Mechanism of the ${}^{12}C({}^{6}Li, d){}^{16}O$ Reaction Leading to the 6.92- and 7.12-MeV Levels of ${}^{16}O^{\dagger}$

Clyde S. Zaidins

Nuclear Physics Laboratory, Department of Physics and Astrophysics, University of Colorado, Boulder, Colorado 80302 (Received 23 June 1972)

The contributions of compound-nuclear and direct processes to the ${}^{12}C({}^{6}Li, d){}^{16}O$ 6.92- and 7.12-MeV levels at two c.m. energies are discussed.

In a recent paper,¹ Carlson, utilizing the angular distributions of deexcitation γ rays following the ${}^{12}C({}^{6}Li, d){}^{16}O$ reaction, concluded that the 6.92-MeV level of ${}^{16}O$ is produced by a direct reaction, whereas the 7.12-MeV level is not. The purpose of this note is to point out the relationship between the results of this excellent experiment in the sub-Coulomb region from 3.0 to 4.3 MeV to those in an earlier study² at a c.m. energy of 7 MeV.

The amplitude of a direct reaction leading to states in ¹⁶O, which is most readily looked at as an α -transfer reaction when ¹²C is one of the nuclei in the entrance channel, is related to the α width of the ¹⁶O state involved. The reactions $(^{7}\text{Li},t)^3$ and $(^{12}\text{C}, ^8\text{Be}),^4$ as well as $(^{6}\text{Li}, d)^{1,2}$ show a much higher cross section for the 6.92-MeV level than for the 7.12-MeV level. The conclusions that are drawn from those experiments and other considerations are that the 6.92-MeV level (2^+) has a large 4p-4h configuration and a reasonable α width, whereas the 7.12-MeV level (1⁻) has 1p-1h plus 3p-3h configuration and an α width probably 2 to 5 times smaller than that for the 6.92-MeV level.

The data of Loebenstein *et al.*² at a c.m. energy of 7 MeV was analyzed in terms of a compoundnuclear plus α -transfer mechanism in the ⁶Li-(¹²C, d)¹⁶O reaction. At this higher energy approximately 50% of the 6.92-MeV level formation was by a compound-nuclear process, whereas a larger percentage of the 7.12-MeV level formation was by a compound-nuclear process. The energies measured by Carlson were chosen to optimize the direct to compound-nuclear contributions. Although the uncertainties are too large to warrant a numerical extrapolation from 7 to 4.3 MeV and below, the following might be expected to occur. The compound-nuclear contribution to the 6.92-MeV level could fall below about 25% which appears to be consistent with Carlson's data, while possibly remaining large (> 50%) for the 7.12-MeV level. This could explain both the nature of the data fits for the 6.92- and 7.12-MeV levels shown by Carlson, and the relative γ yields from the two levels. This ratio of $4\frac{1}{2}$ in favor of the 6.92 level yield could be explained by direct-reaction ratio of 5 for the 6.92- to 7.12-MeV levels with the approximate contributions of direct reaction as 75%for the 6.92-MeV and 50% for the 7.12-MeV level. It would be very useful if a quantitative measure of the direct-reaction contribution to these two levels could be deduced as a function of energy as this would increase the confidence in the extracted reduced α width for the two levels. These α -width parameters are important in both nuclear structure studies and in the astrophysical reaction ${}^{12}C(\alpha, \gamma)$ -¹⁶O.

†Work supported in part by the U. S. Atomic Energy Commission.

¹R. R. Carlson, Phys. Rev. C <u>5</u>, 1467 (1972).

²H. M. Loebenstein, D. W. Mingay, H. Winkler, and C. S. Zaidins, Nucl. Phys. <u>A91</u>, 481 (1967).

³F. Pülhofer, H. G. Ritter, R. Bock, G. Brommundt,

H. Schmidt, and K. Bethge, Nucl. Phys. <u>A147</u>, 258 (1972).
⁴G. J. Wozniak, H. L. Harney, K. H. Wilcox, and

J. Cerny, Phys. Rev. Letters 28, 1278 (1972).