states considered
previously is further discussed in Sec. V

We have assumed that by adding a hard core
to the interaction, still only a small variation in
7, is allowed. The hard-core interactions were
thus determined as follows: », is chosen arbi-
trarily, »,, 7,, 74, and v, are held fixed at the
7, =0 values; », was adjusted until the MRC value
of v, was reproduced.

TABLE VII. °P (in F) and dimensionless strength
parameters. All members have v;=2.62, v3=-0.290,
ry=4.10, v, =-0.075.

7y 7y vy v,y
MRC
0.6736 1.601 o -0.569
0.680 1.601 103.83 —0.569
0.800 1.586 5.545 —0.608
1.000 1.511 2.966 —0.885
1.200 1.370 5.811 -2.873
7;=0.483 (Reid hard core)

0.7 1.601 23.959 -0.570
1.0 1.547 1.954 —-0.746
1.3 1.365 8.909 -6.020

7,=0.5 (*HJ and Yale hard cores)

0.7 1.601 23.024 —0.570

1.0 1.560 1.530 -0.699

1.2 1.485 1.728 -1.189
74=0.8

0.9 1.615 -5.281 -0.529

1.2 1.735 -1.239 —-0.274
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TABLE VII. Comparison of L >0 experimental phase shifts (degrees) with MRC values for various energies (in MeV).
They are in agreement at 100, 200, and 400 MeV. The first interaction point, »;, is in F.

E 20 40 160 260 360 460

L8

1Pl exp. —4.03+0.06 —6.16+0.,17 -19.59+0.82 —28.07+1.26 -33.43+2.19 -36.58 +3.35
0.646 -3.3 -5.93 -19.66 -27.94 -33.35 —-35.98

3P1 exp. -4.25+0.03 —-7.14+0.05 —-18.28+0.08 —-25.85+0.17 -32.47+0.27 -38.27+0.37
0.723 -3.79 -7.04 -18.36 -25.74 -32.40 -38.64

3P0 exp. 7.02+0.09 10.52+0.16 4,69+0.23 5.47+0.33 -14.22+0.54 -21.16+0.76
0.6736 6.30 10.45 4.85 5.65 14.06 -22.29

3D1 exp. -1.74+0.06 -4.,52+0.15 -16,14+0.38 -19.99+0.56 -21,17+0.85 —20.92+1.66
0.924 -1.30 -4.23 -16.12 —-19.66 -20.79 -22.20

SDZ exp. 2.97+0.03 7.43+0.11 22.98+0.41 25.42+0.63 23.83+1.09 20.43+1.67
1.65 2.22 7.11 23.05 25.60 23.65 21.75

1D1 exp. 0.53+0.01 1.31+0.01 5.90+0.08 8.54+0.13 10.08+0.22 10.81+0.37
1.34 0.27 1.04 5.81 8.67 10.02 11.29

The 'D, state also has only positive phase shifts.
In this state however only three attractive inter-
action points are required to give a good fit to the
phase shifts. The discussion for the *D, state ap-
plies here also. Parameters are found in Table XI.

V. NUCLEAR FORCES

In this section we summarize the results of our
investigation and attempt to relate it to the general
problem of determining a local two-nucleon inter-
action phenomenologically. We shall also report
our investigation into the state dependence of the
interaction.

In having fitted the phase shifts (£ <460 MeV)
for each state with the minimum number of inter-
action points, we have determined the (state-
dependent) “skeleton” of the interaction. This
skeleton can be “fleshed out” in a bewildering
variety of ways owing to the inherent energy limi-
tation in using the two-nucleon experimental data.
In the Introduction we estimated the size of the
region in which details of interactions were inde-
terminable to be A»=0.4 F; from our results we

TABLE IX. 3D1 range (in F) and dimensionless strength
parameters for the MRC family. All members have v,
=3.60, v3=1.96, r,=4.80, v,=0.064.

find, for each state, that within a region of size
(A7), =1 F one need only specify an average
strength and average range.

We have found, in those states which require a
repulsion, that a MRC family of skeletons exists
even though the number of interaction points has
been kept to a minimum. In the ®D, and ?D, states,
which do not require a repulsion, the skeleton is
essentially unique. This difference is in accord
with the qualitative arguments given in the Intro-
duction by which we concluded that a repulsive re-
gion, especially when it is also an inner region,
is less determinable that an attractive region. A
striking illustration of this difference is obtained
by comparing the *D, MRC interaction (»,=0 F,
Table X) with the *D, MRC interaction with »,=1.7
F (Table IX). Except for the sign of the strength,
the structures are quite similar. The attractive
®D, MRC family is very small compared to the re-
pulsive D, family.

For those states which require a repulsion, the
hard-core families give various ways in which the
inner region can be fleshed out. For the ®D, and

TABLE X. 3D2 range (in F) and dimensionless strength
parameters for the hard-core series. All members have
7,=2.60, 7,=3.8, vy;=-0.218, 7,=5.15, v,=—0.069. The
Reid hard core is at ;,=0.428; the HJ and Yale at ;= 0.5.

¥y 7y vy v,y 7y 7y vy vy
0.924 2.434 L 0.751 0.0 1.650 —1.092 —0.529
0.950 2.434 34.107 0.751 0.2 1.650 -1.092 —0.529
1.2 2.449 2.576 0.718 0.428 1.635 -1.122 —0.532
1.5 2.504 1.238 0.606 0.5 1.622 -1.154 —0.534
1.7 2.588 1.101 0.465 0.8 1.497 —1.661 —0.550
1.8 2.666 1.123 0.366 1.2 1.271 -17.234 —0.557
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2D, states the hard core is an additional, unessen-
tial feature which is allowed by the large uncer-
tainty of the inner region for L >0.

At the other extreme we have the tail region,
which did not have to be changed when the inner
region was varied. Even though some variation
in the tail region is possible, it appears to be a
consequence of the uncertainty of the data rather
than the actual existence of phase equivalent alter-
natives.

If we now consider the current collection of con-
tinuous models of the two-nucleon interaction, we
find the same general features as above: Most
have a common tail, which is taken from OPE
theory, and a variety of inner regions (hard cores,
soft cores, supersoft cores). The uncertainty in
the details of the interaction over distances (Ar),
is eliminated by using only smoothly varying gen-
eral forms with relatively few adjustable param-
eters. In contrast, we have eliminated this un-
certainty by considering only the minimum number
of interaction points required to give a good fit.
More specific knowledge of the two-nucleon prob-
lem must come from sources other than the two-
nucleon data; in Sec. VII we take up this matter.

Another aspect of the two-nucleon interaction
which we shall consider is its state dependence.
We shall not consider the general situation, which
is quite complex; rather, we consider only the
singlet-even states: 'S,, 'D,. For these states,
state dependence simply means that we must use
a different central potential in each state. All
current local models contain such a dependence.
In view of the large amount of arbitrariness in
the interaction, one might inquire whether a sin-
gle local central potential can be found which
gives the phase shifts for both states. The work
of Yoder and Signell!? give a strong indication that
this can not be done. Our investigation gives add-
ed evidence in support of their conclusion.

Let us suppose such a potential exists. One
would expect that its skeleton could be found among
the great variety of MRC and hard-core potentials

TABLE XI. 1D2 range (in F) and dimensionless strength
parameters for the hard-core series. All members have
¥9=2.40, v3=3.80, v3=-0.045. The Reid hard core is at
7,=0.428; the HJ and Yale at »,~0.5.

Yo "1 vy vy
0.000 1.340 -0.597 -0.171
0.428 1.305 -0.677 -0.172
0.500 1.276 -0.763 -0.172
0.590 1.226 —-0.968 -0.173
0.900 1.020 -7.381 -0.176
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which have been constructed for the 'S, state.
What we find, however, is that all these 'S, po-
tentials give essentially the same set of D-state
phase shifts (which differs from the experimental
D, phase shifts). This is demonstrated in Table
XII, which contains all the extreme cases. An
entirely similar type of phase equivalence was
found when the *S, interaction was used in calcu-
lating D-state phase shifts.

In view of these findings we are led to postulate
the following theorem: If the potentials V,(») and
V,(r) are phase equivalent in the angular momen-
tum state L,,, for 0 < E < E_, , they will be equi-
valent for L>L,,, in the same energy range.
Owing to uncertainties inside the centrifugal bar-
rier, one does not expect, in general, that phase
equivalence in a particular angular momentum
state implies phase equivalence in lower state;
this has been confirmed by specific examples.

If the theorem could be proved, the general prob-
lem of determining state dependence or indepen-
dence would be greatly simplified when a local
interaction is assumed.

Even though the singlet-even interaction is ap-
parently state-dependent, OPE consideration re-
quire the tail (» =3 F) to be the same. The tails
of the 'S, and 'D, have very similar 6-function
representations. If one placed an additional in-
teraction point between 4 and 5 F, the tails could
easily be made identical without decreasing the
quality of the fits. We now call attention to the
hard-core 'D, interaction with 7,=0.59 F (Table
XI); note that », and v, are essentially the same
as the 'S, minimum hard-core values (Table II).
This example shows that the difference between

TABLE XII. Demonstration of essential phase equiv-
alence in the D state of the various 1S(, interactions. The
difference from the MRC (7;=0.155) member is shown
for both Sand D states. Phase shifts below E=100 MeV
do not differ by more than 0.01 degrees in the S state
and 0.03 degrees in the D state.

E 160 260 460

7y S D S D S D
MRC

0.155 20.02 6.44 5.99 10.06 —-14.92 18.33

0.5 -0.01 0.01 -0.04 0.07 -0.21 0.44

0.95 —0.06 0.09 —-0.16  0.40 -0.92 2.06
79=0.5

0.6 0.04 0.03 0.09 0.02 -0.33 -0.17

0.8 0.11 0.10 0.25 0.12 1.02 0.16
79=0.7

0.75 0.15 0.24 0.38 0.46 148 1.33
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the 'S, and !D, interactions may be attributed
solely to a difference in the repulsion; it is, how-
ever, by no means necessary.

Finally, we list the minimal hard-core radii
for those states which require a repulsion: 'S,
(0.1542 F), 35, (0.3 F), *P, (0.6736 F), *P, (0.723
F), 'P, (0.646 F), °D, (0.924 F). Thus an increase
in orbital angular momentum is accompanied by
a significantly enhanced inner repulsion; on the
other hand, the remainder of the interaction does
not undergo any such gross changes.

V1. GENERAL FORMALISM

There are several purposes to this section.
First, we shall present a formalism capable of
handling the general nonlocal §-function interac-
tion. Second, we shall present several practical
methods by which the two-nucleon transition opera-
tor may be calculated when the 6-function inter-
action is local. Third, we obtain a closed form
for the phase-shift function. Fourth, we treat
the bound state.

We shall briefly summarize the abstract formal-
sim associated with the relative motion of two par-
ticles.!* In » space we have

fmdr [ rl=1, (56a)
0

(rlv)=8(r—»"). (56b)
The free-particle wave function is

{rl k)= F(kr) =(|7) . (57)
In & space

9 (=

> J arlcel=1, (582)

(klk')=3m6(k-R'). (58b)

The state of relative motion is designated by

|« (k)). The standing-wave solution is indicated
by ¥ =s, and the outgoing wave solution by y=+.
For the free-particle Green’s function g (q) we
have

g ') =P, 7' q)

__L{F@wP "), r<r’
alwP (@) Fgr), r=»'

(59)
in which w™(g») is an irregular free-particle
function. We have

w® (qr)=G(gr), (60a)
w*(gr) = Glgr) +iF(qr), (60b)

in which ¢ may be any complex number. The wave

THE TWO-NUCLEON... 14179

operator eguation is
QV(g) =1+ (U7 (q), (61)

where U={(M/n?)V and V is the interaction opera-
tor. The wave operator has the basic property that

[uP (k) =27 (k) | ) . (62)

The interacting Green’s function r'(q) may be de-
fined by

r?(q)=2%(g)g"(q) (63)
and satisfies the following equation:

r(q) =g"(q)+ g7 (@)U (q). (64)
The transition operator is defined as

7Y (q) =UQY(q) (65)

and satisfies the equation
TP(q)=U+Ug?(q)T(q). (66)

T(“)(q) is usually referred to as the 7 matrix and
T%(q) as the K matrix. We also have

TP () =U+Uur?(U, (67)
2Q(q)=1+gY(q)T"(q). (68)

For a well-behaved interaction, u‘”(k, ¥) vanishes
at the origin and hence is regular. Beyond the
range of the interaction we have

uV(k, 7) - Fkr) - % (RITOW) | BwP(r).  (89)
The phase shift is obtained from either

—%(kl T (R)| By = i5® sind (k) (70a)
or

—%(kl T® | k) =tano(k) . (70D)

For the sake of notational clarity the index y
will be understood in what follows.

We now consider a general nonlocal 6-function
interaction defined as follows:

(rlUlr’)=Zm) U;dr =v)o(r’ = v,). (71)
i

The m interaction points are labeled such that
YI<¥p< e <y,. (72)

Equation (71) defines a finite matrix U which must
be symmetric and real if U is Hermitian. The
continuous limit is obtained as in Sec. III, by let-
ting m - and

Uy~ ry|Ulr;dardr; . (73)

The local é-function interaction considered pre-
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viously is obtained if U is diagonal with elements

v;

Uppr=-t0 (74)

i’

All quantities of interest can be expressed in
terms of finite matrices which are completely
analogous to the operators defined above. The
formalism for these matrices requires U, whose
elements, e.g., are given by (74), and g(q), whose
elements are given by

g;41(4)=<7’i'g(fl)|7i'>, z‘,z”=1,...,m. (75)
It follows that

<7IT(Q)I’V’> = Em T“’(Q)

i,i'=1

o(r—v)olr' =r;1),

(76)
<k, T(q) ' k'> = ) Z,}_ T“’(q)F(k?’i)F(k /7’,") ’ (77)
u(k, 'y') :F(kV) + ij g(?’, iy k)T“'(k)F(kVi') .
i,i'=1
(78)

From the analog of Eq. (66) we obtain
T(q)=U(1 - glq)U)™". (79)

The main computational effort centers around
the inversion of the m-dimensional matrix
1-g(g)U. If an analytic expression is desired
the construction of determinants is necessary.
The method given above is of course just Fred-
holm’s method adapted to the general nonlocal §-
function interaction.

When nonlocality is assumed to be present in
the two-nucleon interaction it is usually ascribed
to the inner region (» <2 F). For the local case
we have seen that at most two interactions points
are needed in the minimal description of this re-
gion. The situation in the nonlocal case should
be similar except that now we have an additional
parameter in the off-diagonal element U, =U,;
this implies an additional arbitrariness. For two
interaction points we readily find

g(m-m[l - Tr(gl) + U], (80)
0G| o-( Lz, )] oo
21T R -

(k) ( 2} Uy (e ) F(kr ;)

+ detggn(k)F(krz)F(krl)) )

(82)

where

D(q) 1+7? ( .2—_ U“’w(kr )F(k?’,

i, =

detUB, (o er)F(kr)), (89)

2. (k) = _% [w(er,) Fler,) = Fleryw(kr)] . (84)

The phase shift obtained from (82) can be used as
input into the outer region and the final phase shift
can be obtained from the sequential form (28).

In the case where the interaction is purely local
the Fredholm determinantal method is more com-
plicated than is necessary. We shall present two
methods for obtaining quantities of interest which
take advantage of the local character of the in-
teraction.

The first method is a generalization of the se-
quential method (see Sec. III). Let us define

1
rG) _
vP=3u;, (85)
f=
where
AN
(U] =20,:0,005 (86)

, this is just the interaction at the point r;. We
have
U(i)—U('-l)=U-. (87)

1

The finite wave matrix associated with U is Q¥.
We have

=1-gUW, (88)

X |©:j._
N

-0, (89)

Fs]
|
|

After subtracting and rearranging we have
Q(i)=g(i-l) +2i— ggig(i) . (90)

It is probably most convenient to find the inter-
acting Green’s functions:

(t)zg(i)g. (91)
This satisfies the equation
(i) _g(l -1) é(i—l)gugm X (9‘2)

Owing to the simplicity of U; we readily find
(i-1) (i-1)

(), = iz | M_
it =8y 7’ 1- (1)‘/’}" gn (93)

The sequential evaluation begins with =1 and g
=g. Owing to the fact that g;,, =g;,, and the form
of Eq. (93), one need only evaluate g%, for j <’
<i+1 in order to preceed to the next interaction
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point. After I'(q)=g"(¢) has been found, T(q) is
found from Eq. (67).

The case where the interaction includes a hard
core at 7, is handled as follows: We consider
m+ 1 interaction points for which a finite inter-
action at », is the last to be added (the order of
adding interaction points is immaterial). The
limit of T°(¢) =7™*'(q) is then found for v, —.
The results are readily found from Eq. (93) with
i=m+1 and the equation for T,;:

717

(m) (m)
v, nea v, o
T]%'=6--'7’[g§~'3’f—g°g° ]EL, 33" #0, (94a)
J

gy 17y
v g(fn)
T]%=T0°j=—l ——}’%, j#0, (94b)
¥ 8oo
|
Too=""m - (94c)
oo

The sums in Eqgs. (76), (77), and (79) must now
include 7, i’=0.

The next method we shall describe is quite gen-
eral; however, when the interaction is local,
quantities of interest can be obtained iteratively.
The method is especially useful when a closed-
form solution is desired; also it is readily ex-
tended to the bound-state problem.

Let us introduce the Green’s function g(q) for
which

lg@)ry=-210: r<y!
qlw(gr)F(gr') - Flgriw(gr'), »=r'
=glr,v";q). (95)

We shall refer to the formalism defined by g(q)
and the interaction U as the “barred” formalism.
The definitions of (g), 7(q), etc. are completely
analagous to the “unbarred” quantities and will
be understood; the same also holds for the finite
matrices g(q), &(q), T(q), etc.

In order to appreciate the advantages of the
barred formalism let us consider the integral
equation for #(%, ») when the interaction is local:

u(k, v) = F(kr) + fr dr'g(r,r'; RYU(r"Yu(k, »') .

(96)

This equation is well studied!® and is fundamantal
to the investigation of the general dependence of
scattering quantities on the strength of the inter-
action. For a well-behaved U(y) the iterative so-
lution of Eq. (96) converges and is an entire func-
tion of the strength parameter. As we shall see,

ulk, v) =7k, v)/D(k) , (97)

where D(k) may be obtained once we know u(k, v)

and is also an entire function of the interaction-
strength parameter.

For anm-term local §-function interaction the
solution to Eq. (96) is obtained after just m -1
iterations. Herein lies the main advantage of the
barred formalism for our study.

We shall first obtain the equations relating the
barred and unbarred quantities in the general case.
We introduce

Alg) =g(q) - 2(q) (98)

for which, according to Egs. (59) and (95),
1

(rla(g)|»! =—;]F(qr)w(qr')- (99)
From the defining equation (61) for Q(g) and £(q)
we may obtain

2(q) = Qlq) + Q(q)Al9) T(q), (100)

T(q)=T(q) + T(9)A(q) T(q) . (101)
We find from Eqs. (99) and (56’) that

rlalT(g)|r)y =~ ;11 F(qr)fmdr"w (gr"Xr"|T(@)|»") .

(102)

A simple equation for the integral in (102) is
readily obtained with the aid of Eq. (101). With
this solution we may write

Al))T(q) WIB Alg)T(q) (103)

where
_ 1 = = _
D(q)=1+;f fdrdr”w(qrxrlTlr”>F(qr”)
0 0

=1- Tr(aT). (104)

It is important to note that Eq. (99) implies that
A(g) has no inverse and may not be canceled in
Eq. (103). The wave matrix may be put into the
forms

(g) = 2(g) ﬁq) 2(g)a(g)T(q)
%Z—;{l +[aQ)T(g) - Tral@T(@)]}.  (105)
It can be shown that
QE) | Ry =8(R) | k)/D(R) . (106)

Thus the so called “half-on-shell” matrix ele-
ments in % space have a particularly simple re-
lationship. Equation (97) follows from this.
Having now established the relationship between
the barred and unbarred quantities we shall turn
our attention to the &6-function interaction. It
suffices to consider only the finite matrices. Quite
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directly we obtain
T;(q) =Ty qD(q) Z (@) F(qr))
x Y wlgr )T, (a), (107)
1'=1
with
— 1 & _
D(g)=1+= wlgr )T, Flgr;). (108)
(9) p ‘:Z: q q

1=

We shall consider the purely local interaction
given by (74). It is convenient to introduce K
=g(q)g, whose matrix elements are

K '—g‘((l;—‘ (109)

According to Eq. (95), K,;  vanishes if i<¢’; this

J

For arbitrary m we have explicitly

1 1 S Y
—;(kl T(k) | k) = ~%50) <§F(kra)7{ Flkr;) +

1

Um — Yn-1 -
+F(k’}’m)—— Emm-1 82
Ym Ym-1

The explicit form of D(k) is obtained simply by
comparing (108) with (112). These explicit forms
give a global view of the structure of the phase-
shift function.

The last topic we shall treat is the bound state
for a local interaction. This occurs when
(q17%(q)|q) is singular; since (¢|T " (q)|q)
is never singular for a local interaction, we must
have D%)(¢) =0. Owing to the presences of D%(q)
in the denominator of unbarred quantities, the un-
barred formalism breaks down for bound states.
This is not so for the barred formalism: Since
we may write

@ (q, r) =D (@)u(q,7),

we have asymptotically

(114)

@ (g, 7) - D®(q)F(gr) —;11<q| T () w™(gr).

(115)
This is a decaying expotential when
D¥ (k) =0, «>0. (116)
Since #*(ix,)/r is regular at the origin, the
bound- state eigenfunction may be written
up(r) = A7 (ix, ) (117)

i >eee

AVILES

implies that the mth power of K vanishes. Upon
iterating the basic equation for £(g) we then arrive
at

m-1
Q‘(q):uzi‘{”. (110)
The elements of T are simply obtained from
Tylg) =[UR], 0= 8, (111)
i

All the pertinent relations are now at hand to con-
struct the full transition operator by means of Eq.
(76) or (77). Phase shifts are conveniently ob-
tained with the aid of Eq. (106) and the barred
analog of Eq. (77); specifically

1 AP .
(kI T1R) I igi'F(kri)T“,<k)F(k} i)
(112)
ip o Yy iy,
+ Z). F(kril)—y‘:gilki g’v l'vy F(k?’ )+
iy (kﬂy1)> . (113)
v

r

in which A is chosen by the normalization condi-
tion:

o

f u(F)dr=1. (118)
0
The bound-state energy is
e,
EB—-M K2, (119)
Explicitly we have
7 ik v) = Flirr) + Z 20, 75 i)
i=i’
’Q(+)(ZK)F(ZK7, ). (120)

Since locality has been assumed, the iterative
solution for &(ix) may be used.

VII. DISCUSSION OF APPLICATIONS

Although a fundamental understanding of nuclear
structure is advancing at a vigorous pace, there
is still the nagging uncertainty with regard to the
“true” form of the two-nucleon interaction. If
there were certainty in the interaction, compari-
son of the results of a many-body approximate cal-
culation with experimental data would be signifi-
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cant. As it stands now, agreement or disagree-
ment with experiment may be caused by the use
of an incorrect interaction. On the other hand,

if a calculational method is known to be accurate
(and practical) for a particular nuclear system,
then incorrect models of the interaction could be
eliminated. Next to the two-nucleon system the
three-nucleon system and nuclear matter are the
simplest and are the natural testing ground for

an interaction model. Let us assume that accurate
calculations on these systems can be made with
the 6-function model. One could then proceed to
find which of the various 6-function models fits
the data best. Because of the state dependence
and uncertainty of the inner region of the inter-
action, the number of possible models is enorm-
ous. Hopefully, trends would be discovered which
would narrow down the possibilities; e.g., the
MRC families might be more reasonable than the
hard-core families. Next, one should test how
fleshing out the interaction affects the many-body
results. This would be done by replacing a single
interaction point by two or three others located

in the same general region. The replacement will
involve an additional number of parameters. With
respect to the two-nucleon phase shifts, all but
one or two (depending on the state and region) are
arbitrary. If the parameters to be determined are
strengths then at most a quadratic equation need
be solved (see Sec. III). Although any degree of
fleshing out can be accomplished in this manner,
the number of parameters proliferates.

It is our expectation that a smooth fleshing out
of the tail region will be inconsequential and that
a smooth fleshing out of the intermediate region
will not produce major effects. The hard-core
families are extreme examples of nonsmooth
fleshing out of the inner region with respect to the
MRC skeletons. Nuclear-matter calculations (see
below) show that major changes occur for sufficient-
ly large hard cores.
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If it occurs that a high degree of fleshing out is
required in fitting a é-function interaction to many-
body data, then the model is essentially continuous
and has lost much of its usefulness; however, one
still has (in principle) a systematic means for
constructing a “correct” local two-body interaction.

The program just described is somewhat ideal
in its entirety. Haftel'® and Mueller'” have pro-
ceeded more practically. They perform nuclear-
matter calculations with an S-state interaction
using the 'S, and effective 3S, interaction obtained
here. They compare the MRC families with the
hard-core (»,=0.5 F) families. Haftel employs
the Brueckner method. For the MRC family he
obtains binding energies of 27 to 31 MeV and for
the hard-core case 15 to 19 MeV. Mueller em-
ploys the Jastrow method. In considering only
two-body clusters he obtains results similar to
Haftel’s. When three-body clusters are included
he finds that the binding energy decreases by
about 5 MeV.

The 6-function model can also be extended in
the direction of nonlocality, as discussed in Sec.
VI. Extension of the model in the direction of mo-
mentum dependence causes the appearance of de-
rivatives of § functions. First derivatives appear
in the boundary condition model of Lomon and
Feshbach!® and in the work of Schenter and Ford®®
as a replacement for a hard core. A cursory in-
vestigation on our part indicates that higher de-
rivates of the 6 function are too singular to be
used in an interaction model.
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A new parametrization of the three-body D function based in part on numerical investigation
is presented. It is correct in both weak coupling and the Efimov limit, and agrees remark-
ably well with “exact” numerical calculation in a boson model. It has the correct singularity
position but not the correct strength at the three-body threshold. In the neutron-deuteron
quartet system it agrees very well with exact calculation and casts light on the relative model
independence of these calculations. We also show that the Efimov states become virtual states

with increasing coupling.

I. INTRODUCTION

One of the most remarkable developments to
emerge from recent interest in the three-body
problem is the Efimov effect.! This is the fact
that the number of three-body s-wave bound states
for three identical bosons interacting via short-
range nonsingular two-body forces grows to infinity
as the two-body force increases to just bind two
particles and then decreases for stronger binding.
A detailed proof of the occurrence of this surpris-
ing phenomena has been given, as well as a discus-
sion of how the number of bound states can be non-
monotonic in the potential strength.2™* As is
shown in AN1 (Ref. 2) and AN2 (Ref. 4), the Efimov
effect can be considered an infrared divergence of
the Faddeev kernel in momentum space, or al-
ternately as Efimov has shown® as a long-range
effect in configuration space. In both treatments
it is clear that the occurrence of the effect and the
properties of the bound states are very weakly de-
pendent on the details of the two-body forces.
Rather they depend essentially only on the loga-
rithm of the two-body scattering length and the log-
arithm of the range of the forces. This weak de-
pendence has encouraged us to study the three-
body problem near the Efimov limit in hopes of
being able to write down some general character-
istics and some of the general functions associated
with the problem in a way that exploits the weak
dependence on details.®

In this paper we study the momentum-space Fad-
deev equation.® In particular we examine the
eigenvalues of the kernel of that equation and the
Fredholm D function or determinant associated
with it. We see how the Efimov divergence mani-
fests itself in terms of these quantities in general
and also by studying a particular simple model.
The model we take is three identical bosons inter-
acting via two-body separable potentials of the
Yamaguchi sort. This model is the simplest solu-
ble model we know.” Since the Efimov effect is
presumed independent of the details of the model,
our choice of convenient model is not restrictive.
We find from numerical studies that for a wide
range of coupling strengths and energies around
but not only at the Efimov point, the eigenvalues
are remarkably regular and can easily be repre-
sented in terms of a single analytic function of the
trace of the Faddeev kernel and the trace of its
square. It is then possible to construct an analytic
expression for the three-body Fredholm denomina-
tor in terms of these eigenvalues. The function
fits the directly calculated D function over a re-
markably wide range of couplings and energies in-
cluding essentially all negative energies for all
couplings below the critical coupling that gives a
zero-energy two-body state and for a wide range
about that coupling. For weak couplings, we are
able to explain a part of this agreement in terms
of the fact that our expansion for the D function
coincides with the first few terms of the Fredholm



