*Research supported in part by the National Science Foundation.

¹E. O. Alt, P. Grassberger, and W. Sandhas, Phys. Rev. C <u>1</u>, 85 (1970), and references contained therein. ²R. D. Amado, Phys. Rev. <u>132</u>, 485 (1963).

PHYSICAL REVIEW C

VOLUME 6, NUMBER 4

976 (1970).

OCTOBER 1972

Isospin Impurity of the 4.57-MeV State in ⁶Li[†]

R. M. DeVries, * Ivo Slaus, ‡ and Jules W. Sunier University of California, Los Angeles, California 90024

and

T. A. Tombrello and A. V. Nero California Institute of Technology, Pasadena, California (Received 31 May 1972)

The T = 1 isospin mixing in the 4.57-MeV (T = 0) state in ⁶Li is investigated via the $\alpha + d \rightarrow {}^{6}Li^{*} \rightarrow \alpha + d^{*}$ reaction and found to be less than 1%.

Considerable controversy continues concerning the isospin-forbidden ${}^{12}C(d, \alpha){}^{10}B^*(T=1)$ reaction.^{1,2} One explanation³ suggests a two-step reaction process: $\alpha + d \rightarrow {}^{6}Li^*(T=0, 1) \rightarrow \alpha + d^*(T=1)$ involving isospin-mixed 2⁺ states in ${}^{6}Li$, one predominantly T=0 at 4.57 MeV and the other predominantly T=1at 5.36 MeV. The purity of the T=1 state has been checked by three different experiments, ${}^{4-6}$ which seem to find a mixing too small to account for the observed effects. The purpose of the present experiment was to look at the isospin impurity in the 4.57-MeV(T=0) state via exactly the mechanism proposed.³

Deuteron breakup by α particles has been studied⁷ at several energies. The predominant features are nucleon- α final-state interactions and broad spectator peaks. There is no evidence for a ${}^{1}S_{0}n-p$ final-state interaction, and only a weak indication of ${}^{3}S_{1}$. The excitation function⁸ of the reaction ⁴He(d, p)n α at $\theta_{lab} = 14^{\circ}$, from $E_d = 5.7$ to 14.3 MeV, has not revealed any resonance structure. Extensive $d-\alpha$ elastic scattering data^{8,9} exist in this energy region.

³This model is related to one suggested in the Lee

⁵R. C. Johnson and P. J. R. Soper, Phys. Rev. C 1,

model by J. Bronzan, Phys. Rev. 139, B751 (1965).

⁴S. Watanabe, Nucl. Phys. 8, 484 (1958).

We studied the isospin impurity of the T = 0, 4.57-MeV state in ⁶Li by measuring the excitation function of the $D(\alpha, \alpha')d^*({}^{1}S_{0}) \rightarrow n + p$ reaction from $E_{\text{exc}} = 4.3$ to 5.4 MeV, in 100-keV steps, at $\theta_{\text{c.m.}}(d^*) = 55$ and 84°. The α -particle beam from the Office of Naval Research-California Institute of Technology tandem accelerator was incident upon a D₂ gas target. α particles and protons from d^* were detected in coincidence in two Si detector telescopes. The angle of the proton telescope was set to be equal to the recoil angle of the d^* . Twodimensional arrays of the coincident events, detected with a standard electronics setup, were stored in a 4096-channel pulse-height analyzer. The relative n-p energy along the three-body kine-

E _{exc} (MeV)	Е ₀ (MeV)	$ heta_{lpha}$ (lab) (deg)	θ _p (lab) (deg)	$\theta_{c.m.}(d*)$ (deg)	$\langle E_{np} \rangle$ (ke V)	$d\sigma/d\Omega$ ($\mu b/sr$)	$\frac{\sigma(d\alpha \rightarrow d^*\alpha)}{\sigma \text{ elastic}}$ (×10 ⁻⁶)
4.41	8.8	14.3	25	84	20	0.28 ± 0.20	0.2
		8.4	33		310	0.9 ± 0.4	
4.57	9.3	15.4	26.5	84	11	1.9 ± 0.4	1.3
		9.2	35.3		400	2.0 ± 0.3	
4.97	10.5	17.4	17.4 29.5 84 50 3.6	3.6 ± 0.6	2.8		
		10.6 38.8		650	4.7 ± 0.4		

TABLE I. Cross section for the reaction $d + \alpha \rightarrow \alpha + p + n$.

Interaction radius			$1 P_{fin}$
(fm)	$P_{in(l=2)}$	$P_{fin(l=2)}$	$\overline{3} \overline{P_{\text{in}}}$
3,5	0.3035	0.01077	0.012
4.0	0.4812	0.02055	0.014
4.5	0.6937	0.03591	0.017

TABLE II. Penetrabilities.

matical loci was $0.007 \le E_{np} \le 0.080$ MeV and $(E_{np})_{av}$ was fairly constant as the bombarding energy E_0 was varied. The relative nucleon- α energies varied with E_0 . The D(α , α') d^* cross section increased with E_0 . The dependence of the D(α , α') d^* cross section on E_0 mainly reflected the influence of the nucleon- α final-state interactions in the ground states of ⁵He and ⁵Li. To study this effect, additional measurements of the reaction D(α , αp)nwere performed at $E_0 = 8.8$, 9.3, and 10.5 MeV. In this case the kinematic conditions were chosen to have $E_{np} \sim 0.2 - 0.8$ MeV, while the nucleon- α relative energies were kept close to those involved in the D(α , α') d^* process. Table I summarizes our data at these three incident energies.

In order to investigate whether there is any appreciable contribution of the n-p final-state interaction in the ${}^{1}S_{0}$ state, the $D(\alpha, \alpha p)n$ data were compared with a simple model which assumed the cross section to be given by the following expression: $[K+R_{1}(4.57)+R_{2}(5.36)][ABW(p\alpha)+BBW(n\alpha)$ $+CWM({}^{3}S_{1})+DWM({}^{1}S_{0})]$, where A, B, C, D, and K are constants determined by fitting the data. R_{1} and R_{2} describe the effect of resonances corresponding to the 4.57- and 5.36-MeV states. $BW(p\alpha)$ and BW($n\alpha$) describe the nucleon- α final-state interaction by Breit-Wigner formulas and use parameters for ⁵He and ⁵Li ground states. WM(${}^{3}S_{1}$) and WM(${}^{1}S_{0}$) describe the n-p interaction in the ${}^{3}S_{1}$ and ${}^{1}S_{0}$ states, using Watson-Migdal expressions.

This analysis leads to the following conclusions: (1) χ^2 corresponding to $R_1 = 0$ is twice as large as χ^2 for K = 0 and $R_2 = 0$. The best fit is obtained for K = 0 with $\chi^2 = 3$. It seems that the reaction $D(\alpha, \alpha p) - n$ proceeds at least partly through the 4.57-MeV resonance.

(2) χ^2 does not change if one assumes D = 0, or WM(${}^{1}S_0$) = const. In all cases $D \ll A$, B, or C.

Since there is no evidence for any contribution of the reaction $D(\alpha, \alpha')d^*$ (${}^{1}S_{0}$), we are taking the value of the $D(\alpha, \alpha')d^*$ cross section at $E_{inc} = 9.3$ MeV as the upper limit of the $D(\alpha, \alpha')d^*(T=1)$ cross section. Thus one can crudely estimate the upper limit of the T=1 impurity in the 4.57-MeV state. At the resonance, the ratio $\sigma_{dd}*/\sigma_{elast}$ is taken equal to

$$\frac{1}{3} \frac{P_{\rm fin}}{P_{\rm in}} \frac{\gamma_d *^2}{\gamma_d^2} \, .$$

The penetrabilities as functions of the interaction radius are given in Table II.

Taking $\sigma_{dd}*/\sigma_{elast} = 10^{-6}$, one obtains $\gamma_d *^2/\gamma_d^2 \le 10^{-4}$. This indicates that the T = 1 impurity in the wave function is $\le 10^{-2}$, which is what one would guess as an upper limit for Coulomb mixing. Therefore, it appears that the reaction mechanism $d + \alpha \rightarrow {}^{6}\text{Li}^{*}$ $(T=0, 1) \rightarrow d^{*}$ $(T=1) + \alpha$ cannot play an important role in explaining (d, α) isospin-forbidden processes.

†Supported in part by U.S. Atomic Energy Commission and National Science Foundation grants.

*Present address: D.Ph. N/ME Centre d'Etudes Nucléaires de Saclay, France.

‡ On leave of absence from Institute "R. Boskovic," Zagreb, Yugoslavia.

¹H. T. Richards and H. V. Smith, Jr., Phys. Rev. Letters <u>27</u>, 1735 (1971).

²D. Von Ehrenstein, L. Meyer-Schützmeister, J. E. Monahan, A. Richter, and J. C. Stoltzfus, Phys. Rev. Letters <u>27</u>, 107 (1971), and references cited therein.

- ³J. V. Noble, Phys. Rev. Letters <u>22</u>, 473 (1969). ⁴P. T. Debevec, G. T. Garvey, and B. E. Hingerty, Phys. Letters <u>34B</u>, 497 (1971).
- ⁵M. Baker *et al.*, University of Washington, Annual Report, 1971 (unpublished), p. 80.
- ⁶C. L. Cocke and J. C. Adluff, Nucl. Phys. <u>A172</u>, 417 (1971).

⁷K. P. Artemov and N. A. Vlasov, Zh. Eksperim. i Teor. Fiz <u>39</u>, 1612 (1960) [transl.: Soviet Phys. – JETP <u>12</u>, 1124 (1961)]; G. G. Ohlsen and P. G. Young, Phys. Rev. <u>136</u>, B1932 (1964); K. Nagatani, T. A. Tombrello, and D. A. Bromley, Phys. Rev. <u>140</u>, B824 (1965); R. E. Warner and R. W. Bercaw, Nucl. Phys. <u>A109</u>, 205 (1968); T. Tanabe, J. Phys. Soc. Japan <u>25</u>, 21 (1968); C. W. Lewis, D. P. Saylor, and L. C. Northcliffe, to be published; K. Fukunaga, H. Nakamura, T. Tanabe, K. Hosono, and S. Matuski, J. Phys. Soc. Japan <u>22</u>, 28 (1967).

⁸R. E. Roth, Ph.D. thesis, University of Wisconsin, 1964 (unpublished).

⁹L. S. Senhouse, Jr., and T. A. Tombrello, Nucl. Phys. <u>57</u>, 624 (1964).