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The spin-orbit part Vy. L of the o-nucleus interaction is estimated on the basis of the nu-
cleon-n spin-orbit potential. Here I is the spin of the target nucleus and L is the orbital an-
gular momentum of n-nucleus relative motion. The calculation assumes that the target nu-
cleus undergoes no virtual excitation during the collision and that core polarization effects
are absent. Numerical results are obtained for the nuclei of ~Be, 59Co, and ~4N. The result
for the two first cases is found to be an order of magnitude smaller than the phenomenologi-
cal values of V& .L quoted in the literature. For 4N the value of V&. L- is nearly 10 times larg-
er than for ~Be, a result which depends on the fact that for the valence nucleon j= I —2 in the
former case, and j = l + 2 in the latter case. For N no phenomenological values of Vy. l-ap-
pear to be known.

I. INTRODUCTION

The spin-orbit part s ~ g of the nucleon-nucleus
interaction is well known. Its origin is attributed
to the spin-orbit part of the nucleon-nucleon inter-
action, as is discussed, for example, in the book
by Bohr and Mottelson. ' Here s denotes the spin
operator —,'hv of the nucleon, and g is the nucleon-
nucleus orbital angular momentum of relative mo-
tion. If the target nucleus has a spin I different
from zero, other potentials can also arise. One,
the spin-spin interaction s ~ f, has been suggested
some time ago by Feshbach. ' Its effect on the
elastic scattering of polarized projectiles, has
been discussed by Stamp' amongst others, and the
presence of this term has been seen experimen-
tally in the absorption of neutrons on polarized nu-
clei' and in the splitting of energies in isobaric
analog resonances. '

Another term which can arise in either the nu-
cleon-nucleus or the n-nucleus optical potential,
and which is the subject of the present discussion,
is an I ~ L term. The origin of this term can be
either the spin-orbit part S ~ L' or the L' ~ L' part
of the nucleon-nucleon interaction. Here 5 denotes
the sum of the spins of the two interacting nucleons,
S=s, +s„and L' is the orbital angular momentum
of their relative motion. The resulting I ~ L term
arises even if the spin of the projectile is zero and
a term of this type has been looked for in the elas-
tic scattering of both He and 'He projectiles from
nuclei. ' ' The effect of the I L potential appears
to be small. Nevertheless, it is possible that it
could play a nonnegligible role in inelastic or re-
arrangement reactions, in which the nucleus in the
final state has a nonzero spin. In inelastic reac-
tions the spin of the final nucleus is likely to be
polarized along the normal to the scattering plane

and hence the f L potential will give an effect to
first order. By contrast, for the elastic scatter-
ing on unpolarized target nuclei the effect of the
I ~ L potential is of second order, and hence its ef-
fect will be less noticeable.

The estimate of the strength of the l L potential
presented here is intended to give only an indica-
tion of the magnitude, in order to provide a theo-
retical orientation for phenomenological calcula-
tions' ' employing such terms. The derivation is
straightforward, the only difficulty being the trans-
formation of coordinates required in order to ap-
propriately define the various orbital angular mo-
menta involved. The orbital angular momentum
L' describing the relative motion of two nucleons,
required for the nucleon-nucleon S ~ L' potential,
has to be related to the orbital angular momentum
L of motion of the center of mass of the projectile
relative to that of the target nucleus. The deriva-
tion consists in averaging the spin-orbit part of
the nucleon-nucleon interaction over the nucleons
of the projectile nucleus. The latter is taken to be
the e particle. The result is a spin-orbit potential
s,. ~ L between a nucleon i in the target nucleus and
the orbital angular momentum of the projectile.
For subsequent applications this potential is re-
placed by the phenomenological optical-model spin-
orbit nucleon-a-particle potential and the final nu-
cleus-z I ~ L potential is obtained by averaging the
above-mentioned potential over the nucleons in the
target nucleus. It is assumed that only the valence
nucleons which have unpaired spins contribute to
the averaging process, thereby disregarding core
polarization effects. In Appendix B an expansion
of the o.-nucleus interaction in terms of general
tensors" is presented, but for the numerical
evaluation only the central part and the I ~ L part
of the potential is kept. Numerical results for the
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I ~ L potential for the nuclei of 'Be and "Co are
presented. These nuclei were chosen since phe-
nomenological values are available. '' The present
estimate turns out to be an order of magnitude
smaller than the phenomenological result. For the
nucleus of "N, on the other hand, the I ~ L poten-
tial is found to be considerably larger than for the
two other nuclei, which makes this nucleus a more
promising candidate for studying this potential.

II. THEORY

The nucleon-nucleon spin-orbit potential between
nucleons i and j is given by

V„(i,j) = —, VL, (r, , ) (x, —X,. ) x ( V-„, —V-„) ~ (s, + s) ) .

where
l Ps) denotes the internal wave function of

nucleus B. It is shown in Appendix A that an ap-
proximation to V„(i,B}is given by

x V'-, — V; R ~ s ~

~~a-
(3)

where $,. is the vector pointing from the center of
nucleus B to nucleon i and V„($,} is such that

V„($,)T, s;

represents the nucleon-n spin-orbit potential, J.;
being the orbital angular momentum of nucleon i
relative to the e particle. In Eq. (3) above r, is
the distance of nucleon i to the center of mass of
the target nucleus, R is the distance between the
centers of mass of target and projectile nuclei, R
=Re —R„, and p.» is the reduced mass ABl(A+B)

Here x, and x& are the respective coordinate vec-
tors of the nucleons i and j as measured relative
to an inertial frame, and s, and s,. denote the re-
spective spin operators. The distance between nu-
cleons i and j is r,.&, the gradients act on the co-
ordinates indicated by the subscripts, all other
variables being held constant. If the number of
nucleons in the target and projectile nucleus is
denoted by A and B, respectively, and if i is re-
stricted to vary from 1 to A and j from A+ 1 to
A+B then Eq. (l) denotes the spin-orbit interac-
tion between two nucleons in the target and projec-
tile nuclei, respectively.

The spin-orbit potential between nucleon i in the
target averaged over all nucleons j in the projec-
tile is given by

v„(f, B) = ((4 l Zv„(&,j}l &4),

of the target projectile system, in atomic mass
units. The quantities inside the square brackets
are due to the transformation from nucleon coordi-
nates measured relative to an inertial system to
coordinates measured relative to the center of
mass of one of the nuclei. The appearance of the
term V;/p„s can be understood classically from
the relation between the momenta p„and p~ of a
mass point of mass m measured relative to two
different centers A and B moving relative to each
other. If the masses of centers A and B are M„
and M~, respectively, and if P is the momentum
of mass M~ relative to the center of mass of the
system, then

p~ —Pm~ p~a =pa

The above expression is very similar to the square
bracket in Eq. (3) and shows that V„(i,B) as given
by Eq. (3) is quite reasonable in that it represents
the spin-orbit potential of nucleon i relative to the
projectile B.

The result of Eq. (3) is derived under the assump-
tion that nucleus B can be represented in the L ~ S
coupling scheme, with the orbital and spin parts of
the wave function each having zero angular momen-
tum. If the spin part has nonvanishing angular mo-
mentum, as would be the case in 'He, the spin op-
erator s; in Eq. (3) should be replaced by s, +RsN,
where S~ is the total spin operator of nucleus B,
and N is a reduction factor, as is discussed in
Appendix A. The desired expression for the I ~ I
potential (where L is the orbital angular momen-
tum of the relative n-nucleus motion) is obtained
by averaging the potential V„(i,B) over all nu-
cleons in the target nucleus,

(4)

Here P„represents the internal wave function of
the nucleus A.

In order to obtain an estimate of V„as given by
Eq. (4), several assumptions are made which will
now be discussed.

It will be assumed that the presence of the pro-
jectile does not polarize the target wave function,
and also that the "free" nucleon-cy spin-orbit po-
tential can be used for V„((,.) in Eq. (3). Both as-
sumptions are similar to those made in obtaining
the real part of the z-nucleus central potential by
folding an effective "free" nucleon-e potential into
the target nucleus matter distribution. This fold-
ing procedure has been found to be quite success-
ful" thus justifying the approximate validity of
these assumptions. For nucleon-nucleus scatter-
ing a similar assumption has been made by Pyle
and Greenlees, "but, as shown by Owen and
Satchler, "neglect of exchange terms due to anti-
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symmetrization does produce a sizable effect in
the nucleon-nucleus case.

It is quite possible that the polarization of the
target nucleus by the incident projectile can give
rise to a nonnegligible contribution to the I ~ I.
potential. Indeed, a recent investigation of deuter-
on-nucleus elastic scattering which takes into ac-
count part of the deuteron distortion by means of a
coupled-channel treatment" shows that approxi-
mately half of the phenomenological deuteron-nu-
cleus spin-orbit potential can be caused by such
distortion effects. Also, an investigation of the
effect of the presence of an I ~ L potential in the
final channel in inelastic n-nucleus scattering
shows that reorientation terms included in the
coupled-channel treatment do give rise to addition-
al I ~ L-like effects. " On the other hand, Satchler"
has shown that core polarization effects do quench
the s ~ I potential in nucleon-nucleus scattering.
The effects discussed above may be quite impor-
tant but are outside the scope of the present esti-
mate which limits itself to the "static" estimate
of the I ~ L potential. Among effects of the type
mentioned above are also the effects due to the
tensor part of the nucleon-nucleon potential.
Since this potential is velocity independent it can-
not give rise to a I ~ L potential in first order.
Terasawa" shows that the tensor force can in-
crease the spin-orbit splitting of single-particle
bound energy levels through higher-order core
polarization effects. On the other hand, Elliott,
et al." calculate spin-orbit splittings for bound-
state energies for several nuclei directly from
free nucleon-nucleon scattering phase shifts, with
excellent results. The authors point out that in
their calculations the tensor part of the nucleon-
nucleon force does not contribute to the bound-state
spin-orbit splitting. The evaluation of Eq. (4) with-
in the "folding" assumptions discussed above will
now be described. The expression for V„(i,B)
given by Eq. (3} is inserted into Eq. (4). The quan-
tity t',. is replaced by r, —R. The term Q, V;/A in
the square brackets in Eq. (3) is dropped, since it
represents the sum of the momenta of all nucleons
in nucleus A relative to its center of mass and
should vanish. The equation (3) is thus replaced
by

target nucleus

V;.(t';)=Z V, (r;, R)Y,* (;)Y, (R),
L, X

with the expansion coefficients vL given by

(6)

2m
v~(r, R) = — r' V„(r') P~(cosu) d r', (7)

'I R-r l

where

2+r 2 rI2
cosQ =

2Rr

and where r",. and R denote the directions of the
vectors r,. and R, respectively. In Appendix B
this expansion is carried out in detail in the form
of general tensor expressions Tr(f) and P, (R), the
former operating on the coordinates of nucleon i
in the target nucleus, the latter operating on the
coordinates of relative motion of the o. particle.
The lowest-order terms of interest are given in
Eq. (A7) and (A6) of the Appendix. Making use of
Eqs. (7) and (8), the central and spin-orbit parts
of the o-nucleon interaction V„(i, B) can be writ-
ten, respectively,

(8)

v, (r„R} R v, (r„R)
4 4 (9)

and

(10)

Here the vector T, represents the tensor of rank 1

(Ref. 19}formed from the spherical harmonic
Y,(f', ) and the operator s, :

T» =p(lpl21m o& Y, (r;)(s;)

V„(A, B) lII, = VII, (R) 1 L, (12a)

The corresponding central and spin-orbit parts of
the z-nucleus interaction are obtained by averag-
ing the expressions above over the internal wave
function of nucleus A,

lcENTa~L

Yfs„' rt; (I—
"' ———"')"; d";(p ll s lp ),

(&i)

V,o(t', B)= —. V„(g;)( r, x V-„+R x V q p„~
—r, xV~ p» ' —RxV;}~ s, .

In order to carry out the integrals over d'r, , it is
also convenient to expand the potential Vs, (l r, —Rl)
in spherical harmonics around the center of the

where R„ is the radial part of
l g„& and

l P„& the
angle, and spin part. The numbers g,. and h; are
projection factors

(411 s;114&
(q„llfll@„&

' (13)

VIL JAB R„'(r; 4' g; —
& 4—' g; +~2m h;) r dr,
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(y„lllll y„i ' (14)

q„= l ((1„s,}j„(1„s,)q,)II,},
the projection factors g, become

1 j,(j,+ 1) +I (I+ 1)—j2(j ~+ 1)
2 I(I+1)
1 j,(j,+1)+I(I+1)-j,(j,+1)

I(I+1)

where the single-nucleon projection factors g„. are
given in Table I. A similar result holds for the
h's if in Eqs. (15) all letters g are replaced by h,
with h, .&, given in Table I. The phenomenological
nucleon-nucleus spin-orbit potential is frequently

which arise through the use of the projection theo-
rem, "and I is the spin operator for the whole tar-
get nucleus, which is understood to be operating
on the target wave function I g„). It is interesting
that the signs of both the central and the spin-orbit
parts of the potentials given by Eqs. (10) and (11)
depend on the total spin of the nucleus. This fea-
ture results from the presence l; ~ s, and of g, and

Pg, in the respective matrix elements. For example
in the case of a nucleus with one valence nucleon
outside a closed core, the sign of V«depends on

whether the spin of the valence nucleon is parallel
or antiparallel to j. In this case the g and h fac-
tors are given explicitly in Table I.

The dependence of the I ~ L potential on the j val-
ue of the nuclear state appears to have been ob-
served by Weller~ in his interpretation of the
spectra of "N in terms of a "B+0.particle states.
According to his interpretation one set of levels in
"N is due to the interaction of an n particle in a
1 state with "B in a j=-,' state. The sequence of
levels is -', +, —,", and —,". The next set of levels
corresponds to the cy particle in a 1 state inter-
acting with "B in a j= —, state. There the order
of the levels is &', —,", which is the inverse of the
one for the first set, in accordance with the sign
dependence of the g and h factors discussed above.
For the case of two valence nucleons coupled ac-
cording to the j-j coupling scheme

given in the form

, d ~-R,.P„=2 P„r ' —1+exp " l-s.ts m &
1o a, ,

(16}

The factor 2 allows for the use of l ~ s rather than
1.o In. serting Eq. (16) into Eq. (12b) results in

Vii(R) = p„a '(h /m, c)' V+ 'fii(R), (17)

fbi(R) =Q g(f, ' (R) —(g;+ ~2m h;) f', ' (R), (18)

and

w(r'}=, 1+expdr' . a, ,

1

u'"(r, r') = (R'+r ' —r")/(2R')

(R +r r' )/(2r ~)

(20a)

for k=0

for k=1

for k=2.

(20b)

For k =0 the integral in Eq. (19) can of course be
done explicitly by parts.

The central potential is given by the expression

VcE„T„„~(R)= (h/m, c)'V„R 'f, (R), (21)

f,(R) =P [fI"(R) —f',"(R)](g„l1, ~ s, l g„}. (22}

It is interesting to note that the I ~ L spin-orbit po-
tential given by Eq. (17) is inversely proportional
to the reduced mass of the projectile and target
nucleus. However, in addition to the factor 1/p,
there is a further reduction due to the cancellation
between the f ~»' and fPl in Eq. (18). This cancel-
lation is very severe, as the numerical results in
Sec. III will show, with the result, that the He-
nucleus I ~ L potential is much smaller than one
quarter of the nucleon-'He spin-orbit potential.
As the following discussion will show, the deuter-
on-nucleus spin-orbit potential is formally similar

with
oo IR+r I

f, (R) = I g„'(r)rdr u (r, r')Iu(r') dr',
0 IR-r I

(19)

and

TABLE I. The projection factors g and h defined in Eqs. (13) and (14) for the case of a valence nucleon of orbital mo-
mentum l and total spin j.

g'f j
v2n h, ~

1+~2m k,~ /g, )

(2l +1) i

l (2l +1) (2l +3)

3(l +1)(2l +3) i

-(2l+1) '

-(l +1)(2l -1) ~(2l +1) i

3l (2l -1) i
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to Eqs. (17) to (20} but the cancellation between f~'~

and f ' is much less severe in this case.

Deuteron-Nucleus Spin-Orbit Potential

The formula derived in the Appendix also can be
used to obtain the deuteron-nucleus or the 'He-
nucleus spin-orbit S ~ L potential. In this case B
is interpreted as the target nucleus (assumed to
have spin 0) and i refers to the nucleon contained
in either the deuteron or the 'He projectile. The
nucleon-nucleus spin-orbit potential given by Eq.
(A14), with S~ =0, then has to be averaged over
the internal wave function of the deuteron or 'He.
The operator c, is given by the expression in
square brackets in Eq. (3). For the case of the
deuteron one can proceed by expressing the co-
ordinates (, and $, of the neutron and proton in
terms of the relative coordinate $ = (, —(, and the
c.m. coordinate R„= —,(t, +$,)+R~, one then ob-
tains for c, and c, the expressions

I AB R~

-1CP= —+( —PAB +R &

with R= RB —R„. After averaging the result over
the internal deuteron wave function,

~ PD), one ob-
tains for the deuteron-nucleus spin-orbit potential
the result

equivalent to the above have also been given by
Keaton et a/. "for the deuteron and 'He-nucleus
interaction. These authors also observe the re-
duction of the nucleon-nucleus spin-orbit potential
by the reduced mass p, . However, contrary to
what was the ease for the 4He-nucleus I L poten-
tial discussed above, the additional reduction due
to the cancellation between f ~~' and f~' is much
smaller here. The reason is that the relative spa-
tial extents of U and so in the deuteron S ~ L case,
Eq. (25), is different from that of P„and u, Eq.
(19), in the 'He I ~ L case. For example, for the
case of the D- 'Ca spin-orbit potential, numerical
calculations show that the maximum in f~~'~- f n~'

occurs near R =3.5 F, and f'" is only about 8/0 of
f'" at that distance. For other distances, f'"
may be larger, but is usually less than 30% of f ' .
The numerical results quoted above were obtained
with a modification of the code used for the calcu-
lation of the a-nucleus I ~ L potential and the good
agreement with the results of Keaton et al. served
as a check of the code. Further results will not
be given here since extensive numerical values
for the deuteron-nucleus and 'He-nucleus central,
spin-orbit and tensor potentials are contained in
the work by Keaton et al."

Nucleon-Nucleus Spin-Orbit Potential

(R) -iL-. 8 ~
&o(R 2t) 1 h &,(R, -'()

4, 2 Z 4, Although it is not the purpose of the present pa-
per to give numerical results for the nucleon-nu-
cleus spin-orbit potential, it is of some interest
to note that Eqs. (A8) to (A13) in Appendix A do
provide the microscopic description required for
such a calculation. " For this purpose it is suffi-
cient to take B as the target nucleus, and assume
only one nucleon (nucleon i) present in nucleus A.
For a spherical target with zero spin, the spheri-
cally symmetric part of Eq. (A8) given by Eq. (A12)
would be the appropriate expression to be evaluat-
ed, as is indicated by Eq. (A13).

If the nucleons in nucleus B have their spins
coupled pairwise to zero, then neither R nor the
portion due to s& in 5,, (S,&

——s;+s, ) will give any
contribution to Eq. (A8). In this case the first
term in Eq. (A8) and the s; part of the last term
should provide the microscopic description for
the full Thomas deformed spin-orbit potential, re-
cently discussed by Sherif and Blair, "and used
for inelastic transitions

~ Ps)-
~ Ps).

If, for some excited state of nucleus B, the nu-
cleon spins are not coupled pairwise to zero, then
in addition to the deformed full Thomas s ~ L po-
tential mentioned above, the remaining terms in
Eq. (A8) do provide the microscopic basis for a
deformed I ~ L potential. Since experiment appears
to favor a deformation parameter of the spin-orbit

(23)

where

L = (0/i) Rx4 ~

and

5 = -,
'

h(o, + a, ) .

If the D-state contribution to the internal deuteron
wave function is ignored,

~ QD) can be replaced by
[ U($)/$]~ 1,MD) (where

~
1,Mo) represents the deu-

teron spinor), and the equations analogous to V,~
given by Eq. (17) are

(24)

with
ao R+r

f~'~ = r '[U(2r}]' u (r, r'}w(r')dr'
dp l(z-r) ]

(25)

and where u~ and m have been defined in Eqs. (20).
The above result for the f ~~"~ is formally similar

to that given in Eq. (19) for f, I with the exception
that rg„'(r) is replaced by [ U(2r}]'/r. Expressions

2

V~~(R) =0 ~ L — V, a
—[fD (R) fD' (R)]-m, c



ESTIMATE OF THE ALPHA-NUCLEUS SPIN-ORBIT POTENTIAL 1217

potential (used in the full Thomas term) which is
larger than the deformation required of the central
potential, "it would be of interest to investigate
whether inclusion of the additional I ~ L potential
would remove this discrepancy. It should also be
remembered that the L - L part of the nucleon-
nucleon potential will give rise to an additional
I ~ L potential, as is mentioned in the Introduction.

III. NUMERICAL EXAMPLES

The ]r-nucleus 1 ~ L potential given by Eq. (12)
and Eqs. (17) through (20) will be used for the
present numerical examples. The nuclear wave
function gA which appears in these equations is
replaced by the single-particle radial shell-model
wave function cp&(r}. The parameters for the shell-
model potential are taken from a study by Batty
and Greenlees. " For a proton the radius and dif-
fuseness of the central potential is 1.28&A'" F
and 0.60 F, respectively, and the strength is 7
MeV. The Coulomb potential is that of a uniform
charge distribution with radius 1.28 x A'" F. The
nucleon separation energy is taken for the single-
particle energy.

The nucleon- n spin-orbit potential parameters
are taken from a study by Morgan and Walter. "
The parameters V, , R, , and a„, defined in Eq.
(16), have the values (3.95+0.144Z„) MeV, 1.956,
and 0.435 F, respectively, for the neutron-z case.
There are other sets of parameters for the nu-
cleon-n spin-orbit potential. The one arrived at

O.OI—

RADIAL DISTANCE R (F) ~

-O.OI

-0.05

-0.05—

FIG. 1. The n-nucleus spin-orbit potential VI~(R)
times the G. -nucleus distance R. The I L potential is
de6ned in Eq. (12) and VII is evaluated according to Egs.
(17) to (20) utilizing shell-model wave functions for the
valence nucleons. The origin of VzL is the spin-orbit
part of the nucleon-nucleon potential. The potential VI+
can be parametrized according to Eq. (26) and the corre-
sponding parameters are given in Table II.

by Satchler et al.~ for neutrons is (3.0+0.1E„)
MeV, 1.585F and 0.25F for V, , R„, and a„,
respectively. The latter values are also used and

give somewhat smaller results for Vl~. The pro-
ton or neutron energy E~ or E„ is taken as the in-
cident n-particle energy divided by 4 so as to re-
semble the energies of a nucleon in the nucleus
relative to the n particle. The incident energy of
the n particle is taken equal to 10 MeV, which
then gives for V, the a value 4.31 MeV. The re-
sults for R times VI+(R), are illustrated in Fig. 1
for three nuclei: "Co, 'Be, and "N. For "Co
the nucleon is taken as a f», proton hole bound to
"Ni. The corresponding g factor is --,', the-
sign reflecting the absence of this nucleon.

The potential V«contains the difference of the
functions f'" and f'". Both functions are nearly
equal and hence they nearly cancel. For example,
for "Co the value of f " and fi' at R =4 F is 0.229
F ' and 0.193 F ', respectively. The correspond-
ing value of fz, , ———,

' (fi'] —1.333f ~ ']) is -0.004 F,
i.e., the cancellation produces a reduction of near-
ly an order of magnitude. In a preliminary re-
port, "the term f~'] had not yet been included and
hence the results stated there are considerably
larger. This cancellation is responsible for a
change in sign for R &5. On the other hand, for
"N the cancellation does occur to a much smaller
extent because the coefficients g and g+]]2vh,
which are to be multiplied into f"] and f' '], are
quite different from each other. The ratio of the
coefficients of fi" and f~' is 1+~2wh/g and is giv-
en in th.e last line of Table I.

This ratio has the value of 1.5 in the limit of
large l for both j values, but the ratio becomes
progressively different for the two j values as l
decreases. When l=1, this ratio is 1.2 for 'Be
and 3.0 for "N, which explains the lack of cancel-
lation in "N, and hence the occurrence of the com-
paratively large spin-orbit potential in this case.

As can be seen from Fig. 1, the function RVI~(R)
has a maximum and falls off at large distances.
Disregarding the change in sign which takes place
in "Co, it is useful to approximate R V»(R} by an
expression of the form

RV, (R) —
( V",—]1+e p[(R —R")/ "]] ',k „d

since in this case the spin-orbit potential Vl~ can
be written in the conventional phenomenological
form

h
V« = Vg, R ' —(1+exp[(R -R")/s"])

(26)

The results for the parameters Vl'I, B", and a"
are given in Table II.
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TABLE II. Parameters for the I ~ L potential defined in Eq. (26).

Vrl, (Me V)

a" (F)

a" (F)

Theory

0.078

3.5
0.89

'Be
Phenom

3.87

0.60

Theory

0.045

2.0

0.83

58( o
Phenom

0.2 0.65

5.76

0.586

N

Theory

0.75

2.5

1.27

The nucleon-e spin-orbit potentials are taken from Ref. 26.
b Reference 8.

Reference 7. The 0 ~ L potential used by these authors is converted to a I. L potential according to Eq. (27), as is
explained in the text.

l.2—

IO—

0.8—

0)

0.6—
CL

0.4—

l4N

x(Ir2)

0.2—

The central potential is also calculated on the
basis of Eqs. (21) and (22), and the results for
'Be, "N, and "Co are shown in Fig. 2. The phe-
nomenological values given in Table II have been
determined from the elastic (o, a) scattering on
randomly oriented nuclei. " In this case the I ~ L
potential gives no contribution to first order in
V,~ and the sign of this potential is therefore not
determined. The phenomenological analysis of
e-"Co scattering has been carried out' assuming
a spin —,

' rather than -', for "Co. An analysis in
terms of first-order Born approximation of the
effect of a small I L potential on the elastic cross
section shows that the correction to the cross sec-

tion is proportional to

I(I+ 1)(Vli) (27)

Assuming the value of I to be alternately —,
' and -',

and equating both results of Eq. (27) provides a
relation between V,~ and the equivalent V ~. Al-
though the interference of the second-order Born-
approximation terms with the unperturbed scatter-
ing amplitude which are of the same order have
not been included in the expression above, the
above recipe appears to be reasonable. For ex-
ample Taylor et a/. ' find that a spin--,' I L poten-
tial of 4.4 MeV is equivalent to a 2.4-MeV spin--,'
potential. The conversion procedure based on Eq.
(27) gives the value 5.4 MeV instead of 4.4 MeV,
which is acceptable for our present purposes.

Comparison of the theoretical and phenomenolog-
ical values of the parameters listed in Table I
shows that the phenomenological value of V~, is
larger by nearly an order of magnitude, that the
radius is also larger but the diffuseness is smaller.
The phenomenological determination of these pa-
rameters is based on the requirement that the ad-
dition of the spin-orbit potential improves the fit
to the elastic cross section. It is therefore sub-
ject to various uncertainties inherent in the use
of the optical-model formalism. On the other
hand, the present theoretical estimate leaves out
the effects of core polarization and virtual excita-
tion of intermediate states, which may be quite
large. Comparison of the theoretical and phenom-
enological values in Table II is thus an indication
that more work needs to be done both in the the-
oretical calculation of V«as well as in the phe-
nomenological determination of its value.

-0.2—

I&. DISCUSSION AND CONCLUSIONS

RADIAL DISTANCE (F) ~
FIG. 2. The central part of the n-nucleus potential

due to the spin-orbit portion of the nucleon-nucleon po-
tential. This potential is defined in Eq. (11}and is eval-
uated by means of Eqs. (19) to (22) in the text.

A portion of the interaction between an n par-
ticle and a nucleon in the target nucleus is due to
the spin-orbit part of the nucleon-nucleon poten-
tial. This interaction, described by Eq. (5), in-
volves the spin s,- of the individual nucleons i in
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the target nucleus dotted into various operators.
One of these operators is the orbital angular mo-
mentum L of the O, -target nucleus relative motion.
This operator, when averaged over all nucleons i
in the target nucleus gives rise to a e-nucleus
I L potential, which is the object of the present
investigation. Here I represents the spin of the
target nucleus. Another operator is the internal
orbital angular momentum l; of the same nucleon
i, and this part of the interaction gives rise to
central n-nucleus potentials whose magnitude de-
pends on the spin I of the nucleus. All these po-
tentials can give rise to inelastic as well as to
elastic processes and although small, may have
to be included in future more precise analyses of
a-nucleus collisions.

In the present discussion emphasis is placed on
the elastic z-nucleus interaction, and estimates
for both the I ~ L and the above-mentioned central
part of the e-nucleus potential are given for the
nuclei of 'Be, ' N, and "Co, using a simple shell-
model description of the ground states of these nu-
clei. Core polarizations are ignored in the present
estimate. The ~-dependent coefficient the "static"
I ~ L potential is found to be nearly 2 orders of
magnitude smaller than the conventional spin-orbit
potential which occurs in nucleon-nucleus interac-
tions.

An application envisaged is the inclusion of the
I ~ L potential in the optical-model potential of the
exit channel in (o., a'} reactions. " As already
mentioned in the Introduction, the spin of the nu-
cleus excited in the reaction is usually polarized
relative to the normal to the scattering plane, and
hence the I ~ L potential has an effect on the inelas-
tic cross section already to first order in the
strength of this potential. It has been found" that
if the I ~ L potential is as large as what the phenom-
enological analyses indicate then it has a nonneg-
ligible effect on the degree of polarization of the
excited nucleus in (a, o') reactions at energies
above 30 MeV. It would be of some interest to in-
vestigate to what extent this potential can also af-
fect the determination of nuclear deformation pa-
rameters in (n, a') reactions, particularly at high
energies and whether it can introduce significant
j-dependent effects in rearrangement collisions. "
It is interesting that the sign of the I ~ L potential
is itself I-dependent, in view of the fact that the
projection factors g and h, defined in Eqs. (13)
and (14) are positive or negative depending on
whether the spin of the nucleon is parallel or anti-
parellel to the total spin I of the nucleus.

In conclusion, the strength of the "static" I ~ L
potential in e-nucleus collisions was estimated
and for the nuclei of 'Be and "Co it was found to
be considerably smaller than the corresponding
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APPENDIX A

It will now be shown that V„(f,B) is given by
Eq. (3). In order to carry out the average over
the nucleons in nucleus B, it is convenient to
make a transformation of coordinates to the cen-
ter of mass of nucleus B, R8. Denoting, respec-
tively, by $; and gj the distances of particles in
nucleus A and B to R8, the transformation of co-
ordinates

x~x2 ' ' xpxg+ j ' xi+3 $ j
' ' ' (gg, g8-, R8

(A1)

is given by

A+B
Rs = Q x)/B,

j= A+1

A+B

&, =x, —Q x,/B,
A, +1

A+B

j, =x~ —g x,/B.
A+1

The gradient difference V-„. —V-„ is then given by

V-. —V-. = c + c& —B&X3 Xj C j j y (A3}

phenomenological value observed in elastic scat-
tering. ' ' The discrepancy may point to the im-
portance of the role played by the virtual excita-
tion of nuclear intermediate states during the col-
lision, neglected in the present treatment. Fur-
ther, in the case of nuclei with a valence nucleon
whose j equals l ——, the spin-orbit potential is ex-
pected to be larger than when j =l+ &. A particular-
ly good example appears to be that of '4N. The
I L potential is unlikely to play a significant role
in the description of elastic a scattering, but its
effect on inelastic reactions may turn out to be of
some importance.
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with
A

c; = V», +Q V7 /B —V(( /B,
1

(A3)

c,. =Q V; /B,
s& j

8, = (1 —B ')V-„. (A4)

Substituting Eq. (1) (see text} for V„(f,j) into Eq.
(2), remembering that x, —x,. = r,

&
= $, —g&, and re-

placing s;+ s, by S;, , one obtains for Eq. (2) the
expression

V, „(f,B) =
& ya I Z V„(r,, )(t,. —6,. )

x [c, +c,'+8,. ] S,, i (})a&. (A5)

The terms c,'. and d,. do not contain a gradient rela-
tive to the position of particle i, and hence they
cannot give rise to a spin-orbit potential of the
form (; &V&, ~ s; involving particle i. Nevertheless
it will now be shown that the terms involving c&

and d, give no contribution of any type for the case
that

~ Pa& is composed of /=0 (s-state) nucleons as
in 'He and 4He. The terms due to c,'. vanish for the
'He or 'He case, since the reduced matrix element
of the momentum V-„vanishes for each sc j. The

S
terms rl, x8, ~ 5;~ also vanish in this case since

r}, xB, is proportional to the a.ngular momentum

g, &p, = L,. of particle j relative to the center of
mass of nucleus B, and L, .S;, ~ Pa& vanishes for
s-state nucleons.

The terms $;xZ& ~ S;, also give no contribution
as will now be shown. This term gives rise to
the matrix element

s;x&; &4.1V.(r;J)~, I4 &+&; &4.1V.&, xs, l@ &

(A6)

If the nucleus B can be described in the L- S cou-
pling scheme with the total orbital angular mo-
mentum L equal to zero, then the first matrix ele-
ment in (A6) can be shown to be parallel to $; and
hence is orthogonal to s,. x $„and vanishes. The
second matrix element in (A6) is perpendicular to
$;, so that its dot product with (; also vanishes.
Hence the two terms in (A6) give no contribution.
The quantity to be evaluated is

V,.(f, B}=Z&yaIV„(r;,)(&; —n, }xc; 8;;I ea&,

(A7)

where it will at first be assumed that
~ Qa& repre-

sents the wave function of a general nucleus B,
and later the result will be specialized to the case
of the 'He nucleus.

By using the vectors R(i, j}and y(i, j) to be defined below, Eq. (A7) can be written in the form

V„(i,B)=g;xc; ~ &(})alZ [s;V»(r(&)+R(i, j)] I &a&+c; ~ &(()aI Zrl&v~(((r}, )y(,z)(f»j). x5.;, I pa&
j, L

(A8)

(A9)

The first line in Eq. (A8) arises from the terms in $; in Eq. (A7). The va s arise from the spherical
harmonic expansion of the nucleon-nucleon potential V„(r,, ) given by Eqs. (6) and (7) and R(i, j) is the vec-
tor whose spherical projection o is given by

R, (i, j) =Q (-)' [—,'(2K+1)]"'v~($, r},) +&1(r~ LKMQ&Yz„($;)Tro[Y~(f},), s,.],EE NQ

where the tensor T~~ is defined in the usual way, "
Tao =+ &KQ~ L1MP&Yaa(rl, )(s,)p . (A10)

The second line in Eq. (A8) arises from the ri,. term in (A7}. Here the vector y,.z, written as a tensor of
rank 1 and projection 0, is given as

(Al 1)

(A12}

»i(i »)= —
()0 0 ,.0) (») "'((2L+1)(2»+»)]"'r () (ZL I) Y(»)»)Y „((,). ,.„

mN

The contributions to Eq. (A8) which arise from the spherical harmonics of zero order in the direction f}&,
Y«(r},. ) are given by

[V„(i, B)]„=g; x c; ~
& &a I 2{[V, (g, ri&) —(rl, /g, )v, (g, r},.)]/(4)r )) (s; + sz) I Pa ) .

If nucleus A only contains nucleon i, then $; xc, = p, » 'L„where p, ~ is the reduced mass of nucleon i rela-
tive to nucleus B and L, is the corresponding angular momentum operator. In this case the s, part of Eq.
(A12) represents the nucleon-i nucleus-B spin-orbit potential

V,.(,B)= p„-'V', „(&,.)L, .s, , (A13)
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with V~s„. given as the matrix element over
~ Ps) of the curly brackets (summed over j}in Eq. (A12}. An

approximation to V, .„has been stated in the book by Bohr and Mottelson' as

V)., --3 V), r' r' d r' Bp Bg „(.,
where p(q) is the matter distribution density of nucleus B normalized such that fp(q)rl'dq=B T.he above
expression will however not be used here.

If the wave function of nucleus B can be expressed in the L ~ 5 coupling scheme and if the total orbital an-
gular momentum is zero, then (A12) represents the only contribution to V„(i,B). Replacing the matrix
element of the curly brackets, taken over the spatial part of

~ Ps), by V, , ($;), Eq. (A12) can be further
simplified into

V„(i,B) =$, xc; (s;+NSs)V, , ($,). (A14)

The total angular momentum operator of nucleus B is Ss, and the factor N makes allowance for the fact
that in Eq. (A12) the matrix elements of s& cancel pairwise in the sum over j and only the last unpaired s&

survives.
For the discussion which follows, B represents the nucleus of He. In this case Ngs vanishes and

Vs, , (g, ) is taken as the phenomenological nucleon-4He spin-orbit potential, as defined in Eq. (A13}. Fur-
ther, nucleus A is assumed to contain more than one nucleon i.

In order to bring the result given by Eq. (A14) the form of Eq. (3) in the text, two successive transforma-
tion of coordinates are made

(,(, - - ~ $„RI-r,r, ~ ~ ~ r„,R„R~—r, ~ ~ ~ rp jRR&

The first reexpresses the $ s in terms of the center of mass R„of nucleus A, and the second introduces
the position of the center of mass of nucleus A and B, BRs+AR„= (A+B)R, and the relative coordinate
R=R8 —R~. The expression for c; in these coordinates then becomes equal to the expression in square
brackets in Eq. (3).

APPEND1X B

The multipole expansion required for the evaluation of V„(A, B), given by Eq. (4), will now be discussed.
The procedure consists of inserting the expression for V„(i, B}given by Eq. (5) into Eq. (4), and at the
same time expanding V„(~ r, —R~) into spherical harmonics of the directions of r; and R as given in Eq. (6).
The quantity to be evaluated is thus V„(A, B), given by

(p„~ Qvt, (r, , )Y~„(r,.)Y)„(R)(r,. xV-, +RxVRp„s ' —r, xVRp„s ' RxV-, ) ~ s,. ~y„)

The contribution from each multipole moment L in the first line of Eq. (Bl) is a scalar. After multiplica-
tion by each of the scalar terms in curly brackets the result can be regrouped into the scalar product"
T ~ P=+„Tx„P„„(-)"of two tensors of rank K. The first, T~„(i), acts on the coordinates of particle i,
the second, Px„(R), acts on the coordinates of the n particle.

The two terms in curly brackets in Eq. (Bl) which give rise to I L terms are the second and the third.
They will now be discussed in terms of the tensor notation introduced above. In this notation" the tensor
Tg Q formed out of tensors U, and V, is given by

Tso(U, V) = Q (KQ ~
Rim p) U» V,„.

The term r, x VR ~ s, in Eq. (Bl) gives rise to

Vf r,. xV~ ~ s, =+ g„s '(v, /4v)(r, ./R)[s; + (2v)'" T,]

+p„s 'Q v~i v6 r&(2L+I)'"(2k+1)'" L1k
Lk& 000

1 LKx „(-)Ts(Y~(r, },s;) ~ Px(Y~{R), (g/i)V-„). (B2)

Here g represents the operator (8'/i)Rx VR. In the text, 2 is written as L. The summation in the second
line of the above equation starts with L= 2. The terms with L =0 vanish, and the terms with L =1 have



1222 GEORGE H. RAWITSC HER

been written out explicitly in the first line. There is an additional term with L=1, k=2, and K=2 which
is also present among the terms in the second line. However it does not give rise to an operator of the
I ~ L type, and hence was not written explicitly. The vector T, in the first line in Eq. (B2) corresponds to
the tensor of first rank T»(Y,(r, ), s,). By using the projection theorem, both operators s; and T, can be
replaced by the total spin operator I„of nucleus A, times a reduced matrix element. Hence the first line
in Eq. (B2) gives rise to an operator f„ i', , while the terms in the second line give rise to tensors more
complicated than I„~Z.

The other term of interest for the discussion in the text arises from the second term in curly brackets
in Eq. (Bl) RxVRp, »

(k/i)V„RxV-„s, p» '= p» '(I/4v)v, s, 2+ p» ' g (-) "ov~(r, R)T»z(Y~(r;), s;)P» o(Y~(R), 2).
KLQ

(B3)

The L = 0 term has been written explicitly in the first line of (B3); the L = I term will vanish by parity con-
siderations when integrated over the wave function g„. The other terms, which appear in the second line
of Eq. (B3) give rise to tensors of rank higher than first and are too complicated to be considered here.
Th~e represent the deformed parts of the I ~ J-type spin-orbit potential since they depend on the direction
of R through Y~(A).

The term in V„(i, B), Eq. (Bl) due to Rx V;, ~ s; is of the form

(k/i)V„Rx V-, ~ s; = (R/r, )(v,/4»)1, ~ s; —i WS Q Rvz T»o[T~(Y~(r, ), V;), s;] Y» o(R)(-)o'
LKAQ

x (2L y 1)~&2 (2K+ 1)»2
0 00 1L1 (B4)

Again, the most important term has been written in the first line. Included in the second line is another
term with L= I and K=2, which however gives rise to a noncentral Y2(R) type potential, and will thus not
be considered explicitly.

The term due to r,. x V-, . ~ s; in Eq. (Bl) is of the form
3

(k/i)V„r, xV; ~ s;=(v,/4w)1, ~ s;+Q (-) " v~[(2k+I)/(2L+I)]'"T~ [To~(Y~(f;), I;), s;]Y~ o(R)(—)o. (B5)
LkQ

Here f, is the operator Ig, x Vc/i None . of the terms in the two last equations give rise to a f.p term.
However, they give rise to central, a-nucleus potentials which, since they lack the factor g», can be
of some importance. In view of the fact that these terms contain the factor (g„~ 1,. ~ s, ~ g„) their magnitude
and sign depends on the total spin of the target nucleus, a feature which may contribute to their identifica-
tion in future optical-model analyses. The magnitude of this potential is estimated in Sec. III.

In summary the terms in V„(i,B) which give rise to a f ~ 2 interaction are given by the first lines in Eqs.
(B2) and (B3). They are collected below

p» '[(v, /4w)s; —(r, /4UR)»(s;+~2m T,)] ~ 2. (as)
The terms in V„(i,B) which give rise to a central a-nucleus interaction arise in Eqs. (B4) and (B5) and
they are

[(v,/4v) —(Rv, /4w r, )]1; s, .
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