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Correlated wave functions obtained by solving the Bethe-Goldstone equation with realistic
nuclear interactions are employed to calculate Coulomb shifts, isospin mixing, Coulomb en-
ergies, and coefficients of the isobaric mass formula in 1p-shell nuclei. Improved agree-
ment with experiment is obtained, particularly for the Coulomb shifts and isospin mixing
which are not sensitive to the size parameter, No evidence is found favoring a charge-depen-
dent component in the nuclear force.

I. INTRODUCTION

The concept of charge-independent nuclear
forces is very nearly as old as the discovery of
the neutron. " It is very well established that any
charge-dependent component of the nuclear force
must be quite weak compared with the basic in-
teractions which bind atomic nuclei. A definitive
evaluation of this component is hampered by the
presence of the Coulomb interaction. Charge de-
pendent effects clearly exist in nuclei; can they
be precisely attributed to Coulomb forces?

To answer this question, one obviously requires
precise knowledge of nuclear wave functions.
Thus, the theoretical investigation of charge-de-
pendent effects in nuclei requires a twofold ap-
proach. First one tries to calculate charge-de-
pendent effects from known electromagnetic in-
teractions with a trial wave function, then one
must determine if any remaining discrepancies
are to be attributed to additional charge-dependent
interactions or an inadequate wave function.

The first nuclear p shell (4 &4 ~ 16) provides a
wealth of charge-dependent data. The differences

as(z) =- s(z) —s(z —1),

with odd-even Z has been useful in establishing
the pairing correlation. "

More recently there has been considerable in-
terest in the isospin mass formula'.

E(A,' T, T~) =a+bT3+cT3'. (1.3a)

This formula relates the energies of isobaric ana-
log levels in neighboring isobars. It is valid so
long as the charge-dependent part of the interac-
tion between nucleons is strictly of a two-body
character and isospin mixing is negligible.

Sufficient data are now available on several mul-
tiplets, three of which (4=7, 9, 13) are in the
first p shell."Usually an empirical fit to the

in binding energy for a mirror pair,

-6(z) =-B.E.(z, N) -B.E.(z —1, N+ 1),
have received extensive attention in the litera-
ture, ' and have proved useful in the investigation
of nuclear size. Likewise the alternation of sec-
ond differences,
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positions of the levels is made using the formula

Z(A, T, T3) =a+bT3+cT, + dT, (1.3b)

Then d should prove to be very small compared
to a, b, c (hopefully zero) in order to establish
the validity of Eq. (1.3a).

A difficulty existing in all of the above tests is
that the Coulomb matrix elements are sharply de-
pendent on the nuclear-size parameters. Two
additional types of data are available where this
dependence (though still present) turns out to be
much less significant. These are the isospin mix-
ing of levels found' '" in BBe, and the Coulomb
shifts in the positions of analog levels of isobars
throughout the shell. In the next section of this
paper we shall demonstrate that the key to this
lack of sensitivity is in the use of correlated wave
functions (obtained a,s the solutions of the Bethe-
Goldstone equation) in the calculation of the two-
body matrix elements. This will also prove to be
the key for obtaining results in reasonable agree-
ment with experiment.

The main objective of this paper is to investi-
gate the calculation of Coulomb shifts and isospin
mixing. The Coulomb energy differences, second
differences, and the coefficients of the mass for-
mula will also be calculated with the matrix ele-
ments obtained as a further, but less definitive
test of the importance of correlated wave functions.

II. COULOMB MATRIX ELEMENTS

From this point on we shall consider the Cou-
lomb interaction,

(2.1)

to be the only charge-dependent force within the
nucleus. The neglected magnetic interactions may
later prove to be essential for quantitative accur-
acy; however, their effect is probably smaller
than certain cross terms between Vc and the nu-
clear forces which cannot be treated properly at
this point. We will return to this issue in the
conclusion.

Now let us see what parameters are needed to
describe the effects of V~ in the lp shell. To do
this we first use the harmonic-oscillator shell-
model description as a guide. The expressions
can be easily modified to accomodate correlated
wave functions later.

The Coulomb interaction of a 1p nucleon with
closed 1s cox"e ia giveo by an effective single-par-
tie1e energy:

&, =(2j+ I) 'P(2Z+ 1)

x(s„,P,.J(T=1)I V, I s„,P,.~(T =I)&,

where one may have j=-,', —,'.
The two-body matrix elements representing the

interaction of two protons in the 1p shell may be
related to just two parameters" (T = T, = 1);

(p"s, i v, i p"s, &
=L+ nc,

(P"P, ( v, t P"P,&
=I. —3z,

(P"D21 vc I
P"D.&

=L —& .

(2.3a)

(2.3b)

(2.3c)

Since the Coulomb force is purely central, I. and
K are given by

L = x,'x2' R»r, R»~, ' dr, dr, ,
+12

(2.4a)

2

&1&2 31 32I&»(&l)&»(&2) I drl dr2
+12

(2.4b)

g(1, 2) = y(1, 2)+
( )

g„y(1, 2) .
0

(2 5)

Here P is the two-body shell-model wave function
appropriately vector coupled to two-body quan-
tum numbers (L S J T), v» is the nuclear inter-
action between particles 1 and 2, H, (I, 2) is the
shell-model Hamiltonian (taken here to be just the
kinetic energies of the nucleons), Q is the Pauli
operator, W is the "starting energy" (to be de-
fined more closely later), and g(I, 2) is the corre-
lated (or perturbed) wave function. Details for
solving the Bethe-Goldstone equation have been
adequately covered elsewhere in the literature. " "
In this paper we wiH only treat those points specif-
ically relevant to this investigation.

where R» represents the radial portion of the sin-
gle-particle orbitals (for oscillator orbitals R» is
simply a Gaussian function).

Thus, in the context of the shell model, Coulomb
effects may be described in terms of four simple
parameters (e„„e,&„L, and K). If oscillator
functions are insufficiently realistic, one can al-
ways refine the calculation by substituting Woods-
Saxon wave functions.

What are the major deficiencies of this approach?
The single-particle orbitals may be subject to
many refinements, even the possibility of varia-
tion from one level to another, ' and the formalism
presented above will remain essentially intact.
The next logical step is to introduce configuration
mixing into the shell-model wave functions.

There is a very simple way to introduce config-
uration mixing into the above equations. Instead
of using shell-model wave functions to compute
the various matrix elements one could use corre-
lated wave functions from the Brueckner-Bethe-
Goldstone formalism:
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The main value of using correlated wave func-
tions to compute two-body Coulomb wave functions
can be seen by writing the iterative expansion

(&'I& lk& =(4
~1

+ ld&+ (4 &c

+ V 12 Vq

1 1
+ v —V —v + ~ ~ ~

12 e Q 12 (2 6)

where 1/e—= Q/(w —H,). The first term on the
right is just the usual shell-model matrix element.
The remaining terms are cross terms between
the nuclear force and the Coulomb force. These
corrections may prove to be very important when

one is working in the shell-model formalism. The
Coulomb force is normally referred to as a "long-
range" force in nuclear physics. When one trun-
cates the set of basis functions by introducing a
model space, cross terms between the nuclear
and Coulomb forces appear. Essentially the Cou-
lomb force is renormalized:

&el &el@& -&el &.Ie& =&@IGcl0&,

where

(2 7)

1 1 1 1
G~ = Vt-. + v» —V~+ V~ —v»+ v» V~ v»+ ~ ~ ~,

e e e e

(2.6)

K/L = 1/3 (zero range) (2.9)

to establish a short-range limit, while for an in-
teraction which is simply a constant, one has

K/L = 0 (infinite range) (2.10)

as a long-range limit. Nuclear forces yield a ra-
tio of

K/L 1.6. - (2.11)

Thus, one might expect the use of correlated
wave functions to be of paramount importance in
the calculation of any quantity that depends prin-
cipally on the value of K. The Coulomb shifts and
the isospin mixing are such quantities.

so that now G~ contains components that are not
so long ranged. Thus, any effect strongly depen-
dent on the long-ranged nature of the Coulomb
force may appear sharply modified in a truncated
shell-model basis.

To understand how this effect will manifest it-
self physically, one must have a quantitative mea-
sure of what is meant by a "short"- or "long"-
range interaction. Such a measure is available" "
in the ratio K/L. For a 5-function interaction, one
obtains

The introduction of correlated wave functions
requires some simple modifications of Eqs. (2.3).
So long as single-particle orbitals are used, all
five diagonal Coulomb matrix elements ('S„'D„
'P, ») are related to only two parameters (L and
K). With correlated wave functions no such rela-
tionships exist a priori, and one must treat all
five matrix elements as being independent.

In particular we note that since the three 'P~
matrix elements are not equal, one now has an
"effective noncentral Coulomb interaction. " One
should note that this particular noncentral depen-
dence is not a Thomas term nor a magnetic cor-
rection, but comes about from the cross terms
with nuclear noncentral interactions in the trun-
cated shell-model basis.

This is a most interesting effect, as it demon-
strates how a term of a given symmetry type may
arise in the effective interaction without a counter-
part in the realistic potential. ' Unfortunately,
the available data on the noncentral components of
the nuclear interaction do not warrant further in-
vestigation of this effect here. We suppress it by
defining an average central matrix element in the
'P state:

g(2~+1) &p"P& I Gc I p"P, &

&p PIGclp P)-

(2.12)

This particular weighted average simply removes
the vector and tensor components of the matrix
elements, and leaves one with an effective central
interaction. To be consistent in suppressing the
noncentral Coulomb effects we also take the sin-
gle-particle energies to be degenerate, and there-
fore define

(2.13)

The effect this neglect may have on agreement be-
tween theory and experiment will, however, be
investigated in the latter part of this paper.

In the following investigation the Coulomb ef-
fects are digested into four parameters; e,
&p"s, G, p"s.), &p"D2IG, Ip"D.), »d
(P"P Gc P"P&. For direct comparison with a
conventional shell-model approach it is conven-
ient to define

K:——
I.&p sIG Ip s& —&p DIG Ip D&1,

(2.14a)

K„=', Rp"S,
I G, I

p"s, &
--&p"PI G, I p"P&j—.

(2.14b)

If pure single-particle wave functions are used,
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W (Me V) -28 -30

TABLE I. Coulomb parameter (in keV) as a function
of the starting energy 8'. The Hamada-Johnston poten-
tial was used. Scu is held constant at 17 MeV.

TABLE III. Coulomb integrals (in keV) for the Yale,
Hamada-Johnston (HJ), Reid hard-core (RHC), and
Reid soft-core (RSC) potentials compared with the oscil-
lator value. S~ =16.2 MeV and W= —30 MeV. These
parameters are employed for all subsequent calculations
in this paper.

L'
Ksg
KsJ,

713
50
64

708
49
62

704
48
61

700
47
60

696
47
59

Uncor related
oscillator Yale HJ RHC RSC

then

Z=ZsD =as~ (2.15)

L I

KsD
Kss

588
36
36

674
42
55

690
49
61

690
49
61

707
54
66

Departures from Eq. (2.15) found in solving the
Bethe-Goldstone equation, and as indicated by the
nuclear data, will be indicative of the value of
using correlated wave functions in this investiga-
tion.

To generate the G matrix elements we follow
the reference-spectrum method. " One starts by
setting Q = 1 in Eq. (2.5), and rearranges terms
to obtain

(2.16)

This nonlinear differential equation can then be
solved by well-established procedures. " " The
G matrix elements are then given by

G.l y& =&pl v, (2.17)

TABLE II. Coulomb parameters (in keV) as a function
of hen. The Hamada-Johnston potential is used, with g
=-30 MeV.

Scu (MeV) 17

L'
KSD
Ks~

524
47
52

579
50
56

627
50
59

668
50
61

704
48
61

as indicated by Eq. (2.6). The resulting matrix
element is not Q —1 corrected. We shall return to
this point in the conclusions.

Equation (2.16) contains two parameters which
must be chosen theoretically. These are the start-
ing energy W and the size parameter 5& of the os-
cillator function p. The normal prescription, in
a self-consistent calculation, is to take W to be
the sum of two single-hole energies. For Ip-shell
nucleons the hole energy may be obtained by com-
paring the binding energy of "0with the two 1p-
shell levels of "O. The proton hole energy is
-12.11 MeV in the P„, state and -18.44 MeV for
the p3/2 state.

Tables I and II demonstrate the degree of sensi-
tivity of the Coulomb integrals to changes in W

and h~. Here we define

i. = ', [(p"-so
I Gc I p"s.&+ 2&p"D21 Cc I

p"D.&]

(2.18)
for purposes of comparison with the oscillator re-
sults. All Coulomb parameters appear to be very
insensitive to the starting energy. L' changes by
only 3% while W is varied by about 30%%uo, while K»
changes by 3 keV, and K» changes by 5 keV. Con-
sequently, the value chosen for the starting ener-
gy is not an important factor in any phase of the
calculations. We set

R'= -30 MeV (2.19)

in all the remaining calculations. When Ace is
varied the exchange parameters K» and K» under-
go remarkably little change. When pure oscillator
orbitals are used K varies as (8+) '". When cor-
related functions are employed, however, K»
varies by only F/p and K» by 18%%uo, while 8'&u is
nearly doubled. L', however, retains a substan-
tial variation with Sco. This newfound stability of
the exchange integrals is both interesting and use-
ful in the calculations of the following sections.

Table III compares the Coulomb integral calcu-
lated with correlated wave functions derived from
four modern realistic interactions (Yale, "Ham-
ada-Johnston, "Reid" hard and soft core), and

pure oscillator orbitals. The differences are far
from negligible. K» and K» are both gr eater
than the uncorrelated oscillator value, and even
differ significantly from each other. L' is also
substantially reinforced by the correlated wave
functions. Significant differences in the integrals
appear between the realistic interactions. K»,
for example, is 3F/p greater in the Reid soft-core
calculation compared to the result with the Yale
potential.

Thus, one has three parameters of concern in
this investigation. In addition to the starting en-
ergy and the size parameter, the results are quite
sensitive to the choice of nuclear force. Of these,
the choice of starting energy is least significant.
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TABLE IV. Comparison between experimental and theoretical Coulomb shifts. The parameters used for the results
from realistic interactions are given in Table III. The y fit refers to the two-parameter fit in Table V. Other notation
is explained in the text.

Nuclei (MeV) (MeV) Experiment
Coulomb shift (keV)

Osc. Yale HJ RSC

6Be
6Li

ZBe

7Lj

2 1

i i
2 2

0 1

2. i
2 2

1.50
5.36

0.43
0.48

0
3.56

—298 + 200

—47+1

—104

-18

-129 —149

—25

-163 —139

—28.

ZBe

L1

'Be
ZLi

7 i
2 2

2 i
2 2

i 1
2 2

7 1
Y'

2

4.55
4.63

6.51
6.56

0.43
0.48

4.55
4.63

—33+29

30+ 188 17 18

—85

19

—80

ZBe
ZLi

Be
ZLi

9B
'Be

9B
'Be

iOC

i0B

10B
10B

11C
iiB

ii(
iiB

2 2

j 1
2 2

2 2

2 1

2 1

i 1
2 2

2 2

2 2

0 1

0 1

z1
2 2

1 i
2

7'

7.19
7.48

10.79
11.13

2,33
2.43

14.67
14.39

3.36
5.17

5.17
3.37

1.99
2.12

4,30
4 44

6.51
6.56

7.19
7.48

2.33
2.43

0
1.74

1.74
0

1.99
2.12

—240 + 184

—50 +195

—100+5

380 ~25

-70 +23

60+ 7

—129+4

-10+11

-64

60

51

—15

-133 -141

102

—17

29

-150

89

19

78

—241

122

17

134

12 a

64 a

a

11C
B

ii(
iiB

11C

ii(
iiB

i2C

i2C
i2B

i3N
i3C

3N
i.3C

"N
i3C

i3C

3N

i3(

7 2
2 2

2 2

2 1

3 2
. 22

i 2
2 2

2 2

3 3
2 2

7 1
Y2

3 2
2 2

2 2

i 1
2 Y

4.79
5.02

6.48
6,74

8.42
8.93

12.45
13.02

0.97
16.11

16.11
0.95

3.51
3.68

7.38
7.55

8.93
8.86

11.88
11.80

15.07
15,11

4.30
4.44

4.79
5.02

6.48
6,74

8.42
8.93

0
15.11

15.11
0

3.51
3.68

7.38
7.55

8.93
8.86

11.88
11.08

-86+15

—38 ~15

—247 + 16

—60+ 168

-316 12

47~6

—170+5

0+20

240 +59,

10 +104

—121+ 66

-35

12

12

29

-21

20

10

13

11p

24

—80

—26

22

27

1p

16

28

117

—87

-29

—53

—77

29

18

33

124

9 a

4p a

—129

49

21 a

200

44

—129 a

' Level was used in the y fit to determine XzD and &&z.
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Choice of size parameter will be important for
any physical quantity involving the direct integral,
but is not critical for those quantities (Coulomb
shifts and isospin mixing) that involve only K»
and K». Tables I, II, and III imply that the most
critical over-all choice is that of the appropriate
nuclear force. This is probably the most impor-
tant result of this investigation. It is not so sur-
prising as it may appear at first glance. We shall
discuss it in detail in the Conclusions. For now,
the only reasonable course open is to compute
each result with all four available modern poten-
tials and compare them. We note from Table III
that the Hamada-Johnston and Reid hard-core po-
tentials yield identical Coulomb integrals. Conse-
quently, we shall not quote the values for the Reid
hard-core potential separately any further.

Because of the strong dependence of the results
on the chosen nuclear interaction, it does not
seem to be warranted to use &co as a parameter to
fit experiment. In all subsequent calculations,
we simply choose Ac@=16.2 MeV, a convenient
number which yields a reasonable fit" to the elec-
tron scattering data of "O.

To obtain the appropriate matrix elements for
more than two nucleons in the shell, the CFP"
program described in a previous paper" was em-
ployed. The intermediate-coupling vectors used
for the 1p-shell nuclei are also those of the 4BNC
fit of Ref. 25, unless otherwise stipulated.

III. COULOMB SHIFTS

Insofar as the theory presented in the preceding
.section is valid, the Coulomb shift depends only
on the exchange integrals. To illustrate this im-
portant fact let us consider the 1P-shell levels of
A = 6 with T = 1. The well-established levels with
these quantum numbers are the J = 0 (the ground
state of 'He and 'Be and the 3.56-MeV level of
'Li) and the 4 = 2 (1.80-MeV excitation in 'He, 5.36
MeV in 'Li, and 1.5 MeV in 'Be) levels.

The interesting feature, which originally moti-
vated this investigation, is that the separation of
the J = 0 and J= 1 levels in He and Li are nearly
identical at 1.80 MeV, while in 'Be this separa-
tion is 1.5+ 0.2 MeV. L$ coupling holds in A = 6
to a very good approximation, so that the J=0
level can be taken as $p and the J = 2 level as 'D,
to an accuracy near 99%. Equations (2.3a) and
(2.3b) then indicate that the Coulomb force will
tend to compress the levels in question of 'Be by
an amount

&P"&.
I

G IP"S,& -&P"D.l Gc I P
"a.

& =3',
(3.1)

in the oscillator model. This compression is ab-

6o =—(E, E,),—(E, —E )~—. (3.2)

A few cases exist for T = 1 levels where sufficient
experimental information exists to make compari-
son. Again, in order to avoid redundancy and
minimize the effect of size variations, we chose
pairs differing by only one unit in Z.

sent, however, in 'Li and 'He where there is no
Coulomb repulsion between the two 1P-shell nu-
cleons. Thus, the value K= 0.1 MeV will explain
the observed Coulomb shift in A =6.

This interpretation is almost certainly over-
simplified. There are several other effects which

may also contribute to this Coulomb shift. The
most obvious of these, still in the context of the
oscillator model, is a change in size parameter
in going from the 0' to the 2' level in 6Be. Such
a change, in fact, would seem likely, since the
separation energy for the process 'Be - 'Li+ p
appears between these levels. Wilkinson' has
previously emphasized the importance of using
different single-particle orbitals to obtain a pre-
cise evaluation of the Coulomb energy under these
circumstances.

Furthermore, in order to obtain K=0.10 MeV in
the oscillator model, one would have to use orbit-
als corresponding to a value of hw well over 100
MeV; certainly an unreasonable size parameter.
Table III shows that K» =0.054 MeV with the Reid
soft-core potential (8'u = 16.2 MeV), yielding over
one half (0.162 MeV) the observed Coulomb shift.
Use of intermediate-coupling wave functions, '
which incorporate an admixture of 'P into each
level, then yields a Coulomb shift of 0.163 MeV;
a very small correction.

Nevertheless, this effect does account for more
than one half the Coulomb shift in 'Be. We must
remember that, because of the appearance of the
threshold for proton emission between these two
levels, this case is exceptionally unfavorable,
and the Coulomb shift comparatively large. Fur-
thermore, the critical 1.5-MeV level in 'Be has
an exceptionally large experimental error (+0.2
MeV). This illustration is presented here only
because of the relative simplicity of the two-nu-
cleon case.

Table IV compares theoretical and experimental
Coulomb shifts for the data available in the 1P
shell. All possible pairs of levels were not used,
since this would be redundant and be likely to lead
to confusion. In order to minimize the effects of
size variations, neighboring 1p-shell levels were
selected. Thus in A = 7, for example, we take the
Coulomb shift of the first excited level relative to
the ground state, the second excited level relative
to the first excited level, and so on. The Coulomb
shift is defined by



142 ANDERSON, WILSON, AND GOLDHAMMER

The parameters Ks~ and KsP used in Table IV
are just those given in Table III. No attempt was
made to alter the size parameter or the starting
energy, as K» and K» are insensitive to their
selection. In order to check how far the proce-
dure can be pushed a y' fit for the exchange pa-
rameters was performed on 15 of the 23 pieces
of data in Table IV. The parameters K» and Ksp
are adjusted to minimize the function

2 ~ / e theory eexperiment)2 (3.3)

Table V compares the various results. Two y'
fits were made; one with the restriction that K»
= K», while in the other, KsD and K» were al-
lowed to vary independently. The one-parameter
fit (ECz~—-Kzt, =—K) yields an rms deviation from the
experimental values which is poorer than the re-
sults obtained with one of the modern realistic po-
tentials. The two-parameter fit is only slightly
better than the result with the Reid soft-core po-
tential. In all, the X' fits offer very little in com-
parison with the straightforward results with
realistic potentials. We present them here only
to demonstrate that this calculation cannot be
pushed much further when better nuclear forces
are found. As the calculations stand the Reid soft-
core potential accounts for roughly 50% of the ob-
served Coulomb shifts, on the average. A dis-
cussion of the possible origin of the remainder
will be presented in the conclusions.

The remaining examples of Table IV which are
not used in the X' fit display substantial discrepan-
cies between the theoretical and accepted experi-
mental Coulomb shift. In at least three of these
cases the experimental value is significantly in
doubt. Harrison" has reported finding the lowest
T = —,

' level in 'Li at 11.00 MeV. If this position is
correct, the Coulomb shift would be in excellent
agreement with theory. In most other cases ex-
hibiting poor agreement, an important threshold
for charged proton or e emission occurs between
the levels. This was the case in 'Be, as empha-
sized previously. A second striking example is
the five Coulomb shifts observed in "N-"g. All
are in excellent agreement except the shift be-
tween the ground state and first excited state. The
threshold for "N-"C+p occurs at an energy in-
termediate between these two levels. The only
discrepancy uneffected by one of these thresholds
is the shift between the ground state and first ex-
cited P-shell state of "C-"B. It must be pointed
out, however, that a charged-particle threshold
does not always cause a discrepancy. The 'Be
-'Li+p threshold, for example, appears to have
no effect on the good agreement found for the J, T
= ~, ~ and z, T levels in 'Li-'Be (although this
shift has a significant experimental error).

TABLE V. Results of a y fit for the parameters KsD
and KsP to 15 selected Coulomb shifts, compared with
various theoretical values where no attempt was made
to fit the parameters. The one-parameter fit yielded

sp KsD =86 keV, whi. le one obtai. ns Ksa 40 keV and

KsP =78 keV if the two parameters are allowed to vary
independently.

Method for choosing
parameters rms deviation=— (y /15)~ 2

KsD =Ksp =0

Oscillator

Yale potential

Harnada- Johnston
(or RHC potential)

RSC potential

One-parameter fit

Two-parameter fit

0.102

0.076

0.055

0.053

0.051

0.059

0.037

In several cases one (or more) members of an
isospin multiplet have not been identified experi-
mentally. Table VI shows predictions for some
of these levels, based on the parameters derived
with the Reid soft-core potential. This estimate
was made using the nearest identified p-shell lev-
el of lower energy.

IV. ISOSPIN MIXING

TABLE VI. Predicted excitation energies for unob-
served members of isospin multiplets, using the Reid
soft-core potential.

Observed member
E

Nucleus J T (MeV)

Unseen member

(MeV)Nucleus

'Be

12C

13C

2 1

0 1

2 2

9.90

3.00

6.66

7.48

17.77

12.40

SB

iOC

128

"N

10.2

6.63

5.70

5.63

2.60

2.61

12.35

Isospin is generally regarded as a fairly good
quantum number for most light nuclei. A notable
exception occurs in the 2' (16.63 and 16.93 MeV),
1+ (17.64 and 18.15 MeV), and 3+ (19.05 and 19.22
MeV) levels of 'Be; for which considerable mix-
ing of T = 0 and T = 1 is know to exist."" As is
the case with the Coulomb shift, the off-diagonal
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TABLE VII. Off-diagonal matrix elements of the Cou-
lomb perturbation, in keV. Computed values are ob-
tained with oscillator wave functions and with correlated
wave functions for the Yale, Hamada-Johnston, Reid
hard-core, and Reid soft-core potentials. The experi-
mental values are those deduced by Barker, using the
wave functions of Ref. 30.

State Exp. Osc. Yale HJ RSC Ref.

149

120

63

67
61

53
28

32
30

111
103

69
65

123
114

100
57

74
69

108
61

78
74

Using the wave functions of Ref. 30.
"Using the wave functions of Ref. 25.

matrix element

(4. 1)

which produces the mixing depends only on the ex-
change integrals K» and K», and consequently
is not very sensitive to the size parameter or
starting energy.

Barker" has deduced the 8'~ directly from ex-
periment, and we compare with these values in
Table VII. The matrix elements (W~) derived
from correlated wave functions are found to be
about twice those yielded by oscillator orbitals.
Excellent agreement is found for M~„where both
the shell-model basis function and the experimen-
tal data are well established. The experimental
value of g, is not so well established. Neverthe-

Nuclei
z(z)

Exp. Osc. Yale HJ RSC

6Be-6He
7Be-YLi
8B 8Li
~B-~Be

~oc-ioBe
i lB

12N f2B
3N- C

14O 14(

"O-"N

2.34
1.64
3.54
1.85
4.62
2.76
5.54
3.00
6.55
3.54

2.59
1,59
3.54
1.96
4.50
2.56
5.53
2.97
6.52
3.56
0.976

2,49
1.58
3.48
1,91
4.47
2.58
5.58
2,98
6.62
3.64
0.884

2.49
1.59
3.48
1.90
4.46
2.59
5.59
2.97
6.63
3.65
0.870

2.48
1.59
3.47
1.89
4 45
2.60
5.59
2.97
6.64
3.67
0.852

rms deviation
from experiment 0.117 0.104 0.105 0.106

TABLE VIII. Ground-state Coulomb energy differences
for mirror nuclei (in MeV). The single-particle energy
c tdefined in Eq. (2.13)] has been adjusted to yield mini-
mum rms deviation from experiment for each set of
theoretical calculations.

less the values obtained with the realistic interac-
tions are in very good agreement with the esti-
mate made by Barker. The empirical value of
8', is seen to be in good agreement with Barker's
shell-model basis functions (when realistic forces
are used to compute K» and K»), but a substan-
tial discrepancy exists when the basis functions of
Norton and Goldhammer are used. The primary
difficulty lies in the fact that the J =1, T=O basis
state is poorly determined by the shell-model fits.
The overlap between the Barker and the Norton-
Goldhammer basis functions is only 53%. In addi-
tion, isospin mixing for the pair of J= 1' levels
is found to be 94/6, and consequently the empiri-
cally deduced value of R', is most sensitive to any

experimental error in this ratio.
The observed isospin mixing in 'Be is found to

be very well accounted for by the Coulomb interac-
tion alone, when correlated wave functions derived
from realistic potentials are employed in the cal-
culation. The Reid soft-core potential yields ma-
trix elements modestly larger (and in better agree-
ment with experiment) than the other interactions
tested.

A systematic search for other cases where sub-
stantial isospin mixing is favorable was made
throughout the shell. Negative results were ob-
tained. In all cases we found the mixing to be
quite small. For example, in both 'Be and "C,
we estimate a ground-state admixture of T = —,

' of
only about one part in a million. Since the matrix
elements providing this mixing are quite small
(on the order of 10 to 200 keV), it is necessary
that a pair of levels lie very close in energy
(about 20 to 400 keV) if isospin mixing is to be
sufficiently large to be observed.

There are several cases in odd-A nuclei (A =I,
9, and 11) where shell-model calculations" pre-
dict a level with T = —,

' sufficiently close to the low-
est T = —, level (and with identical J) so that mixing
may occur. Unfortunately, we predict rather
small matrix elements between the levels of dif-
ferent T in these cases. The most favorable (and
most interesting) possibility is in Be. The low-
est T= —,

' level is at an excitation energy of 10.79
MeV, with J= —,'. The shell-model calculations"
predict a J= —,', T= -', level which should be found
between 11 and 12 MeV excitation. The off-diago-
nal matrix element is predicted to be -63 keV
w'ith the Reid soft-core potential. Thus if the lev-
els should lie within about 300 keV, measurable
isospin mixing would occur. The amusing aspect
of this example is that no such mixing is predict-
ed in 'Li, with the approximations made in this
paper. Such mixing is possible, however, eithe"
due to a term like z, l ~ s or through the mediation
of core excitation. "
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TABLE IX. Ground-state Coulomb second energy dif-
ferences (in keV) for adjacent mirror nuclei with odd &.

Nuclei

(~B-~Be)-( YBe-~Li)

(11C iiB) (9B SBe)

(~3N-~SC) -(~~C- ~B)

(45O $5N) (13N i3C)

as(z)
Exp. Osc. Yale HJ RSC

207 374 331 312 299

912 597 670 689 708

240 409 398 384 376

539 589 658 676 693

V. GROUND-STATE COULOMB ENERGIES

Tables VIII and IX compare theoretica, l and ex-
perimental values of s(Z) and b, b, (Z), respective-
ly, for ground states of mirror nuclei in the lp
shell. Unfortunately, the theoretical calculations
cannot be performed in as clean a manner as was
available for the Coulomb shifts and isospin mix-
ing. There are two reasons for this.

First, both 6 and AA depend on the direct inte-
gral I, ', as well as the exchange integrals (K»
and Ka~). While the exchange integrals are not
very sensitive to the size parameter, Table II
shows that I.' is still roughly proportional to
(5'&o)'". In addition, A will also depend on the sin-
gle-particle energy &, which accounts for the Cou-
lomb interaction between a 1P-shell nucleon with
the o.-particle core.

Nevertheless, all matrix elements needed to
calculate ground-state Coulomb energies had pre-
viously been computed in the first part of this in-
vestigation, and it would be capricious not to ex-
ploit them. To avoid excessive parameter fitting
(and for consistency) we simply use the pa, rame-
ters displayed in Table III. The single-particle
energy was adjusted, however, in each data set
to yield minimum rms deviation from experiment.

The results agree surprisingly well with experi-
ment. Theoretical values of 6 deviate from ex-
periment by a mean value of only 106 keV for the
Reid soft-core potential. Fluctuation in the com-
parison shows a maximum deviation of only 6%.
Agreement is not quite so good for AA, but the
well-known alternation of magnitude is nicely re-
produced. The larger errors encountered in the
second differences are not surprising. It must be
remembered that we are analyzing exactly the
same data set. Each time one invokes a differ-
ence between pieces of data, errors are com-
pounded. Second differences are very hard to re-
produce, simply because they are relatively small.

To emphasize this we also display the absolute
Coulomb energies (relative to the o. core) in Ta-
ble X. "Experimental" values have been deduced
by assuming the total Coulomb energy is a func-
tion of Z only, ' and consistently using the (truly)

TABLE X. Absolute ground-state Coulomb energies
(in MeV), relative to the e-particle core. Theoretical
results are given only for the parameters obtained with
the geid soft-core potential. The value of e (0.932 MeV)
has again been adjusted to yield the best fit with experi-
ment.

Nucleus
Coulomb energy

Exp. Theory

Li 8

'Be
~Be
'Be
'Be

10Be
8B
9B

$2B

13B

'c
10C

12C

13C

14C

N~

O 8

2.65

4.50

7.27

10.27
13.81

0.93
2.63
2.60
2.60
2.59
2.61
4.57
4.57
4.56
4.56
4.54
4.56
7.24
7.23
7.24
7.26
7.24
7.23

10.29
14.04

experimental Coulomb differences for mirror nu-
clei with odd A. . Such a procedure is not exactly
correct, in that it fails to account for different
parentages in the various isotopes of a given ele-
ment. To evaluate the possible magnitude of the
error induced we display theoretical values of
the Coulomb energy obtained for several isotopes
in Table X. We see, for example, that the Cou-
lomb energies of 'B and ' B differ by 10 keV theo-
retically; while in deducing experimental values
they are assumed to be identical. Thus, we esti-
mate a possible error of no more than 100 keV in
the Coulomb energy of "O. This is an error of
less than I%, and need not be taken too seriously.
Absolute Coulomb energies are then found to be in
excellent agreement with experiment.

This quality of agreement was unexpected, since
no attempt was made to fit the size parameter. At
least in part, it must be attributed to the fact that
e has been fitted to the data. Attempts were made
to derive e directly from the Coulomb interaction
of a lP nucleon with the n-particle core. Tables
XI-XIII summarize the results. The single-par-
ticle energy is not sensitive to the starting energy,
but has a strong dependence on S~. The latter
makes calculation of a reLiable value difficult.
We note, however, that both fits to the data and

In Li, N, and 0 there is no fluctuation of the Coulomb
energy with neutron number.
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TABLE XI. Sensitivity of e to the starting energy (W).
Calculations were made with the Heid soft-core poten-
tial, with @co =16.2 Me.V.

TABLE XIII. Single-particle energies obtained with
various interactions (hen =16.2 MeV, 8 =-70 MeV).

W (Me Vj -40 -50 -60 -70 -80 —90 -100
c (Me V) 1.182 1.167 1.155 1.145 1.138 1.3.32 1.126

e (Me V)

Gsc.
1.680

Yale
1.126

HJ
1.12.8

VI. MASS FORMULA

The isobaric mass formula

E(T,) =a+bT, +cT,' (6.1)

was implicit in the early work of %'igner. ' Only
recently, however, has adequate experimental
data been made available to test this relationship
(see Ref. 8 for a review). The formula applies
to all members of an isobaric multiplet,

q(nr, T, + 1)-(T, + iT, )q(eT, T,) (6.2)

(where a relates to all nuclear quantum numbers
except the isospin), and relates the energies. of
the states belonging to the same aT.

There are two necessary conditions for this
formula to be valid:
(1) Isospin must be a good quantum number. This
is meant in the strictest sense that Eq. (6.2) must
hold precisely. Not even the size parameter is
permitted to vary from one isobar to the next.
(2) The charge-dependent part of the nucleon in-
teraction is a two-body operator.
It is important to note that empirical verification
of Eq. (6.1) by no means implies that nuclear
forces are charge independent. A two-body
charge-dependent component of the nuclear force
would simply modify the values of a, b, and c.
The only way to verify charge independence of the
nuclear force is through the derivation of the ob-
served values of a, b, and c from the Coulomb
interactions. '

The formula is trivial for T ~ 1, since one has
three parameters to fit no more than three pieces

the G-matrix calcuIation define an c in the range

g =1.00yO. I8 MeV,

so that one has a reasonable degree of consistency.
The G-matrix calculations yield a value for &

which appear a bit too large. It must be noted that
these calculations are strongly dependent on the
odd-parity components of the nuclear force, which
are not well established.

TABLE XIV. Experimental (Ref. 33) and theoretical
values of b in the isospin mass formula. q has been ad-
justed to fit the data.

Experiment
b (MeV)

Osc. Yale HJ RSC

of data. In this case the investigation reduces to
an examination of the Coulomb shifts, as was done
in Sec. III. To critically test Eq. (6.1) one must
know the energies of at least four levels of a multi-
plet with T ~ ~. Three such multiplets. have been
established in the 1p shell. These are the lowest
T= —,

' levels of A=V, 9, and 13. The experimental
da'ta have been reviewed by Garvey" and Cerny. "

Theoreti. cal values for b and c are compared
with experiment in Tables XIV and XV. The theo-
retical calculation for e depends only on the val-
ues of L', EC~D, and K~~ from Table III. T-he caI-
culation of b also involves the single-particle en-
ergy e, which has been adjusted to yield an opti-
mum fit. The resulting values of e are a bit (-4'%%u~)

smaller than those obtained in Table VIII by fit-
ting ground-state Coulomb energy differences, but
are quite consistent with Eq. (5.1). The coeffi-
cient a depends primarily on nuclear forces, and
'consequently will not be discussed here.

Both b and c depend on I', and are consequently
sensitive to the size parameter af the starting
function. Nevertheless, the parameters of Table
III were employed in the calculations, with no at-
tempt to adjust the size parameter to an optimum
fit. It seems that insufficient data exist to war-
rant an elaborate parameter fit, particularly
since one is forced to adjust the value of & in the
evaluation of b.

Thus, the theoretical calculations for b and c
cannot be considered as reliable as the calcula-
tion of Coulomb shifts and isospin mixing. In
spite of this difficulty Tables XIV and XV show
that agreement with experiment is quite respect-
able. In view of the difficulty with the size param-
eter better agreement would, in fact, be an em-
barrassment. One may conclude that; if the re-

TABLE XII. Sensitivity of e to @or. The Reid soft-
core potential is used, with W = -70 MeV.

7
9

13

0.594 + 0.028 0.681 0.636 0.631 0.621
1.3185+0.0022 1.209 1.204 1.205 1.205
2.180 + 0.0049 2.203 2.253 2.257 2.266

he@ (MeV)
& (MeV)

9 ll 13 15 ' 17 19
0.846 0.940 1.025 1.103 1.175 1.242

g (MeV)

rms deviation (MeV)

0.934 0.849 0.836 0.818

0.082 0.082 0.082 0.084
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TABLE XV. Experimental (Ref. 33) and theoretical
values of c in the isospin mass formula.

c (MeVj
Experiment Os c. Yale HJ RSC

7

9
13

0.270 + 0.027 0.215 0.285 0.289 0.293
0.267+ 0.002 0.264 0.283 0.287 0,291
0.256 + 0.010 0.265 0.285 0.289 0.293

maining discrepancies are due to a charge-depen-
dent component in the nuclear force, then this
component is certainly much weaker than the Cou-
lomb force.

VII. CONCLUSIONS

V„Qv,' I, ~ s, , (7.1)

which will split e3/2 and ez/2 This attempt led to
negative results. If one tries to fit the strength
parameter (V„) to the Coulomb shifts of Table IV,
one finds negligible improvement. The reason
simply is that this term generally has a large co-
efficient when the discrepancy between theory and
experiment is small, and a small coefficient
where this discrepancy is comparatively large
(the only exception to this was, curiously enough,
the Ip-hole doublet in "N-"0). Thus, we have

Let us summarize the approximations and as-
sumptions made in this paper. These are:
(a) the neglect of magnetic interactions;
(b) the suppression of all noncentral effects;
(c) the Pauli principle has not been accounted for
properly in the correlated wave function;
(d) uncertainty in the size parameter and starting
energy;
(e) higher-order terms in the G-matrix expansion
are neglected;
(f) the intermediate-coupling shell-model basis
used may not exact;
(g) finite-charge distribution of the proton. "

Magnetic effects have been estimated by Wilkin-
son, ' and probably amount to no more than a 3%
correction to absolute Coulomb energies. This
means, however, that they could be much more
significant in the Coulomb shifts and in AA(Z).
This effect is obscured by the suppression of non-
central terms in the nuclear force [Eqs. (2.12)
and (2.13)]. Both approximations yield similar ef-
fects, and it would be difficult to distinguish be-
tween them in an analysis of the data. This is, in
fact, a basic reason why no refinement of Eq.
(2.12) was attempted.

We did attempt to refine Eq. (2.13) by introduc-
ing an additional single-body charge-dependent
term

suppressed this effect for the simple reason that
it appears to be of little help in the interpretation
of the data.

The Pauli operator Q was set equal to unity in
solving Eq. (2.5) by reference-spectrum method,
and this approximation has not been corrected in
this paper. Proper treatment of Q would lead to
a renormalization of the exchange parameters K~~
and K». To test the possible importance of the
renormalization the X' fit of K» and K» to the
Coulomb shifts was made, and has already been
discussed in Sec. III. The fit led to only modest
improvement over those calculations made with
realistic potentials and no adjustable parameters,
and relatively small renormalization of the ex-
change integrals. This makes sense, since one is
dealing with matrix elements of the '$, 'D, and
'P states where Q —1 corrections are found to be
relatively small. " A refined treatment of the
Pauli operator would probably not be warranted
as yet because of larger uncertainties in other
aspects of using the correlated wave functions.

The greatest uncertainty is the selection of an
appropriate size parameter (Table I shows the
various Coulomb integrals to be relatively insen-
sitive to the starting energy). The Coulomb inte-
grals of Table III were used in the calculation of
all physical quantities, and no attempt was made
to adjust the size parameter to fit the data. For-
tunately, the Coulomb shifts and isospin mixing
are very insensitive to the size parameter when
correlated wave functions are used. Consequent-
ly, we think of these as relatively "clean" calcu-
lations. All other physical quantities tested in-
volve the absolute Coulomb energies in such a way
that they are sensitive to the size parameter, nev-
ertheless, the quality of agreement with experi-
ment obtained is quite respectable.

Table X shows a maximum deviation from exper-
iment of only 2% (if one neglects the unbound
ground state of 'Li). Even though e was adjusted
to optimize the fit this quality of agreement is
surprising.

Actually, it is not possible to discuss the size
parameter in the context of this calculation without
bringing in consideration of higher-order terms in
the G-matrix expansion. The reason is that if one
did a complete calculation of the nuclei involved,
correct results for all physical quantities would
be obtained independent of the selection of the
size parameters of the starting function. If one
selects an "unrealistic" size parameter, then the
higher-order corrections will be enhanced.

Which higher-order terms will be most impor-
tant in the calculation of the Coulomb effects?
None of them have been calculated, but it is not
hard to guess. The leading corrections to Eq (2.6).
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are almost certainly terms of the type

1 1—
U + ~ ~ ~

~13
12

(7.2)

Two other classes of higher-order terms should
be considered. The first involves two or more
Coulomb insertions such as

(7.3)

These are expected to be small, since the Coulomb
force is comparatively weak, and consequently a
perturbation expansion in powers of 1/y should
converge rapidly. The second competitor will in-
volve additional G-matrix insertions such as

(7.4)

Hopefully, this class of diagrams will also be
small compared with the effect in Eq. (2.6) be-
cause the three-body T-matrix contribution is
small in nuclear matter. "

Terms like those in Eq. (7.2) (i.e., one Coulomb
insertion and one G-matrix insertion for a differ-
ent pair of nucleons) may yield substantial correc-
tions. The reason is that the Coulomb potential
is long ranged, so that it is not obvious that the
term in Eq. (7.2) is small compared with

(7.5)

Likewise, it is certainly not much larger. Con-
sequently, such matrix elements are not to be ex-
pected to amount to more than about 30 keV. In-
deed, these are small corrections, but they may
produce significant contributions to the Coulomb
shifts and isospin mixing. Calculation of these
terms has not yet been attempted, and would be
much more difficult than the work done in this
paper.

All of the physical quantities calculated in this
paper are sensitive to the intermediate-coupling
shell-model wave functions used. Many different
fits to the positions of energy levels were made in
Ref. 25. Several of these sets were used to calcu-
late the Coulomb shifts, which are most sensitive
to the wave functions. The result was that, so
long as the original shell-model fit was good, lit-
tle difference was found in the computed Coulomb
shifts. Consequently, all results reported in this
paper were calculated with the best (4BNC) fit of
Ref. 25. We must add, however, that a few of the
wave functions for highly excited states not in the
4BNC data selection are not well determined by

the shell-model fit. A good example of this was
found in the calculation of the isospin mixing for
the J = 1 levels of 'Be. These levels were not in
the 4BNC fit, and the computed value for W~ is
nearly one half the value obtained when Barker's"
shell-model wave function is used. This is the
only case in all the data analyzed in which we
found such a striking discrepancy.

No evidence was found in any phase of this inves-
tigation that would suggest a nonvanishing eharge-
dependent component in the nuclear force. To be
sure, we still find discrepancies between theoreti-
cal calculations performed with the Coulomb in-
teraction and the charge-dependent data in 1p-
shell nuclei. The discrepancies are generally
quite small, however, and most likely due to the
various approximations that have been made. Cer-
tainly any conclusion pointing to charge-dependent
nuclear forces is completely unwarranted. One
may in fact conclude that if a charge-dependent
component of the nuclear force does exist it is
definitely far weaker than the Coulomb force.

The best single piece of evidence for this con-
clusion lies in the calculation of the isospin mixing
for the J= 2 levels of 'Be. The experimental data
are well established for this case. The theoretical
result has no strong dependence on size parameter.
The most questionable part of this calculation is
the parentage of the shell-model basis functions,
which again seem well determined for these states.
This calculation then sets an approximate uPPer
limit for the charge-dependent component of the
nuclear force at 15% the strength of the Coulomb
force.

An additional uncertainty lies in the nuclear in-
teraction used in the Bethe-Goldstone equation.
Table III reveals this consideration to be far from
trivial in this calculation. In fact, the use of a
realistic nuclear interaction to compute the cross
terms appears to be at least as critical as the
selection of an appropriate size parameter. This
is one strong reason why we made no attempt to
adjust the size parameter to optimize the fit.

This result is not surprising. The nuclear
force is strong, and should be expected to have
sizable cross terms with the Coulomb force.

The calculations for Coulomb shifts and isospin
mixing showed a dramatic improvement when cor-
related wave functions derived from realistic
forces were used in place of the simple oscillator
functions of the shell model. Calculations involv-
ing absolute Coulomb energies were not so clear
cut, most likely because of the uncertainty in the
appropriate size parameter. Nonetheless, the
necessity of using correlated wave functions in
all phases of this investigation is firmly estab-
lished through Table III.
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