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A potential form alternate to the customary Yukawa form is deduced. This nonlocal poten-
tial incorporates retardation of the meson and nucleon normalization factors. A phenomeno-
logical potential patterned after the Reid soft-core potential is constructed. This new phenom-
enological potential is compared with the Reid potential off the energy shell. The off-shell
changes lead to a decrease in the binding energy of nuclear matter of 1.5 MeV/particle in the
S&-3D& state and an increase of 0.1 MeV/particle in the S0 state.

1. INTRODUCTION

The best phenomenological nucleon-nucleon po-
tentials fit the elastic scattering data using essen-
tially sums of Yukawa forms. ' This adoption of
Yukawa forms in phenomenological potentials is
based on one's conception of the underlying meson-
exchange mechanism. However, a Yukawa poten-
tial is only an approximate nonrelativistic repre-
sentation of the effect of mesonie degrees of free-
dom.

In this paper, an alternate potential form is de-
duced by direct examination of the one- meson-
exchange mechanism including some relativistic
effects. These relativistic effects arise from re-
tardation in the meson propagation and from spinor
normalization factors. The alternate potential
form, which is nonlocal, is adopted here as our
basic building block for a new phenomenological
potential.

Starting from the same meson-exchange mech-
anism, the Yukawa and the alternate form are
equivalent at low momenta. However, the two
possible forms are not equivalent with respect to
off-shell properties which play a significant role
in nuclear calculations.

The focus here is to build phenomenological po-
tentials using the generalized Yukawa forms and
to study the induced off-shell changes. Of course,
this is an ad hoc procedure to examine the possible
significance of retardation. We find that it is sig-
nificant and one should therefore turn to a more
fundamental treatment of meson degrees of freedom.

Our procedure for estimating the importance of
retardation consists of fitting the Reid phase shifts

using the generalized Yukawa form and examining
the associated off-shell effects both for the two-
nucleon transition matrix and for nuclear matter.
In Sec. 2 an alternate choice of potential form is
defined to include retradation and spinor normali-
zation effects. The "generalized Yukawa form"
is nonlocal and therefore is given in momentum
space for each partial wave (Sec. 3). The new po-
tential form is compared to the corresponding
Yukawa form and found to be different for both on-
and off-diagonal matrix elements.

Observables are determined by the transition
matrix. The T matrix was constructed using sums
of generalized Yukawa forms by numerically solv-
ing the nonrelativistic Lippmann-Schwinger equa-
tion. The parameters of the new interaction were
fitted to the Reid phase shifts, so that only off-
energy shell changes result from adopting the new
basic form (Sec. 4). Of course, the potential pa-
rameters needed to fit the same data differ from
Reid's values. The off-shell changes in the T ma-
trix are examined in See. 5 and lead to a net +1.4-
MeV/A change in the energy per particle of nu-
clear matter.

2. GENERALIZED YUKAWA POTENTIAL

The Yukawa potential represents the interaction
between two nucleons as produced by the exchange
of a meson. For a Yukawa interaction, the meson
propagator, which describes the transfer of mo-
mentum between the nucleons, is of the form

1
(K' —K)'+ng'
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The Fourier transform of Eq. (1) leads to a local
potential because V depends only on K'- K. The
factor N is chosen to phenomenologically represent
the spin dependence (N= o, ~ o,), the tensor property
[N= (o, ~ K)(a, K') — o o, ~ g,], and the spin-orbit
nature [N=(Fr, + v, ) K'x K] of the nucleon-nucleon
interaction. The potential both on ( jK j= jK' j) and
off ( jK j w jK' j) the energy shell is defined in Eq. (1).

Another important feature of the Yukawa inter-
action is that the mesons are assumed to trans-
fer momentum instantaneously. The subscript
NR in (1) signifies that the Yukawa interaction
omits retardation, i.e., Eq. (1) neglects the me-
son transit time. In a more fundamental approach,
the factor N is related to nucleon spinors, u(K),
and coupling constants, g, by terms of the general
form N'=g'ut'uPI u, where I' is the appropriate
Dirac invariant. The spinor normalization fac-
tors, ua[(E+M)/2E]' ', in this general form of N
introduce a more complicated dependence on K
and K' than used in phenomenological representa-
tions of N. A more complicated dependence on K
and K' also appears in the meson propagation when
retardation effects are considered.

These spinor normalization and retardation ef-
fects can be included in a phenomenological scheme
by defining a generalized Yukawa form to be

E+M E'+M 1

2E 2E' (K'- K)' —(E' —E)'+m' '

(2)

where N represents the standard spin dependence,
tensor property, and spin-orbit terms. Here E'
= K +M and E' = K +M, but E wE' for off-diag-
onal matrix elements (jK j c jK' j).' The potential
V„, both on and off the energy shell, is defined in
Eq. (2). The quantity, (E'- E)', represents the
retardation effect as discussed by Salpeter and
Bethe. '

One can understand the (E'- E)' term as a sim-
ulation of retardation effects by comparing the
time evolution operator of a field theory and a po-
tential theory. The time evolution operators are
inherently different because a potential acts in-
stantaneously while a meson propagates during a
finite time interval. It can be shown that the
(E' —E}' factor in the potential minimizes to some
extent the difference between the two time develop-
rnent operators for one-meson exchange. A com-
plete definition of retardation requires examina-
tion of higher-order terms. ' Both V~ and V»
are based on the underlying meson-exchange mech-
anism. In fact V„and V„„are equivalent when
both jK j and jK' j are much less than the nucleon
mass. For higher momenta, however, they differ

due to the spinor normalization and retardation
effects. It is extremely difficult to decide from
theory which phenomenological form is preferable
for use in the Schrodinger equation. Several
authors have discussed the question of how to prop-
erly incorporate meson effects in a potential. '
Rather than investigate this important unresolved
question, we have adopted Eq. (2} as an alternate
form for the construction of a phenomenological
potential. In this way, we hope to estimate the ef-
fect of spinor normalization and retardation on
two-body scattering and on nuclear binding.

3. MATRIX ELEMENTS OF THE POTENTIALS

In order to understand the potential definition
given in Eq. (2), the S-wave part of that expres-
sion is now extracted. The 'S, channel part of

V~ is

K+M E'+M . 1

2E 2E' 2KK'

where

Zs = (2EE' —2M +m )/(2KK'}, (4)

where

Z»„= (K +K' +m )/(2KK') .

To compare U~ and U» analytically, we define
the ratio

(6)

(K jU„, jK)
'

On the momentum diagonal jK j
= jK'j and, hence,

E=E'. For E=E' we have Z„=Z» and the Legen-
dre functions give identical contributions. So that

11(lf, ll)=( ) 1. (s)

Thus the diagonal matrix elements of the general-
ized Yukawa form are smaller than the diagonal
elements of the standard Yukawa form because
of the spinor normalization factor. The ratio of
Eq. (8) depends on K; R(K, K) is near 1 for E near
M and becomes —,

' for large energies.
The K dependence of the normalization also re-

duces the ratio of Eq. (7) when jK j x jK' j. How-
ever, in this off-diagonal case Z„w Z». In fact,
Zs «Z», see the Appendix. Since Qo(Z) is a
monotonically decreasing function as Z goes from

and Q, is a Legendre function of the second kind.
In this section, we compare Eq. (3) both analytical-
ly and numerically to the 'S, wave part of V»
which is given by

1
U»s = N( So) @o(Z»z) 1
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TABLE I. S-wave phase shifts (in rad). TABLE III. Si- Di parameters.

Lab
energy
(Me V) Yukawa

24
48
96

144
208
304
352

-0.447
-0.536
—0.600
-0.618
-0.623
-0.616
—0.610

V0=82 MeV m=1 fm i

—0.446
-0.532
-0.590
-0.604
-0.601
-0.583
-0.572

Generalized
Yukawa V4

V5

v,
VY

Vs
Vg

Vio

Vi2

Vis

Reid

-10.463
+210.93

-12 751.2
+59 545.8

-10.463
+10.463

+1407.08
-10041.0

+2835.64
-16278.6

Generalization

-7.547
+163.58

—11810.6
+65 531.8

-10.545
+14.079

+728.2
-9168.2
+3335.0

-19356.3

one to infinity, the Legendre functions contribute
a factor greater than one to the ratio when jK j

w jK'j. This fact shows that retardation tends to
increase the off-diagonal matrix elements of U„
while the spinor normalization decreases the ma-
trix elements for all K and K'.

For the limit K'-0,
(0 jUs jK& K+M K'+m'

(0 jU» jK) 2E 2M(E —M)+m' ' (9)

where the asymptotic expression Qo(Z) —I/Z for
large Z has been used. From Eqs. (8) and (9} it
follows that

(ojU„jK& &KjU„jK)
(OjU~sjK) (KjU, jK) (10}

However, (K' j U„jK) still goes to zero for large
K', as can be seen from Eq. (3).

The net effect of normalization and retardation
on the S-wave matrix elements is now clear. On
and near the momentum diagonal, normalization
is the greater effect and the matrix elements are
decreased. Far off the momentum diagonal retar-

The off-diagonal matrix elements for K'=0 are
reduced less than the diagonal matrix elements
when retardation and normalization are taken into
account. From Eq. (9) we see that R(0, K}&1 for
K' &m(m+2M). For a large enough energy,
(0 j U„jK) is actually greater than (0 j V» jK& In.
fact

lim R(K', K) =~.

TABLE IV. Phase-shift comparison, So (in rad).

Reid

Lab
energy
(Mev) Generalization

dation is more important and the matrix elements
are increased.

Since the phase shifts depend on potential matrix
elements both on and off the momentum diagonal,
the effect of these competing changes on the S-
wave phase shift is not obvious. Numerical re-
sults for a standard Yukawa potential and the
generalized Yukawa potential are shown in Table

Both potentials are arbitrarily taken to have a
strength, V„of +82 MeV and a range of 1 fm '.

The phase shifts of the generalized Yukawa po-
tential are smaller than those of the standard Yu-
kawa potential for each energy calculated. The
change is greater at higher energies. In the en-
ergy range 24 to 352 MeV, the normalization and
retardation effects weaken the potential. The ef-
fect at 352 MeV is about 7% of the phase shift.
The calculation shows that both retardation and
normalization effects contribute to this reduction.

The comparison of potentials given above does
not enable us to conclude anything about the off-
shell effects in the two-nucleon interaction because
the on-shell T matrix has been changed. In the
next section a phenomenological potential based
on the generalized Yukawa form is constructed.
After the new potential is fitted to the phase shifts,
the T matrix of the generalized form is compared
to the T matrix generated by the Reid potential.

Vi
V2

Vs

Reid Generalization

—10.463
—6602.4

+45 389.4

—9.40
-6765.0

+49 830.0

TABLE II So parameters ~ 0.861
0.684
0.440
0.263
0.080

-0.129
-0.216

24
48
96

144
208
304
352

0.862
0.684
0.437
0.258
0.076

-0.129
-0.212
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4. A NEW PHENOMENOLOGICAL
POTENTIAL

In this section, the Reid soft-core potential' is
generalized in the 'S, and S,- D, channels by re-
placing each standard Yukawa by its corresponding
generalized Yukawa form. The Reid soft-core po-
tential consists of the nonrelativistic one-pion ex-
change potential, short-range Yukawa potentials,
and derivative or Thomas forms. Reid adjusted
the strengths and ranges to fit the two-nucleon

data. To fit the same 'S, and 'S, - D, data with
the generalized Yukawa form, it is necessary to
adjust the potential strengths. (The ranges were
kept unchanged. )

In the 'So channel, the Reid soft-core potential
can be written as

e e e
V('S())=V, +V, 4 +V,

7

The V,. are potential strengths in MeV and x =mr
with m =0.7 fm '. In momentum space this is

(K' [V('S ) [K) =2, {V,Q [Z(m)]/m + V,Q, [Z(4m)]/4m + V,Q, [Z(7m)]/Vm},
1

(12)

where

Z(M) = (K +K"+M')/2KK'.

The generalized Yukawa form given by Eq. (3) is

V 2EE' —224 ~ (4 ) V 2EE' —22( ~ (7m)
)4m 2KK' 7Pll 2KK'

In the 'S, -'D, channel, the Reid potential is given by

V( S, D, ) = V, + V-rS,2+ Vz~L S,
with

(13}

(14)

e-x e-2x e-4x e-6x
V, =V4 + V5 +V6 +V7x ' 2x ' 4x ' 6x '

VT=V8 1+—+—2 +V9 —+—. +Via +Vi~

and

e -4x -6x
VLq V2

4
+V3 6x x

The generalization of the central part, V„and the spin-orbit part V~~ parallels generalization of Eq. (12)
to Eq. (13). For the tensor term in momentum space, the pertinent S-D and D Dmatrix elements -ob-
tained from Eq. (14) are

(242(2, (24'2& = V(, (& IZ(» )I ~ 2,(q(Z(m)l —e(Z( ))&)
1 3

3V9+ ', {Q,[Z(4m)] —Q, [Z(4m)] }+ ",Q, [Z(4m)]+ ",Q, [Z(5m)],
Vio

(15)

( (
~, ~V K'Q, [Z(m )]+K"Q, [Z(m )]

m 2KE' —Q, [Z m)]

~V K'Q, [Z(4m)]+K"Q, [Z(4m)] —Q, Z4m)] + ' — Ii,')(4m}+ " I')(6m) .m KK' 4m m 6m

(15)
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TABLE V. Phase-shift comparison S&- D& (in rad). TABLE VI. Binding energy of nuclear matter at satura-
tion density Kz = 1.36 fm

3$
Reid

Di
Generalization

3Sg 3D)

Blatt-Biedenharn convention
Lab

energy
(MeV)

Reid
Generalized

potential

1.426
1.106
0.751
0.526
0.314
0.092
0.007

-0.050
-0.116
-0.217
-0.286
-0.354
-0.438
-0.480

0.032
0.043
0.069
0.105
0.167
0.281
0.342

24
48
96

144
208
304
352

1.425
1.104
0.752
0.531
0.323
0.098
0.012

—0.052
-0.119
-0.216
-0.283
-0.350
-0.423
-0.452

0.033
0.046
0.069
0.096
0.139
0.217
0.261

The generalization chosen for Eqs. (15) and (16)
was analogous to Eq. (13), i.e. , Z» is replaced
by Z~ and an over-all spinor normalization intro-
duced. However, the difficult I,",' terms (see Haf-
tel and Tabakin') were left unchanged.

With these generalized forms, the potential
strengths given in Tables II and III were deter-
mined by fitting the Reid phase shifts; the cor-
responding phase shifts are given in Tables IV and
V. On shell, the T matrix of the generalized po-
tential is closely equivalent to that of the Reid po-
tential. The 'S, phase shift fit is very good. At
low energies the fit in the 'S, -'D, channel is quite
close. As a result we expect the deuteron proper-
ties to be changed very little. Above 150 MeV, the
6 and 'D, phase shift fits fall somewhat below the
Reid values.

It is of interest to examine the changes of the
potential parameters needed to obtain the approxi-
mate on- shell equivalence. One important feature
is that the strengths of the short-range repulsions,

M*/M
Uo
Potential energy/A
'S
3S)

Dg
Sum
Kinetic energy/A
KE/A + PE/A
Other partial waves
E/A

Wound integrals

K(~Sf
'oo('Si~

oq( Sg- Dq)

&2o{Sg- Dg)
K»(D&)
Sum

0.640
79.00

-15.57
-15.16

1.45
-29.28

23.01
—6.27
—3.59
—9.86

0.0221
0.0298
0.0644
0.0000
0.0000
0.1163

0.640
79.00

-15.68
-13.68

1.50
-27.86

23.01
—4.85
—3.59
—8.44

0.0197
0.0327
0.0763
0.0000
0.0000
0.1287

V3 and V„had to be increased to compensate for
the weaker repulsive effect of V„compared to V„„
(see Table 1). The size of the shift in the one-pion
coefficients, V, and V„ is notable. However, No-
ble and Richards' have shown that changes of the
unitarization scheme can produce one-pion ex-
change phase-shift modifications of the same order
of magnitude. Therefore we consider these shifts
reasonable.

Reid cancelled the 1/r' singularity in the tensor
force by setting V, =-V, . For the generalized

0.6

0.4

0.4

0.2

0.2

0

o -02
O

-0.2

& -04

Oo -0.6

-0.8

-0.8 —REID
x GENERALIZED

I 2 3 4 5 6 7 8 9 IO

K (fm-')

- l.2

I 2 3 4 5 6 7 8 9 io
K (fm-' )

FIG. 1. The function too(K, K') in the So channel with
K' =0.96 fm ~.

FIG. 2. The function too(K, K') in the S&- D& channel
with K' = Q.96 fm ~
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0.2

O. l

0.2

-O, I

-0.2

-0.3
O

Cu
cu

O. l

-0.5

-0.6 —R E ID

x GENERALIZED

2 3 4 5 6 7 8 9 IO

K (fm-I l

-0 I

—RE ID

x GENE RALI Z ED

I 2 3 4 5 6 7 8 9 IO

K ( fm- I )

FIG. 3. The function t2p(K, K') in the S&- D& channel
with K' =0.96 fm ~.

FIG. 5. The function t22(K, K') in the S&- D~ channel
withK' =0.96 fm

Yukawa case V, w -V, was used to fit the phase
shifts, but no singularity is generated.

Having fixed the on-shell values, we attribute
the off-shell modifications of the T matrix to the
introduction of retardation and spinor normaliza-
tion factors. The importance of these changes is
examined in the next section.

5. OFF-SHELL T MATRIX
AND NUCLEAR MATTER

Having used the generalized Yukawa interactions
to fit the phase shifts, we next examine the full
T matrix which is determined by the Lippmann-
Schwinger equation, T(~) = V+ V(~ —H, ) 'T(~).

O. I

The numerical methods of Ref. 7 were used. It is
of interest to see how the modifications in the po-
tential matrix elements discussed in Sec. 3 effect
the off-shell T matrix. The on-shell T matrix has
already been fixed by using the new parameters
(Tables II and III) to fit the phase shifts.

In Figs. 1-5 we present the 'S0 and 'S,-D, half
off-shell T matrix elements t~~ (K, K')' as a func-
tion of K for the Reid soft-core potential and its
generalization. For all states, the far off-shell
T matrix elements of Us(K»K') were increased
and approach zero more slowly than those of U».
Near the energy shell, the T matrix elements of
U„and U» are close to each other.

Since the T matrix elements of U„and U» dif-
fer the most far off the energy shell, the question
arises whether the differences influence nuclear

-0.I

-0.2

—RE ID

x GE NE RALI Z ED

-0.3

04
-2

Cl

X

LU

-0.6

-07 —RE ID

x GENERALI ZED

-10

SATURATION CURVES

I 2 3 4 5 6 7 8 9 10
K (fm-I)

1.2 1.4
K F

(fm-')
1.8

FIG. 4. The function tp2(E' E' ) in the S,—D& channel
with K' =0.96 fm

FIG. 6. Saturation curves for the Reid soft-core po-
tential and the generalized potential.
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observables. Nuclear matter calculations provide
insight into this question due to their sensitivity to
off-shell T matrix elements. "

In Fig. 6 we plot the saturation curves for the
Reid potential and its generalization. The nuclear
matter calculation also used the method of Ref. 7.
The state by state contributions to the binding en-
ergy and to the wound intergral, g,"for the 'So

and 'S, -'D, partial waves are shown in Table VI.
The same L &0 partial waves are included in both
cases. The Reid potential saturates at K~ = 1.36
fm with 9.86-MeV binding per particle. Differ-
ent values are obtained by other authors, "be-
cause of their assumptions concerning higher par-
tial waves. The generalized potential saturates at
K„=1.35 fm ' with 8.44-MeV binding per particle.
For our present study it is only the difference in
binding E~s —E~ =1.42 MeV/A that is of interest.

By examining Table VI, wee see U„gives less
binding and larger wound integrals than U„~ for
all states except the 'S, state. The reason for the
increased repulsion and increased wound integral
is clear from Ref. 7. Larger off-shell matrix
elements are associated with larger wound inte-
grals. Larger wound integrals imply increased
repulsion in nuclear matter. In the 'Sy Dy chan-
nel the differences in the far off-shell elements
of the T matrix dominate. Consequently U„has a
larger wound integral and more repulsion than U».

In the So state, the off-shell T matrix elements
of U» are slightly larger up to K'=4 fm ', at
which point the slower falloff of U~ takes over.
The net effect is a slight increase in attraction
and decrease in the wound integral. The plots of
T matrix elements show that we should expect
this decrease in the wound integral only in the 'S,
state.

Our change in nuclear matter binding is about
twice the magnitude but of opposite sign of that
found by Brown, Jackson, and Kuo. " Their pre-

scription involves a different normalization factor
(MM'/EE')'", but no change in the argument, z
of Q„ i.e., no retardation effect. In their case a
considerable decrease in far off-shell potential
matrix elements occurs and a corresponding in-
crease in binding of 0.5 MeV/A results. The dif-
ference between their result and ours clearly re-
sults from the different off-shell prescriptions.
Including both the spinor normalization and retar-
dation effect, our case leads to a decrease in
binding energy of 1.4 MeV/A.

6. CONCLUSION

Generalized Yukawa interactions have been de-
fined to incorporate retardation and spinor nor-
malization effects. They have been used to con-
struct phenomenological 'S, and S,- D, potentials
patterned after the Reid soft-core potential. It
is found that spinor normalization decreases the
potential matrix elements, whereas retardation
increases the far off-diagonal matrix elements.
When the on-shell T matrix is constrained to fit
the phase shifts, the result of this competition
is a net increa, se in far off-shell matrix elements.
Consequently, the binding of nuclear matter is
decreased 1.4 MeV/A. Using a qualitatively simi-
lar normalization, Brown, Jackson, and Kuo have
found that a normalization change by itself causes
a net increase in binding. We, therefore, con-
clude that our 1.4-MeV decrease in binding is pri-
marly a result of retardation. While an improved
'S, -'D, fit may alter this result somewhat, no
qualitative change is expected.

Based on this estimate, we feel an improved
theory of the effects of retardation is needed. Per-
haps the time development approach of Johnson
and Baranger" can be of help. Certainly, a pre-
cise calculation of the effect of retardation can
only be formulated with relativistic kinematics.

APPENDIX

Proof that K'+K" ~ 2gg'- 2~'.

(K' K")' & 0

(K2 KI2)2 K4 +K&4 2K2Ki2

= (K +K'+ 2K'K + 4M'+ 4M K'+ 4M'K") —(4K'K" + 4M'K'+ 4M'K" +4M')
= (K'+K" +2M')' 4(K'+M')(K" +M')

= {K'+K"+ 2M'+ 2[(K'+M')(K" +M') j '~'){K'+K"+ 2M' 2[(K'+M')(K 2+M2)]»2j o 0

Since the first factor is &0, the second factor must be too,
K'+ K"+ 2M' —2EE' ~ 0,
K'+K&2 ~ 2gEI 2M2

(A2)

(A.2)
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Measurements of the n-d total cross section to a precision of 1% are reported for the ener-
gy range 25-60 MeV. Nearly monoenergetic neutron beams were used whose energy was de-
termined to about +100 keV. The experimental values of fr~ for energies —36 MeV are sever-
al percent larger than previous measurements in this range. Assuming charge symmetry,
cr can be calculated from the T =1 phase shifts. The differences between experimental val-
ues of {v~—cr~) and e~ calculations are small and fairly well accounted for by correction
terms based on the method of Glauber.

INTRODUCTION

In previous experiments at Harwell' and Harvard'
in the ranges 15-120 MeV and 90-150 MeV, re-
spectively, the difference between the n-d and the
n-p total cross sections, o~- o„~, was measured
directly using a (D,O-H, O) difference technique.
The differences, o„„—o„~, corrected for double
scattering by the method of Glauber, ' give inferred
values of o„„. For E„~40 MeV these agreed to
within experimental uncertainty with the values of

o calculated from T = 1 phase parameters de-
rived from p-p measurements. This agreement
is surprising, since the "size" of the wave packet
of the incident nucleon is not small compared to
the size of the deuteron and the impulse approxi-
mation is indeed approximate.

Experimental values of o~ were calculated at
Harwell and Harvard by adding together the mea-
sured values of e~- o„~ and o.„~. The over-all pre-
cision of the Harwell values' of o~ depends on that
of earlier Harwell measurements of o„~ and is


