\*Operated by the Westinghouse Electric Corporatio.., Pittsburgh, Pennsylvania, for the U.S. Atomic Energy Commission.

<sup>1</sup>G. Tessler, S. S. Glickstein, and E. E. Carroll, Jr., Phys. Rev. C 2, 2390 (1970).

<sup>2</sup>R. B. Day and D. A. Lind, in *Neutron Cross Sections*, compiled by M. D. Goldberg, S. F. Mughabghab, B. A. Magurno, and V. M. May, Brookhaven National Laboratory Report No. BNL-325 (U.S. GPO, Washington, D.C., 1966), 2nd ed., 2nd Suppl., Vol. IIa.

<sup>3</sup>J. K. Dickens, E. Eichler, and G. R. Satchler, Phys. Rev. 168, 1355 (1968). <sup>4</sup>R. K. Jolly, E. K. Lin, and B. L. Cohen, Phys. Rev. <u>128</u>, 2292 (1962).

<sup>5</sup>M. M. Stautberg and J. J. Kraushaar, Phys. Rev. 151, 969 (1966).

<sup>6</sup>R. B. Day, in *Progress in Fast Neutron Physics*,

edited by G. C. Phillips, J. B. Marion, and J. R. Risser (The University of Chicago Press, Chicago, 1963),

p.111.

<sup>7</sup>J. G. Beery, Los Alamos Scientific Laboratory Report No. LA-3958, 1968 (unpublished).

<sup>8</sup>J. B. Ball, R. L. Auble, and P. G. Roos, Phys. Rev. C 4, 196 (1971).

PHYSICAL REVIEW C

VOLUME 6, NUMBER 4

OCTOBER 1972

## Electron-Capture-to-Positron Ratio in <sup>207</sup>Bi Decay\*

Tomaž Rupnik

Department of Physics, University of Oregon, Eugene, Oregon 97403 (Received 17 March 1972)

Positron emission in the second-forbidden nonunique transition from the ground state of  $2^{07}$ Bi to the first excited level of  $2^{07}$ Pb was found to occur in  $(1.2 \pm 0.2) \times 10^{-4}$  of all decays. Taking into account newly assigned relative intensities of the  $2^{07}$ Bi electron-capture decay branches, the EC/ $\beta^+$  ratio is found to be  $(6 \pm 1) \times 10^2$ . From the  $\beta^+$  intensity and the measured  $2^{07}$ Bi half-life of  $38 \pm 4$  yr, it follows that  $\log ft = 12.6 \pm 0.1$  for this transition.

The decay scheme of <sup>207</sup>Bi has recently been revised<sup>1</sup> on the basis of new  $\gamma$ -ray intensity measurements.<sup>2</sup> In the second-forbidden  $\frac{9}{2} \rightarrow \frac{5}{2}^{-}$  decay branch,  $\beta^+$  emission had not been observed, although it is energetically possible; only an experimental upper limit of  $5 \times 10^{-3}$  positrons per decay had been established.<sup>3</sup> We have measured the  $\beta^+$ intensity, not only to clarify the decay scheme of this widely used isotope, but also to provide a further test of the theoretical prediction<sup>4,5</sup> that  $K/\beta^+$  ratios are enhanced in second- and higherforbidden nonunique transitions, as compared with such ratios in corresponding allowed decays. This prediction had been borne out in <sup>36</sup>Cl, the only case previously tested.<sup>6-9</sup>

In coincidence with 0.570-keV  $\gamma$  rays, we observed annihilation radiation that indicated a  $\beta^+$  intensity one order of magnitude below the previously set limit.<sup>3</sup> The actual intensity was established by comparing  $\gamma$ -ray and annihilation-radiation peaks in singles spectra measured with a 60-cm<sup>3</sup> Ge(Li) detector (Fig. 1). A contribution to the annihilation peak arises from internal and external pair production by the 1.06- and 1.77-MeV transitions (cf. Fig. 2). The rate of internal pair production in the 1.77-MeV transition can be derived from theory<sup>10,11</sup> and has been verified by experiment.<sup>12</sup> External pair production was minimized by removing massive objects from the vicinity of

the apparatus and choosing Al as the material for detector housing and annihilator. The external pair-production rate was measured with a  $^{60}$ Co source in identical geometry; theoretical cross sections<sup>13</sup> were used to correct the result for the relatively small energy difference between  $^{60}$ Co and  $^{207}$ Bi  $\gamma$  rays.

Measurements were made with a  $40-\mu$  Ci <sup>207</sup>Bi source at distances of 9, 13, and 18 cm from the detector. From 50 to 70% of the 511-keV photon counting rate was due to background, and from 12 to 25% was due to external pair production (more than 80% of this contribution came from the 1.77-MeV transition). Experiments with a thinner annihilator and  $^{60}\text{Co}$  showed that  ${\sim}40\%$  of all external pair production took place in the annihilator. Internal pair production accounted for only 2-3% of the detected annihilation radiation. Approximately 25% of the total 511-keV photon counting rate could be ascribed to the annihilation of positrons from the 1.83-MeV transition. A check for systematic errors was performed by repeating the experiment in different locations and with variations in geometry.

Estimated errors in solid-angle reproduction were 1-5%. Decentralizing the source inside the annihilator by 0.5 cm did not affect the countersubtended solid angle within experimental error. The  $\gamma$ -ray energy-dependent variation in pair-



FIG. 1. A typical  $\gamma$ -ray singles spectrum. The left ordinate refers to the 511-keV peak, and the right ordinate to the 570-keV peak.

production loci could be neglected in the  ${}^{60}\text{Co}{-}^{207}\text{Bi}$ comparison. Pair production by the 1.77-MeV  $\gamma$ rays in the annihilator required a ~+5% correction for escape of the most energetic positrons. Absorption of  $\gamma$  rays between sources and detector was negligible. Careful examination of the entire  $\gamma$ -ray and conversion-electron spectra from the 3-yr-old  ${}^{207}\text{Bi}$  source excluded the presence of impurities that could have contributed to the annihilation peak.

From 31 <sup>207</sup>Bi and 14 <sup>60</sup>Co runs (>600-h total counting time), the average  $\beta^+$  intensity in the  $\frac{9}{2}^- \rightarrow \frac{5}{2}^-$  transition was found to be  $(1.2 \pm 0.2) \times 10^{-4}$  per <sup>207</sup>Bi decay. The uncertainty is derived from one standard deviation of the mean. Statistical counting-rate fluctuations contribute approximate-ly one half of the quoted uncertainty; the remainder is due to uncertainties in pair-production cross sections and  $\gamma$ -ray intensities.

The relative intensity of the 1.83-MeV branch in <sup>207</sup>Bi decay quoted by Lederer, Hollander, and Perlman<sup>14</sup> has been superseded by more recent measurements.<sup>2</sup> Further utilizing a new, precise value for the 1.06-MeV/0.57-MeV  $\gamma$ -ray intensity ratio<sup>15</sup> and a theoretical internal-conversion coefficient for the 1.06-MeV transition,<sup>16</sup> the relative electron-capture transition intensities indicated in Fig. 2 are calculated. Consequently, the EC/ $\beta^+$ ratio in the 1.83-MeV transition is  $(6 \pm 1) \times 10^2$ . For an allowed transition of the same energy, the theoretical  $K/\beta^+$  ratio<sup>17</sup> is  $2 \times 10^2$ . Hence, as in the previously known<sup>6-9</sup> case of <sup>36</sup>Cl, the EC/ $\beta^+$ ratio of the second-forbidden nonunique transition is substantially enhanced. A definite theoretical



FIG. 2. Revised <sup>207</sup>Bi decay schemes.

prediction from first principles is precluded by the large number of contributing matrix elements.

The half-life of <sup>207</sup>Bi, for which results ranging from 8 to 50 yr have been reported,<sup>1,18</sup> was redetermined from some of the data gathered in an experiment<sup>19</sup> that required six months of counting the 570-keV  $\gamma$  rays with two NaI(Tl) scintillation spectrometers. We find  $\tau_{1/2} = 38 \pm 4$  yr, in agreement with the determination<sup>20</sup> adopted in the latest survey<sup>1</sup> of the A = 207 isobars.

From the measured  $\beta^+$  intensity and half-life, the reduced half-life of the 1.83-MeV  $\beta^+$  transition is given<sup>21</sup> by log  $ft = 12.6 \pm 0.1$ , confirming the second-forbidden nonunique assignment.

The author is very grateful to Professor Bernd Crasemann for suggesting this investigation and for many helpful discussions. It is also a pleasure to thank Dr. C. A. Burke for his help with the PDP-7 computer, and Professor D. K. McDaniels for the loan of a Ge(Li) detector.

<sup>\*</sup>Work supported in part by the U. S. Atomic Energy Commission and by the U. S. Army Research Office, Durham.

<sup>&</sup>lt;sup>1</sup>R. M. Schmorak and R. L. Auble, Nucl. Data <u>B</u>5,

<sup>207 (1971).</sup> 

<sup>&</sup>lt;sup>2</sup>P. Venugopala Rao, R. E. Wood, J. M. Palms, and R. W. Fink, Phys. Rev. <u>178</u>, 1997 (1969).

<sup>&</sup>lt;sup>3</sup>C. H. Millar, T. A. Eastwood, and J. C. Roy, Can. J.

Phys. 37, 1126 (1959).

- <sup>4</sup>R. Brysk and M. E. Rose, Rev. Mod. Phys. <u>30</u>, 1169 (1958).
- <sup>5</sup>P. Depommier, U. Nguyen-Khac, and R. Bouchez, J. Phys. Radium 21, 456 (1960).
- <sup>6</sup>P. W. Dougan, K. W. D. Ledingham, and R. W. Drever, Phil. Mag. <u>7</u>, 1223 (1962).
- <sup>7</sup>D. Berényi, Phys. Letters 2, 332 (1962).
- <sup>8</sup>W. R. Pierson, Phys. Rev. 159, 951 (1967).
- <sup>9</sup>W. R. Tolbert, E. V. Shrum, E. T. Hutcheson, and
- L. M. Diana, Bull. Am. Phys. Soc. 10, 589 (1965).
- <sup>10</sup>R. J. Lombard, C. F. Perdrisat, and J. H. Brunner,
- Nucl. Phys. <u>A110</u>, 41 (1968).

<sup>11</sup>M. E. Rose, Phys. Rev. <u>76</u>, 678 (1949).

<sup>12</sup>C. J. Allan, Can. J. Phys. 49, 157 (1971).

- <sup>13</sup>E. Storm and H. I. Israel, Nucl. Data <u>A7</u>, 565 (1970).
- <sup>14</sup>C. M. Lederer, J. M. Hollander, and I. Perlman,
- Table of Isotopes (Wiley, New York, 1967), 6th ed.
- <sup>15</sup>J.B. Willett, Ph.D. thesis, Indiana University, 1969 (unpublished).
- $^{16}$ R. S. Hager and E. C. Seltzer, Nucl. Data <u>A4</u>, 1 (1968).
- <sup>17</sup>P. F. Zweifel, Phys. Rev. <u>107</u>, 329 (1957).
- <sup>18</sup>L. S. Cheng, V. C. Ridolfo, M. L. Pool, and D. N.
- Kundu, Phys. Rev. <u>98</u>, 231 (1955). <sup>19</sup>T. Rupnik, Ph.D. thesis, University of Oregon, 1972
- (unpublished).
- <sup>20</sup>E. H. Appelman, Phys. Rev. <u>121</u>, 253 (1961).
- <sup>21</sup>S. A. Moszkowski, Phys. Rev. <u>82</u>, 35 (1951).

PHYSICAL REVIEW C

### VOLUME 6, NUMBER 4

OCTOBER 1972

# Electromagnetic Transitions for <sup>16</sup>O, <sup>40</sup>Ca, <sup>48</sup>Ca, and <sup>208</sup>Pb in the Renormalized Random-Phase Approximation\*

G. Eckart

Sektion Physik der Universität, University of München, München, Germany

and

M. Weigel†

Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720 (Received 6 April 1972)

Transition rates and mean lifetimes for odd-parity levels of <sup>16</sup>O, <sup>40</sup>Ca, <sup>48</sup>Ca, and <sup>208</sup>Pb are obtained by using the wave functions of a renormalized random-phase approximation (RPA) treatment. For <sup>208</sup>Pb the even-parity levels are also included.

### I. INTRODUCTION

In a recent paper<sup>1</sup> the normalized random-phase approximation (RPA) approach was treated for density-dependent particle-hole forces deduced from the bare nucleon-nucleon force. Migdal's renormalization constants<sup>2</sup> were determined for different assumptions about the propagation of the quasiparticles and quasiholes. For the following cases the energy eigenvalues and eigenvectors have been calculated in Ref. 1:

 (1) negative-parity levels of good isospin for <sup>16</sup>O,
 <sup>40</sup>Ca, assuming quasiparticle (hole) propagation in harmonic-oscillator (H.O.) states;
 (2) negative-parity levels of good isospin for <sup>16</sup>O and <sup>40</sup>Ca assuming propagation in Woods-Saxon states; (3) negative-parity states without good isospin for <sup>16</sup>O, <sup>40</sup>Ca, <sup>48</sup>Ca, and states of both parity for <sup>208</sup>Pb with propagation in harmonic-oscillator states.

It is the aim of this note to complete the investigation by giving the transition amplitudes. We use the same conventions as in Ref. 1 and refer to Ref. 1 as W, so that [W; (III.8)] means Eq. (III.8), etc.

#### **II. ELECTROMAGNETIC TRANSITIONS**

The transition amplitudes can be expressed by the matrix elements of the density operator. In the case of good isospin one obtains the following expressions for the partial widths of a  $2^{\lambda}$ -pole transition from the initial state  $|N_i\rangle$  to the final

state 
$$|N_{f}\rangle^{3}$$
:  

$$\Gamma(k,\lambda,\pi;|N\rangle \rightarrow |0\rangle) = N(k,\lambda) \frac{1}{(2J+1)(2T+1)} \delta_{\lambda,J_{N}} \delta_{T,T_{N}}$$

$$\times \left| \sum_{j,m} \langle m \| \Omega_{T}(\pi,\lambda) \| j \rangle [U_{jm}^{N} + (-)^{l_{j}-l_{m}} W_{jm}^{N}] \right|^{2} := N(k,\lambda) B(\lambda\pi, |N\rangle \rightarrow |0\rangle), \quad (II.1)$$