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Using the exact solution of a particle decaying from a square well, it is shown that the
strength function, (I /D), is unbounded and has the form (2mI'/D) =-ln(1 —T) suggested by
Moldauer (for average parameters), where T is the transmission.

I. INTRODUCTION

In the use of, especially the extrapolation of,
average widths I', and spacings D, for a channel
c, it is of critical interest whether the channel-
strength function I', /D, is bounded. In the past it
seemed evident that I', /D, was in fact bounded for
one expected' that 2vI', /D, =T„where T, is the
transmission and thus limited to a maximum of 1,
so that I', /D, c I/2v. A slightly different formula'
has also been suggested leading to the bound I/v.
Moldauer' has emphasized that the foregoing for-
mulas are valid only in the limit of very small
values of T„and has proposed rather that

T, = 1 —e 2~r, za, (I

In Eq. (1) the limit T, = 1 does not imply any
bound on the channel-strength function I', /D, .
Moldauer demonstrates the validity of (1) for a
number of simple analytic unitary models of the
$ matrix. ' Ullah and Moldauer' have offered a
proof of (1) assuming the plausible simple-pole ex-
pansion (Mittag-Leffler) of the statistical collision
matrix. However, there remain some (hopefully
minor) questions about the validity of the proofs, '
and, more important, the generality of the as-
sumed collision matrix has not been established
by these authors. '

Accordingly, it seems useful to subject (1) to a
test by means of a simple precise calculation. For
such a trial we choose the spherically symmetric
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g,.(r=0) =0, and rearranging, we arrive at the

following equations:

R

or

tanhAR = k/K

k+K
2A.R = ln

(3)

FIG. 1. Potential energy diagram.

II. SQUARE-WELL DECAYING STATE

Consider therefore the zero angular momentum
decay of a particle of energy E from a square well
of depth V, and radius R. (See Fig. 1.) The bound-
ary condition at infinity of a decaying state is an
exponentially increasing outgoing wave, since the
"earlier" wave is farther out. We therefore take
for the wave function outside of R, g, = e'~'~ " ",
A. &0. In order to match boundary conditions at
x =R, the inner wave number must also be com-
plex and we choose for the inner wave function, (i
refers to inner, o to outer),

= ge«&+»& -»+ Be-&~+»~~-» (2a)

for r ~R; A, B are constants to be determined.
The energy of a decaying state must be complex

so our radial wave equations are

(2b)

with

decay of a particle from a square well. We find
that (dropping the channel or state index c}:
(1) I'/D is unbounded.
(2) Moldauer's formula (1) gives precisely the cor-
rect functional form for T as a function of the
strength function.
In this latter remark is incorporated the resolution
of a certain ambiguity, since T is defined at an en-
ergy E, and D is defined by two energies, E„„—E„
= bE = D, and then averaged over many energy spac-
ings. We argue below that our resolution is the
most logical, and should be equal to a reasonable
choice of average.

K' = (i /k')((z+ v, )+ [(E+v,}'+,'r']'"-},
k' = (p/k') (R+ [E'+ -,'r' ]

'" i,
KR =nv —arctan(A/k),

(4)

(&)

(6)

where the state number n is a positive integer ~1;

KA =k~=(i r/2n'), (7)

ik+ A+iK+A -ik —X+iK+A
2(iK+A) ' 2(iK+A) (8)

In terms of the inner wave function, the trans-
mission T is the ratio of outgoing part Ae'~'A " "
absolute squared, less the incoming part
Be ' 'A' " ' absolute squared, divided by the
outgoing part absolute squared, all evaluated at
x=R:

(9)

v(r/D) =-ln

If we now compare (3) and (11), using (7), we find
that Moldauer's equation reduces to

Using (8) and then (7),

4kK+4m 4kK
(k+K)'+ (A+ ~)' (k+ K)' '

which is the usual transmission of a plane wave in
crossing a discontinuity from wave number K on
one side to wave number k on the other. Formula
(10) is also precisely the transmission coefficient
T = (1 —

~ S~ ) for the inverse process of total cap-
ture (black nucleus) of an s-wave particle. ~

Equation (1) may be rearranged to read

2n'(r/D) = -ln(1 —T),

so tha, t by substituting (10) we obtain

and

y, (r =0}=0

d'
E —i — g, r&R,

c&
(2c)

K= pRD/vh',

which is to be tested.

III. LIMIT E ~

(12)

p, being the (reduced) mass and I' ~ 0 chosen to
give a time decay of e ""for

~
g)'. Matching solu-

tions and their derivatives at r =R, setting

The simplest test of a bound on I'/D is to show
that (12), and hence (1), is valid in the limit E-~.
In this limit T- 1, and from (3)-(6); n, k, K, I',
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and A all tend to infinity, with (k/K) —1. From (4),

Vo
2(E2 y ' I 2)&&2

nv & n ~ (n+ l)v such that

E[(n+ 1)v] —E(nv) D
7r 1T

and substituting (13}into (3) shows that

I 4(E'+ —,'I')'"
A

2R
ln

V
(14)

In what follows, quantities without subscripts are
evaluated at a, whereas those subscripted n and
(n + I) are evaluated at n and (n+ 1)v, respectively.
We prove in Appendix A that

Now in the limit E-~ either I ~ E or I &E. In
the former case K'cc I' from (4), and using (7) in
(14}we get WI ccln(21'/V, ) which is a contradiction;
consequently I &E. It then follows that k~WE and
Kcc&E, whereas A ~lnE, thus F'/E'-0 and in (6)
arctan(A/k)-0. Defining D=—eE—= E„„—E„, we
then find that

R R p,R

E'=(k'K/p R)(1+ G) ', (16)

with

k —(kAR /K) (K' —k')
R (k +K A ) —(kAR/K)(K + k )

' (17)

By the above mean-value theorem, (16) is equal
to (D/v) at some E„with E„&E„&E„„.

We next show that

which proves (12), hence Moldauer's theorem (I) in
in the limit E- ~, and we conclude that I'/D is
unbounded.

K„,&K„(1+G) '&K„&K„„,
or that

K„,& (R p D/vh ) & K„„,

(18a)

(18a')

IV. ANALYTICAL PROOF

We next show that the Moldauer theorem (I}is
true for all E. In its original form, ' (I) was in-
tended for average values of the parameters. In
general, D is a function of E so that the type of
average taken introduces a measure of ambiguity
to (I). We argue that any meaningful average must
be close to the actual spacing at the energy con-
sidered.

Another way of looking at (I) or (12) is to notice
that K or I' or T are evaluated at an energy E,
whereas D= nE is the difference between two en-
ergies. So ambiguity in the choice of D or of E
is implicit.

We argue that the most stringent control of this
ambiguity in the proof of a relation like (12) is to
show (12) for energy E, not only nea, r the spacing
D, but closely bounding such D.

In fact, we will show analytically that there
exists an E with E„,& E & E„„such that D=- D
= E„„—E„obeys

K (I+G) '&K„&K„„. (18b)

To show the left inequality requires demonstration
of

G&n-i &a —&n-i ~

Using (B17), (B9), (B7), (B8), and (B3), (19)
becomes

(19)

GK„,« ", ' " ',&7[(nv — v) —(n —I)v]
(k'/K')K„, K'„,

and since K is a monotonically increasing function
of E, the number (RpD/8'v) between K„, and K„+,
must equal some K(E} with E„,&E & E„„,thus
proving (12'}. That K is a monotonically increas-
ing function of E, as is k, is evident physically
since they are wave numbers, but strictly speak-
ing this remark must be proved for our equations,
which we do in Appendix B [(B16) and (Bl'l)], where
we also derive inequalities useful in the proof of
(18a} itself.

Since n & (n + 1)v and G &0 it follows from (B14)
tha. t the right inequalities of (18a) hold:

(R qD/e'v) = K(E), (12')

and we will later show numerically that E may be
further restricted to lie within E„&E&E„+,for all
trial cases ranging from elementary particle to
atomic dimensions.

Our proof is as follows: Let nw =a in (6). Then
the equations (3)-(6}give E as a function of a with
the physical states existing only for a=integer x p.
Applying the mean-value theorem to E(a) between
nv and (n+ 1)v, there exists some a, call it n, with

so we must show that [note that all state numbers
n are positive integers, see (6), thus the state
number (n —I) ~ I]

(n —I)v v

(K„R —I)' (nw ——,'v —I)' (2v ——,'v —I)'
= 0.0494' &? —,'g,

which is true so the left inequality (18a) holds and
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Moldauer's theorem [(1}, (12'}]is proved for
spherically symmetric square-well decay.

APPENDIX A.

DERIVATION OF E'

V. NUMERICAL TESTS

It turns out that because a.rctan(A/K) is limited
in size to less than v/4, the equations in the order
(6), (A2), (5), (3b), rapidly converge to a solu-
tion under numerical iteration. Such solutions
always satisfy the tighter law

Kk' —kK'
K' —k

We square (4} and use (7) to obtain

(A1)

Considering (3)-(6) to be functions of a, we take
the derivatives from (3) to get:

(Ri D/h'a) = K(E),

with

E„(E(E„„,
when expressed in the form

K„((R pD„„„/k 'w) (K„„,

(20)

(21)

K'= A'+ (2p/h')(E+ V,),
whence

K"= A" + (2p, /k')E' .

We square (5) and use (7) to obtain

k —2k (p/k')E = K'A',

whence

(A2)

(A3)

(A4)

so by (12') again vindicating Moldauer's formula
(1). The parameters tested are listed in Table I.

ACKNOWLEDGMENTS

It is a pleasure to express appreciation to Dr. W.
Gibbs for his encouragement and perceptive com-
ments. For critical readings of the manuscript,
we are grateful to Dr. D. G. Foster, Jr., and
Dr. W. Gibbs.

kA' -Ak'
A +k (A6)

(Al), (A3), (A5), and (A6) are four equations in
the four derivatives A', k', K', and F.'. Defining

5 = 2[(A/kKR) k' —(A'+ k')] (A7)

2k'k" —2k"(ply')E —2k'(p/h')E' = K 'A'+ K'A" .

(A5)

From (6),

TABLE I. The following table is a partial list of parameters satisfying (3)—(6) and (20), thus verifying (1) in the form
(20). As asserted, in every case the sixth column, D, lies between the seventh-column values, (x52K/~).

(g)
Vo

(Mev)
R

(fm) (MeV)

Elementary-particle dimensions

D

(ergs)

@52 K
p R

(ergs)

8.36x 1Q ~5

300 0.8 1
2

10 000
10 001

13
1828
6.4x 10

2.9x 1p 3

20.5056

1.77x10 3

3.9x 10 3

20.5044
20.5065

1.67 x 10-24

Nuclear dimensions

50 7.76 1O

11
296
297

289

298.7x 10
300.7 x 103

1.144 x 10-4

32.39x 1Q 4

1.091x 10
1.2OOx1O 4

32.34 x 10 4

32.45 x 10-4

Atomic dimensions

9.11x 10
0.03 100 000 30

31
1000
1001

3.35x10 3

5.65x 10
37.6

3.674 x 1Q 9

1.2053x 10

3.614x 10 9

3.734 x 10 9

1.2p46x lp '
1.2059x10 7
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and

e:—(A/kKR)(K' + k') —2[k' —(p, E/I')], (A8)

and applying (B3),

A & k&K. (B6)

we obtain after some manipulation

A" =[2y.E'/I'(K +A')]

x [-(A'+ k') + (5/e) [k' —(p, E/h') ]'f,
k" =(p. 5/k e)E',

K"= [2gE'/8'(K +A')]

x ((K' —k'} + (5/e)[k' —(pE/g')] t,

(A9)

(A10)

(A 1 1)

Therefore, 0 & arctan(A/k) & v/4, and using (6),

KR &nv —(v/4) & 3v/4&1,

KR &nm=—a.
(B7)

(B8)

(k'/K') (k'/K')
(kR —1)' —(R/K)(K —k)' (KR —1)' '

Using (A7), (B5}, (B3), and (B7),

(B9)

Using (B2) and (B5) to eliminate A and using (B7)
and (17),

(p, /k')E' = (K/R)(1+ G)-',

which is (16) with G given by (17).

(A12) &&0.

Using (A8), (A4), (B2), (B6), and (B7),

g &Q.

(B10)

(B1 1)
APPENDIX B.

INEQUALITIES

Restricting ourselves to positive E, all the vari-
ables of Eqs. (3)-(6) are real and positive. From
(3),

AR = arctanh(k/K) = (k/K) + —,'(k/K)'+-, (k/K)' ~ ~ ~,

Using (B2), (B5), and (B3) in (17), we see that the
denominator of G is greater than zero, and using
(Bl} the numerator of G is

k (1 —[1+3 '(k/K)'+ 5 '(k/K) + ~ ~ ~

—(k/K)' —3 ' (k/K)'- ~ ])

so that

AR &(k/K) .

From (4} and (5),

k&K.

(Bl)

(B2)
so that

G&0.

Using (A12),

(B12)

= 2k'[(1 x 3) '(k/K)'+ (3 x 5) '(k/K)'+ ~ ]

&0 [all absolutely convergent by (B3)],

From (A2)
E' &0. (B13}

A&K Using (B3), (B5), (B10), (Bll), and (B13) in (All),

and (B4)
K"&0, whence K'&0. (B14)

2(i /k')(E+ V,) &K'. Finally, using (B10), (Bll), and (B13) in (A10),

From (A4)

k &KA

and

2(p/8') E & k',
(B5)

k" & 0, whence k' & 0 .

From (B14) and (B13) it is clear that

&0

(B15)

(B16}

whence

A'&KA &k',
Consequently, for E„,& E„-E - E„„it follows that

(B17)
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The P decays of B and 2N to the 4.44-MeV first excited state of C have been studied by
means of P-y coincidence measurements using a 4~ plastic scintillator and a NaI(TI) de-
tector. The ratio of N/ B P-ray branches to the 4.44-MeV state is found to be 1.52+0.06
leading to ft+/ft =1.06+0.04 for this branch. This result removes the only severe excep-
tion to the systematic trend of positive 6 = (ft'/ft ) —1 for mirror decays and is in agreement
with a recent calculation of the binding-energy effect. In separate measurements the absolute
P-ray branch of B to the C 4.44-MeV state is found to be (1.27+0.06)%.

I. INTRODUCTION

During the past few years extensive studies'
have been made of mirror P decays in order to
investigate the questions of symmetry in P decay
and possible second-class currents in the weak
interaction. One of the first well-established
cases of asymmetry was in the A = 12 system,
where it had been found that the ft value for the
P' decay of "N to the "C ground state is -10k
greater than the ft value for the corresponding
P branch of "B. More exactly, the asymmetry
5=(,ft'/ft ) —1 is +0.115+0.009' in this case.
Accumulated evidence for almost all other mirror
pairs of P' and P emitters has substantiated the
conclusion that 5 has a positive value. It is not
yet clear whether 5 increases linearly with the
total decay energy, since the existing data could
just as well be satisfied by the assumption of a
constant value of 5 averaging about +0.10.

Except for A = 24, where the measurements are
exceedingly difficult and the slightly negative 5
is in doubt, the only really severe exception to
the systematics has been in the A =12 system it-

self. Two measurements have been reported on
the ratio of "N/"B P-ray branches to the 4.44-
MeV 2' first excited state of '~C, namely 1.84+0.1'
and 1.72~0.15.' The mean of these results led
to 5= -0.117+0.041' for this case which represent-
ed a large departure from the systematics.

The purpose of the present work was to remea-
sure the ratio of "N/"B P decays to the "C, «
state using a technique that should be less subject
to systematic errors than previous methods, as
well as providing greater accuracy in the result.
This technique has also allowed a more accurate
value to be obtained for the absolute P-ray branch
of B to the ' C 4.44-MeV state.

II. EXPERIMENTAL PROCEDURES

In experiments on P-ray emitters using scintilla-
tion detectors in large solid-angle geometry one
possible source of systematic error in the com-
parison of P' and P activities results from the
fact that both detectors can respond to positron
annihilation radiation. As far as the P-ray detec-
tor is concerned corrections for the effects of


