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We give an explicit analytic formula for the leading terms in the square of the matrix ele-
ment for nucleon-nucleon bremsstrahlung in the relativistic, model-independent, soft-photon
theory of Nyman. Such a formula should simplify direct and detailed comparisons of this soft-
photon theory with experiment and with the predictions of other models. These comparisons
have been difficult because Nyman in his original calculation of NN-NNy was forced by the
extremely complicated matrix element to use entirely numerical procedures. To obtain an
analytic result we have used the Burnett-Kroll theorem, which makes it possible to bypass
many of the complications of a straightforward algebraic calculation. We also emphasize the
general utility of the Burnett-Kroll theorem as a calculational tool for obtaining in an almost
trivial fashion the leading terms in the squares of very complicated radiative matrix elements.

I. INTRODUCTION

A number of years ago it was suggested' that an
investigation of the nucleon-nucleon bremsstrah-
lung process N+N-N+N+y would give informa-
tion about the off-mass-shell components of the
nucleon-nucleon scattering amplitude. More re-
cently, however, it has become clear, as a re-
sult of various low-energy theorems' ' that the
leading terms in an expansion of the NNy ampli-
tude in powers of the photon momentum k depend
only on the on-mass-shell parts of the NN ampli-
tude. Thus one must work harder than was origi-
nally supposed to get information about off-mass-
shell terms. However, experimental developments
since the original suggestion have made it quite
feasible to examine in detail regions where high-
er-order terms might be important, so nucleon-
nucleon bremsstrahlung remains a very interest-
ing process.

There have been a large number of calculations
of nucleon-nucleon bremsstrahlung, including, for
example, those of Refs. 7-11. Typical ones in-
clude a number of calculations based on primarily
nonrelativistic potential models, ' the relativistic
one-boson exchange model of Baier, Kuhnelt, and
Urban' and the completely relativistic calculation
of Nyman" which uses soft-photon techniques.

This latter calculation is of particular interest be-
cause it is both relativistic and model-independent.
By "model-independent" we mean that the radiative
amplitude depends only on the on-mass-shell NN
amplitude through the leading two orders, 0(k ')
and O(k ), in the photon momentum k. This re-
sult ' ' follows directly from gauge invariance
and certain smoothness and analyticity assump-
tions. " Within the definition of model-indepen-
dent there exists the freedom to choose different
continuations of the NN amplitude to the slightly
unphysical point corresponding to the radiative
process or to choose different sets of kinematic
variables to describe the NN amplitude. One can
show however, given the above assumptions, that
this freedom alters the result only in order k.'" '~

Thus within the region of strict applicability of
Nyman's calculation, i.e., when the O(k) terms
are truly negligible, all other calculations must
agree with it (provided of course that they repro-
duce the same NN scattering amplitude and satisfy
the necessary smoothness conditions'2). Thus the
soft-photon theory provides a benchmark against
which to check more elaborate models.

From a practical point of view however, the
region of strict applicability of the soft-photon
theory is significantly smaller than the region
which has been explored experimentally. The ex-
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FIG. 1. Kinematics for the nonradiative process
NN NN.

pansion parameter is really k/E, "where E is
essentially an average kinetic energy of the nu-
cleons. Thus for low energies k/E may be of or-
der unity, the O(k) terms ma, y be nonnegligible,
and the soft-photon theory as used by Nyman works
rather poorly. ' Nevertheless it has been custom-
ary, whether or not one expects the soft-photon
theory to be strictly applicable, to compare Ny-
man's predictions with experiment or with the re-
sults of the particular model being considered.

For these reasons it would seem extremely use-
ful to have available a simple analytic formula for
the square of the radiative matrix element in the
soft-photon theory which would simplify such di-
rect comparisons with other models or with experi-
ment. A nonrelativistic approximation to such a
formula is known' but no such formula correspond-
ing to Nyman's completely relativistic calculation
seems to exist. In fact the amplitude Nyman ob-
tained was so complicated that he found it impossi-
ble to obtain its square analytically either with
straightforward trace techniques or using computer
trace evaluation programs. Thus, he was forced
to adopt a numerical representation for the y ma-
trices and other quantities in the amplitude and to
evaluate the square of the amplitude numerically.
The end results are then cross sections corre-
sponding to particular geometries, incident ener-
gies, etc. , and thus it is very difficult to make
detailed comparisons with the predictions of vari-
ous models or the results of particular experi-
ments except for the specific points chosen by Ny-
man. In addition it is impossible, for example, to
separate the contributions of each order in k, so

as to learn something of the region of convergence
of the soft-photon expansion, without a major pro-
gramming effort comparable to his original cal-
culation.

To remedy this situation we give in this paper
an analytic formula for the square of the relativis-
tic, model-independent NNy matrix element. That
such a calculation is possible is due in part to the
Burnett-Kroll (BK) theorem. ' " This theorem
states essentially that the leading two terms in an
expansion in k of the square of the matrix element
for a radiative process summed over spins is giv-
en by a relatively simple operator operating on
the unpolarized nonradiative cross section. Thus
the theorem indicates, as does the Low theorem,
that one must look at higher-order terms to learn
information from a radiative process which is un-
obtainable from the corresponding nonradiative
process. However, because of the simplicity of
the final result and the relative simplicity of non-
radiative matrix elements one can consider the
BK theorem as a calculational tool useful for ob-
taining the leading terms in the squares of radia-
tive matrix elements. Such an approach has
proved useful previously in connection with a cal-
culation of radiative K„decays. "" In the pres-
ent case it allows one to obtain the two leading
terms in the square of the extremely complicated
matrix element obtained by Nyman in a complete-
ly trivial fashion. Such an approach also allows
one to see general features of the final result
which are not immediately evident from a com-
pletely numerical calculation, as for example the
fact that the nucleon magnetic moments do not con-
tribute through the leading two orders in k.

Thus the purpose of this paper is twofold. First,
as discussed above, we want to give an explicit
analytic form for the square of the matrix ele-
ment for the NNy process so that direct, detailed
comparisons of Nyman's model-independent soft-
photon calculation with other NNy calculations and
with experiment can be easily made. Second, we
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FIG. 2. Kinematics for the radiative process NN —NNy.
FIG. 3. Diagrams involving radiation from external

lines which contribute to the Low result.
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II. RADIATIVE MATRIX ELEMENT

In this section we review briefly the calculation
of Nyman leading to the matrix element for NN

-NNy. We first define the nonradiative matrix
element to establish our notation and then sum-
marize the substance of the Low theorem and

quote the general result. This result is then used
to get the specific matrix element for NN-NNy.

Consider first the nonradiative, i.e. elastic, NN

scattering process with kinematics as shown in
Fig. 1. We define the unsymmetrized amplitude
for this process as"

T(NN-NN) = Q F„(v, 6) u, t~u, u~ t u2, (2.1)

want to acquaint others working in the field of ra-
diative processes with the utility of the BK theo-
rem as a calculational tool for obtaining in a sim-
ple fashion the important terms in squares of very
complicated radiative matrix elements. Such tech-
niques should be particularly useful when one
wants only an estimate for which the leading terms
are sufficient or for processes, e.g. , radiative
decays, where kinematic constraints limit one to
the soft-photon region.

In Sec. II we outline briefly our notation and the
procedure used to obtain the matrix element. In
Sec. III we discuss the difficulty of using straight-
forward trace techniques to evaluate the square of
the matrix element, to understand why Nyman
was forced to use a numerical representation. We
then outline the BK theorem and show how it can
be used to obtain an analytic result for the leading
terms in the square of the NNy matrix element in
a form suitable for numerical comparison with
other models and with experiment.

where
1 i

t, = 1, t. =~2 o„.=2J 2 (y, y. y.-y.),

4= y5y~~ «=y)»

Sums on implicit Lorentz indices are always im-
plied, e.g. ,

u, tcu, u4t u2-P u, y&u, u4y" u2.

The invariants F (v, 6) are related to the NN scat-
tering parameters, ""e.g. , to the phase shifts.
They are functions of the variables v = P y P2
+P, P, and b, =P, P, +P, P4 which in the elastic
scattering limit are essentially just the usual Man-
delstam variables s=(P, +P,)' and t=(P, —P, )',
i.e., v-s —2m' and 6-2m' —t, where m is the
nucleon mass.

For the radiative process of Fig. 2 the T ma-
trix can be expanded in powers of the photon ener-
gy has

T(NN-NNy) = —+ b c+k+ ~ ~ ~ .a
k

(2.2)

The coefficients a and 6 can be obtained, accord-
ing to the Low theorem, ' ' by adding a piece to the
contributions from those diagrams involving radia-
tion from external lines (Fig. 3) sufficient to make
the result gauge invariant. It is a further conse-
quence of the theorem that these coefficients in-
volve only quantities which can be obtained from
the on-mass-shell nonradiative process. Nyman
gives a detailed discussion of application of Low's
theorem to this specific process. Rather than re-
peat this discussion we will simply take the gener-
al Low result for a radiative matrix element from
a recent review" and apply it directly to obtain
the matrix element for NN-NNy in a form appro-
priate to our later discussion.

Thus from Eq. (2.9) of Ref. 16 we have the general result for the matrix element for a radiative process
1+~ ~ ~ -2+ ~ ~ ~ +y, where 1 and 2 are fermions and where ~ stands for any number of bosons:

e P( ~TO e kT(1+ -2+ ~ ~ +y) =gq Q, „'u T u +Og~Q D"(P~)u»' u, +u, „Q + '
(y P m 2)+T2u,

P

+u, TO Q, + '
(y ~ P, +m, ) u, +O(k).

2m, ' ' 2k P, (2.3)

Here P„Q„a„m,, and q, are, respectively, the momentum, charge, anomalous magnetic moment,
mass, and a phase (+1 for final particles, -1 for initial particles) corresponding to the ith particle. The
photon momentum and polarization vector are, respectively, k" and e" and lW(P, ) =(e P, /k P, )k" —e". T,
is the nonradiative, on-mass-shell T matrix with the spinors factored out, i.e., T(1+ ~ ~ ~ —2+ ~ ~ ~ ) =u, T, u, .
It is however evaluated at values of the momenta P,. satisfying the four-momentum conservation equation
appropriate to the radiative process. To obtain the result for NN-NNy one must generalize the above
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equation to cases involving two fermion lines. Such a generalization is trivial, however, and leads to the

following result for the specific case NN-NNy'.

T(NN NNy) -~ g q&Q; ~g F~(v, 6) u~t~u~u4t u2+g g Q( D"(P, ) & F„(v, 6}
~

u3t~ugu4t um

5 I

+g F~(ve 5) u, tII, + '
(y ~ P, +m) t~u, u~t

"u 2+u, t„g, + '
(y ~ P, +m}'

3a=1

x u,u, t u, +(1—2, 3 —4) +O(k).
k yc ~ y

1
(2.4)

With the appropriate choices of charges and anom-
alous magnetic moments the above equation gives
the result for pp, np, or nn bremsstrahlung. With
a little Dirac algebra one can show that it gives
results identical to Nyman's Eqs. (24) and (25).

One further comment is in order. In the pp and
nn cases one must make the full amplitude antisym-
metric in the interchange of identical particles.
This means that one should subtract from Eq. (2.4)
a piece differing only by the interchange 3 —4.
However, by using the Fierz" transformation in
the form

III. BURNETT-KROLL THEOREM FOR THE

SQUARE OF THE MATRIX ELEMENT

splns

T NN NNy

Given the matrix element of Eq. (2.4) it is in

principle a straightforward procedure to square
it, sum on spins, and using conventional trace
techniques eventually obtain an analytic form for
the square of the matrix element. Such an expres-
sion would in general take the form

(t.),.(t "),„=PC.,(t,},„(t')...
8=&

with

(2 5) -T e e —~ ~ (b ~ 2Re c ) ~ '0(k))
g 2 Reab

k
spins

(3.1}

1
C

1 1 1 1
6-2 0 0 6
4 0-2 2 —4
4 0 2 -2 -4
1 1 -1 -1 1

the added terms can be put in exactly the same
form as the original terms except that F (v, 6)
should be replaced by QBC8 Fs(v, tI)'), where t) '

=P, P, +P, P„which reduces in the elastic lim-
it to 2m —u with u =(P, —P~)' Consequentl. y anti-
symmetrization amounts to the replacement in
Eq. (2.4) [or in Eq. (2.1)]

F (v, n) -F (v, n) -Q C~FB(v, n'),
8

and so does not change the form of the result.
Thus we can handle all three cases pp, pn, and
nn, simultaneously by using Eq. (2.4) for the ma-
trix element with the understanding that in the
final result one must make the appropriate choices
of charges, magnetic moments, and elastic scat-
tering parameters E corresponding to the particu-
lar process under consideration.

where as discussed by Nyman the leading two
terms, those of order 1/k and 1/k, are model-
independent and given from Eq. (2.4). The third
term, the O(k') term, involves both known parts,
b', and an unknown structure-dependent part pro-
portional to c. In this particular case, however,
there are so many terms in the original matrix
element of Eq. (2.4) that Nyman found such a
straightforward approach impossible even when
assisted by computer trace evaluation routines
and was thus forced to adopt a completely numeri-
cal approach, i.e., to adopt a numerical repre-
sentation for the y matrices and evaluate the T
matrix before squaring. In this section we want
to show how the BK theorem allows one to bypass
such involved numerical computations and obtain
in a very simple fashion an analytic form for the
two leading terms (the cP and ab terms) in the
square of this matrix element.

First to get a feeling for the magnitude of the
problem let us estimate the number of terms in-
volved in the square of Eq. (2.4). If we consider
the sums on i in brackets as single multiplying
factors, but multiply out all other brackets we
find that the T matrix contains (8+ 8+ 3x 8 x 4)
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= 112 terms. (Note that the sum on a involves
8 terms since the t2t' term when expanded in

terms of y matrices gives 4 terms. ) Thus there
are (112)'x16= 200704 terms, each of which will
be the product of 2 traces which in the most com-
plicated cases involve the trace of 12 y matrices
times the trace of 6, or the trace of 8 times anoth-
er trace of 8. By using a less straightforward but
more intelligent approach one can reduce the ini-
tial number of terms which must be considered
by a large factor, at least 25. For example using

the nonradiative matrix element, in both cases
summed on spins. Thus, one needs to do only
those traces associated with the nonradiative pro-
cess, which normally are comparatively simple.

To prove the BK theorem one starts with the
general Low formula for the matrix element given
in Eq. (2.3) and utilizes a number of Dirac alge-
bra tricks, described in detail in Ref. 14 or 15 or
in the review of Ref. 16. The result [Eq. (3.8) of
Ref. 16], in the nota, tion of Eq. (2.3) is

F, [1]x[1]+F 1

= (F, + 2F,)[1]x[1]——,
'

F2 [y&y„]x[y"y ],

splns

( T(l+ ~ ~ ~ —2+ ~ ~ ~ + y}('

= Q'+QQ Q(D"(P()
j

(3.2}
and redefining F, = (F, + 2F,} one reduces the num-

ber of terms in the e sum back to five and thus
the total number of terms by almost a factor of 3.
Furthermore, three fourths of the terms are auto-
matically zero because one or the other of the
traces has an odd number of y matrices. Even
with these simplifications, however, we are left
with several thousand traces to evaluate, some
involving as many as 12 y matrices, which is
clearly impossible to do by hand.

The beauty of the BK theorem is that it allows
one to bypass the evaluation of many of these
traces in that it expresses the leading two terms
of the square of the radiative matrix element as
a very simple operator operating on the square of

where

xQ ~
T(l+ ~ ~ ~ -2+ ~ ~ ~ ) ~'+0(k'),

spms

(3.3)

Pj
Q g()-(Q(P.P .

For our particular process we must generalize
this formula to cases involving two fermion lines.
Again the generalization is very easy and in this
case leaves the formula unchanged.

The first step in applying this formula is to cal-
culate the square of the nonradiative matrix ele-
ment. Such a calculation is straightforward and
in the present case easily carried out by hand.

The result is

3R~=—m Q ~
T(NN-NN))'=G, (P, P2)(P, P~)+G2(P, ~ P,)(P2 P~)+G, (P, ~ P~)(P, P,)+G m

SPinS

+G, m'(P, P, +P, P,)+G, m'(P, P, +P, P,)+G,m'(P, P, +P, P,), (3.4)

where mula in a compact form we define the quantities

G] 4F2 + 2F3 + 2F4 2F~F2 2F2F5 4F3F4 )

G2=F, +F, —2F2 )

G3 = 4F, + 2F, + 2F4 + 2F,F2+ 2F2F, + 4F,F4,

G4 F~ + F5 + 6F2 + 4F3 + 4F4

G, = 2FA+ 6F2F3 —6F2F4 —2F3F5,

G =F,'-F, +2F,' —2F

G7 = 2F]F4 + 6F2F3 + 6F2F4 + 2F,F, ~

+jf k P jPf —k Pf P~&

and the permutation operator (P = g(6'( with

(P,f(1, 2, 3, 4) = f(1, 2, 3, 4},
(P,f(1, 2, 3, 4) = f(2, 1, 4, 3),

4'~f(1, 2, 3, 4) = f(3, 4, 1, 2),

(P~f(1, 2, 3, 4) = f(4, 3, 2, 1),

(3.5)

(3.6)

Consider now the square of the radiative matrix
element. In order to be able to write the final for-

where f(1, 2, 3, 4) is some function of the four par-
ticle indices. Observe that A", the scalars v, 6,



APPLICATION OF THE BURNETT-KROLL SOFT-PHOTON. . . 1141

b, ', the square of the nonrsdiative matrix element%», and the BK operator in Eq. (3.3) are all invariant

under the permutations O', Thus, using Eq. (3.3) and the polarization sum P, c~e "=-g"', we can write

3}I~&-=m Q ~T(NN-NNy)~ = —6' ~A +Q, A ' k — 3}I„„+O(ko).
spins, pol

Using the relation

(3.'I}

8 8 9

eP", '" av '"aa'=(P ) —+(P )

this becomes

Q, 9 9
y

= A ~+$ A W&2 +A W$3k'P~ gv

+ „' [G,A W,2(P3 P~)+G A2W,~(P2 'P4)+G~A ' W,4(P, P,)Q&

1

+ m'G, A ~ W„+m'G, A ~ W„+m'G, A ~ W„j + O(k ) . (3.8)

We understand in this equation that the derivatives
act only on the invariant functions G, (v, a), i.e.,
on F„(v, a), as we have written explicitly in the
last terms the contributions from the derivatives
acting on the explicit momentum dependence of

Equation (3.8} thus gives an analytic form for
the leading terms, i.e., the 1(k' part (contained
in the A' term) and the 1/k part (contained in the
remaining terms) of the square of the NNy matrix
element. One can easily write it completely in
terms of dot products of four-vectors using the
definitions of Eq. (3.5) and then if desired express
each dot product in terms of the angles, energies,
and momenta appropriate to the particular coordi-
nate system or experimental situation being con-
sidered. These leading terms constitute only a
very small portion, roughly 14'f~, of the original
200000 terms in the square of the matrix ele-
ment. They are, however, at least in the kine-
matic region where the soft-photon approximation
is valid, the most important terms. Thus the BK
theorem has given a simple, quick method for
choosing from the many terms in the square of a
very complicated radiative matrix element, those
which may be expected to be the most important,
and expressing the result in analytic form.

If one wants to reproduce exactly the numerical
results of Nyman, one must also include the b'

term of Eq. (3.1}which comes from the square of
the O(k') terms in the amplitude, since it was in-
cluded in his completely numerical calculation.
The evaluation of this term is straightforward in
principle, but in practice extremely complicated,
since it contains the bulk of the original 200000
terms. It proved possible however to find tricks,
symmetries, and simplifications which reduced

the number of traces sufficiently that the result
could be obtained by computer using the symbolic
trace evaluation program SCHOONSCHIP written
by Veltman. The result still contains several hun-

dred terms however and is too long to reproduce
here. The difficulty of course is that, while these
terms are necessary to reproduce Nyman's re-
sult and while they do give a model-independent
contribution of O(k'), they do not give the complete
O(k') contribution. There are still additional con-
tributions from the ac term of Eq. (3.1}which con-
tain via the amplitude c completely unknown "struc-
ture-dependent" contributions and contributions
which depend on the particular choice of the NN

amplitude. "' Thus one cannot calculate the
square of the amplitude consistently to order k'

in a model-independent way.
One further comment is in order. To use the

8K theor em in the form g iven above one must sum
on spins, which in some cases will be a disadvan-
tage as it makes it impossible to get formulas for
polarizations. (In contrast, with the numerical
procedure used by Nyman results for particular
spins can be obtained without much additional ef-
fort. ) If one wants polarization information one
can use a recent generalization" of the BK theo-
rem which removes the requirement that all spins
be summed and gives the leading terms in the
square of the radiative amplitude for a particular
spin configuration in terms of an operator acting
on the square of the nonradiative amplitude for
the same spin configuration. The operator is
slightly more complicated than that of Eq. (3.3)
and now involves magnetic moment terms, but
should allow one to obtain analytic results for the
leading terms in polarizations in a fashion, ana-
logous to that used here, which should be much
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simpler than straightforward evaluation of the
traces.

Finally we want to emphasize that these same
techniques clearly can be applied to other radiative
processes. They should be particularly useful for
obtaining results in a quick and easy way when one
is primarily interested in the soft photon region or
when the accuracy given by keeping just the lead-
ing terms is sufficient. In particular they should
be quite helpful when considering radiative decays,
where phase-space considerations often limit one
to the soft-photon region where the O(k') term can
really be expected to be small.
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