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Perturbative Calculation of Spin Observables in Nucleon-Deuteron Elastic Scattering.

II. Inclusion of a Tensor Force*
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A previous perturbative calculation of elastic nucleon-deuteron scattering using nucleon-
nucleon S-, P-, and D-wave forces is extended to include the rank-1 S&-3D& tensor force of
Yamaguchi and Yamaguchi. We find that both the tensor and the P-wave forces are important
to the rank-2 polarizations of the deuteron. Using these forces we achieve excellent agree-
ment with the data for these polarizations at 5.75 and 10.85 MeV. A comparison of calcula-
tions with just the tensor force to the exact calculations of Aarons and Sloan demonstrates the
reliability of the perturbation technique.

I. INTRODUCTION

Recently an approximate calculation of the spin
observables in nucleon-deuteron scattering was
reported. " In the approximation, "exact" values
of the half-off-shell nucleon-deuteron T matrices
for the Aaron, Amado, and Yam model' (which
consists of using spin-dependent separable poten-
tials that act in just the nucleon-nucleon S-wave
states) were obtained. These T matrices were
then used to compute the fir st-order two-potential
perturbation matrix elements (distorted-wave im-
pulse approximation) of separable P and D w-ave-
N-N interactions. The resulting N-d amplitudes
gave, at energies less than 20 MeV, quantitatively
accurate nucleon polarizations and qualitative val-
ues of the deuteron vector polarization (it») At.
higher energies the nucleon polarizations were
still in qualitative agreement with the data. The
model failed, however, in computing the rank-2
polarizations of the deuteron.

Concurrently Aarons and Sloan' published an
exact integration of the Faddeev-Lovelace equa-
tions' for the case of the 'S, -'D, separable tensor
interaction of Yamaguchi and Yamaguchi. ' This
calculation gave qualitatively reasonable estimates
of the rank-2 deuteron polarization. No tensor
force had been used in I (although the potentials
in I acted in both 'S, and 'D, states, there was no
mixing of these states) and it was concluded that
this was the reason that the rank-2 polarizations
were not successfully represented.

In the present paper we extend the formalism"
used in I to include the changes in the deuteron
bound state caused by a tensor force. Calcula-
tions are made using separable rank-1 potentials
in the N-N P waves and the 'S,-'D, channel. We
find that the P waves make important contribu-
tions to the values of t2p and t» computed by

Aarons and Sloan' and the resulting tensor polar-
izations are in good agreement with the data. The
moment t» as computed with just the 'S,-'D, inter-
action had been quite satisfactory and is affected
only slightly by the inclusion of the P waves. Cal-
culations without the P waves are compared to the
exact result of Aarons and Sloan and demonstrate
that at these energies (up to 20 MeV) the perturba-
tion theory is quite reliable.

II. TWO-POTENTIAL FORMALISM

t(1) + t (2)

In I and Refs. 7 and 8 it was required that t"' not
effect the two-body bound state so that p'", the
bound state corresponding to t'", was the same as
the final bound state P. We will now allow the fi-
nal bound state to be different from P'" and write

y =ay" +

where

(2)

so that

(4)

The Alt, Grassberger, and Sandhas' equations
for the interactions (l) are

(6)

We will describe the approximation to be used
for the case of identical spinless particles. The
generalization to the spin--,' case including the
tensor force is then straightforward although some-
what tedious. Using the same notation as in Ref. 2,
the N-N interaction is written as
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Here TB~ is the three-body transition operation
whose matrix elements, &Ps I Ts I (t)g, with re-
spect to the asymptotic channel eigenstates are
the physical transition amplitudes. The subscripts
a, P label the channels and range from 1 to 3 for
elastic and rearrangement scattering. The sign
of the free Green's function, Go, is defined in
Eq. (12) and 5s =1 —6s~. As in I and Refs. 7 and
8 we assume that t'" is separable and that Eq. (5)
is solved exactly for T's, . We then use Eq. (6) in
first order as

not necessary and in general the h;(E) may be as-
sumed to be arbitrary functions], they have the
form

&q'I t;(E) I q& = ~;(q')h;(E)U;(q)

(10)

where
-1

4;(4)=4; -(4J 4 4'(G4)l4;( )l4*

with
T s ((T ()(4+Q T g &Gp t ~y Gp Ty~

y

and the physical transition matrix elements are

(7)
Gp(q, E) =(E+is —q /2p)

For these potentials the bound states are

(12)

&0 s I Ts. I e.&
= a'&0's"

I
T's".

I 0'."&+ a&0's"
I
T's'.

I 5y.&

+ a&50 s I T's. I
e'."&

y (8)
and

y'"(q) = N'"G, (q, E, )v'"(q),

y(q) = NG, (q, E,)~,(q),

5(t)(q) = NGp(q, Es)6v,

(13)

(14)

(15)
where we have kept only the first-order terms in
t"' and Oy.

We will assume that the final two-nucleon ampli-
tude, t, consists of one separable term t, that is
in the bound-state channel (i.e. , once spin is in-
cluded this will be the 'S, -'D, separable potential
of Yamaguchi) and a sum of separable terms t;
orthogonal to the bound state (the P-wave poten-
tials). Thus t ' is

t(2) (t t(()) + p t

Since we will assume that each of these separable
terms derives from a separable potential [this is

where

(16)

with

t) = aN'"/N (17)

=
p Z &0's(ps& I Ts. l e.(p.)& (18)

and using Eqs. (8)-(15) with Eq. (5) this may be

The symmetrized three-body scattering matrix
element is

T(p', p) =p g Ts„(ps, p )
B, a

written as (see Refs. 7 and 8)

T (p', p) = a T"'(p', p) + 2 aN N '"[Bs' "(p', p) +Bs' "(p', p) ]
2

+ (,) d p, T'"(p', p, )h'" W — Bp' '(p„p)

+ d p, Bo "p', p, h'" W — T'" p„p

244'g Jd'4. lu B "(O', p, ) '"„'If '(4O 4p,T) 4''-,4—' &' *''(,p„p.)
nf=o

2

W —~ N'"B']'" p2 p + (~ d P B-'",p h'" W — T'"
2n

d p& T p' Pj.)A W —
2

T p& p

where, for example,

B'~ "(p' p) =& pi = p'
I
()'"(q )Go() (q, ) I ps =p & (20)

a,nd

vs=- &v (21)
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FIG. 3. Tensor polarization t22 at 10.85 MeV for the
Aarons and Sloan potentials.

FIG. 1. Tensor polarization t2o of the deuteron at a
nucleon laboratory energy of 10.85 MeV computed using
the Aarons and Sloan potentials (Refs. 4 and 11). The
two different curves labeled "perturbation*' are ex-
plained in the text.

Equation (19) is the generalization of (2.1) of I
to the case where the two-body bound state is
changed to t"'. In a manner exactly analogous to
that used in I it may be re-expressed in terms of
the variational wave functions A. , generalized to
spin--,' particles and partial wave analyzed. Since
the final result is somewhat lengthy we will not
give it here.

In the actual calculations a small departure was
made from Eq. (19): Namely the contributions due
to the P wave forces -(the terms in the sum for
i t0) were not multiplied by am. Thus these con-
tributions were the same as in I. Since for our
potentials a =0.9636, the factor cP is not very sig-
nificant in either case.

III. NUMERICAL RESULTS

Calculations were made with the potential Sets

0.20
EXACT

O.IO

K, 8, and C defined in PK" and with the poten-
tials of Aarons and Sloan. +" Table I contains a
brief description of these potentials. The exact
calculations that form the input to Eq. (19) were
in general made with potential Set S (see I); how-
ever, when the final result was to be for the
Aarons and Sloan potentials, the 'S, of Set S and
a 'S, potential having a =20.4 F and r, =2.7 F were
used in the exact calculation.

As was the case in I, the T. ... , were computed
by Eq. (19) only for both I' and I c 2. The higher
partial waves (up to Z = v9) were then computed us-
ing a unitary approximation due to Sloan. "" In
I a calculation with the cutoff at l, l' ~ 4 showed
that the unitary amplitudes were accurate for l& 2."

A. Comparison with an Exact Calculation

Figures 1-3 show the comparison of the present
perturbation results with the exact calculations of
Aarons and Sloan+" for the rank-2 polarizations"
of the deuteron. Also shown are the unitary mod-
el' "values of these polarizations. It is clear
that the perturbation technique provides an excel-
lent approximation of the exact rank-2 polariza-
tions. The two perturbation calculations shown
in Figs. 1-3 were made using different 'S, poten-
tials for the exact part of the calculation (in both
cases the same final 'S, 'D, was used). -For the
dashed line the potential labeled 3SC in PK was
used (this is fitted to the deuteron binding energy

TABLE I. Qualitative features of the potential sets
used in the present paper.

0.0
Designation Channels in which the potentials act

Q Q6 I I I I I I I I I I I I I I I I I

0 30 120 I5060 90
ec.m. ~deg~

I80

FIG. 2. Tensor polarization t2i(=-T2i) at 10.85 MeV
for the Aarons and Sloan potentials.

K
Aarons and Sloan

B
C
S

i 3 3So, S,-D,
iS 3S 3D

So, Si- Di,
i 3So, Sfs
i 3So, Si

i 3 3 3&o &o &i
i 3 3 3&o &o &i
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FIG. 6. Perturbation calculations of t22 at 5.5 MeV.
The data are from White et al, . (Ref. 16, 5.75 MeV,
p-d).
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FIG. 4. Perturbation calculations of t2(1 at 5.5 MeV.
The data are from White et al. (Ref. 16, 5.75 MeV,
p~).
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FIG. 5. Perturbation calculations of t2& at 5.5 MeV.
The data are from White et al. (Ref. 16, 5.75 MeV,
P~)

and the 'S scattering length), while for the dash do-t

line a potential having the same S-wave inverse
range (1.2390 F ') as the final 3S,-SD, potential
and the proper binding energy was used. For this
latter potential the S-wave part of 5v is zero. The
near equality of these two curves (for t» in Fig. 2

they are the same curve) is an indication of the
reliability of the perturbation technique. The Set
K curves in Figs. 4-6 (5.5 MeV) and calculations
at 22.7 MeV are also in very good agreement with
Aarons and Sloan's results.

We have also been able to compare our partial
wave amplitudes with those of Aarons and Sloan. "
The errors in the diagonal amplitudes were typical-
ly 1-10%%uo of their values while the off-diagonal am-
plitudes have errors of from 7-100%%u&. If the er-

rors in the elements are compared to the corre-
sponding perturbation corrections one also finds
large (10-100/~) errors. In view of these substan-
tial errors in the partial wave amplitudes, the ac-
curate polarizations of Figs. 1-3 seem rather sur-
prising and we do not have an explanation for the
apparent insensitivity of the t, to these errors.
It may be noteworthy that the 'S„,—D„, mixing
which is presumably important to the t2

" (and
in this case is considerably larger than when com-
puted with just P wave forc-es) has only a 10% er-
ror. A comparison of the partial wave amplitudes
for the dash and dash-dot curves in Figs. 1-3 also
shows differences comparable to those given above.

The nucleon and deuteron vector polar izations
computed by the perturbation technique disagree
with the exact values~" by amounts (0.04) com-
parable with the errors in t, ; however, since
these quantities have unrealistically small values,
these errors correspond to very large relative
errors.

B. Calculation with Both P-Wave

and Tensor Forces

In Figs. 4-8 [Refs. 16 and 17j we include P wave-
forces in the calculation. We see that by using
both the tensor force and the P waves (Set 8-), ex-
cellent values of the t, can be predicted. The dif-
ferences between the Set K curves (no P waves)
and the Set B curves in Figs. 4, 5, and 7 show thai
the P-wave forces are as important as the tensor
force in computing t„and t», while in Figs. 6 and
8 we see that the P-wave forces make only a small
correction to the already quite acceptable values
for t» computed with just the tensor force. The
curves for Set C (P waves, no tensor force) in
Figs. 7 and 8 show that the P waves by themselves
are not adequate for any of the t, .'

We have also computed the elastic differential
cross sections, nucleon polarizations, and vector
polarizations of the deuteron using Set B. These
are changed only slightly from the Set C (P wave-
forces only) curves in I and hence will not be pre-
sented here. On the other hand the values of the
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FIG. 7. Perturbation calculations of t2p at 10.85 MeV.
The data are from Arvieux et al. (Ref. 17, 10.85 MeV,
P-d). The dash-dot line is the same as the dash-dot
line in Fig. 1 (see text) except potential Set B was used.

Wolfenstein" parameters computed in I are strong-
ly effected by the inclusion of the tensor force.

In PK we described some difficulties of using a
rank-1 separable interaction for the 'S, -'D, chan-
nel and Figs. 3 and 9 of PK show that this potential
is a very poor representation of the N-N data. For
this reason we have not made an extensive set of
calculations with potential Set 8, nor have we stud-
ied the effects of varying the percent D state of
the deuteron. Such a study does not seem warrant-
ed until one has a more realistic potential. We
are at present trying to construct suitable rank-2
separable potentials for this purpose.

There have been a number of phase shift analy-
ses of the low-energy N-d scattering. "" For
energies above the breakup threshold, the large
number of phase parameters in N-d scattering
have required that simplifying assumptions con-
cerning the splitting or mixing of these phases or
concerning the inelastic parts of the amplitudes
be made. Sloan" has already commented on the
inadequacy of the resulting inelastic parameters.
We have not yet carried out a phase shift analysis
of our amplitudes but some observations can be
made from the amplitudes themselves (an example
of the amplitudes for potential Set C is given in I).
The doublet amplitudes all have small splitting and
in the even angular momentum states the double-
quartet mixing is generally small. The most im-
portant noncentral effects seem to be the 'P~-'P~
and 'S3/2 D3/2 mixing amplitudes which are com-

FIG. 8. Perturbation calculations of t&2 at 10.85 MeV.
The data are from Arvieux et al. (Ref. 17, 10.85 MeV,
p-d).

parable in magnitude to the diagonal amplitudes
(as was suggested in I, the latter mixing is im-
portant only when the tensor force is included).
Successive amplitudes in the diagonal 'P~ and 'D~
series are split by 5-15% of their values. We
conclude that although the doublet splitting may
be neglected and some of the mixing parameters
set equal to zero, neither I nor S is even approx-
imately conserved in N-d scattering and a large
number of complex phases and mixing parameters
will have to be varied in a realistic phase shift
analysis. Figure 1 of I shows that in such an anal-
ysis the amplitudes for I& 2 (and perhaps I = 2)
could be reliably computed using the Sloan approx-
imation.

Note added in Proof: After this article was sub-
mitted, an article" by Doleschall was received
in which the Faddeev-Lovelace equations are
solved using rank-1 potentials for both the 'S,-'D,
and P-wave channels. Although an exact compari-
son is not possible, since different potentials were
used, the present approximate results appear to
be in good agreement with Doleschall's exact cal-
culation. Recently, Schmelzbach et al. ,

"have
completed a very thorough phase shift analysis
that answers the objections raised in Sec. III B
against previous analyses.
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Using the exact solution of a particle decaying from a square well, it is shown that the
strength function, (I /D), is unbounded and has the form (2mI'/D) =-ln(1 —T) suggested by
Moldauer (for average parameters), where T is the transmission.

I. INTRODUCTION

In the use of, especially the extrapolation of,
average widths I', and spacings D, for a channel
c, it is of critical interest whether the channel-
strength function I', /D, is bounded. In the past it
seemed evident that I', /D, was in fact bounded for
one expected' that 2vI', /D, =T„where T, is the
transmission and thus limited to a maximum of 1,
so that I', /D, c I/2v. A slightly different formula'
has also been suggested leading to the bound I/v.
Moldauer' has emphasized that the foregoing for-
mulas are valid only in the limit of very small
values of T„and has proposed rather that

T, = 1 —e 2~r, za, (I

In Eq. (1) the limit T, = 1 does not imply any
bound on the channel-strength function I', /D, .
Moldauer demonstrates the validity of (1) for a
number of simple analytic unitary models of the
$ matrix. ' Ullah and Moldauer' have offered a
proof of (1) assuming the plausible simple-pole ex-
pansion (Mittag-Leffler) of the statistical collision
matrix. However, there remain some (hopefully
minor) questions about the validity of the proofs, '
and, more important, the generality of the as-
sumed collision matrix has not been established
by these authors. '

Accordingly, it seems useful to subject (1) to a
test by means of a simple precise calculation. For
such a trial we choose the spherically symmetric


