
PHYSICAL REVIEW C VOLUM E 6, NUMBER 1 JULY 1972

Non-Hermitian Hamiltonians, Decaying States, and Perturbation Theory

Morton M. Sternheimt
Los A)amos Scientific Laboratory, University of California, Los Alamos, Nese Mexico 87544

and

James F. Walker
Department of Physics and Astronomy, University of Massachusetts, Amherst, Massachusetts 01002

(Received 13 March 1972)

The conventional time-independent perturbation theory and projection-operator techniques
are generalized to systems propagating under the influence of an effective non-Hermitian
Hamiltonian, e.g. , an optical-model potential. The mathematical complications which can
arise due to lack of orthogonality and completeness for the eigenstates of such a Hamilton-
ian are discussed on an elementary level. Examples of the various techniques involved are
taken from considerations of models for exotic atoms and cascade processes.

I. INTRODUCTION

The effective Hamiltonians for many physical
problems are not Hermitian. One example is neu-
tron scattering; incident particles are lost from
the elastic scattering channel through nuclear ex-
citation. Another example is the effective Hamil-
tonian for the "eigenstates" of exotic atoms in
which a K, m, p, or Z particle is bound to a
nucleus in an atomic orbit; capture or annihila-
tion reactions become important if the wave func-
tion overlaps the nucleus appreciably. In both
cases a non-Hermitian "optical potential" arises.

Strictly speaking the "eigenstates" above are
not true normalizeable bound states but are, rath-
er, decaying states. An exotic atom is simply
one stage of a complicated scattering process in
which, for example, a K is incident upon an
atom, and a pion, several photons, a nucleus,
etc. emerge. Formally bound states correspond
to poles of the scattering matrix which lie on the
real axis of the physical sheet of the complex en-
ergy plane. Decaying states correspond to poles
on the second sheet below the real axis. '

Our recent consideration of a crude model for
exotic atoms' led us to the conclusion that the
non-Hermitian analogs for the familiar perturba-
tion-theory techniques were not available in the
literature. Standard textbook treatments apply
only to eigenstates of Hermitian Hamiltonians.
They cannot be used for decaying states, e.g. ,
exotic atoms. However we have found that meth-
ods similar to the standard ones can be used to
derive perturbation theory for the non-Hermitian
case. Some of these results have also been ob-
tained recently by More' using Jost-function
methods. We will restrict ourselves to consider-
ation of decaying states that can be thought of as

states of two particles bound by a non-Hermitian
potential. This is sufficient to include several
types of resonant scattering in nuclear physics
and auto-ionizing states in atomic physics as well
as exotic atoms.

In Sec. II, we review the relationship between
open channels and the non-Hermitian optical po-
tential which they generate as an effective inter-
action in other channels. Section III contains a
discussion, from a rather pedestrian point of
view, of the orthogonality and completeness prop-
erties for the special types of non-Hermitian prob-
lems which arise in the use of optical potentials.
The formulations of time-independent perturbation
theory and of projection-operator theory based on
a non-Hermitian Hamiltonian are presented in
Secs. IV and V, respectively. In Sec. VI we show
that these considerations lead to expressions for
exotic-atom x-ray linewidths which are some-
what different from the conventional perturbation-
theory expressions.

II. SOURCE OF NON-HERMITICITY

Non-Hermiticity generally enters physical prob-
lems via the boundary conditions. The boundary
condition for a continuum channel does not require
a vanishing wave function but rather, say, an out-
going wave. Consequently the kinetic energy oper-
ator is not Hermitian. Also, for another channel
coupled to this continuum channel, the effective
single-channel Hamiltonian will contain a non-
Hermitian potential, the so-called optical poten-
tial. In this section we will summarize briefly
how this comes about.

The usual Lippman-Schwinger Green's function
describing propagation for which the asymptotic

i14



NON-HERMITIAN HAMII TONIANS, DECAYING STATES. . . 115

wave function has only outgoing spherical waves is

G(E) =
1

(2.1)

P =P, Q =Q, PQ=QP=O,

Q'=Q.

For an arbitrary operator A. we define

A~q —=PAQ, A»= PAP, e—tc.

(2.2)

(2.3)

(2.4)

Here E is the energy and &-0' as usual. H is the
total Hamiltonian which describes the relative mo-
tion in several coupled channels. We assume that
at least one of these is a two-body channel.

Because we wish to focus our attention on a par-
ticular two-body channel, we define a projection
operator P onto this channel. For an arbitrary
state l4'&, P l4'& will be that portion of l4'& for which
the two particles (say a K and a nucleus) move
relative to one another in some way. The energy
E is defined so that E =0 is the threshold for this
P channel. The complementary projection is Q
=—1 -P. These projection operators satisfy the
usual conditions,

where the effective P-channel Hamiltonian p
contains an energy-dependent optical potential,
'Up,

X (E)=H, +~ (E),

u~(E) =H~q(E+ i e -Hqq)-'Hq~.

(2.11)

(2.12)

III, ORTHOGONALITY AND COMPLETENESS
PROPERTIES

H =H~+iH~, (3.1)

where HR and H, are Hermitian. The eigenstates
of H and H satisfy

The optical potential of Eq. (2.12) is energy de-
pendent and nonlocal. It is usually approximated
by a local potential with relatively weak energy
dependence. In this section, we study the ortho-
gonality properties and completeness of the eigen-
states of a Hamiltonian with an energy-indepen-
dent optical potential. It is assumed that these
results will also be valid for weakly energy-depen-
dent potentials.

Consider a general operator

Thus H = Hpp + Hpq + Hg p+ Hqg Hpp contains
only the Hamiltonian for the relative motion of
the two particles in the P channel. It has no con-
tributions from the other channels. The spectrum
of H» will contain a continuum from E =0, and

may also contain bound states of the two particles
(e.g. , K-mesonic atomic states) H~q .and H~
couple the channels, and H@ is nearly as com-
plicated as H itself.

The projection-operator techniques of Feshbach'
can be used to consider that portion G»(E) of the
total propagator Eq. (2.1) which describes pro-
cesses beginning and ending in the P channel.

The standard operator identity

and

Now

so that

ImE. = Q.IH, IA.&/&t. l t.&,

(3.2a)

(3.2b)

(3.3a)

(3.3b)

(3.4)
A-' =a-'[I+(a -A)A-']

gives

(2.5)
and

&y.ly. & =»&y. lH, I4.&(E. E.*) '- (3.5)

and

G~~(E) = (E+ ie-H») '[1+H~qGq~(E)], (2.8)

Gq (E) =(E+ic—Hqq) 'Hq G (E). (2.9)

Substituting Eq. (2.9) into Eq. (2.8) and using the
identity (2.5) we find

1
E+i~-X (E)' (2.10)

G(E) =(E+i e —HJ, ~) '[I+(H —H»)G(E)], (2.6)

G(E)=(E+ie Hqq) [1+(H H )G(E)] (2 7)

Since PHqq —0 =HqqP =QH» H»Q, Eqs. (2.6--)

and (2.7), respectively, yield

g„ly„&=0, n~m.

In order to see this, consider

(3.6)

(3.7)

For the Hermitian case (Hz --0) Eqs. (3.4) and
(3.5) prove the orthogonality of states for which
E„WE . However, for H~ W 0 there must be some
num for which the right side of Eq. (3.5) does
not vanish (unless we have the trivial case [H„H]
=0). Thus, the eigenstates of a non-Hermitian
operator do not form an orthogonal set.

It is true, however, that (P„,P„] often form a,

biorthogonal set. That is
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Clearly ($„1$„&=0whenever E„*WE„. However,
this set cannot be complete unless there exists
some state (we will call it p„) for which g&„1P„&is
nonzero. For this state Eq. (3.7) requires E„:E„*-.

The existence of such a state Q„ for each eigen-
state Q„of H, is not a general property for arbi-
trary operators. We refer the interested reader
to the discussion of the "residual spectrum" in
standard texts on Hilbert-space theory. ' However,
an operator H representing a physically accept-
able absorptive H3miltonian is much less general.
It follows from Eq. (3.4) that H~ determines ImE„
and thus the decay rate for a state Q„. The time-
reversed state should grow at the same rate as
Q„decays. Therefore the time-reversal opera. —

tion, &, should change the sign of iH~, but should
not otherwise affect H~ or Hz. Since V' is antiuni-
tary and H~ and H~ are ~ invariant,

Hz ~Hr =H (3.8)

The existence of a state Q„with E„=E„*is now

guaranteed by the existence of a time-reversed
state, since

(3.9)

We therefore choose

(3.10)

at least for the case when E„ is a nondegenerate
eigenvalue.

Notice that for the nondegenerate case with only
a spatial degree of freedom, the phase of g„can
be chosen so that the configuration-space wave
function P„(x) is just the complex conjugate of

P„(x). This follows from'

is odd under time reversal, it is easy to show
that (n1n& =0 and (9'(P„„)1P„„&=0. Therefore Eq.
(3.10) is no longer acceptable. In general, there-
fore, we define

(3.12)

where u ranges over all other labels for the state.
We have shown that the existence of a state P„

is necessary to have a complete biorthogonal set,
but we have certainly not proven the completeness
of the set of eigenstates of H. This proof has been
given by mathematicians" for a somewhat more
restricted problem than Eq. (3.8); namely, for a
nonrelativistic s-wave particle in a potential of
the form V = V(x) —iW(x) with V and W real. The
primary conclusions for our purposes are that the
set of all normalizeable discrete eigenstates plus
the continuum eigenstates is complete, except for
isolated potential strengths at which two eigen-
values (and eigenstates) coincide. When this oc-
curs the dimension of the space spanned by the
eigenstates is reduced by one. To compensate for
this a new function associated with this eigenvalue
must be introduced. This "associated function"
is the derivative of the corresponding eigenfunction
with respect to energy. "

It does appear, therefore, that problems due to
lack of completeness occur only for isolated po-
tential strengths, and can be circumvented. We
will proceed under the assumption that no such
problem arises.

The orthogonality property (3.6), coupled with
completeness of the eigenstates of H, leads to sim-
ple and useful forms for the identity and projection
operators. If we normalize the states to

4.(x) =- &x14.& = &xl& I.&
= «xl & I.&

= &xlt.&*

then the identity operator is"
(3.13)

For this case Eq. (3.6) takes the form' (3.14)

x „x dx=0. (3.11) The projection operator onto a subspace R is

When degenerate states are classified as eigen-
states of Hermitian operators which commute
with the Hamiltonian, the state Q„cannot be de-
fined so simply as in Eq. (3.10) unless the com-
plete set of commuting operators are all time-
reversal invariant. For example, a spin-up state
is always orthogonal to a spin-down state whether
or not the Hamiltonian is Hermitian. Let A. be
the Hermitian operator which commutes with H;
its eigenstates are defined by

n&R
(3.15)

IV. TIME-INDEPENDENT PERTURBATION
THEORY

We now develop time-independent discrete-state
perturbation theory assuming a non-Hermitian un-
perturbed Hamiltonian Ho whose eigenstates fP„}
and g„) form a complete biorthogonal set with
E =E"'* Let

A1o.&
= o. 1a&.

Define the state 1K&-=& '1o.&. The simultaneous
eigenstates of H and A we denote by 1P„„&. If A

and

H =Ho+AH~

file& =El'&.

(4..1)

(4.2)
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Expanding in powers of A. ,

(H, +~H, )i(y"'+ ) y"'+ ~ . . )&

(E(0) +gE(l) + )i (y(0) +)„@(I)+ )&

Collecting terms gives

(E"' -H.)le"'& =0,
(E(0& H )i/& )& (E(&) H )i/ &o)&

(4.3)

(4.4)

(4.5)

E"' = (4"'IH, Iy"'&. (4.7a)

In the special case corresponding to Eq. (3.11),
this becomes

(E(o) H )iy(2)& (Eo ) H )iy(&)& E(2) iy(o» 0

(4.6)
Equation (4.4) is the unperturbed problem.

Equation (4.5) gives the first-order energy shift
if we take the inner product with i&i»" &. Using Eq.
(s.sb),

(y «& i(E(o& H )iy(&)& (E(o) E(0)+)(y(0) iy 0» = 0

so that, assuming the normalization (3.13)

this problem shows that for the ground state

Rec &0, Imc &0.

The value of c can also be obtained by using Eq.
(4.7b); the two values are in agreement.

V. PROJECTION-OPERATOR METHODS

In dealing with problems for which the spectrum
and corresponding eigenstates consist of two weak-
ly coupled groups of states, the effect of one on
the other can usually be described by the projec-
tion-operator techniques introduced for Hermit-
ian problems by Feshbach. ' The existence of the
projection operators (3.15) for the non-Hermitian
problem permits a similar derivation here. As
in Sec. IV the results will look very similar to
those for the Hermitian case, but they are in fact
quite different.

Define H as in Eq. (4.1) with H, non-Hermitian.
We use the eigenstates &I&„&o& of H, to define a pro-
jection operator and its complement as in Eq.
(3.16):

E(z) (o) & ~ @(o) & d& (4.7b)

This is the result derived recently by More. ' The
first-order correction to the wave function is

iy"'&=-(E"'-H )-'(E"' H)le"'&-
Inserting the identity operator (3.14)

(4.8a)

E"'= Z (e,'"iH, ie."'&(e."'IH, ie,'"&(E,'"-E."') '.
n&i

(4.9)

Equations (4.7) —(4.9) differ from the Hermitian
counterparts significantly despite their similar
form. For example, a real positive perturbation,
H, (x) ~0 need not produce a positive E"'. This
has been verified by considering the soluble model
of Ref. 2. Consider for IIo a spherical box of ra-
dius x„containing a "square well" V =-iVI for

If we take

-V~ = const;
A, II

0; (4.10)

then E =E"'+c(-V„)+ ~ ~ ~ . The exact solution' of

le "»= Z(E'"-E"')-'(e."'IH, leI"&Ie."'&,
n&j

(4.8b)

where the subscript i has been inserted to indi-
cate the unperturbed eigenstate which &j& ap-
proaches as A. -O. Similarly,

They satisfy the same conditions (2.2) as do the
projection operators of Sec. II, but they are not
Her mitian.

As in Sec. II, the effect of the -channel states
on the portion &I& ~

—=(PQ of the wave function in the
6' channel can be expressed as an effective poten-
tial in the 6' channel given by Eq. (2.12)." In the
notation of Eq. (2.4)

[H ~~ +H @~(E H~ ~ ) 'H, ~-] &t& ~
= E(t& d, . (5.2)

The new effective Hamiltonian will also satisfy
the condition (3.8) if H does and, if for each &I&„„

contained in the set R defining 6', &(&&„—„is also in'.
As an illustration of the use of this technique,

let us consider once again the model problem of
Ref. 2, as stated in the paragraph preceding Eq.
(4.10). For sufficiently large V~ the spectrum of
IIo was found to consist of two relatively distinct
types of states. "Outer states" are largely con-
fined to the "outer region" (rN &r &r„) and fall off
rapidly in the "inner region" (r &r„) "Inner.
states" are largely confined to the inner region
and fall off rapidly in the outer region. The inner
states have ImE-Vz as can be seen from Eq. (3.4),
while the outer states have ImE «V, due to their
small penetration into the absorptive inner region.
Once this division has been established, then one
question of interest is the effect which varying V~
[s ee Eq. (4.10)] has on the energies of low-lying
outer states. Projection-operator techniques can
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be used to answer this question, both for this mod-
el and for more realistic calculations.

Let 6' be the projection operator onto the par-
ticular outer state' of interest, and be the pro-
jection operator onto the inner states of Ho The
effect of the inner states on the outer state, when

H, is nonzero, is contained in the effective-inter-
action term obtained by replacing H by Ho+ A. H,
in Eq. (5.2):

of the results obtained here refer to any cascade
process. Let N and N' denote two nuclei and let
A(nl) denote the (n, t}K-mesonic atomic state.
Consider a particular process starting from a K
incident on nucleus N, and terminating with a final
state containing the nucleus N', several photons,
a hyperon, and a pion,

K +N-. -A(4f)+ (n —1)y

~, = ~'(H, )„,[Z —(H, +~H, ),,]-'(H, ),, (5.3) -A(3d) +ny- N'+ny +A +m . (6.1)
To determine the effect of 'U as V~ is increased

we require the eigenstates of (Ho+A. H, )„.That
is, we require the U~ dependence of the eigen-
values E,. and corresponding eigenstates 4,. which
span the same space as the V„=O inner states Q,.:

(H.),, ly;& =&;"'le;&,

(H, +~H, ),„„,ie,.& =Z,. ie,. &.

All such states are well confined to the inner re-
gion. We assume therefore that their wave func-
tions change very little as V~ is varied, but that
their energies change essentially linearly with

V~. Thus,

(5.4)

(5.5)

ie,.&= iy,.&, z,. =z&» -s,.v„ (5.6)

where S,. is the fraction of the inner state Q,. in
the inner region.

ImE!0}
S;=(4;l~(& -&)IA;&=

I
(5 7)

The step function 8(x) is unity for x &0 and zero
otherwise. The first-order effect of this term on
the energy E, of the outer state Q, is obtained
using Eq. (4.7a)":

Eo —E; +S;V~

(5.8)

As U~ is increased, the real part of the denomin-
ator in Eq. (5.8) changes sign as the correspond-
ing inner state is "drawn down" into the increas-
ingly more attractive well in the inner region. As
this occurs for the various different inner states,
the energy contribution AE, oscillates. A more
complete discussion of this phenomenon is con-
tained in Ref. 2. The key to its understanding,
however, is the projection-operator theory based
on a non-Hermitian Hamiltonian.

VI. E-MESONIC ATOMIC CASCADES

As an example of the way in which non-Hermitian
Hamiltonians arise in an actual problem, we con-
sider a K-mesonic atom cascade process. Some

The total Hamiltonian H consists of the interac-
tion H of the hadronic current with the electro-|'
magnetic fields plus the Hamiltonian II, for every-
thing else, including the portion of the strong in-
teraction responsible for the ultimate K absorp-
tion:

H =Ho+Hy . (6.2)

Let the eigenstate of H which is asymptotically
the final state of the process (6.1) be ~4z(-)&, and
the eigenstate of Hp which is asymptotically the
initial state of (6.1}be ~C,.(+)&." The amplitude for
for the particular process (6.1) may be calculated
from the general amplitude

= (Cy( —), ny 1[H& +Hz(& -H + i&) "H, jlC';(+)&,

(6.3)

where ~4&(-), ny& is the eigenstate of H, which goes
asymptotically to the final state of the process
(6.1). It is the product of the hadronic state ~4&(—}&

and the n-photon state which we have abbreviated
by ~ny&, although the momentum and polarization
of each photon is actually needed to specify the
state. If the propagator (E H+i@) ' of Eq.-(6.3)
were expanded in a power series inH, one
would obtain conventional perturbation-theory re-
sults and the process (6.1) would be described by
the term containing n factors of H&. However,
this would not contain electromagnetic width ef-
fects. We will develop an expansion which keeps
both the hadronic and the electromagnetic contri-
butions to the width.

The process (6.1) arises as a special case of
Eq. (6.3) for which the photons arise only from
the K N current. That is, this particular process
results from that portion of B& which operates in
the K N subspace of the total hadronic Hilbert
space. Letting P~„be the projection operator onto
this subspace, we conclude that the amplitude to
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be calculated is

T~, =(4q(—) ny~P»»Hy P»»(E —H+ is) ~P»»Hy P»»~4 ~ (+)), (6 4)

The effective propagator is the projection of the
total propagator onto the K N subspace. In Sec.
II we found that this can be replaced by propaga-
tion with a non-Hermitian Hamiltonian. [See Eqs.
(2.10), (2.11), and (2.12).]

P»»(E -H +it) 'P»» ——(E -K»» —H~~ —Vy+ ie)

(6.5)

In Eq. (6.5) we have explicitly separated the terms
in the projected Hamiltonian which refer to the
electromagnetic field. The projected interaction
Hamiltonian is

Vy =—Paw&yPscx (6 6)

and the free-field Hamiltonian for the photons is
H, . The effective K N Hamiltonian K~„contains
an optical potential arising from the coupling to
other strong-interaction channels. The transition
is now described by

space is

G' '(E)=PG—' '(E)P =[P (E -K -H, )P +is] '.
(6.11)

Using the techniques of Sec. II, the projection of
G onto the k-photon subspace is seen to be

G, (E)=P G(E)P =[P„(E-K„-H, )P —h„(k —1)
—S,(k+1)+fe] ', (6.12)

where

b q(k a1) PqV y P~~~Gq', ', (E)Pq„VyPq (6 13)

These terms b, ~(k +1) yield the electromagnetic
contributions to the widths and shifts of the K-me-
sonic atomic states.

The final type of propagator which is needed also
operates in the k-photon subspace; it contains
width and shift effects corresponding to k-1 pho-
ton states. It is given by

r„=(C,(-) ~
P.,„M„,P „(C,. (+)), (6.7)

Gs&~-i)(E) = IP~(E K»» He~)Pa &a(k 1)+&&] ',
M„z =(ny jV~(E-K»»-H, —Vz+ fe) 'V&~0).

(6.8) where

(6.14)

The complexities of the final strong decay in the
cascade (6.1) will not be treated explicitly, but
are contained in the projection of (Cz(-)~ into the
K N channel.

The only remaining step in the development of

T&,. to a form which is recognizable as a sequen-
tial decay is the expansion of Eq. (6.8) in powers
of V

y
Since V changes the photon number by 1

each time it operates, and electromagnetic inter-
actions are weak, we need an expansion with n
factors of V in the numerator; however, we also
wish to keep electromagnetic width effects in the
inter mediate propagator s.

This can be done formally by defining projection
operators P„k=0, 1, 2, . . . onto states of k pho-
tons. The interaction V& has the special property
that P, V~P„. is zero unless k' =k ~1. We require
several propagators. The propagator in Eq. (6.8)
ls

6,'(k —1)=P V P„,G „„(E)P,V P, (6.15)

and

a,'(0) =P,VyP, GO(E) PoVy P, .
Because V is weak, a,'(k —1) is essentially the
same as A„(k —1). It is convenient to define one
last operator,

V„~i —=P~Vy P~i, k' = k a1. (6.16)

We have now defined everything which will be
needed to express Tz,. in a sequential decay form.
This form is given in Eqs. (6.25) and (6.26). The
reader may at this point wish to skip over the
derivation below and proceed directly to Eq. (6.25)
and the discussion which follows.

The exps, nsion of G(E) is based on the same
operator identity as ordinary perturbation theory:

G =G&" +GV G ".
y (6.17)

G(E)=(E-K „-H, —V, +i~)-', (6.9)

G&o&(E)=(E-K „-H, +re)-'. (6.10)

The projection of G"'(E) into the k-photon sub-

and the corresponding noninteracting propagator
is

GPQ G Q
+GP y Vt QG Q (6.18)

(6.19)

If we use the fact that G"' does not connect states
with different numbers of photons, we find
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Substituting Eq. (6.18) into Eq. (6.19) gives

GP, = (1 +Gp 'Vp, ) G, &p& +GP»V», G, &p&
. (6.21)

Vfe have used the fact that the propagator G„&, , )

defined in Eq. (6.14) satisfies the identity

Gk&k, &

=G„' '(1 —V„„,G», &» k&V», »G» ') ',
and for the special case of 4=1,

(6.20)

Solving Eq. (6.20) gives an expression for GP, in-
volving the total propagator G only in the form
GP2:

Following the approach of Sec. III, we now ex-
pand the propagators in Eq. (6.25) in a complete
set of eigenstates of the non-Hermitian Hamilton-
ian in its denominator. Because the electromag-
netic contributions, A»(k+1) in Eq. (6.13}and

b.k(k —1) in Eq. (6.15), are second order in V,
they should be small, and may be treated using
first-order perturbation theory (Sec. IV) based
on the non-Hermitian Hamiltonian X~~ for the
K N system. The assumption of a particular cas-
cade (6.1) requires each propagator to be replaced
by a single term in this expansion. For instance,
for propagation in the 5g state in the presence of
n —2 photons, we have

G&&p& =G&"( —V&pcp"Vmcx" } '
~

By iteration of this technique we can obtain for-
mally exact expressions for GP, in terms of GP,
and so on: with

x dq& ' ' ' dq„ (6.27)

}(@,'q
E -E —q ~ ~ ~ -q5g 1 n-2 5g

GP„=(1 +(1 + [1 + ~ ~ ~ (1 +
G p&P' Vp, ) G,

& &
V,k]. . .)

Gk-&&k-k&vk-&, k) Gk&k-&& G k+&Vk+&.»P»{k-&& '

(6.28)

In order to calculate M„[Eq. (6.8)], we need

P„,GP, . From Eq. (6.21}we see that

Pn-xGP j.
=Pn &GP2V2&G & (p) (6.24)

because the first term in Eq. (6.21) has zero pro-
jection into the n —1 photon space. Now Eq. (6.22)
gives P„,GP, in terms of Pn, GP„and so on.
Finally, we find the exact formal result

P GP =Gn-I ]. n-zVn-]. ,n-pGn-2(n-3). . . V3 2Go&~) V2~Gy&p

(6.26)

where G„, is given by Eq. (6.12}, and the remain-
der of the propagators, by Eq. (6.14). The tran-
sition amplitude in terms of the result (6.25) is
finally given by

r„=(e,(-),ny ( p„v„„,p„,cp, v,g „~c,.(+)}.

(6.26)

GP, =[1+(1+C&"V„)c,&„V„]C„„+CP,V„G„„,
(6.22)

EP» = (4&P»'q& ' ' ' q„klk„k('f& —3) I4&P»' q& ~ ~ q„k) .
(6.28)

The state ~C „)is an eigenstate of R„„with eigen-
value E5, and the photons have momenta q, ,
i =1, . . . , n —2. The imaginary part of ~5 is the
total electromagnetic width due to transitions into
the 5g state.

From this stage on the calculation is convention-
al, but we wish to stress two points. Even though
ImE„, for each state of the cascade will be small,
it cannot be calculated using perturbation theory.
This was evident in Sec. V where we saw that the
width is small because of the small penetration in-
to the absorptive nuclear region. The small pene-
tration cannot be reproduced in first-order per-
turbation theory. The second point is that all ma-
trix elements of Vy will contain the state e.l in
the bra vectors rather than 4„,. Therefore the
width for a given transition (nl -n'l') will be pro-
portional to )(4„,, (e ~ J(q}~C„&)(', where q and e are
the momentum and polarization of the emitted pho-
ton, and J(q) is the electromagnetic current opera. -
tor. It is not likely that this change would have a
very large effect on yield calculations, "however,
because the non-Hermiticity is confined to a rela-
tively small region, and the K-mesonic atomic
wave functions are very small in this region.
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Amplitudes for elastic s-wave neutron-deuteron scattering above the breakup threshold are
calculated by the method of complex coordinates. The nucleon-nucleon interaction is repre-
sented by a local spin- and parity-dependent central Yukawa potential, with parameters cho-
sen to fit low-energy two-nucleon data. Results for inelastic parameters indicate possible
errors in a previous phase-shift analysis. Results for the quartet phase shift and quartet and

doublet inelastic parameters are consistent with separable potential calculations, but the

doublet phase shifts from the two models differ significantly.

I. INTRODUCTION

The three-nucleon scattering problem has re-
ceived considerable attention in recent years. '
The use of local nucleon-nucleon potentials has
been hampered, however, by the severe numerical
problems occasioned by their use in Watson-Fad-
deev-type integral equations; nonlocal separable
potentials or separable nucleon-nucleon I, matri-
ces have been used to circumvent these problems.
In the energy range below the breakup threshold
the Kohn variational principle has provided an ef-
ficient technique for finding scattering amplitudes
due to local interactions, but a straightforward ex-
tension to the breakup region has not so far proved
useful. ' The asymptotic behavior of the wave func-
tion necessary to describe three free particles is
quite complicated, ' and this asymptotic behavior

must presumably be accurately represented in the

trial function if convergence of the Kohn method

is to be expected.
In this article we present calculations of s-wave

elastic amplitudes in the breakup region, based on

the method of complex coordinates reviewed brief-
ly in Sec. II. This method does not require the

complicated asymptotic terms representing three
free particles, and thus provides what appears to
be a useful and productive alternative to the Kohn

method. The main result of this paper is to show

that for short-range local potentials which are
analytic functions of the coordinates (except per-
haps at the origin) calculations of elastic scatter-
ing can be performed almost as easily above the
breakup threshold as below, even if substantial
inelastic scattering takes place. The principle of
the method also applies to the calculation of break-


