
PHYSICAL BEVIEW C VOLUME 6, NUMBER 1 JULY 1972

Faddeev Equations for Realistic Three-Nucleon Systems.
II. Bound-State Wave Functions*
E. P. Harper, Y. E. Kim, and A. Tubis

Department of Physics, Purdue University, Lafayette, Indiana 47907
(Received 12 April 1972)

Starting from our previous work on the complete angular momentum reduction of the Fad-
deev equations, general formulas are developed for constructing the bound-state wave func-
tion from the Faddeev amplitudes. The 2 -& coupling scheme is used. For trinucleon sys-
tems with nucleon-nucleon interactions in the So and 38&-3D& states, the complete set of ho-
mogeneous Faddeev equations and the formulas for constructing the wave functions are given
in detail. The wave function is also given in terms of the Derrick-Blatt classification of
states.

I. INTRODUCTION

In a previous paper' (hereafter referred to as I),
we carried out a complete angular momentum re-
duction of the Faddeev equations for the case of
realistic nonrelativistic trinucleon systems with
(local or nonlocal) interactions having general
spin, isospin, and velocity dependence. '

In I, the construction of the completely antisym-
metric trinucleon bound-state wave function from
the Faddeev amplitudes was briefly described.
The purpose of this paper is to provide general
formulas for this construction. The g-8 coupling
classification of trinucleon basis states is used
because it is closer than the J-j coupling scheme'
to the conventional Derrick-Blatt classification.
The formulas given in this paper may be easily
transformed to corresponding ones in the J-j cou-
pling scheme by a unitary transformation. '

In Sec. II, we summarize the results of I which
are relevant to the subject of this paper. General
formulas for the bound-state wave function are
given in Sec. III. In Sec. IV, we consider the im-
portant special case of local nucleon-nucleon in-
teractions in the 'S, and 'S,-'D, states. The com-
plete set of homogeneous Faddeev equations and
formulas for the bound-state wave function are
presented in detail, with numerical values for the
angular momentum coupling factors. Several
workers' ' ' have obtained solutions of truncated
versions of these equations in which one approxi-
mates the nucleon-nucleon t matrices by separable
forms, ' or one neglects the part of the trinucleon
wave function in which the spectator nucleon is in
a D state relative to the center of mass of the in-
teracting pair. ' ' We have recently solved the
complete set of Faddeev equations for the case of
the Reid potential and will discuss our results in
another paper. ' In Sec. V, an expansion of the
wave function of See. III is given in terms of the

Derrick-Blatt classification of states, ' and the
usefulness of this expansion for checking the con-
sistency of numerical calculations is discussed.

II. FADDEEV EQUATIONS, KINEMATIC

VARIABLES, AND -8 COUPLING

BASIS STATES

As in I, we work with the linear momentum com-
binations p&, q&, and P, where

P 2+ p 2+ q 2

i =1
(2.2)

All of our analysis will be done in the center-of-
mass system (P=0). The linear relations between

(p;, q~) and (p~, q~) are

(2.3)

where

i

nl ~ m 1/2
5

(m;+m, )(m, +m, )

P (1 ~ 2)l/2 p
(ijk cyclic) .~ ~ ~

~

(2.4)

m ,k, -m, k,
[2m, m, (m, +m, )]'" '

m, (k, +k, ) —(m, +m, )k,
[2m, (m, +m, )(m, +m, +m, )]'" '

k, +k2+k,
[2(m, +m, +m, )]'" '

rni is the mass of particle i and k; is the momen-
tum of particle i in the space-fixed coordinate sys-
tem. The definitions of (p„q,) and (p„q, ) follow
from (2.1) by cyclic permutation of the indices 1,
2, and 3. The total kinetic energy is given by
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(2.5)(i=1, 2, 3);
P(i)q; = q;,
P(i)P, =-P. '

P(i)q,. = q„

P(j)P1 =-P2

P(j )q, =@2

(ijk cyclic) . (2.6)

We neglect the neutron-proton mass difference, so
that n, , = —,', p;/= —,

' vS . P(i) =P, , (ijk cyclic) is de-
fined as the operator which interchanges particles
j and k. Thus, for the equal-mass case, we have

P(i)p; = -p;

The 2-S basis state'
~ p, q, o.&,

=
~ pq, a(i, jk)&;,

(ijk cyclic), is defined to be an eigenstate of the
operators: (p;)', (q;)2, (L;)', (1;)', (g)2=(L, +1,)2,

(5;)' = (s, + s„)', (s,)', (s„)', (s;)', (I)' = (S, + s;)',
(g) =(g+S) g (t )2 (t )2 (T.)2=(t. +t )2 (t )2

(F)2 = (T;+t;)', W, with corresponding quantum num-

b,. =-,', t, =2, T, t=-,', &, and &„ respectively. L&

is the relative orbital angular momentum of the jk
pair; l; is the orbital angular momentum of nucle-
on i in the c.m. system; s; is the spin angular
momentum of nucleon i; and t; is the isospin of
nucleon i. The explicit construction of

~ p, q, o.&,

is given by

I P, q, ~&; =
1 [pq(1 l)~, (»)S]&&.; (Tf)«&; = 5 (&m, Sm, I48.& I pq(«)&m, , &;l(»)Sm, &;l(Ti)«&;, (2.7)

where

~
(»)Sm, &,

= P (Sm, sm, ~Sm, & ~Sm, &, ~
sm, &;,

m$ m

and ~(Tt)V'K, &, has an expansion analogous to (2.9). Antisymmetry with respect to jk interchange gives the
restriction (-1) 2' = -1. The states (2.7) satisfy the orthonormality relations

(2.9)

~pq(Ll)Zm, &, =g (I. m lm, ~gm, &IPLm, ;qlm, &,
= g (lm im, ~gm, &~ dp dqy (P)F,„,(q)~p, q&, ,

mL ~ m) mL 2 m t (2.8)

5(P —P') 5(q —q')
; (P, q, ~l P'q', ~'&; = (2.10)

The Faddeev equations for realistic trinucleon systems in the P-S basis are given by Eqs. (4.6), (4.28),
and (5.7) of I:

;(P, q, o.iT'"(s)l 0&& =4.'"(P, q, ~) =q.'"(P, q, ~&+- g 5...5T, T,.(-I)'"" "TT2II'(i2t2 &2t11 T2T)

2)+1 ' ' 2L +1x g (TT, n, ~rr, , /Tr. a,
~
r, r„&L ~„, P (, 1' (a„)' ""'

Tz, tz L1 X hrr1r2

x(P )1+ ' '(-1) 1+' ~(2L +1)'"(2l,+I)'"(2r +1)(2T +1)[2(L, —A)+1]'"

( ) i„,., (t., r r,
) (A

X r,
) (r 1, r,

) (I,—A I —l r,).
p 00 r «12q2+ q~ j'812

J~dqqL1 A+1 1+ 1)t pJ1+ x+1 i J1sTT2(p(p2 +q2q2)1/2(sq2)1/2)
0 ~ ~12q2 -&~ l'812

y P l 12 P2 +12 l2 q 42 (P21 q2t +2)
(P.'+ q' s)(P2'+ q2' q')"-- (2.11)

s is the total energy of the trinucleon system. The off-shell t matrices are normalized so that

shLi"T "(k k k)= (2.12)

where 5L is the partial-wave phase shift. Since only the homogeneous Faddeev equations are relevant for
the bound-state problem, we will not give the explicit form of the //1,"~(p, q, o). The geometrical factor
G, , is given by Eq. (5.7) of I.
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III. BOUND-STATE NAVE FUNCTION

The components of the bound-state wave function &Pq, o.~ltd& are obtained from the homogeneous solution

q,'(V~ )(p, q, (y) of (2,11):

,&p, q, ~14&=& . , &(e+P„.+P...)(p, q, ~),17'"(&,)I(,&

1

&[P(1)+P(2)+P(3)](p,q, ~), IT'"(&,)lq~&,

,&P, q, ~I7'"(&e)14&=4",(P, q, ~) = »~ (s Pe)&-P, q, ~IT"(s)14&.

(3.1)

& is a normalization constant.
We now outline the procedure for calculating P(i)~ p, q, o.&,. For the space-spin parts of the basis states,

we have

P(l)
~
[Pq(Ll)2 (Ss)S]gg ), =( 1) + —

~ [Pq(Ll)g (Ss)S]gg ), (3.2)

P(2)
I [Pq(«)&, (Ss)s]&&.&,

= 2 «m'Sms I &&.& & Lm~fmi l&m, & [P(2) I PLm. ; qfm ~&,] [ P(2) l(Ss)3m ~ &,1,
mg~ sf/
mL, ml (3.3)

P(2) ~(Ss)Sm, ), = Q (-1)' '" ~ SS,'(2S,'+ l)W(s, s,ls; SS,' )W(s, s,Ss; S,' S,') ~(S,
' s)gm, &, ,

Sy, S2

where the W's are the usual Racah coefficients, S, = (2S, +1)'", and

P(2)
~
PLm~; qlm, ), =P(2) dPJI dq Yz (P)Y, , (q) ~p, q&,

=jt dPJ dq Y~ (P)Y, (q)~-p„q, &,

(3.4)

where

-1,= 2 P+ 2 ~3 4,

The spherical harmonics
I3

Y.*,.„(-J,) =p;"g

dpJ dqY, (p)Y, , (q) Q Y,* (—p, )Y*, (q, )~ p, Lm, ,;q, f,m, ,&, ,
Q, mz

of p, and p, in (3.5) are expanded in spherical harmonics of p and q

(3.5)

(3 8)

A=o my=-&

x&Am~L, —hmr, -mAlL3mr, & Y~ (p)Y( z (q), mg mA (3 7)

&& &Arn ~l, —Am, , —m), ~l,m, ,&Y~ (p) Yf ~, (q),~ 77k ) mg (3.8)

where ('~2'A") is the binomial coefficient. We then combine the p, & and q, '3 fa.ctors in (3.7) and (3.8) with
PL, m~„ql, m), and expand the result in partial waves:

l
Lp,m~„q, l,m, ), = g ~r, pq; L,m~ L,m, ,&P„' „(p)Y„„(q), (3.9)

where

~r, pq; L3m~, l,m, ,&=2m d(cos8) ', , ~p, L,m~;q, l,m, ), ,
P, (cos8)

3 '&3
(3.10)
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with cos8=q ~ P. Finally, we use (8 7)-(3.10) and the expansion

lp, L,m~, ;q, l,m, ,),l(s,'s)Sm, ), = p g (L,m~ l,m, lg,m, . )(g,m, ,Sm, lg, g„}
g3, mg

x
l [ p.q.(L.i,)g, (s,'s, )S]y,g„),

in (3.5), do the I) and q integrations, and obtain

P(2)l [Pq(LI)g, (Ss)S]SS,), =g (-I)""-"SS,'(2S,'+I}W(s,s,ss; S,S,) W(s, s Ss; SS;)
Sf $2

(3.11)

x Q Q (-,'))'(-', W3q)"- (-,'WBP)'( -', q) ' '( ' ' I)(2&+1)L,),
L3, .l3 h, X, r

x [2(I., —A) + 1]'"[2(l,—A)+ 1]'"

|1

x Q G,„—) d(cos9) "~,
l [p,q, (L, /, )g, (s', s)S]8$,), ."2j P 3g 3

(3.12)

The geometric factor G,„ in (3.12) is given by

G,„=g (gm, Sm lpga, )(Lmzlm, lg m}(g,m,, Sm~ lpga, )(L,m~, l,m, lg,m,. )(-1) ~5
all rn

L r r, A X r, r 2 r,

L3 —A 2~ —X r2X
PS h WLg SS)I fRh+PPl g SSL3 3 3 3

(3.13)

Using diagram techniques, ' we find

L3 A L3 —A

G ( 1))'+25+&+ +L)+24j g@S1 y I y 1 2
ex

g r~ r2
(3.14)

where (gSpj denotes the triangular relation among g, S, and g, and the last two factors are the 9-j and
6-j symbols, respectively. In deriving (3.14), we have used the fact that G,„is independent of g, and that

g and g, are invariant under pair-exchange operations.
A similar calculation gives P(3) l [Pq(Ll)g, (Ss)S]$$,), equal to the right-hand side of (3.12) except for an

extra factor (—1)'&"'s s& in the summations. P(3) l(Ss)Sm, ), is the same as the right-hand side of (3.4)
except for the factor (—1) in the summations. P(i) l(Tt) 9 E,), is the same as P(i) l(ss)Sm, ), with isospin
quantum numbers rep1acing corresponding spin quantum numbers.

Using the results just presented, we may write (3.1) in the form

.(P, a«l( )=& „.z ((-))"*'"(',",(),««)

+ Q Q QQA ""(IlgIIslaga(=g))B, (Slsi)C~(T IT',)(P)"&(q)"
h~r L3, l3 81 T1

&&I(+(-))"""*""")- d(«&~&) " ('"(0 ~ «'))
t

l P cos8)—

(3.15)
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where

n =[(«)&,(»)S]9,8.;(T&)&r. ,

n' = [(L,/, )Z„(S,'s)S]gg„(T',t) Sv, ,
(3.16)

p„q, are given by (3.6), cos&=p ~ q, and the coefficient matrices AA"", B„and Cr may be easily read off
from (3.12) and (3.4).

IV. FADDEEV KERNEL AND TRINUCLEON WAVE

FUNCTION FOR THE CASE OF LOCAL
NUCLEON-NUCLEON INTERACTIONS

IN THE So AND Sl D
1

STATES

With most of the presently available computer
facilities, the case of local nucleon-nucleon inter-
actions in the 'S, and 'S,-'D, states is about the
most complicated one for which an exact solution
of the Faddeev equations can be obtained. As was
mentioned in the Introduction, the Faddeev equa-
tions for this case have her etofor e only been
solved in truncated form. The purpose of this
section is to present explicitly for this case the
relevant equations with numerical values for the
various angular momentum coupling parameters
so that other workers might be spared from this
rather tedious task.

The eight trinucleon 2-S coupling states involved
in the Faddeev equations (2.11) are listed in Ta-
ble I. The even parity of the trinucleon bound state
and the dynamical assumption concerning the nu-
cleon-nucleon interaction restrict L and l to the
values 0, 2. Only five of the eight Faddeev equa-
tions are independent. This may be easily seen
by considering the eight J-j coupling states in Ta-
ble II, which are related to the Z-S states in Ta-
ble I by the unitary transformation'.

~ [pq(u)Z, (Ss)S]gg.; (Tt)v v, ),
L /

=QJjgS S s S

J j
x

~ [p(LS)J, q(ls)j ]gg„' (Tt)V'1',), .

(4 1)

Only the first five of the listed J-j states enter the
Faddeev equations, since there is assumed to be
no nucleon-nucleon interaction in partial waves
with J&1. The first four 2-S states are identical,
respectively, to the first four J-j states. The last
four g-S states are linear combinations of the last
four J-j states. Thus, with the states in Table I
labeled as ~p, q, n), with n=1, 2, . . . , 8, we have

.&Pq 6IT'"(s)IP)~=4'."(P q 6) =nP'."(P q 6)

0'."(p q 7) =W'."(p q 6), (4 2)

0',"(p q 6) =rg'."(p, q, 6),
with

3
2 2
j. 1
2 2

and similarly, P = —', W3 and y = —', Wl.

We may write the homogeneous Faddeev

TABLE I. Trinucleon 2-S coupling states with/ = g, ~

=9'= ~1',
~

=~2 snd positive parity, which are involved in
the Faddeev equations (2.11) for the case of local nucleon-
nucleon interactions in the iSO and 3Si-3Di states.

7ABLE Il. Yrinucleon J-j coupling states which are
related to the -8 coupling states in Table I by the uni-
tary transformation {4.1).

State

(00)0

(00)p

(20) 2

(02)2

(22)0

(22) 1

(22) 1

(22) 2

(Ss)S

(p i)i
2 2

{1T),
(1 1)g

(1 2)~2

(1 i)~

(1 i) 1
2 2

(1 —,') ~2

(1 —,') ~~

{12)

(0 2)

(p 2)

{0~)

(p i)

(0 2)

(0 2)

(p i)

State (JS)J

{pp)o

(01)1

(21)1

(01)1

(21)1

(21)2

(21)2

{21)3

(ls) j
(0 -') ~

(O $) it.

(p g) 'i

(2 2) 2.

{2~)~

(2 X)2

(2 i)g

(1 $)

(p 2)

(p i)

(0 ~)

(p i)

(o ~2)

(0 ~g)

(0 i)
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TABLE III. Numerical values for Faddeev kernel factors (4.4), for a =1-5, e2 =1—8.

12
13
14

-15
16
17
18
21 .

22

25
26
27
28

31

35
36
37
38

41

42

0

0
0
0

'

1
1
1
1
2
2

2

0
0
0

2

1
0

nq

3
2
1

0.577 350 27

-1.732 050 81

-3,872 983 35

-1,732 050 81

0.577 350 27

0.866 02540
1.000 000 00
0.288 675 13

0.866 025 40
1.000 000 00
0.288 675 13

1.290 994 45

—1.035 098 34
-0.836 660 03
—0.358 568 58
-0.345 032 78

1.732 050 81
—0.577 350 27

-0.866 025 40
-1.000 000 00
-0.288 675 13

-0.866 025 40
—1.000 QQQ 00
—0.288 675 13

—1.290 994 45

1.035 098 34
0.836 660 03
0.358 568 58
0.345 032 78

0.324 759 53
—1.125 000 00
0.974 278 58
0.375 000 00

—1.082 531 75
-0.216 506 35
1.125 000 00
0.108 253 18

-0.375 000 00
0.324 759 53

-0.108 253 18
0.375 000 00

-0.324 759 53
-0.125 000 00

0.360 843 92
0.072 168 78

42

44

2
2

2
2

0 0
0 0
0 0

2

2
2

2

2

2

2

2

2

2

2

1
0
2
1
3
2

1
3
0
2

1
2
1
0

2
1
3
0
2

4
1
3
0
2

4
1
3'

0
2

1
3
2

5 1
4 2

3 3

0.375 000 00
-0.036 084 39

0.125 000 00
—0.108 253 18

—0.288 675 13
1.000 000 00

—0.866 02540
—0.153 093 11
0.371 231 06
0.159 09903

—0.459 279 33
-0.123 743 69
—0.053 Q33 01

0.357 217 25
0.255 155 18

—0.530 330 09
—0.051 03104

0.176 776 70
-0.153 093 11

-0.288 675 13
1.000 000 00

—0.866 02540
—0.153 093 11

0.530 330 09
—0.459 279 33
-0.176 776 70
0.357 217 25
0.255 155 18

—0.371 231 06
-0.15909903
-0,051 03104

0„123743 69
0.053 033 01

-0.153 093 11

-0.242 06146
0.335410 20
0.503 11529

-0.145 236 88
-0.207 481 25
-0.373 466 25
—0.111803 40
-0.167 705 10
0.032 274 86
0.852 978 48
0.082 992 50

—0.335410 20
—0.503 11529
-0.016 13743
-0.023 053 47
—0,041 496 25

0.111803 40
0.167 705 10

—0.242 06146

-0.308 093 94
0.308 093 94
Q.177 878 12
0.127 055 80

—0.304 933 92
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TABLE III (Continued)

46
2
2
2
2
2
2
2
2

48 0
0
0
0
2
2
2
2

2

2
2
2
2
2
2
2
2
2
2
2
2

51 2
2
2
2
2
2
2
2
2
2

52 2
2

0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
2
2
2
2

2

2

2

2
2

2
2

2.
2

2

1

2

3
1
2
2.

3
3
3
2

3
3
3
4
4
3
3
3
4

5

-0.102 697 98
0.102 697 98
0.308 093 94

-0.308 0 93 94
-0.019 764 24
-0.014 11731

0.033 881 55
0.102 697 98

-0.102 697 98

0.435 710 63
-0.435 710 63
—0.251 557 65
—0.179684 03

0.431 241 68
0.145 236 88

-0.145 236 88
-0.435 710 63

0.435 710 63
0.027 950 85
0.019 964 89

—0.047 915 74
—0.145 236 88
0.145 236 88

0.345 032 78
—0.836 660 03
—0.358 568 58
' 1.035098 34
0.182 98126

—0.348 626 13
—0.285 239 56
0.384 260 65

—0.117630 81
0.282 313 95
0.116208 71
0.095 079 85
0.085 39126

-0.880 052 74
0.062 736 43
0.348 626 13
0.285 239 56
0.042 695 63

-0.013 07Q Q9

0.031368 22
-0.116208 71
-0.095 079 85
0.182 981 26

—0.145 236 88
0.503 11529

—0.435 710 63
-0.167 705 10
0.484 122 92
0.096 824 58

—0.503 11529
—0.048 412 29
0.167 705 10

—0.145 236 88

0.048 412 29
—0.167 705 10

55

0
0
0
0
0
0
1
1
1
1
1
2
2
2

2

0
0
0
0
0

1
1
1
1
1
1
1

2
2
2
2
2

0
1
1
2

2
2

0
0
1
1
1
2

2

0
0
0
1
1
2

4

2

2

1

1
2
2
3
3
3
2

3
3
4
4
3
3
3
4

5

0.145 236 88
0.055 901 70

—0.161374 31
-0.032 274 86
0.167 705 10
0.01613743

-0.055 901 70
0.048 412 29

0.12909944
-0.447 213 60
0.387 298 33
0.068 465 32

-0.166019 58
—0.071 15125
0.205 395 96
0.055 33986
0.023 717 08

—0.159752 41
-0.114 108 87
0.237 170 82
0.022 821 77

—0.079056 94
0.068 465 32

0.12909944
—0.447 213 60
0.387298 33
0.068 465 32

-0.237 170 82
0.20 5 395 96
0.079056 94

-0.159 752 41
-0.11410887
0.166019 58
0.071 15125
0.022 821 77

-0.055 33986
-Q.023 717 08
0.068 465 32

0.108 253 18
-0.150 000 00
-0.225000 00
0.064 951 91
0.092 788 44
0.16701919
0.050 000 00
0.075 000 00

—0.014 433 76
-0.381463 57
-Q.037 11537
0.150 000 00
0.225 000 00
0,007 216 88
0.010 309 83
0.018 557 69

-0.050 000 00
-0.075 000 00

O.1O8 253 18

0.137 783 80
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TABLE III (Continued)

AcM2 L g A l A, r nq np 0.'+2 L& A l ~ r nq n&

0 2 1 3 4 2
p 2 2 0 3 3
p 2 2 2 3 3
0 2 2 4 3 3
1 2 0 1 4 2
1 2 0 3 4 2
1 2 2 1 2 4
1 2 2 3 2 4
2 2 0 0 3 3
2 2 0 2 3 3
2 2 0 4 3 3
2 2 1 1 2 4
2 2 1 3 2 4

0 2 1 1 4
p 2 1 3 4
0 2 2 0 3
0 2 2 2 3
0 2 2 4 3
1 2 0 1 4
1 2 0 3 4
1 2 2 1 2
1 2 2 3 2

2 2 0 0 3
2 2 p 2 3
2 2 0 4 3

57 2
2 2
2 3
2 3
2 3
2 2
2 2
2 4
2 4
2 3
2 3
2 3

-0.137 783 80
-0.079 549 51
-0.056 821 08
0.3.36 370 59
0.045 927 93

—0.045 927 93
—0.137 783 80
0.137 783 80
0.008 838 83
0.006 31345

-0.015 152 29
-0.045 927 93

0.045 927 93

—0.194 855 72
0.194 855 72
0.112 500 00
0.080 357 14

-0.192 857 14
-0.064 951 91
0.064 951 91
0.194 855 72

-0.194 855 72
-0.012 500 00
—0.008 928 57
0.021428 57

57

P 2 0 2 3
p 2 1 1 2

0 2 1 3 2

p 2 2 2 1
0 2 0
0 2 1 1 4
0 2 1 3 4
0 2 2 0 3
p 2 2 2 3
0 2 2 4 3
1 2 0 1 4
1 2 0 3 4
1 2 1 0 3
1 2 1 2 3
1 2 1 4 3
1 2 2 1 2
1 2 2 3 2

2 2 0 0 3
2 2 0 2 3
2 2 0 4 3
2 2 1 1 2
2 2 1 3 2
2 2 2 2 1

-0.154 303 35
0.374 165 74
0.160 356 75

-0.462 910 05
—0.081 831 71

0.155 910 35
0.127 563 01

-0.171846 59
0.052 606 10

-0.126 254 64
-0.0 51 970 12
-0.042 521 00
—0.038 188 13

0.393 571 55
—0.028 056 59
-0.155 910 35
-0.127 563 01
-0.019094 07

0.005 845 12
-0.014 028 29

0.051 970 12
O.O42 5210O

—0.081 831 71

2 2 2 1 1 2 4 0.064 951 91
2 2 2 1 3 2 4 —0064 95191

equations as
S

oo (Cf &2q2+ q) /8 ~
|(',"(p, q, n) = dq, dp, Q K(n I na) 0'."(P., q„n),

O ~n~~q2-q ~/8, ~

where

o. =1,2, . . . , 8, (4 3)

K(nIn, ) =

Z, , A, X, r

IIq np~ +12 &2 12 ~2 (4.4)

n, =L~ —A+ l —X+1, np =A+X+ &.

I'""' „may be easily read off from (2.11), and is tabulated numerically in Table III for n = 1, 2, . . . , 5;
n, = 1, 2, . . . , 8. We need not list values of F""g ~ „ for n =6, 7, 8, since K(6 I n, ) =~&K(5

I n, ), K(7I n, )
= —,'u 3K(5I n ), and K(8I n ) = —,'97K(5I n ), in agreement with the results stated in (4 2). The five indepen-
dent Faddeev equations may be taken to be (4.3), with n =1, 2, . . . , 5, with (4.2) used to relate g',"(p, q, n),
(n=6, 7, 8) to P',"(p, q, 5).

Equation (3.15) gives the components of the bound-state wave function in terms of the homogeneous solu-
tion g", I s &(p, q, n), (n =1, 2, . . . , 8) of (4.3). Table IV gives the numerical values of B,(S IS',) and C~(T IT,'),
and Table V gives values of A~""(LlgIL, l,g, (=g)) for 0 &L, l &2, 2=0, 2. The wave-function components
for which g =1 for L„, l& 2 are negligible for realistic nucleon-nucleon interactions. '

TABLE IV. Numerical values for the spin particle-
exchange coefficients B&& ( 2S IS)(in (3.15). The isospin
particle-exchange coefficients C~(TI Tt) are obtained by
letting S T, S~ T~, 8 V'.

V. EXPANSION OF THE BOUND-STATE

WAVE FUNCTION IN DERRICK-BLATT
BASIS STATES

s s;

2

Derrick and Blatt have derived a general classi-
fication of trinucleon states based on the proper-
ties of the rotation and symmetric groups of de-
gree 3.

The spin-isospin states in their scheme, with
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TABLE V. Numerical values of AA~" (L/2 ~L 3l 3g 3(=g)) in (315) for 0 & (L, l, 2) & 2,
cleon interactions in the So and S~- D& states.

g& 1, for the case of nucleon-nu-

L l Q L 3 l 3 A A v tip +q L3 Sp Sq

0 0 0 0 0 0 0 0 0 0 1.000 000 00

1 1 0 0 0 0 0 1 0 0 —173205081
2 2 0 0 0 0 0 2 0 0 2.236 P67 98

p 2 2 2

2

2

0 0 0 0 0
0 1 0 1 1 1
0 2 0 2 2 0

0.750 000 00
0.866 02540
0.250 000 00

1 1 2 2

2

2

2

0 0
0 1
0 1
0 2

0 1 0
0 0
0 2 1 1
0 1 2 0

0.821 583 84
0.790 56942
0.158 11388
0.273 861 28

2 Q 2 2 0 0 0 2 0 2
2 0 1 0 1 1 1
2 0 2 0 0 2 0

0.750 000 00
0.866 02540
0.250 000 00

2 2 2 2

2

2

2

2

0 0
1 0 1
1 Q 3
2 0 0
2 0 2

-0.896 421 46
-0.724 568 84
-0.310 529 50
0.000 000 00

-0.298 807 15

1 1 2 0
0
0
0

2 0 0 1 0 2
2 0 1 0 1 1
2 0 1 2 1 1
2 0 2 1 2 0

0.273 861 28
-0.790 56942
—0.158 11388
0.821 583 84

2 0 2 0 2 0 0 2 0 2 0 25000000
0 2 0 1 1 1 1 -0.86602540
0 2 0 2 0 2 0 0.750 000 00

2 2 2 p

0
0
0
0

2 0 0 2 0 2
2 0 1 1 1 1
2 0 1 3 1 1
2 0 2 0 2 0
2 0 2 2 2 0

-0,298 807 15
0.724 568 84
0.310 529 50
0.000 000 00

—0.8 96 421 46

0 2 2 2 2 0 0 0
2 2 0 1 1
2 2 0 2 2

2 2 1 0 1
2 2 1 1 0
2 2 1 1 2

2 2 1 2 1
2 2 1 2 3
2 2 2 0 2
2 2 2 1 1
2 2 2 1 3

0 4
1 3
2 2
1 3
2 2
2 2
3 1
3 1
2 2
3 1
3 1

-0.224 10536
0.776 323 75

—0.672 31609
—0.258 774 58
0.522 912 52
0.373 508 94

-0.543 426 63
—0.232 897 13
—0.074 701 79

0.181142 21
0.077 632 38

P 2 2 0 2 0 0 0 0 2 0.250 000 00
0 2 0 1 1 1 1 —086602540
0 2 0 2 2 2 0 0.750 000 00

0 2 2

1 1 2

2 Q 2

2 2 2 2

2

2

2
2
2

2

2
2

2
2
2

2
2
2
2

2

2
2

2

0.000 000 00
—0.224 105 36

-0.245 495 13
0.496 078 37
0.354 341 69

-0.515 539 77
-0.220 945 61
-0.165 35946
-0.118 11390

1.031079 53
-0.049 09903
—0.496 078 37
-0.354 341 69
-0.057 282 20
-0.024 549 51
0.165 35946
0.118 11390

-0.245495 13

-0.224 105 36
0.543 426 63
0.232 897 13
0.000 000 00

—0.672 31609
-0.181142 21
—0.077 632 38
0.522 912 52
0.373 508 94

-0.776 323 75
0.000 000 00

—0.074 701 79
0.258 774 58

-0.224 105 36

0.267 857 14
-0.510 336 40
-0.417 547 96

0.562 500 00
-0.172 19388
0.413 265 31
0.170 112 13
0.139182 65
0.125 000 00

—1.288 265 31
0.091836 73
0.510 33640
0.417 547 96
0.062 500 00

-0.019132 65
Q.045 918 37

-0.170 11213
-Q.139182 65
0.000 000 00
0.267 857 14
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1 =2 =2 are:1

Sym 1
Wl/2 mg ~p (Xl 11 X2 12) t

A 1
1/2 mg ~g (X291 X192) 0

1
wl/2 mg ~2 (X2 12 Xl /1) 1

1
1/2 mg ~2 (X112 X291) &

(5.1)

with isospin states g, and q2 obtained by the re-
placements X, ,—g, „S-T, s- t, S- V, and

m& -E,. The superscripts Sym, A, +, and-
denote, respectively, complete symmetry, com-
plete antisymmetry, mixed symmetry with sym-
metry under P(1), and mixed symmetry with anti-
symmetry under P(1). For the mixed-symmetry
states, we have

P(2)W'= ——,'W' ——,
'

v 3W

~Sj2, =X3ni

~3//2 m~ X302 &

where

Xl =
Xlmg

=
I
(Ss)Smg &, ,

X, =X... = I(Ss)8~.&„

X3 X3
= 1(Ss)3m 2 &„

S=o,
$=1,
$=1,

s=S = —,';
s =8 =-,'; (5.2)

s= —', S=—';2 p 2

P(2)W = -2 v 3W'+ 2W

P(3)W' = —2W++ 2 v 3 W

p(3)w- =-,'v3w'+-,'w-,

with subscripts Sm& suppressed.
The trinucleon bound-state vector with

(5.3)

$ =P, =&=V', = —,
' may be represented as

I PB& Wl/2 1/2141/2( Sl/2» + 1/2 1/21 41/2 ( Sl/2)& + 1/2 1/21 41/2( Sl/2)& 1/2 1/21 ' 1/2( 1/2))

+ Z (I~. 2 m 1 122&l Wl/2. 3 I e"., ('Pl/2&&+ W,"/. ..14"2(' Pl/2&&+ Wl /2. .14., ('Pl/2)& —Wl/. .. I
e'., ('Pl/2&&]

mg gmg

+ g &1~, -'mg I-'-')[w,'/. ..Iq., ('P /. ) -w. /. ..Iq'. , (' /. )&]
mg gmg

+ 5 &2/gg, ~gm 3122&IW3/2, 10,('Dl/2)& —Wg/2, 10', ('Dl/2)&)
mg 1m'

(5.4)

where the superscripts Sym, A, and + denote the same particle-exchange properties for the spacial states
as they do for the spin-isospin states.

The components of the spacial states are easily expressed in terms of the components of
I ps& given by

(3.15):

1(pq(LL)00141/2( sl/2)& =~~1&[pq(LL)0 (02)2]22 (0~2)22'I gs&+~21&[pq(LL)0 (12)2]2'z (12)zg Its&

L odd; etc. ; (5.5)

,(pq(LL) Im, I pm ('P„,)) =(Im, —,
'

m 2 I
—,
'

—,'& (1([pq(LL)1, (0—,')]—,
'

—,'; (0—,')-,' —,
'

I gs& +,([pq(LL)1, (1—,')]—,
'

—,', (1—,') —,
'

—,
'

I tl/2&],

From the exchange properties of the spacial mixed-symmetry states, it follows that

&0'le'&=&P„0'IP.e'&=&-l0'- l~~q I
le' l~~e -&=l(-e'le' +&l(e 10 ).

Thus,

I. odd; etc. (5.6)

(5.7)

(5 8)

The relation (5.8) is very useful for checking the consistency of the complicated numerical calculations
involved in the determination of

I gs&.
'
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Correlated wave functions obtained by solving the Bethe-Goldstone equation with realistic
nuclear interactions are employed to calculate Coulomb shifts, isospin mixing, Coulomb en-
ergies, and coefficients of the isobaric mass formula in 1p-shell nuclei. Improved agree-
ment with experiment is obtained, particularly for the Coulomb shifts and isospin mixing
which are not sensitive to the size parameter, No evidence is found favoring a charge-depen-
dent component in the nuclear force.

I. INTRODUCTION

The concept of charge-independent nuclear
forces is very nearly as old as the discovery of
the neutron. " It is very well established that any
charge-dependent component of the nuclear force
must be quite weak compared with the basic in-
teractions which bind atomic nuclei. A definitive
evaluation of this component is hampered by the
presence of the Coulomb interaction. Charge de-
pendent effects clearly exist in nuclei; can they
be precisely attributed to Coulomb forces?

To answer this question, one obviously requires
precise knowledge of nuclear wave functions.
Thus, the theoretical investigation of charge-de-
pendent effects in nuclei requires a twofold ap-
proach. First one tries to calculate charge-de-
pendent effects from known electromagnetic in-
teractions with a trial wave function, then one
must determine if any remaining discrepancies
are to be attributed to additional charge-dependent
interactions or an inadequate wave function.

The first nuclear p shell (4 &4 ~ 16) provides a
wealth of charge-dependent data. The differences

as(z) =- s(z) —s(z —1),

with odd-even Z has been useful in establishing
the pairing correlation. "

More recently there has been considerable in-
terest in the isospin mass formula'.

E(A,' T, T~) =a+bT3+cT3'. (1.3a)

This formula relates the energies of isobaric ana-
log levels in neighboring isobars. It is valid so
long as the charge-dependent part of the interac-
tion between nucleons is strictly of a two-body
character and isospin mixing is negligible.

Sufficient data are now available on several mul-
tiplets, three of which (4=7, 9, 13) are in the
first p shell."Usually an empirical fit to the

in binding energy for a mirror pair,

-6(z) =-B.E.(z, N) -B.E.(z —1, N+ 1),
have received extensive attention in the litera-
ture, ' and have proved useful in the investigation
of nuclear size. Likewise the alternation of sec-
ond differences,


