Decay of ¹⁷⁰Lu to Levels in ¹⁷⁰Yb[†]

David C. Camp*

Lawrence Livermore Laboratory, University of California, Livermore, California 94550

and

Fred M. Bernthal

Departments of Chemistry and Physics, Michigan State University, East Lansing, Michigan 48823 (Received 24 November 1971)

The locations of 70 energy levels in ¹⁷⁰Yb were deduced from Compton-suppressed γ -ray singles, three-crystal γ -ray pair, conversion-electron, and Ge(Li)-Ge(Li) γ - γ coincidence measurements on the electron-capture- β^+ decay of ¹⁷⁰Lu. Both chemically separated and isotopically separated sources of ¹⁷⁰Lu were used in collecting the data. A total of 550 γ -ray transitions have been observed in the ¹⁷⁰Lu decay spectrum, 220 of which are definitely assigned to the ¹⁷⁰Yb level scheme from 112 coincidence spectra. These definitive transitions account for 93% of the total observed γ -ray intensity. An additional 118 γ -ray transitions were placed on the basis of excited-state energy differences. Eight *E*0 transitions were observed in the conversion-electron data. Each of four excited 0⁺ states identified has less than 1% β decay feeding from the 0⁺ parent. Spin and parity assignments are proposed for 46 levels in addition to the ground-state rotational band members. The ¹⁷⁰Yb level structure is compared with available theoretical calculations, and a preliminary interpretation of several features of the decay scheme is presented.

I. INTRODUCTION

The most complicated radioactive decay yet studied is the electron-capture (EC)- β^+ decay of 2.15day ¹⁷⁰Lu to the levels of ¹⁷⁰Yb. Early attempts to interpret the complex γ -ray spectrum from NaI(T1) data were largely unsuccessful, and until recently, the best available data consisted primarily of conversion-electron spectra.¹⁻³ With the advent of germanium detectors, however, several groups⁴⁻⁸ renewed their efforts at unraveling this very complex decay. Hansen and co-workers⁹ established 0+ as the ground-state spin and parity of ¹⁷⁰Lu. Paperiello *et al.*¹⁰ carried out directional-correlation measurements on several of the more intense transition cascades in this decay and have definitely established the spins of 10 levels in ¹⁷⁰Yb. Concurrent with the work reported here were the recent studies reported by Bonch-Osmolovskaya and coworkers^{11, 12} who employed Ge(Li) detectors, electron- γ , γ - γ , and electron-electron coincidences, in an effort to define the decay scheme. They placed some 177 transitions of 280 seen in the decay, thus accounting for almost 87% of the total γ -ray intensity.

In this work we report the results of extensive γ -ray singles, γ - γ coincidence, and conversionelectron measurements. Compton suppression and three-crystal pair-spectrometer techniques were used to accurately define the energies and intensities of the ¹⁷⁰Lu γ -ray transitions. Measurements at lower energies (<1.2 MeV) were carried out with isotopically separated sources. An online computer and multiparameter data acquisition system were used in conjunction with two Ge(Li) detectors and an isotopically separated ¹⁷⁰Lu source to carry out a detailed study of the $\gamma - \gamma$ coincidence spectra. Conversion-electron studies were carried out using chemically separated lutetium sources and a Si(Li) detector. On the basis of these data, we have constructed a level scheme for ¹⁷⁰Yb consisting of 70 excited states. Of 550 γ -ray transitions identified, over 200 have been placed on the basis of $\gamma - \gamma$ coincidence data and another 118 were placed on the basis of energy differences; these two groups of γ rays account for 93 and 3% of the total γ -ray intensity, respectively. Significant differences exist between our decay scheme and that of Bonch-Osmolovskaya et al.,¹² and slight differences distinguish our decay scheme from the less complete level scheme of Mihelich.13

II. EXPERIMENTAL

A. Target and Source Preparation

Sources of ¹⁷⁰Lu were prepared by the ¹⁶⁹Tm-(α , 3n)¹⁷⁰Lu reaction by irradiating 40-mg samples of Tm₂O₃ at the Lawrence Berkeley Laboratory 88-in. cyclotron with 40-MeV α particles. 3-h irradiations at about 20- μ A beam current produced about 1 mCi of ¹⁷⁰Lu activity for each experiment.

The lutetium activity was separated from other

6

1040

reaction products by ion-exchange chemistry. The target material was dissolved in 3 M HCl and placed on a 60-cm-long Dowex 50×8 (150-200 mesh) column; 0.05 M α -hydroxy isobutyric acid at pH 5.3 was used as the eluting agent. An 8-h elution time allowed essentially complete separation of the lutetium activity from the thulium. The γ -ray sources were prepared by evaporating small amounts of the activity to dryness on aluminum or Teflon¹⁴ backings. Conversion-electron sources were prepared by liquid deposition of the activity onto 0.25-mil gold-anodized Mylar. Source material for the isotope separator was prepared by adding 1 mg of Lu^{+3} carrier, precipitating the hydroxide with 8-hydroxy quinoline, and igniting to form Lu_2O_3 . γ -ray sources were obtained from the isotope separator on 5-mil aluminum foil. Counting was usually begun 12 to 24 h after the end of irradiation.

B. Experimental Apparatus

A number of different detector systems were used in this study to obtain the spectral data. These systems include a Compton suppression and three-crystal pair spectrometer, a small Ge(Li) x-ray detector, a γ - γ coincidence system, and a Si(Li) conversion-electron detector system. In addition, ordinary singles Ge(Li) detector data were obtained for the interfering activities by counting isotopically separated sources of ¹⁶⁹Lu, ¹⁷¹Lu, and ¹⁷²Lu.

The Compton suppression and three-crystal pair-

FIG. 1. A schematic drawing of the NaI(Tl) Compton suppression and three-crystal pair spectrometer used in this work.

spectrometer system used in this study is shown schematically in Fig. 1. The central Ge(Li) detector is a planar type, 2.0 by 3.0 cm (6 cm²), with a 12-mm depletion depth (7 cm^3), oriented such that the 3.0-cm length is colinear with the γ -ray collimation axis. Cooled field-effect transistors in the preamplifier permit resolutions as low as 1.0, 2.0, and 3.0 keV full with at half maximum (FWHM) at 122, 1332, and 2754 keV, respectively. Two 22.9-cm-diam×11.4-cm-thick NaI(Tl) detectors machined to allow maximum enclosure surround the Ge(Li) detector housing. The entire system rests in a cylindrical lead shield with 10.2cm-thick walls. A 1.9-cm-diam hole reduced to 1.3 cm by cadmium and copper lining collimates incoming γ rays. When the NaI(Tl) detectors are operated in anticoincidence with the Ge(Li) detector, those Compton events that scatter out of the Ge(Li) detector and trigger the NaI(Tl) circuitry are eliminated. For ⁶⁰Co, the maximum 1.33-MeV full-energy peak-to-minimum continuum ratio observed with this system is 140:1 and for ^{137}Cs it is 640:1. When the NaI(Tl) detectors are operated independently, and single-channel windows are used to select 511-keV annihilation radiation, the system can also be simultaneously operated as a three-crystal pair spectrometer.

The suppression and three-crystal pair techniques offered by this spectrometer assembly have a number of significant advantages for the measurement of very complex γ -ray spectra such as that of ¹⁷⁰Lu. Many weaker radiations, which are ordinarily obscured by the Compton distribution, can be observed. Single- and double-escape peaks. which normally add complexity to the higher-energy portions of γ -ray spectra, are suppressed by factors of 6 and 40, respectively. Thus, the precision obtainable for γ -ray intensities is improved at all energies. Finally, a pair spectrum unequivocally selects only those peaks that are due to γ ray pair events and thus allows observation of weaker peaks than can be seen in the Comptonsuppressed data. A more detailed description of all aspects of this system appears in the work of Camp.15

Data from the chemically and isotopically separated sources were also taken with the use of a low-energy photon Ge(Li) system 50 mm² in area and 5 mm in depletion depth. This system offers the advantage of very high resolution (600 eV FWHM at 100 keV) and is relatively insensitive to high-energy radiations. The energy region from 0 to 200 keV was observed in detail with this detector.

The $\gamma - \gamma$ coincidence system¹⁶ consisted of a 10cm³ planar Ge(Li) detector and a 35-cm³ coaxial Ge(Li) detector coupled with a multiparameter data acquisition system interfaced to a PDP-7 computer. The $4096 \times 4096 \times 512$ -channel E_{γ_1} - E_{γ_2} time-coincidence distributions were digitized and stored serially on standard IBM magnetic tapes. These data were later sorted and processed, using computer codes developed for the LBL CDC-6600 computer.

Conversion-electron data were obtained with a 3-mm-deep×1-cm² Si(Li) detector operated at 650-V bias and at 110°K. The resolution of this system was about 2.7 keV FWHM for the 975.6-keV K conversion-electron line of ²⁰⁷Bi.

C. Experimental Data

1. Analysis of the 170 Lu γ -Ray Spectra

The γ -ray singles spectra from the ¹⁷⁰Lu decay are shown in Figs. 2 and 3. These data include spectra taken both with and without the benefit of isotope-separated sources. Attempts to perform the Lu isotope separation using LuF₃ were at first unsuccessful. In these early experiments, the higher-energy γ -ray data least affected by the interfering ¹⁶⁹Lu, ¹⁷¹Lu, and ¹⁷²Lu activities were obtained from sources not isotopically separated and are shown in Figs. 3 and 4. These data extend from 1200 to 3500 keV and include the Compton-suppressed singles and the "pair" spectra that were accumulated simultaneously with use of the Compton-suppression system. To identify the impurity activities in these early data, successive counts were taken at 2-day intervals.

The low-energy data from the sources that were only chemically separated are not shown here because of the large number of interfering lines from ¹⁶⁹Lu and ¹⁷¹Lu decay. Instead, Fig. 2 shows the data acquired from a later source that was isotopically separated. The Lu₂O₃ isotopic separation at that time allowed sufficient activity only for the acquisition of γ - γ coincidence data and the low-energy γ -ray singles data. The successful isotope separation also permitted data to be taken on the

FIG. 2. A low-energy portion of isotopically separated ¹⁷⁰Lu γ -ray spectrum taken with the Compton suppression system shown in Fig. 1. A lower-case d shows the presence of a doublet component; an upper-case D indicates the presence of a double-escape peak. Only some of the many transitions observed have been identified.

¹⁶⁹Lu, ¹⁷¹Lu, and, later, the ¹⁷²Lu decays, so positive identification of contaminant peaks and accurate removal of their relative intensities from the earlier mixed-isotope data was possible.

In the low-energy portion (70 keV to 1.2 MeV) of the ¹⁷⁰Lu γ -ray spectrum shown in Fig. 2, only some of the peaks have been labeled with their energies. Many others can be identified by comparing the tabulated γ -ray results with this figure. The excellent isotopic separation is shown by the trace amount of ¹⁷¹Lu remaining. The 739.7-keV transition from the ¹⁷¹Lu decay was the most prominent peak above 200 keV in the spectrum from the earlier chemically separated source. Trace amounts of ¹⁶⁹Lu and ¹⁶⁹Yb activity are also just visible in these data. The strongest indicators of these activities are transitions at 108.9 and 197.8 keV, which in the earlier data were almost half as intense as the 193.1-keV ¹⁷⁰Lu transition. Many of the weaker peaks seen in this spectrum and some not seen here at all were visible in the earlier mixed-isotope data which had greater than 10⁴

counts in the continuum over this same energy region.

Additional data from the isotopically separated source were obtained in the energy region from 10 to 205 keV with use of the small Ge(Li) x-ray spectrometer. As the 170 Lu activity decayed, the trace amounts of 169 Lu and 171 Lu in this region were easily identified. Also, the higher-energy 119.9-keV component of the 118.8-keV peak was easily observed in these data.

In the higher-energy portion of the spectrum (Fig. 3), the region from 2380 to 3210 keV is scaled down by one decade. Some of the peaks are labeled with their energies, and a few of the more prominent doublet and triplet components are indicated. The few single- and double-escape peaks remaining in this Compton-suppressed spectrum have not been labeled; some are present but are not very prominent. Quantitative data reduction and comparison of these data with those from the "pair" spectrum in Fig. 4 allowed unequivocal identification of real γ -ray transitions. Again

FIG. 3. The high-energy portion of the 170 Lu γ -ray spectrum taken with the Compton suppression system. The spectral region from 2380 to 3220 keV has been lowered one decade for clarity of display.

here, only some of the "pair" peaks are labeled with their corresponding transition energies. The energy deposited in the spectrometer by these events is 1022 keV lower than the labels on the peaks, so this spectrum exhibits better resolution than the high-energy Compton suppressed data (e.g., the weak 2046.5-keV component is resolved from the intense 2041.8-keV transition in the "pair" data but not in the suppressed data). The resolution in the high-energy suppressed data varies from 2.2 keV at 1.4 MeV to 4.0 keV at high energies, whereas in the "pair" data it varies from 1.5 to 3.3 keV.

All of the spectral data, including those shown in Figs. 2-4, were analyzed with use of the computer code SAMPO. This code is described in detail elsewhere.^{17, 18} The code includes mathematical algorithms for automatically carrying out peak searches, peak fittings, line-shape determinations, and energy and efficiency calibrations. An example of part of the output from this code for the 544-keV multiplet is shown in Fig. 5. Data pertinent to the fit of each peak are tabulated below the graph. The column labeled INTENSITY (CTS) is the area divided by the efficiency. At the end of the spectral printout is a result table summarizing all of the individual fitting data and relative γ -ray intensities. All transition intensities from the ¹⁷⁰Lu decay were normalized to the very strong 1364.6-keV transition.

The spectral data shown in Figs. 3 and 4 were analyzed by an on-line interactive method of data reduction. The same code (SAMPO) was used, this time with an interactive graphics system (VISTA)¹⁹ introduced between the user and the CDC-6600 computer.

The intensities from the pair data were first normalized to the Compton-suppressed data using an average normalization factor obtained from the 2040-keV doublet and 2126-keV transitions.

FIG. 4. The "pair" spectrum of ¹⁷⁰Lu taken with the system shown in Fig. 1 operated as a three-crystal spectrometer. The spectral region shown as 2350 to 3220 keV has been lowered one decade for clarity of display. Peaks are labeled with their transition energy, not their actual escape-peak energy.

A calibration curve defining the double-escape to full-energy peak ratio for this detector had been established from other data (²⁴Na, ⁵⁶Co, ⁶⁶Ga). This curve is a very steep function of energy below 1.5 MeV; hence, the very strong 1280.3-, 1364.6-, and 1428.1-keV transitions were used as secondary normalization points. The intensities for these three transitions were derived from an

average of the low- and high-energy (chemically separated) Compton-suppressed data. Pair data for γ rays below 1250 keV were not used in determining final results. Energy calibrations for all the data obtained in

this study were carried out using one of the wellcalibrated Ge(Li) detector (singles) systems developed by Gunnink.²⁰ These systems are used to process many samples on a daily basis and operate continuously with gain stabilization. The nonlinearity function at various conversion gain settings has been precisely measured. The energies of the stronger peaks in the ¹⁷⁰Lu data were determined by using these precisely calibrated systems. These energies then served as internal standards in the Compton-suppressed, "pair," and $\gamma - \gamma$ coincidence data.

2. $^{170}Lu \gamma - \gamma$ Coincidence Data

Extensive multiparameter γ - γ coincidence information was obtained at 90 and 180° with use of the 170 Lu isotopically separated source. The 90° data covered the entire energy region; at 180°, data from the 35-cm³ detector were accepted only above 800 keV. Some 70 separate coincidence spectra were sorted from the 90° data, and 40 from the 180° data. (Many, but not all, γ -ray gates in the 180° data were the same as in the 90° data.) Both the Compton background coincidences and random coincidences were subtracted by the computer during the sorting process, so the sorted coincidence spectra should represent only "valid" full energypeak coincidences. The FWHM resolving time of the coincidence time-amplitude curve was 20 nsec; for sorting prompt and random events, digital time gates of about 55 nsec (FWHM) were used.

The large quantity of these data does not allow the display of all of the coincidence spectra here;

FIG. 5. An example of the output from the computer code SAMPO used to analyze the ¹⁷⁰Lu low-energy data. The 544-keV region is shown.

Gated	•	1.	
E_{γ} (keV)	Ang 90°	180°	γ rays observed in coincidence gate a
84.26	x	х	152, <u>193</u> , 241, 283, 286, 323, 419, <u>492</u> , <u>544</u> , <u>572</u> , 579, 829, 839, 855, <u>868</u> , 884, 938, <u>985</u> , 999, 1003, 1028, <u>1054</u> , <u>1061</u> , 1101, 1133, 1141, <u>1144</u> , 1218, 1222, <u>1225</u> , 1257, <u>1280</u> , <u>1294</u> , 1307, <u>1312</u> , <u>1341</u> , <u>1395</u> , <u>1405</u> , <u>1428</u> , <u>1450</u> , <u>1455</u> , <u>1459</u> , 1482, 1514, 1550, 1565, 1574, 1610, 1641, 1678, <u>1719</u> , <u>1757</u> , 1776, 1809, 1860, 1878, 1901, 1955, 2031, <u>2041</u> , 2116, <u>2191</u> , <u>2205</u> , 2279, <u>2316</u> , 2411, <u>2452</u> , 2582, <u>2664</u> , <u>2691</u> , 2698, <u>2845</u> , 2855, <u>2881</u> , 2885, <u>2923</u> , 2983, 3015, <u>3031</u> , (3062), <u>3065</u> , <u>3095</u> , <u>3111</u>
118.8		х	<u>850</u> , 926, <u>938</u> , 943, <u>1028</u> , <u>1222</u> , <u>1306</u>
152,1	х	x	84, <u>193,</u> 485, 1028, 1054, 1133, <u>1144</u> , 1187, 1222, 1242, 1280, 1306, 1341, <u>1361</u> , 1395, <u>1438</u> , 1521, <u>1529</u> , <u>1597</u> , <u>2582</u> , <u>2667</u>
193.13	х	x	$\frac{84}{118}, \frac{152}{152}, 228, 283, \frac{419}{219}, 455, \frac{479}{27}, 492, \frac{544}{27}, \frac{572}{2}, \frac{572}{2}, 706, \frac{741}{24}, \frac{819}{27}, 829, 868, 947, 966, 980, \frac{1028}{1028}, 1050, 1057, 1101, 1119, 1218, 1230, \frac{1257}{257}, 1350, 1361, 1380, 1395, \frac{1405}{1405}, 1413, 1469, 1565, 1614, 1630, \frac{1641}{1641}, 1662, 1759, 1793, 1802, 1842, \frac{1859}{2859}, 1954$
221-4	х		84, <u>865, 999, 1</u> 39 <u>5</u> , 2191
228.0	х		<u>193, 829, 1028, 1306, 1405</u>
235.6	x		981, 1102, 1222, 1280, 1352, 1428, 1512
241.5	х	х	84, <u>2041</u> , <u>2126</u>
251.8	х		193, 2031
283.0	х	x	84, <u>193, 985</u> , 1002, 1028, <u>1054</u> , 1138, 1144, 1172, 1222, <u>1230</u> , <u>1306+8</u> , 1391, 1398, 1467, <u>2452</u> , <u>2536</u>
286.6	x	х	84, <u>850</u> , 926, <u>938</u> , <u>1054</u> , <u>1138</u> , 1323, <u>1514</u> , 1531, 1540, <u>1</u> 70 <u>6</u>
323.6	х	х	84, 983, <u>1054</u> , <u>1070</u> , <u>1138</u> , <u>1144</u> , 1426 + 8, <u>2411</u> , <u>2496</u>
395.9	х	х	84, <u>829</u> , <u>1054</u> , <u>1138</u> , <u>1405</u> , <u>1</u> 41 <u>3</u>
419.6	х	х	<u>84, 193, 1380, 2315, 2400</u>
455.5		х	1057, 1138, 1218, 1225, 1280, 1341, 1428, 1512
447.6	x		84, 576, <u>741</u> , 1003, 1061, 1222, 1428
479.0	x		84, 96?, 193, 385
492.6	x	х	84, <u>193</u> , <u>947</u> , <u>1050</u> , <u>1101</u> , <u>1141</u>
530.5	х		193, 329
544.2	х		84, <u>850</u> , <u>910</u> , 985, 1054, 1137, 1206, <u>1</u> 28 <u>0</u> , <u>1</u> 30 <u>6</u> , <u>2191</u> , <u>2275</u>
572.2	х	х	84, 193, <u>868</u> , <u>1050</u> , <u>1061</u> , <u>1101</u> , <u>1145</u>
579.4	х	х	84, 1050, 1054, 1101, 1138
612.1	х		222
688.0	х	х	(84), 916, <u>1280</u> , 1364
706-8	x		<u>193</u>
829.3	х		<u>193</u> , 1257, 1450, 1534
839,3	х		1428, 1512
855.2	x		84, 1428, 1512

TABLE I. γ rays observed in selected coincidence gates at 90 and 180°.

_

Gated	A	-	
E_{γ} (keV)	Ang 90°	180°	γ rays observed in coincidence gate ^a
868.1	x		<u>193, 323,</u>
938.7	x		<u>8</u> 4, 118, 193, <u>286, 1054, 1341</u>
947.8	х		193, 492
983.7	х	х	84, (323), 1428
985.1	х	х	<u>84, 1206, 1294, 1678, 1860, 1878, 1995, 2030, 2096</u>
987.3	X		84, 1280, 1364
999.6	х		84, 193?, 1280, 1364
1003.2	х	x	1054, 1145 , 1280, 1364
1028.8	х	х	84, 152, <u>193</u> , 1057, 1361, <u>1641</u> , 1793, 1842, <u>1859</u>
1050.4	x	х	84, 193, 492, <u>572</u> , 579, 1054, <u>1061</u> , 1138, 1141, 1145
1054.3	х	х	<u>84, 286,</u> 396, 455, 579, 938, 980, 1002, 1050, 1101, 1137, <u>1225</u> , 1405, 1529, 1609, <u>1809</u> , 1960, 2027
1061.4	х	х	<u>84, 152, 388, 572, 819, 829</u> , 980, 988, 1002, 1050, <u>1055</u> , 1101, 1132, <u>1218</u> , 1405, 1602, 1802, 2041, 2126
1101.7	х	x	193, 492, <u>572</u> , 579, <u>1</u> 05 <u>4</u> , <u>1061</u> , <u>1</u> 13 <u>8</u> , 1141, <u>1145</u>
1119.4	х		<u>193</u>
1133.6	х		84, 1280, 1364
1138.6	x		286, 579, 1137, <u>1225</u> , <u>1</u> 39 <u>8</u> , <u>1</u> 52 <u>9</u> , <u>1</u> 60 <u>9</u> , <u>1809</u> , 1960, <u>2</u> 02 <u>7</u>
1144.6	х	х	84, <u>152</u> , 1135, 1438, 1700, 1719, 1936
1145.8	х	х	<u>572</u> , 1050, 1101, 1132, <u>1218</u> , <u>1521</u> , 1802
1218.5	х		84, 193, 1061, 1145
1225.6	х		<u>84</u> , 1054, 1138
1257.2	х	х	84, <u>193, 829, 1395, 1405, 1413, 1507, 1564</u>
1280.3	х	х	<u>84, 688, 910, 987, 999, 1003, 1133,</u> 1383, 1403, <u>1455, 1</u> 56 <u>5</u> , 1575, <u>1</u> 60 <u>1</u> , 1610, 1776
1294.7	x		<u>84, 985</u>
1307.5	х		84, 283, 1428, 1512
1341.2	x	х	84, 926, 938, 942, 1070, 1323, 1514, 1531, 1540, 1549
1364.6	х		[84, 152, 193-via 1361], <u>987</u> , 999, <u>1003</u> , <u>1133</u> , <u>1455</u> , 1575, 1610, 1776
1380.8	x		193, <u>419</u>
1395.6	х	х	84, <u>193</u> , <u>884</u> , 1268, 1449, <u>1459</u> , 1467, 1619, 1685
1405.1	х		84, <u>193</u> , 388, 395, <u>1257</u> , <u>1450</u> , <u>1534</u>

TABLE I (Continued)

1428.1

1450.2

1455.3

1459.9

1512.5

х

х

х

х

х

х

х

<u>84, 540, 839, 855, 983, 1235, 1263, 1307, 1427, 1435, 1457, 1647</u>

<u>84, 829, 1132, 1395, 1405</u>

839, 855, 983, 1263, 1307

84, <u>1280</u>, <u>1364</u>

<u>84, 1395</u>

Gated E.	Ar	ngle	
(keV)	90°	180°	γ rays observed in coincidence gate ^a
1514.6	x		<u>84, 286, 1138, 1341</u>
1550.5		х	1113, 1294, 1304, 1313, 1341
1860	х		<u>84, 193, 985, 1028, 1222</u>
2041.9	х		<u>84</u> , 241,
2116.6			84

TABLE I (Continued)

^a A qualitative indication of the relative strengths of the γ rays appearing in each coincidence gate is shown: The strongest lines are underlined, e.g. <u>193</u>; the medium strength lines are written normally, e.g. 193; the weak lines are underlined partially, e.g. <u>193</u>. A question mark following an entry indicates that line was observed, but its presence is not understood in that particular gate. Single- and double-escape peaks are not entered.

however, those γ rays observed in each coincidence gate are listed in Table I. A complete catalog of these coincidence spectra can be found in Appendix I of Ref. 21. Several selected representative gates are shown here. Figure 6 shows the gated coincidence spectra obtained at 90° for the two $^{170}\mbox{Yb}$ ground-band transitions observed at 84.26 and 193.13 keV. These two spectra are somewhat more complex than all of the others obtained. Perhaps more typical of the coincidence spectra are those shown in Fig. 7. These spectra were obtained at the 180° setting and show those γ rays in coincidence with the 152.6-, 688.0-, and 1028.8keV transitions. The Compton-suppressed singles energy and intensity data had been carefully analyzed before the γ - γ coincidence sorting gates were set; hence, many of the close-lying lines were sorted with awareness of their multiplicity. Analysis of the coincidence data revealed the presence of many doublets that were otherwise unresolvable.

There remains one major unresolved problem in the coincidence relationships, that of the 706.5keV transition in the 193.1-keV gate. According to the analysis of the singles data, there is a doublet with components at 706.5 and 707.1 keV and intensities of approximately 1650 and 3000 units, respectively. The 193-keV gate contains a peak of approximately 2300 ± 250 intensity units at 707 keV (see Fig. 6). No other coincidence gate shows a 707-keV peak. If the 707-keV line feeds the 277.4keV 4+0 level directly, a level at 984.5 keV is indicated. Such a state would be below the 1069-keV level thought to be the first excited state above the ground band and would have a spin of at least two units. If part of the very intense 985-keV transition is really a ground-state transition from such a 984.5-keV level, then the level might be expected to feed the 84.26-keV 2+0 level. No γ ray with an

intensity greater than 300 units was observed either in the singles data or in the 84.26-keV gated spectrum at 900.2 keV. In addition, no strong γ rays could be found decaying from other levels to a level at 984.5 keV. Therefore, such a placement of the 707-keV transition seems implausible at best.

Another possibility is that the 193-keV transition is a very closely spaced doublet. The only other evidence for such a possibility is the appearance of a 193-keV peak in the 999-keV gate. This transition was established from coincidence data to decay from the 2364-keV 1-1 level to the 1364-keV 1-0 level. This latter level does not decay to the 4+0 ground-band member. Therefore the presence of the 193-keV transition in the 999-keV gate remains puzzling. If the 193-keV transition is indeed a doublet, then the 707- and 999-keV transitions may very well be directly related to it. Such a 193-keV twin could not be very intense, since the net intensity balance for the 277.4-keV level is -400 ± 2400 units in 60 000, consistent with the expected negligible β decay to the 4+ state.

3. ¹⁷⁰Lu Conversion-Electron Spectrum

In Fig. 8, portions of the conversion-electron data taken with the $3-mm \times 1-cm^2$ Si(Li) detector are shown. The top two sections show the 4096channel low-energy spectrum from 100 to 1500 keV, taken with one of the chemically separated sources. These data were taken very soon after chemical separation so that contaminant peaks, denoted C, from ¹⁶⁹Lu and ¹⁷¹Lu were minimal. Only some of the K and L conversion lines are identified. The 193.1-keV K conversion peak is slightly asymmetric because of finite source-thickness effects. The bottom spectrum shows the highenergy portion, 1350 to 2800 keV, taken with a 1600-channel analyzer. Some of the prominent K conversion peaks are identified as well as some of the double-escape or "pair" peaks, D, produced by the more intense γ -ray transitions. A few doublets, d, are also noted.

The energy resolution of the electron detector was approximately 2.7 keV for the 976-keV conversion electrons from ²⁰⁷Bi. A relative detectionefficiency curve was obtained from electron measurements on the following standard sources: ¹⁰⁹Cd, ²⁰³Hg, ¹¹³Sn, ²⁰⁷Bi, ¹³⁷Cs, ⁵⁴Mn, and ⁶⁵Zn. The relative strengths of these sources were determined by γ -ray measurements taken with a Ge(Li) detector of known absolute efficiency. The two spectra in Fig. 8 were analyzed by hand, using a spectrum stripping technique in which strong singlet conversion lines (e.g. 323-, 938-, 1280-, 1479.9-, and 2126-keV, etc.) were used to define the line shapes. Since the very complex nature of the γ spectrum was known, the use of the conversion data was limited to only those peaks that were well defined and whose intensity errors were less than $\pm 10\%$.

Conversion coefficients were determined by using the theoretical conversion coefficients of (1) the pure E2 ground-rotational band transition at 193.1 keV; (2) the 1138.8-, 1144.6-, 1145.9-, 1395.6-, and 1534.5-keV E2 transitions; (3) the 1280- and

FIG. 6. Two examples of the more than $100 \gamma - \gamma$ coincidence spectra obtained. Shown here are 90° data for those γ rays in coincidence with the 84.26-keV 2+ to 0+ and the 193.13-keV 4+ to 2+ ground-band transitions. Many, but not all, of the γ rays identified in these two gates are labeled.

1364-keV E1 transitions to give the best average intensity normalization factor between the electron and the γ -ray data. The multipolarities of all but the 193-keV E2 transition were determined from decay systematics and from the directional correlation measurements by Paperiello *et al.*¹⁰ It is worth noting that our low-energy conversion-electron intensity data (<400 keV) disagree significantly with the data given in Ref. 2.

D. Experimental Results

1. γ -Ray Energies and Intensities

The energies and intensities for the 550 γ -ray transitions observed in the decay of ¹⁷⁰Lu are listed in Table II. Also given are K conversion coef-

ficients for the stronger lines obtained from the conversion-electron data, as well as data for eight E0 transitions. Where multipole assignments can be made they are listed as well.

For those transitions placed in the decay scheme (see Sec. IID3, below), assignment was based either on coincidence data or energy balance, denoted c.d. and e.b., respectively, in the last column of Table II. There were 212 γ -ray transitions assigned on the basis of coincidence data, and these account for 93% of the total γ -ray intensity observed. For these transitions, the initial and final energy levels are given, and wherever possible the spins and parities of the levels are also listed.

An additional 118 transitions have been assigned

FIG. 7. Three examples of the forty $180^{\circ} \gamma - \gamma$ coincidence gates sorted. Shown here are the 152.6-, 688.0-, and 1028.8-keV gates. A small i in the top spectrum identifies those transitions that are indirect, i.e., those that follow the labeled transitions. The S and D identify single- and double-escape peaks.

1050

on the basis of energy balance, that is, agreement between the γ -ray transition energies and the level energy differences for those levels established by coincidence data. 13 transitions can be placed in either of two locations, and these choices are listed under the columns labeled E_i and E_f . Three transitions having three possible placements and one transition having four possible placements are indicated under E_i . These 118 transitions account for another 3% of the γ -ray intensity. Therefore, only 4% of the total observed intensity remains unassigned, and this small percentage involves the remaining 210 γ -ray transitions.

2. Proposed ¹⁷⁰Yb Level Scheme

The partial level scheme proposed for 170 Yb is shown in Figs. 9–12. The 61 levels shown are all based on γ - γ coincidence data. A few high-energy

ground-state transitions whose energies agree very well with the established levels are also shown (those transitions lack the solid circles). The eight E0 transitions observed in the conversion-electron data are shown as dotted transitions. The 220 transitions shown account for 93% of the total observed γ -ray intensity. The electron-capture and positron branching to each level and the log *ft* values have not been included in Figs. 9–12 but can be found in Table III. The bases for the spin, parity, and *K* quantum number assignments for each level are discussed in Sec. IID 4, below.

Once these 61 levels were established, it was possible to compare all of the energy level differences with the unassigned transitions. Those transitions agreeing with only one energy level difference were placed in another decay scheme, which is shown in Figs. 13 and 14. A total of 64 levels and 118 transitions is shown in this decay scheme.

FIG. 8. A plot of the conversion-electron data obtained with a 3-mm depletion-depth Si(Li) detector. Contaminant activities are indicated by an upper-case C, while a lower-case d denotes a doublet and an upper-case D represents double-escape peaks from strong higher-energy transitions. Only some of the many conversion lines analyzed are identified.

	h					= = = = = = = = = = = = = = = = = = = =				
E_{γ}^{a}	ΔE_{γ}	I_{γ}^{c}	. . d	α_{k}^{e}		f		E _i g	E_f g	Assignment
(keV)	(keV)	$(\% \times 10^{3})$	ΔI_{γ}^{u}	$(\times 10^{+4})$	Multipolarity	$I_i \pi^{+}$	$I_f \pi^1$	(keV)	(keV)	via ⁿ
04.969		105 000	10.000			0.	0.			. 1
04.202 119.90	±0.004	195 000	±10 000		ΕZ	2+	0+	84 1495	1900	c.a.
110.00	0.15	120	70			2 -	2+	1425	1306	c.a.
119.90	0.20	150	15					2939	2819	e.b.
134.05	0.15	280	30					3099	2965	e.b.
142.50	0.15	210	20				_			_
152.60	0.03	6100	200			0-	1-	2819	2667	c.d.
166.70	0.20	135	15					2367	2200	e.b.
170.80	0.20	70	10		-			3146	2975	e.b.
193.13	0.05	46 250	1500	1790	E2	4+	2+	277	84	c.d.
199.65	0.15	200	20							
201.75	0.15	350	30					1566	1364	e.b.
205.55	0.20	175	15					1717	1512	e.b.
209.90	0.20	165	15							
220.90	0.15	425	15	≤ 2100	M1(E2)	1-	1-	2496	2275	c.d.
222.40	0.15	900	30	2670	M1(E2)					
223,40	0.15	450	15	3320	M1					
225 45	0.20	130	20	0010	101 1			9951	9196	o h
228.05	0.15	800	50	5420	$E0 \pm E2$	9.	2.	1594	1206	e.u.
231 15	0.10	130	15	5420	E0 + E2	4+	4+	1004	1300	c.u.
235.55	0.15	880	10	1020	M1 F9			2700	2000	e.b.
238.25	0.15	370	25	1520	M1 <u>L</u> 4			2001	2110	e.b.
200.20	0.15	5100	150	2200	141	(0)	-	2007	2429	e.b.
241.00	0.00	5100	100	2360	M 1	(0-)	1-	2367	2126	c.a.
243.33	0.20	-100	40	-95 000	50	0 .	•	2748	2498	e.b.
251.0	0.10	≤100 1050		225 000	EO	0+	0+	1479	1228	e.b.
201.10	0.10	1050	50					2367	2116	e.b.
272.40	0.10	205	20					2939	2667	e.b.
275.40	0.20	100	10							
279.40	0.15	470	30	1040			_	2775	2496	e.b.
283.05	0.10	4450	150	1240	M1	0-	1-	2819	2536	c.d.
285.60	0.05	10 100	300	180	<i>E</i> 1	2-	2+	1425	1138	c.d.
292.55	0.20	110	10					1717	1425	e.b.
295,15	0.20	100	10					(4)		e.h.
296.70	0.20	170	15					(3)		e h
297.70	0.20	85	10					(-)		0.0.
300.60	0.20	100	10	2640	M1					
301.85	0.20	130	15)		(
303.20	0.20	90	10	2050	${M1}$			${2429}$	2126)	
					,			(2667	2364)	
311.80	0.20	160	15					2351	2040	e.b
323.57	0.05	7700	250	850	<i>M</i> 1	0-	1-	2819	2496	с.с.
329.3	0.2	250	20			1-	- 1-	3149	2810	c d
337.5	•••	≤100		≥1500	E0	- 0+	<u>+</u>	1566	1999	o.u.
339.45	0.20	70	10	1000	20	01	01	(2769	2420	e.v.
								12100	2725	
340.90	0.15	340	15					(9119	2110)	
			10							
366.35	0.15	540	20					∫3149	2783)	
								2351	1985)	
368.30	0.20	200	10					2768	2400	e.b.
369.80	0.15	580	30							
371.90	0.15	680	40	<2100	M1	0-	1-	2498	2126	c.d.
374.55	0.20	100	10							-
382.35	0.10	1300	50	<1300				2498	2116	e.b.
384.85	0.15	320	15							
386.45	0.20	200	15					3169	2783	e.b.
388.80	0.10	2000	60	600	M1	2 +	2+	1534	1145	c.d.
390.40	0.15	1250	50							
395.95	0.10	4200	120	600	<i>M</i> 1	2+	2+	1534	1138	c.d.

TABLE II. γ -ray transitions, energies, intensities, multipolarities, and level assignments for all transitions observed in the decay of ¹⁷⁰Lu.

					IADLE	II (Communeu)					
(ł	E_{γ}^{a} keV)	ΔE_{γ}^{b} (keV)	$\frac{I_{\gamma}}{(\% \times 10^3)}^{\rm c}$	ΔI_{γ}^{d}	α_k^e (× 10 ⁺⁴)	Multipolarity	$I_i \pi^{f}$	$I_f \pi^f$	E _i g (keV)	E _f ^g (keV)	Assignment via ^h
	01.20	0.20	190	60					3169	2768	e h
4	01.30	0.20	190	15	680	M1			(3179	2700 2775)	e. <i>.</i> J.
4	04.00	0.15	320	10	000	111 1			3065	2661	
4	06.95	0.15	520	30					(3003	2001)	
4	00.20	0.15	520	50							
4	07.55	0.20	200	10							
4	10.5	• • •	i	$\cdots)$	≥2300	E0	0+	0+	1479	1069	e.b.
4	10.55	0.15	220	50)							
4	16.50	0.20	135	15					2768	2351	e.b.
4	19.65	0.05	11200	300	430	M1	0-	1-	2819	2400	c.d.
4	27.20	0.20	190	30					3195	2768	e.b.
4	43.40	0.15	910	30	240	M1E2			(3)		e.b.
4	47.65	0.10	1575	50	475	M1					
4	49.25	0.20	160	15							
4	55.50	0.10	2900	100	≤ 465	M1	0-	1-	2819	2364	c.d.
4	57.90	0.15	480	40					2116	1658	e.b.
4	61.20	0.15	270	40	500	M1					
4	65.50	0.15	240	20							
4	67.35	0.15	490	25	475	M1			2965	2498	e.b.
4	72.50	0.15	250	10							
	79 90	0.10	1250	140)					3146	2667	e b
-+	70.50	0.10	670	200	\leq 500				2140	2661	e.b.
4	19.00	0.15	440	30)					5140	2001	e.u.
4	106 00	0.15	440	20							
	100.00	0.15	420 500	15							
4	100 50	0.15	12 700	10	50	F1	9	2	1717	1995	e d
4	107 0	0.05	12 700	400	>1400	EI	<u> </u>	0+ 0+	1717	1440	c.u.
4	107 50	0.15	210	10	≥1400	E0	0+	0+	1900	1069	e.o.
4	197.00 500 50	0.15	220	10					2020	2420	a h
) 5		0.15	220	10					2929	2429	e.o.
) -	18.90	0.15	220	10							
	20.50	0.15	200	30	145	F 9	0	(9)	9910	9900	a d
) 5	030.00 24 CE	0.10	2100	100	145	EZ	0-	(2-)	2819	2289	c.a.
ม 5	595 05	0.15	220	10	210						
อ	20.05	0.15	210	10)							
		0.10	540								
5	540.15	0.10	4600	200	270	M1	0-	1-	2052	1512	c.d.
5	544.24	0.05	$18\ 500$	500	≤230	M1	0-	1-	2819	2275	c.d.
5	547.25	0.15	860	40					2748	2200	e.b.
5	558.90	0.15	350	35	80	E1					
5	560.55	0.15	370	50	325	M1					
5	563.00	0.15	960	30	≤ 210	M1E2					
5	565.80	0.15	280	15					3314	2748	e.b.
5	572.20	0.05	28000	750	33	E1	2-	2+	1717	1145	c.d.
5	575.95	0.25	435	20	≤800	$\leq M2$					
5	579.40	0.05	10 000	300	44	E1	2-	2+	1717	1138	c.d.
5	584.35	0.15	265	15							
5	585.80	0.15	340	20							
5	587.15	0.15	660	120	180	M1E2					
5	590.85	0.15	810	25							
5	595.70	0.15	700	20							
	508 15	0.15	790	90							
0 6	319 15	0.15	140	00 90	70	D 0			01.40	0504	- 1
0 6	S14 00	0.10	200	3U 1A	18	EZ			3149	2536	e.b.
0	318 0F	0.40	200 1850	10	110	M1 59			2965	2351	e.b.
0 6	391 /A	0.15	1090	0U 100	110	NI LEZ			2819	2200	e.b.
6	221.4U	0.10	970	700 100	230	MI					
6	33 75	0.20	200	35 10					0051	1010	. •
с С	326.80	0.40	200	10					2351	1717	e.b.
0 2	345 80	0.20	006	15							
0	-±J.0U	0.20	300	15							

TABLE II (Continued)

E_{γ}^{a}	ΔE_{γ}^{b}	I_{γ}^{c}	AI d	α_k^e (× 10 ⁺⁴)	Multipolarity	$I \cdot \pi^{f}$	Leπ ^f	E _i g (keV)	E _f g (keV)	Assignment via ^h
(KCV)	(KC V)	()) × 10)	Δıγ	(*10)		-1		(0.555		
649.60	0.15	1000	60					{2775 \2367	2126(1717)	
652.65	0.20	370	30							
655.10	0.20	225	10							
656.65	0.20	280	15					3179	2522	e.b.
658 20	0.20	220	15							
000.20	0.20							0.555	0110	. h
659.70	0.20	240	15					2775	2110	e.b.
670.35	0.20	840	40					3099	2429	e.o.
675.45	0.20	240	15					2040		
	0.95	175	10					3179	2498	e h
688.00	0.25	4400	150	150	<i>M</i> 1	0-	1-	2052	1364	c.d.
601.75	0.00	370	15	100	111 1	Ū	-	2002		
091.75	0.20	570	50					2819	2126	e h
693.55 500 15	0.20	330	15)					2015	2120	0.0.
700.15	0.20	400	10	200	M1			2126	1425	e h
700.80	0.20	1700	20)	160	1/1			2819	2116	e.b.
703.85	0.15	1700	00 150)	100	<i>M</i> 1			2019	2110	6.0.
706.50	0.45	1650	100	27	E1					
707.10	0.15	3000	100)	100	241			9140	9490	a h
711.65	0.15	1600	50	190	MI			3140 9775	2429	e.o.
723.05	0.20	440	20					2115	2052	e.v.
728.85	0.20	950	200					2929	2200	e.b.
741.50	0.20	970	30			1-		2400	1658	c.d.
746.90	0.20	680	20					2947	2200	e.b.
750.95	0.20	830	30					3115	2364	e.b.
756.15	0.20	450	20							
757.60	0.15	2550	100					3186	2429	e.b.
762,55	0.15	620	20					2748	1985	e.b.
785.75	0.20	620	70							
787.60	0.15	1200	80							
792.00	0.15	2350	120					3067	2275	e.b.
801.25	0.20	800	40							
802.40	0.20	730	35							
805.85	0.25	400	100							
809.25	0.20	620	30							
813.55	0.20	900	90					(2929	2116)	
-								(2939	2126)	
915 70	0.20	520	25					(3179	2364)	
015.70	0.20	520	20					13314	2498	
910 50	0.20	700	20			1_	2⊥	2126	1306	c d
019.00	0.20	2450	100			1	4+	2120	1000	c.u.
824.30	0.15	10.950	200			1_	9_	9964	1594	o d
029.3U	0.10	000 01	300	20		1-	47	4004	1004	c.u.
034.40	0.10	4430	10	00 <10€	1/1	0	1_	9951	1519	٥d
839.30	0.10	10700	450	≥100	IVI 1	1	 9	4391 9975	1495	0.u.
850.05	0.15	1050	100			1-	4-	4410	1440	c.a.
851.45	0.20	1800	100		2/1	(0)		2364	1512	e.b.
855.15	0.15	21400	500	75	<i>M</i> 1	(0-)	1-	2367	1512	c.a.
859.45	0.20	1300	100					2975	2116	e.b.
864.85	0.25	800	40			0		2522	1658	e.b.
868.10	0.20	1700	200			2+	4+	1145	277	c.d.
873.85	0.25	300	30					3149	2275	e.b.
876.80	0.25	600	30					2929	2052	e.b.
879.65	0.25	500	25							
884.10	0.15	7700	450			1-	0+	2364	1479	c.d.
895.00	0.25	540	30					2947	2052	e.b.
901.40	0.20	1500	70					£2040	1138)	
								3169	2268)	
910.8	0.30	920	50			1-	1-	2275	1364	c.d.

TABLE II (Continued)

						/				
E_{γ}^{a} (keV)	ΔE_{γ}^{b} (keV)	$\frac{I_{\gamma}^{c}}{(\% \times 10^{3})}$	ΔI_{γ}^{d}	α_k^e (× 10 ⁺⁴)	Multipolarity	I _i π ^f	I _f π ^f	<i>E</i> ; ^g (keV)	E _f ^g (keV)	Assignment via ^h
916.65		2200	200)				 1–	2429	1512	
916.90		1500	150	42		(2-)	0-	2969	2052	c.d.
926.40	0.15	5800	180	28	F2	0-	2-	2351	1425	c d
938 75	0.08	35 200	1000	68	<i>D</i> ⊒ <i>M</i> 1	1-	2-	2364	1425	c d
942 45	0.15	4700	150	00	1/1 1	(n)	2_	2367	1425	cd
947.80	0.15	3500	100			3+	4+	1225	277	c.d.
952 55	0.25	930	50			0	1	1220	211	c.u.
954 30	0.15	5000	150	75	M1			2939	1985	e h
962.85	0.25	170	20	10	111 1			2000	1000	0.5.
966.85	0.20	3200	100					2364	1397	e.b.
969.05	0.20	1300	60					2275	1306	e.b.
970.20	0.20	2500	80					2116	1145	e.b.
980.30	0.20	2900	300	≤64		1-	2+	2126	1145	c.d.
983.67	0.20	7000	500			1-	1-	2496	1512	c.d.
985.10	0.10	120000	4000	29	E2	0+	2+	1069	84	c.d.
987.25	0.10	37 000	1200	75	<i>M</i> 1	0-	1-	2351	1364	c.d.
988.5	j	3000	300					2126	1138	c.d.
999.60	0.10	34000	1000	56	M1	1-	1-	2364	1364	c.d.
1002.3	j	3000	300					2536	1534	c.d.
1003.20	0.10	77000	2400	55	<i>M</i> 1	(0-)	1-	2367	1364	c.d.
1009.50	0.30	880	50					2667	1658	e.b.
1012.30	0.30	290	30					3065	2052	e.b.
1028.80	0.10	18 000	600	31	E2	2+	4+	1306	277	c.d.
1034.20	0.30	600	200							
1046.60	0.25	1950	100					2275	1228	e.b.
1050.40	0.10	22000	700	≤34	M1E2	(2-)	2-	2768	1717	c.d.
1053.7	i	2500	500)				1-	3179	2126	c.d.
1054.28	0.05	103000	3300>	≤24	E2	2+	$^{2+}$	1138	84	c.d.
1055.23	i	5000	1000)				2+	2200	1145	c.d.
1057.70	0.15	4750	150			1-	2+	2364	1306	c.d.
1060.58	0.20	5500	500				1-	3186	2126	c.d.
1061.35	i	5000	1000)			(0-)	2+	2367	1306	c.d.
1061.39	0.10	47000	1500)	29	E2	2+	2+	1145	84	c.d.
1068.80	0.40	120	10}	≥2800						
1069.4	• • •	i)		E0	0+	0+	1069	0	e.b.
1070.90	0.30	1170	40			1-	2-	2496	1425	c.d.
1078.3	0.40	750	200					3131	2052	e.b.
1082.10	0.30	570	60							
1086.9	0.30	750	30							
1101.70	0.10	21 300	600	34	E2	0-	2-	2819	1717	c.d.
1110.65	0.30	270	15					2768	1658	e.b.
1113.10	0.20	2250	100	≤150		1-	2+	2748	1634	c.d.
1119,40	0.20	4000	120				4+	1397	277	c.d.
1122.5	0.30	350	10					2268	1145	e.b.
1124.65	0.30	850	25							
1132.86	J	1500	150			1-	2+	2667	1534	c.d.
1133.60	0.10	23 000	750)	40	<i>M</i> 1	0-	1-	2498	1364	c.d.
1135.1	J	0500	100			1-	0+	2364	1228	c.d.
1137.05	0.30	3500	100	~ ~		1-	2+	2275	1138	c.d.
1141 90	0.10	18 000	2400	24	E2	2+	0+	1138	0	c.d.
1141.30	0.20	11 400	350	22	E2	3+	2+	1225	84	
11/5 00	0.20	37200	1200	22	E2	0+	2+	1228	84	
1155 95	0.40	33100	1000	23	EZ	2+	0+	1145	0	
1150.40	0.30	750	50					(3)		
1158.45	0.30	460	25					2522 3274	1364) 2116	
1162.35	0.30	900	50					(0414	2110)	

TABLE II (Continued)

E_{γ}^{a} (keV)	ΔE_{γ}^{b} (keV)	I_{γ}^{c} (%×10 ³)	ΔI_{γ}^{d}	$lpha_{k}^{e}^{e}$ (× 10 ⁺⁴)	Multipolarity	$I_i \pi^{\mathrm{f}}$	$I_f \pi^{\mathrm{f}}$	E _i g (keV)	E _f ^g (keV)	Assignment via ^h
1173.20	0.40	700	300			1-	1–	2536	1364	c.d.
1180.75	0.30	250	25							
1181.5	0.30	1000	200					2748	1566	e.b.
1187.50	0.30	1000	50			1-	0+	2667	1479	c.d.
1202.95	0.30	450	25							
1204.80	0.30	400	20							
1206.30	0.20	3000	150			1-	0+	2275	1069	c.d.
1211.20	0.30	800	40							
1213.65	0.20	1150	60					2748	1534	e.b.
1217.30	0.20	4500	150	30	M1E2					
1218.50	0.20	30 400	1000	6.5	E1	1-	2+	2364	1145	c.d.
1222.25	0.30	14 300	500	103	E0 + E2	2+	2+	1306	84	c.d.
1225.65	0.10	108 000	3200	9.2	E1	1-	2+	2364	1138	c.d.
1228.9	•••	k	•••	≥500	E0	0+	0+	1228	0	e.b.
1230.20	0.30	2500	100	≤115		1-	$^{2+}$	2536	1306	c.d.
1234.50	0.30	500	25					3274	2040	e.b.
1235.90	0.10	5100	150	50	M1	1-	1-	2748	1512	c.d.
1240.65	0.30	370	20							
1241.95	0.20	1100	50			1-	2-	2667	1425	c.d.
1257.20	0.10	30 500	1000	21	E2	2+	4+	1534	277	c.d.
1263.45	0.20	6900	200	45	M1	1-	1-	2775	1512	c.d.
1268.30	0.20	2600	100			1-	0+	2748	1479	c.d.
1280.25	0.10	177000	5000	8.7	E1	1-	2+	1364	84	c.d.
1290.9	0.40	1900	350				2+	2429	1138	c.d.
1294.70	0.10	63 500	2000)	9.5	E1	1-	0+	2364	1069	c.d.
1294.74	i	1000	100			1-	2+	2929	1634	c d
1304.85	0.20	2200	80			1-	2+	2939	1634	c.d.
1306.30	0.20	11 000	500	≤42	E2	2+	0+	1306	0	c d
1307.55	0.10	24 000	1000)	≤22	M1	0-	1-	2819	1512	c.d.
1307.97	i	2600	300			1-	0+	2536	1228	c d
1312.90	0.30	7000	400			-	2+	1397	84	c.d.
1313.03	i	1000	100			1-	2+	2947	1634	c.d.
1323.00	0.20	3900	300			1-	2-	2748	1425	cd
1330.65	0.30	800	40			_	_	(2400	1069)	0.4.
								2965	1634	
1341.20	0.10	70 500	2000	9.5	E1	2-	2+	1425	84	сd
1350.45	0.30	1280	60			1-	2-	2775	1425	c d
1361.10	0.30	2500	250			1-	2+	2667	1306	c d
1364.60	0.10	100 000	•••	7.9	E1	1-	0+	1364		e d
1370.40	0.30	520	25			-			v	C.U.
1373.50	0.20	3700	350					2939	1566	e h
1380.80	0.20	2700	350				4+	1658	277	c.d.
1383.60	0.20	4200	150			1-	1–	2748	1364	
1385.50	0.30	1000	50			-	-	10	2001	C.u.
1395.03	j	9000	1000)			1-	2+	2929	1534	сđ
1395.65	0.10	49 000	1500	16	E2	0+	2+	1479	84	e d
1398.30	0.20	1500	300			1-	2+	2536	1138	c d
1403.79	i	4500	500			2-	1-	2768	1364	c d
1405.15	0.10	56 500	1800	≤11.6	E1	1-	2+	2939	1534	e d
1410.35	0.40	2850	300							
1413.20	0.20	4900	350			1-	2+	2947	1534	сd
1418.65	0.30	700	35					2783	1364	e h
1426.72	j	10 000	1000)			(1 -	0+	2496	1069	c d
1427.27	j	7300	800>	9.1	E1	$\frac{1}{1-}$	1-	2939	1512	c d
1490 00	0.10	75 500	2500)			11-	2+	1512	84	o.d.
1440.00						\ -		TU • • •		
1428.08	0.20	5500	200			1-	1-	2947	1512	c.d.

TABLE II (Continued)

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						HE II (Commune	/				
	E_{γ}^{a} (keV)	ΔE_{γ}^{b} (ke V)	I_{γ}^{c} (%×10 ³)	ΔI_{ν}^{d}	α_k^e (×10 ⁺⁴)	Multipolarity	I _i π ^f	$I_f \pi^f$	E _i g (keV)	E _f g (keV)	Assignment via ^h
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1445 10	0.30	800	/ /0	· · ·						
	1449.10	0.30 i	3000	400)			(1 -	0+	2929	1479	c d
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1445.04	J 0 10	25.000	1000	275	E0 + E2		2+	1594	84	c d
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1450.20	0.10	35 000	750	< 25	L0 + L2 M1	0_	1_	2010	1364	c.d.
	1400.20	0.10	20 000	100	220	<i>M</i> 1	(9 _)	1_	2019	1519	e.d.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1457.12	0.10	3000	400			(2-)	0	2000	1470	c.d.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1409.80	0.10	23 500	200			1-	0+	2939	1519	c.u.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1403.25	0.30	1600	200			1	0.	2910	1060	e.o.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1467.50	J	1500	100			1-	0+	2020	1470	c.u.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1407.93	J	2000	200			1	0+ 9+	2341	1906	c.u.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1469.10	0.20	2000	100	> 22 600	FO	1-	4+ 0+	1470	1300	c.u.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1479.9	0.10	<u>≤</u> 200	500	=32 000	EU	0+	0+ 2+	1566	0	e.u.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1484,15	0.10	13 500	500			0+	44	2065	04 1470	c.u.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1480.00	0.30	520	20					2905	1419	e.v.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1490.45 1498.75	0.30	530 760	30 40					3065	1566	e.b.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1503.85	0.40	200	20					2929	1425	e b
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1507.80	0.20	1000	150	<290			2+	3042	1534	c.d
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1512 50	0.20	55 300	1500	0 & 9	E1	1-	0+	1519	1001	e d
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1514 60	0.10	19 900	500	9.4 91	M1	1-	2-	2929	1425	c d
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1519.00	0.40	12 200	500	10	191 T	1-	2-	2000	1999	c.u. ph
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1510.00	0.30	1300	200			1	9.	2140	1440	e.b.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1521.7	0.30	1600	150	20		1-	2+	2007	1140	c.u.
1531.50 0.20 4000 130 51 M17 1- 2- 2350 1425 6.4. 1541.55 0.10 20400 600 13.5 E2 2+ 0+ 1534 0 c.d. 1540.92 j 2500 250 (0-) 2- 2975 1425 c.d. 1560.55 0.10 10000 130 45 E0 + E2 2+ 2+ 1634 84 c.d. 1560.67 j 2000 200 1- 1- 2929 1364 c.d. 1566.4 ≤500 m ≥1660 E0 0+ 0+ 1566 0 e.b. 1573.10 0.25 2000 100 1- 1- 2939 1364 c.d. 1583.30 0.30 1300 50 1- 1- 1- 2939 1364 c.d. 1582.05 0.40 200 20 100 1- 1- 1- 2956 1364 c.d. 1592.05 0.30 2	1529.00	0.30	1600	150	აყ ე 7	1/10	1-	4+ 9	2007	1495	c.u.
1540.35 0.10 20400 000 13.3 $E2$ $2+$ $0+$ 15.34 0 $C.1.$ 1540.35 0.30 1900 100 14 $2-$ 2975 1425 c.d. 1550.25 0.10 10000 1 300 45 $E0 + E2$ $2+$ $2+$ 1634 84 c.d. 1560.25 0.30 285 25 3099 1534 c.d. 1560.4 $\cdot \cdot \cdot$ ≤ 500 $m \cdots $ ≥ 1660 $E0$ $0+$ $0+$ 1566.4 $c.d.$ 1573.60 0.20 11200 300 17 $M1$ $1 1 2939$ 1364 $c.d.$ 1573.60 0.20 11200 300 17 $M1$ $1 1 2939$ 1364 $c.d.$ 1585.80 0.40 200 20 20 1300 $10 1 2947$ 1364 $c.d.$ 1597.55 0.30 1600 100 $1 1 2956$ 1364 $c.d.$	1531.30	0.20	4000	100	ວ/ 19 =	M 1 (1-	2-	4900	1425	c.u.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1534.55	0.10	20 400	100	13.5	EZ	2+ 1.	0+	1534	1495	c.a.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1540.35	0.30	1900	100			1+	2	2965	1425	c.a.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1549.92	J 0.10	2500	200	45	$E \Phi + E \Phi$	(0-)	2-	2975	1425	c.a.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1550.55	0.10	10 000	1 300	45	E0 + E2	2+	2+	1634	84	e.a.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1560.25	0.30	285	25			-	1	0000	1064	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1504.97	J	2000	200			1-	1-	2929	1304	c.d.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1303.08	J	4500	200				4+	3099	1534	c.u.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1566.4	•••	≤500	$m\cdots$	≥1660	E0	0+	0+	1566	0	e.b.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1573.60	0.25	2000	100				2+	1658	84	c.d.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1575.10	0.20	11200	300	17	M1	1-	1-	2939	1364	c.d.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1583.30	0.30	1300	50			1-	1-	2947	1364	c.d.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1585.80	0.40	200	20							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1592.05	0.20	3100	100			1-	1-	2956	1364	c.d.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1597.55	0.30	1600	100			1-	0+	2667	1069	c.d.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1601.20	0.30	2600	100			1+	1-	2965	1364	c.d.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1602.20	0.30	2300	100			1-	$^{2+}$	2748	1145	c.d.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1609.40	0.20	4800	250)	10	∫E1	1-	$^{2+}$	2748	1138	c.d.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1610.70	0.15	9600	500∫	14	<i>M</i> 1	(0-)	1-	2975	1364	c.d.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1614.70	0.30	820	40					3149	1534	e.b.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1619.65	0.30	2000	100				0+	3099	1479	c.d.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1630.50	0.30	2200	50				2+	3165	1534	c.d.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1633.30	0.30	1150	200					2939	1306	e.b.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1634.80	0.30	2100	75	6.2	E2	2+	0+	1634	0	e.b.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1636.85	0.30	1200	40					3149	1512	e.b.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1641.30	0.20	6900	200			1-	2+	2947	1306	c.d.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1645.40	0.40	430	15					3179	1534	e.b.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1648.7	0.3	330	25							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1651.40	0.40	680	25					3131	1479	e.b.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1653.2	0.40	470	25					3165	1512	e.b.
1067,10 0.40 690 35 3179 1512 e.b. $1674,20$ 0.30 3500 100 $1 3186$ 1512 c.d. $1678,60$ 0.20 5000 150 $1 0+$ 2748 1069 c.d. $1682,70$ 0.30 1200 400 3195 1512 e.b.	1662.75	0.30	1425	75			(2-)	$^{2+}$	2969	1306	c.d.
1674.20 0.30 3500 100 1- 3186 1512 c.d. 1678.60 0.20 5000 150 1- 0+ 2748 1069 c.d. 1682.70 0.30 1200 400 3195 1512 e.b.	1667.10	0.40	690	35					3179	1512	e.b.
1678,60 0.20 5000 150 1- 0+ 2748 1069 c.d. 1682.70 0.30 1200 400 3195 1512 e.b.	1674.20	0.30	3500	100				1-	3186	1512	c.d.
1682.70 0.30 1200 400 3195 1512 e.b.	1678.60	0.20	5000	150			1-	0+	2748	1069	c.d.
	1682.70	0.30	1200	400					3195	1512	e.b.

TABLE II (Continued)

1955.65

0.15

29 800

1000

6.5

E2

1+

2+

				1731		*/				
E_{γ}^{a} (keV)	ΔE_{γ}^{b} (keV)	I_{γ}^{c} (%×10 ³)	ΔI_{γ}^{d}	α_k^e (× 10 ⁺⁴)	Multipolarity	$I_i \pi^{f}$	$I_f \pi^f$	E _i g (keV)	E _f ^g (keV)	Assignment via ^h
1685.55	0.30	1300	150				0+	3165	1479	c.d.
1687.90	0.40	500	50							
1700.90	0.20	3000	100			1-	0+	2929	1228	c.d.
1703.30	0.30	1900	60							
1706.0	0.30	1050	150				2-	3131	1425	c.d.
1714.35	0.40	400	80					2939	1225	e.b.
1719.10	0.20	3250	100			1-	0+	2947	1228	c.d.
1723.75	0.30	600	40					(2947	1225)	
								3149	1425	
1731.30	0.40	210	20					2956	1225	e.b.
1736.60	0.30	870	120					2965	1228	e.b.
1740.65	0.30	1800	60				2-	3165	1425	c.d.
1746.30	0.30	675	35					2975	1228	e.b.
1747.75	0.40	250	25					3314	1566	e.b.
1753.85	0.30	1000	50							
1758.95	0.20	1800	60				2+	3065	1306	c.d.
1761.35	0.30	930	120				-	3186	1425	e h
1767.15	0.30	1800	100					0100		0.0.
		····								······································
1770.35	0.40	250	25					3195	1425	e.b.
1776.10	0.30	5750	200				1-	3140	1364	c.d.
1778,80	0.40	540	50					3007	1228	e.b.
1783.30	0.40	540	50							
1784.70	0.40	880	150					3149	1364	e.b.
1791.70	0.4	780	20							
1793.75	0.3	2000	100				2+	3099	1306	c.d.
1796.30	0.5	400	20							
1799.25	0.5	285	20							
1802.25	0.15	3500	100			1-	2+	2947	1145	c.d.
1809.50	0.15	17200	500	2.5	E1	1-	$^{2+}$	2947	1138	c.d.
1818.75	0.45	470	45							
1820.65	0.45	350	35							
1824.60	0.45	680	65					3131	1306	e.h.
1830.10	0.45	430	40							
1922 40	0.40	E 20	20							
1034.40	0.40	530	20							
1000.00	0.45	1300	130					2975	1138	e.b.
1030,10	0.45	940	30				_	3067	1228	e.b.
1842.75	0.45	1150	70			1-	2+	3149	1306	c.d.
1043.30	0.30	2600	300							
1050.00	0.45	350	35							
1859.20	0.20	4500	700	8.7	E2	_	2+	3165	1306	c.d.
1860.30	0.15	12 100	500	3.6	E1	1-	0+	2929	1069	c.d.
1074.55	0.30	1300	150							
1874.75	0.45	610	30							
1876.15	0.30	3250	200							
1878.65	0.15	12 300	400			1–	0+	2947	1069	c.d.
1887.10	0.45	750	100							
1888.70	0.45	800	40							
1893.70	0.45	950	50							
1896.50	0.30	1230	60							
1901.35	0.15	13 200	500			2-	0+	1005	04	ل
1904.55	0.45	440	20			2-	U+	1909	84	c.a.
1909.70	0.45	450	25							
1917.70	0.45	500	25							
1920.70	0.30	2100	75					9146	1005	. 1
1936.90	0.30	4750	150				0+	0140 9125	1220	e.p.
1954.00	0.30	3600	200	≤42			0+ 2 '	2000 2102	1228	c.d.
1055.05	0.15						4+	3099	1145	c.a.

2040

84

c.d.

TABLE Π (Continued)

E_{γ}^{a}	ΔE_{γ}^{b}	Iγ ^c		α_{k}^{e}				E _i g	E_f^{g}	Assignment
(kéV)	(keÝ)	$(\% \times 10^3)$	ΔI_{γ}^{d}	(× 10 ⁺⁴)	Multipolarity	I _i π ^f	$I_f \pi^{f}$	(keV)	(keV)	via ^h
	<u></u>									
1960.80	0.30	6400	200				2+	3099	1138	c.d.
1962.45	0.30	2150	70							
1966.80	0.45	650	50					3195	1228	e.b.
1974.00	0.30	1200	40							
1977.40	0.45	700	150							
1983.90	0.45	570	30							
1985.50	0.30	1700	60					3131	1145	e.b.
1992.70	0.45	400	20					3131	1138	e.b.
1995.75	0.30	1800	70				0+	3065	1069	c d
1998.40	0.45	400	100				•		-000	0141
2007.30	0.45	280	40					(3146	1138)	
								3314	1306	
2019.70	0.30	1350	100				2⊥	3165	11/15	c d
2025 75	0.30	1250	50				21	5105	1140	c.u.
2027 20	0.30	3650	150				2⊥	3165	1199	a d
2030 15	0.20	6400	400				2+ 01	2000	1060	e.u.
2030.13	0.20	8150	250			1	0+	3099	1069	c.a.
2031.10	0.15	56 900	2000	>71	M1	1-	2+	2110	84	c.a.
2040.00	0.10	199,000	4000	-1.1	<i>M</i> 1	1+	0+	2040	0	c.a.
2041.00	0.10	132 000	4000	3.0	EI	1-	2+	2126	84	c.d.
2040.0	0.0	080	30							
2054.55	0.3	2800	100							
2057.1	0.4	860	25					3195	1138	e.b.
2061.3	0.5	310	15					3131	1069	e.b.
2063.2	0.3	1580	50							
2086.4	0.5	450	20							
2094.5	0.5	615	30							
2096.3	0.2	3100	100			1-	0+	3165	1069	сd
2116.0	j	3500	400)			1-	0+	2116	0000	c d
2116.60	0.15	11 000	400)	2.5	E1	-	2+	2200	84	c d
2126.11	0.10	111 000	3500	2.4	E1	1-	0+	2126	0	c d
2143.5	0.3	1600	60				-		v	0.4.
2148.5	0.5	750	25							
2152.9	0.5	430	20							
2157.7	0.5	220	10							
2165.7	0.5	290	15							
2178.0	0.5	420	20							
					and a state of the					
2183.9	0.5	880	50				2+	2268	84	c.d.
2191.15	0.15	35 500	1000	2.6	E1	1-	2+	2275	84	c.d.
2200.9	0.3	1200	50							
2205.3	0.4	760	30				2+	2289	84	c.d.
2223.9	0.5	350	40							
2232.7	0.5	350	15							
2243.7	0.4	720	50							
2246.8	0.5	250	15							
2255.4	0.6	175	15							
2257.4	0.4	700	25							
2266.8	0.5	360	20							
2268.15	0.30	4200	120				0+	2268	0	e.b.
2275.40	0.10	19 400	600	1.6	E1	1-	0+	2275	0	c.d.
2279.9	0.2	4250	150			1-	2+	2364	84	c.d.
2284.2	0.5	320	100							
2220.2	0.4	050	50				~			
4403.4 9915 1	0.4	920	50				0+	2289	0	c.d.
2010.L 9915 0	0.4	800	40				~	.		
2010.8 9995 A	0.4	4000	100	5.1		1-	2+	2400	84	c.d.
2020.C	0.4	100	5U 1 m							
4000.0 9999 A	0.0 0.E	130	15							
4000.9	0.0	240	20							

TABLE II (Continued)

$\frac{E_{\gamma}^{a}}{(\text{keV})}$	ΔE_{γ}^{b} (keV)	I_{γ}^{c} (%×10 ³)	ΔI_{γ}^{d}	α_k^{e} (× 10 ⁺⁴)	Multipolarity	I _i π ^f	$I_f \pi^{f}$	E _i g (keV)	E _f ^g (keV)	Assignment via ^h
2344.9	0.5	1000	40				2+	2429	84	e.b.
2364 10	0.15	32 400	1000	1.7	<i>E</i> 1	1-	0+	2364	0	c d.
2398.1	0.30	1000	200		51	-	0,	2001	Ŭ	0.4.
2400.15	0.20	9050	300	3.0	E1?	1-	0+	2400	0	c.d.
2411 90	0.15	17900	600	1.6	E1	1-	2+	2496	84	c d
2419.9	0.50	430	70		21	-	-	2100	01	0.4.
2424 4	0.30	2700	100							
2429.0	0.50	1050	100				0+	2429	٥	e h
2438.6	0.30	2300	100	76	<i>M</i> 1		0+	2522	84	e.b.
			-00							C.D.
2452.7	0.30	3000	100			1-	2+	2536	84	c.d.
2459.9	0.50	270	25			_				_
2496.15	0.15	16 500	500	1.4	E1	1-	0+	2496	0	c.d.
2523.0	0.3	3000	100					2522	0	e.b.
2534.0	0.6	180	50							
200.9	0.4	1400	100			1-	0+	2536	0	c.d.
2042.0	0.0	250	40 15							
2558.0	0.0	100	10							
2561 1	0.5	300	30							
2575 3	0.0	500	300							
2576.8	0.1	1700	300					9661	0.4	. h
2582.9	0.4	3100	100			1	9.	2001	84	e.o.
2599.0	0.5	700	70			1-	4+	2007	84	e.a.
2637.0	0.6	190	20							
	0.0	100					· · · · · · · · · · · · · · · · · · ·			
2642.1	0.4	1900	100							
2652.0	0.4	400	00							
2653.0	0.0	5000	200	27	M1 E9			0.001	•	,
2663.95	0.30	27300	1000	3.7	MIE2 E1	1	. .	2661	0	e.b.
2667 4	0.20	1800	120	1.4		1-	4+	2748	84	c.d.
2677 3	0.5	150	120	0.0	<i>IVI</i> 1	1+	0+	2667	0	c.d.
2680.3	0.7	170	17							
2691.45	0.20	49 500	2000	11	F1	1	21	9775	94	o d
2698.80	0.30	13 200	500	3.2	M1F9	1-	27	2110	04 04	c.d.
2718.3	0.6	350	35	0.2	m1 <u>6</u> 2	14	47	4100	04	e.u.
2720.9	0.5	950	50							
2726.6	0.6	250	25							
2729.3	0.7	200	20							
2735.6	0.6	550	50					2819	84	e.b.
2737.2	0.4	1250	200							• •
2748.15	0.20	46 300	2000	15	F 1	1_	۸ı	9710	0	o h
2775.7	0.3	2450	100	- .0	191	+ -	0+	4140	U	e.u.
2783.00	0.20	22 400	1000	3.2	M1	1+	0+	2783	٥	e h
2793.1	0.7	260	25	• • •			01	2100	U	e.u.
2805.0	0.6	650	25							
2813.7	0.6	450	50							
2845.30	0.20	37200	2000	1.4	E1	1-	2+	2929	84	c.d.
2849.5	0.30	4600	400	2.7	E2	-				u.
2855.4	0.30	7100	300	1.4	E1	1-	2+	2939	84	c.d.
2863.6	0.30	2870	100			1-	2+	2947	84	c.d.
2872.5	0.40	1680	80			1-	0+	2956	0	c.d.
2881.40	0.20	16300	750			1+	2+	2965	84	c.d.
2885.1	0.30	6500	250			(2-)	$^{2+}$	2969	84	c.d.
2897.6	0.50	1000	70							
2923.3	0.3	4000	200				9.	9007	0.4	1
2929.50	0.20	13 000	650			1-	4+ 0.:	3007 2020	84	c.a.
						1-	0+	4929	U	e.b.

TABLE II (Continued)

E ^a	$\Delta E_{\rm b}^{\rm b}$	L., c		ar e				E; g	E, g	Assignment
(keV)	$\frac{\Delta e_{\gamma}}{(\text{keV})}$	$(\% \times 10^3)$	ΔL^{d}	$(\times 10^{+4})$	Multipolarity	L,π^{f}	$L\pi^{f}$	(keV)	(keV)	via ^h
(no v)	(110 1)	()0/(10)	γ	(* 20)	manipolarity	-1	- ,	(110 1 /	(
2939,65	0.20	33 500	2000			1–	0+	2939	0	e.b.
2947.80	0.20	12900	650			1–	0+	2947	0	e.b.
2953.1	0.5	750	150							
2956.6	0.4	1900	60				0+	2956	0	e.b.
2958.1	0.4	1000	50				$^{2+}$	3042	84	c.d.
2965.6	0.20	27 900	1500				0+	2965	0	e.b.
2969.7	0.5	600	70							
2981 5	0.5	700	70							
2001.0	0.0	100								
2983.1	0.4	1700	100				2 +	3067	84	c.d.
2985.9	0.4	1200	80							
3007.5	0.3	3050	150				0+	3007	0	e.b.
3015.10	0.3	5500	250				2+	3099	84	c d
3018 5	0.6	320	30				-	0000	01	0,4.
	v. o									
0000 05	0.00	00.000	1500			-	0.	0115	~ 4	- 4
3030.95	0.20	28 600	1200			1-	Z+	3115	84	c.d.
3036,90	0.3	4600	200							_
3042.8	0.4	1500	75				0+	3042	0	e.b.
3046.9	0.5	750	75				2+	3131	84	e.b.
3053.1	0.3	2400	200							
3062.1	0.3	2300	200					3146	84	e.b.
3064.8	0.3	5600	250			1-	$^{2+}$	3149	84	c.d.
3067.0	0.3	2600	200				0+	3067	0	e.b.
3085.4	0.6	330	20					3169	84	e.b.
3091.9	0.3	3400	200						• •	
3095 50	0.20	7200	400				2+	3179	84	сd
3099 55	0.25	4300	250				0+	3000	01	c.u.
3102.00	0.20	220	200				0+	00 <i>00</i>	0	e.b.
2111 5	0.0	2000	200			1	9.	2100	04	e.u.
3111.3	0.0	3900	200			1	2+	3195	84	c.a.
3115.20	0.25	16200	800			1-	0+	3115	0	e.b.
		450								
3119.2	0.6	450	150							
3123.0	0.6	420	40							
3128.1	0.5	900	90							
3130.9	0.7	250	40				0+	3131	0	e.b.
3139.6	0.8	65	15							
3146.1	0.4	2500	200					3146	0	e.b.
3149.4	0.4	2250	200			1-	0+	3149	0	e.b.
3157.0	0.8	90	10							
3161.1	0.5	1000	100							
3165.3	0.4	2200	200					3165	٥	e.b
3169.6	0.8	100	15					3169	ñ	e h
3173.4	0.7	300	30					0100	U	0.0.
3179.8	0.7	375	40							
3183 6	0.5	1400	140							
3190.9	0.5	1950	190					9074	<u>.</u>	- 1-
0100.0	0.0	1200	140					3274	84	e.b.
9105 9	0.4	2000	900						_	-
9199.9	0.4	4000	200					3195	0	e.b.
3202.4	0.5	1500	150							
3206.8	0.8	300	30							
3212.2	0.8	150	15							
3218.4	0.9	50	10					3302	84	e.b.
3229.5	0.8	150	15					3314	84	e.b.
3255.9	0.7	300	30							
3258.2	0.8	250	25							
3274.2	0.5	1000	100					3274	Ω	eh
3282.1	0.8	50	10					JUIT	U	C.D.
3291.4	0.7	100	10							
	- • •	_00								

TABLE II (Continued)

E_{γ}^{a} (keV)	ΔE_{γ}^{b} (keV)	<i>I</i> γ ^c (%×10 ³)	$\Delta I_{\gamma}^{d} (\times 10^{+4})$	Multipolarity	I _i π ^f	$I_f \pi^{\rm f}$	<i>E</i> ⁱ ^g (keV)	E _f ^g (keV)	Assignment via ^h
3302.4	0.7	260	25				3302	0	e.b.
3314.1	0.7	280	30				3314	0	e.b.
3338.9	0.8	40	10						
3385.0	0.8	40	10						

TABLE II (Continued)

^a The γ -ray energies have been rounded off in most cases to the nearest multiple of 50 eV.

^b The final energy errors are adopted on the basis of the strength and multiplicity of the γ rays. For the strongest transitions the errors range from ±50 eV at low energy to ±250 eV above 3.1 MeV, while the weakest transitions have been assigned errors from ±200 eV at low energy to ±1.0 keV above 3.1 MeV.

^c See text for a discussion of the method of intensity determinations. The 1364.6-keV transition intensity was adopted as 100 000 units $(100\% \times 10^3)$.

^d The intensity errors have the same units ($\% \times 10^3$) and include both the error in the Ge(Li) detector efficiency curve (±5% < 100 keV; ±3% 100 keV to 2.5 MeV; ±5% ≤ 3.1 MeV; and ±10% > 3.1 MeV) and the systematic error arising from differing results from different runs.

^e Those conversion coefficients preceded by a \leq sign indicate that the conversion line contained additional strong components from either ¹⁶⁹Lu or ¹⁷¹Lu impurities or ¹⁷⁰Lu L or M conversion lines from strong ¹⁷⁰Lu transitions.

^f No spin and parity information is entered unless the transition is believed to be firmly placed-i.e., appears on the coincidence γ -ray decay scheme.

 g Initial and final excited state energies are given to aid in identifying placement. Where two possibilities exist, both are shown, otherwise the number of possible placements appears in parentheses (n).

^h The level assignments are based either on γ - γ coincidence data denoted c.d. or on energy differences or energy balance denoted e.b.

ⁱ In calculating the lower limit to α_{K} , the intensity of any γ -ray observed at that energy is assumed.

^j An unresolved multiplet; energies and intensities are determined from the level scheme and coincidence data, respectively.

^k The nearby intense 1225.65-keV γ ray sets the upper limit for an observable 1228.9-keV γ ray at 2000 units, thus the low α_{κ} limit.

¹ This line may be a doublet.

^mA doublet at 1565 keV sets the observable intensity for a 1566.4-keV transition at 5000 units, thus the α_{κ} limit.

Many of the transitions shown are undoubtedly correctly assigned; however, a few may be misassigned because they really belong to one or several "unknown" levels not shown in either Figs. 9-12 or 13 and 14. An indication of the small percentage of incorrect assignments is given by those 17 transitions mentioned earlier that have either two, three, or four possible placements. These transitions represent only 5% of the 328 transitions not assigned on the basis of coincidence data. The 118 transitions placed in Figs. 13 and 14 were included in the calculation of the intensity balances and log ft values.

The position of the 6+ ground-rotational-band member was calculated with the formalism outlined by Mariscotti, Scharff-Goldhaber, and Buck.²² The 6+ level is shown as a tentative (dashed) level in Figs. 13 and 14 at an energy of 572.3 keV. The 0.3-keV error in this level is based on the 4-eV error in the 2+ \rightarrow 0+ transition and the 50-eV error in the 4+ \rightarrow 2+ ground-band transitions. This is easily in agreement with the value observed in (*d*, *t*) and (*d*, *d'*) experiments reported by Burke and Elbek.²³

The ¹⁷⁰Yb level scheme is so complex that a de-

tailed discussion of differences between this work and that of Bonch-Osmolovskaya et al.¹² is not practical. Instead, only a few of the major differences are noted here. We do not see levels at 1757.6, 2113.2, 2533.1, 2883.6, and 3091.9 keV. A majority of the transitions issuing from these levels are placed elsewhere in our decay scheme by coincidence data. A comparison of transitions in the decay scheme of Ref. 12 and those in our Table II is relatively easy and will show which assignments differ. The 2521.3-keV level of Ref. 12 resembles our 2523.0-keV level only in the two transitions to the 2+0 and 0+0 levels of the ground band. Two additional transitions assigned to the 2523-keV level in Ref. 12 are placed elsewhere by our coincidence data. The 2641.4-keV level proposed in Ref. 12 may exist. We observe two transitions at 2642.1 and 2558.0 keV that suggest a level at 2642.2 keV but such energy couplets seem too numerous to assign levels on that basis without additional supporting evidence. The 884.1-keV transition proposed in Ref. 12 to deexcite this level is placed elsewhere by our coincidence data. The proposed 3148.3-keV level may correspond to the two levels at 3146.2 and 3149.2 keV established by our coincidence data.

Several transitions issuing from these levels decay to the same level in both schemes, but the transition energies differ. The 3301.7-keV level of Ref. 12 may correspond to our 3302.6-keV level. Again, the ground-band transitions are placed by both Ref. 12 and by us, but with different energies. One of their transitions is placed elsewhere by our coincidence data, and two fit elsewhere by energy balance. Numerous other levels not discussed here have many associated transitions that are assigned differently in our level scheme on the basis of coincidence data.

3. $EC-\beta^+$ Decay, Logft's, and Q Value of ¹⁷⁰Lu

Table III lists a summary of the electron-capture plus positron branching ratios and associated information for 70 excited states in ¹⁷⁰Yb. The second column lists the net γ -ray intensity out of each level in units that are 10⁻³ of the transition intensity units given in Table II. In some cases, a positive or negative balance occurs that is consistent with zero net feeding within the errors of the intensity balance. These cases are indicated by parentheses around the percentage of electron capture plus positron decay in column three of Table III.

The spin and parity of ¹⁷⁰Lu is 0+, and Hansen et al.⁹ measured positron feeding to the ¹⁷⁰Yb ground state as $0.19 \pm 0.05\%$ with an end-point energy of 2390 ± 50 keV. Thus, a Q value of 3410 keV was adopted for the total available decay energy, and 99.36% was assumed to be the total EC + β^+ feeding to the excited states of ¹⁷⁰Yb. The log *ft* values in column four are derived from a nomogram²⁴ and assume a ¹⁷⁰Lu half-life of 51.8 h.¹⁰ The spin, parity, and *K* quantum number assignments are listed in column five.

4. Spin and Parity Assignments

The data on which we base spin-parity assignments for levels in ¹⁷⁰Yb are primarily K conversion coefficients, $\log ft$'s, and γ -ray branching ratios, although the angular-correlation data of Paperiello et al.¹⁰ provide direct confirmation for a few of the assignments. The discussion of spin-parity assignments is divided into two parts, since a rather natural division is apparent in the ¹⁷⁰Yb level scheme. Most of the spin-two and spin-three states populated in the ¹⁷⁰Lu decay occur below the obvious gap in the level structure at 1800 keV. In fact, only one state with a probable spin greater than 1 is identified above this gap. Below the gap lie several states that would normally be considered to have substantial collective character. This lower group of states is considered first. No attempt is made to discuss each case of disagreement between our spin assignments and those given by

Bonch-Osmolovskaya¹² and Mihelich.¹³ In Table IV, our spin-parity assignments and those from these latter two references are summarized.

1069.4-, 1138.6-, 1145.6-, and 1224.5-keV levels. The level at 1069.4 keV is assigned $I\pi K = 0+0$ (see also Ref. 23) primarily on the basis of a conversion-electron line corresponding to an E0 transition from that energy level to ground. The E2 character of the 985.1-keV $0+0 \rightarrow 2+0_0$ transition is confirmed both by conversion-coefficient data and by the angular-correlation data of Paperiello et al.¹⁰

Energy spacing and other available decay data suggest that either the 1138.6- or 1145.6-keV state may be the 2+ member of this first excited 0+ band. Neither state displays the relative strength in the E2 branch to the $4+0_0$ ground-band member that would distinguish it as K=0 according to vectorcoupling rules. Moreover, the E0 strength from the 0+ band head at 1069.4-keV to ground is very small (cf. Table II), so that no enhancement of the 1054.3- or 1061.4-keV conversion coefficients is expected or measured.

The (d, d'), and (d, t) data of Burke and Elbek²³ suggest a solution to this problem. Though the absolute energy uncertainties in their data are substantial (5–10 keV), the relative energies can be normalized to those precisely known from decay work, and the conclusion that the 1138.6-keV state is the ¹⁷⁰Yb γ vibration seems fairly certain. On that basis then, and from elementary theoretical expectations, the K=0 assignment for the 1145.6keV state is virtually required, and this state is then assigned as the 2+ rotation based on the 1069.4-keV 0+ state.

The first rotational excitation based on the γ vibrational state is also observed at 1225.4 keV. The branching ratio to the 2+ and 4+ ground-band members, and the dominant *E*2 character of the 1141.3-keV 3+ \rightarrow 2+ transition, both support the 3+2 assignment for this state.

1228.9- and 1306.4-keV states. The 1228.9- and 1306.4-keV levels form the second excited 0+ "band" to be observed in ¹⁷⁰Yb. The 0+0₂ state is clearly indicated by the K conversion-electron line corresponding to an E0 transition of 1228.9 keV, and in this case, the E0-enhanced conversion coefficient of the $2+\rightarrow 2+$ transition at 1222.2 keV, together with the close agreement of branching into the ground band with Alaga's rules, leaves little doubt that the assignment for the 1306.4-keV state is 2+0.

1364.6- and 1397.0-keV states. At 1364.6 keV is encountered the first of many 1-0 states observed in the ¹⁷⁰Yb level structure. Branching from this state into the ground band favors the 2+ state by the 2:1 reduced intensity ratio expected for a K=0

FIG. 9. A partial level scheme for ¹⁷⁰Lu, showing only those levels and transitions firmly established from coincidence data. See Table II for EC branching ratios and log*ft* values.

FIG. 10. A partial level scheme for ¹⁷⁰Lu, showing only those levels and transitions firmly established from coincidence data. See Table II for EC branching ratios and log*ft* values.

FIG. 11. A partial level scheme for 170 Lu, showing only those levels and transitions firmly established from coincidence data. See Table II for EC branching ratios and log*ft* values.

FIG. 12. A partial level scheme for 170 Lu, showing only those levels and transitions firmly established from coincidence data. The eight E0 transitions observed are indicated by "dotted" lines. See Table II for EC branching ratios and log*ft* values.

¹⁷⁰Yb 70¹⁰⁰

FIG. 13. A partial level scheme of ¹⁷⁰Lu, showing additional transitions that were placed on the basis of energy sums and differences alone.

FIG. 14. A partial level scheme of ¹⁷⁰Lu, showing additional transitions that were placed on the basis of energy sums and differences alone.

state. Conversion data indicate *E*1 multipolarity for both the 1280- and 1364-keV γ rays. Angularcorrelation data from the work of Paperiello *et al.*¹⁰ further support the 1-0 assignment for this level.

The level at 1397 keV may be the spin-three member of this lowest 1-0 band, but we are unable to confirm such an assignment. The energy spac-ing (32 keV) seems far too small, though such bands can be strongly perturbed; if indeed the $\log ft$ is 9.3, then the spin-three assignment itself seems in doubt.

1425.3-keV state. The 286.6- and 1341.2-keV transitions out of the 1425.3-keV state are both identified as E1 from K conversion coefficients. The absence of a 199.9-keV branch to the 3+2 state at 1225.4 keV is puzzling (perhaps the 199.65-keV transition belongs here). If K is 2 for the 1425-keV state, one expects substantial feeding to both

the spin-three and spin-two members of the lowlying K = 2+ band. Instead, only the $2 \rightarrow 2$ branch occurs. Similarly, the absence of branches to other than the 2+ ground-band members seems to limit the spin to two.

1479.9- and 1534.5-keV states. The 1479.9- and 1534.5-keV levels are the 0+ and 2+ band members of the third K=0+ excitation. The 1479.9-, 410.5-, and 251.0-keV E0's provide positive identification of the 1479.9-keV level as 0+, and the K conversion coefficient data for transitions from the 1534.5-keV state, together with γ -ray branching ratios for transitions into the ground band, provide the necessary information for the 2+0₃ assignment at 1534.5 keV.

1512.4-keV state. The E1 character of the 1512.5- and 1428.1-keV transitions to the ground band, and their approximate 1:2 reduced intensity

TABLE III. Net γ -ray intensity out, total EC + β^+ feeding, log ft values, and $I\pi K$'s of all levels proposed in ¹⁷⁰Yb.

Level	(0 −I)				Level	l	(0 - I)			
(ke V)	imes10 ⁻³	$\%(EC + \beta^+)$	$\log ft$	$I\pi K$	(keV))	$\times 10^{-3}$	$\%(\mathrm{EC}+\beta^+)$	log f t	$I\pi K$
		0.04	0.50		2 / 22 2					
U 94 969 \ 0.004	22 . 70	0.64	9.72	0 + 0	2498.3	±0.1	24.3 ± 0.9	1.15 ± 0.04	8.13	(0 - 0)
64.202 ± 0.004	43 ± 70	(1.08 ± 3.34)	>10	2+0	2522.9	±0.1	5.8 ± 0.3	0.28 ± 0.01	8.72	(1+)
277.39 ±0.03	-0.4 ± 2.4	(0.02 ± 0.11)	>11	4 + 0	2536.8	±0.1	7.0 ± 1.1	0.33 ± 0.05	8.64	1 - (0)
572.28		0	>12	6 + 0	2661.0	±0.1	6.0 ± 0.6	0.29 ± 0.03	8.57	
1069.40 ± 0.05	-0.7 ± 6.0	(0.03 ± 0.25)	>9.6	0 + 0	2667.38	±0.05	9.0 ± 1.1	0.43 ± 0.05	8.38	1 - 0
1138.58 ± 0.03	5.6 ± 8.2	(0.27 ± 0.39)	>9.6	2 + 2	2748.15	± 0.05	108.5 ± 4.7	5.14 ± 0.22	7.21	1 - 1
1145.65 ± 0.05	4.2 ± 5.0	(0.20 ± 0.24)	>9.7	2 + 0	2768.3	± 0.2	26.9 ± 1.2	1.27 ± 0.06	7.79	(2 - 2)
1225.4 ± 0.10	-0.5 ± 0.6	(0.02 ± 0.03)	>10.6	3 + 2	2775.7	±0.1	60.8 ± 2.4	2.88 ± 0.11	7.43	1 –
1228.9 ± 0.1	14.0 ± 1.7	0.67 ± 0.08	9.11	0 + 0	2783.0	± 0.2	36.1 ± 1.5	1.71 ± 0.07	7.64	1 + 1
1306.35 ± 0.10	3.4 ± 3.6	(0.16 ± 0.17)	>9.7	2 + 0	2819.80	± 0.10	128.0 ± 4.0	6.07 ± 0.19	7.05	0 - 0
1364.55 ± 0.05	28.0 ± 10.0	1.33 ± 0.48	8.77	1 - 0	2020 55	+0.10	00 0 1 5 0	9.00 . 0.05		1 0
1397.0 ± 0.2	7.8 ± 0.6	0.37 ± 0.03	9.32		2929.00	±0.10	04.3 ± 3.4	3.90 ± 0.25	7.07	1 - 0
1425.30 ± 0.10	2.3 ± 4.0	$\textbf{0.11} \pm \textbf{0.19}$	≥9.8	2 - 2	2939.10	±0.10	164.0 ± 7.5	7.80 ± 0.36	6.75	1-1
1479.90 ± 0.10	4.4 ± 2.6	0.21 ± 0.12	9.55	0+0	2947.85	±0.10	73.5 ± 3.0	3.48 ± 0.14	7.08	1-1
1512.4 ± 0.10	16.0 ± 7.0	0.75 ± 0.33	8.98	1 - 0	2956.7	±0.2	10.9 ± 0.4	0.52 ± 0.02	7.88	1 -
1594 59 +0.05	10.50		. 10.1	0.0	2965.6	±0.2	48.4 ± 2.5	2.29 ± 0.12	7.22	1 + 1
1566 4 + 0.1	1.0 ± 5.0	(0.05 ± 0.24)	>10.1	2 + 0	2969.5	± 0.2	13.2 ± 0.9	0.63 ± 0.04	7.77	(2 - 2)
1500.4 ± 0.1	8.3 ± 0.8	0.40 ± 0.04	9.23	0 + 0	2975.2	± 0.2	16.9 ± 1.2	0.80 ± 0.06	7.65	(0, 1-)
1034.8 ± 0.1	5.7 ± 0.9	0.27 ± 0.04	9.36	2 + 0	3007.2	± 0.2	7.6 ± 0.4	0.36 ± 0.02	7.96	
1038.0 ± 0.1	1.3 ± 0.5	0.06 ± 0.02	10.0		3042.6	± 0.2	3.5 ± 0.3	0.17 ± 0.01	8.19	
1717.95 ± 0.05	7.5 ± 2.0	0.36 ± 0.09	9.19	2 - 2	3065.1	±0.2	4.6 ± 0.2	0.22 ± 0.01	8.02	
1985.6 ±0.1	7.6±0.6	0.36 ± 0.03	9.05	2 - (2)	3067.2	±0.2	7.6 ± 0.5	0.36 ± 0.02	7.81	
2040.0 ± 0.05	86.4 ± 3.0	4.09 ± 0.14	7.95	1 + 1	3099.6	±0.1	35.8 ± 1.8	1.70 ± 0.09	7.05	
2052.6 ± 0.05	6.4 ± 0.4	0.31 ± 0.02	9.07	0 - 0	3115.2	± 0.2	45.6 ± 2.3	2.16 ± 0.11	6.90	1 - 0
2116.0 ± 0.10	8.2 ± 0.9	0.39 ± 0.04	8.94	1 - 0	3131.0	±0.2	6.4 ± 0.7	0.31 ± 0.03	7.66	
2126.10 ± 0.05	233.0 ± 8.0	11.04 ± 0.38	7.47	1 - 0	3140.6	±0.3	8.0 ± 0.3	0.38 ± 0.01	7.54	
2200.8 ± 0.1	11.7 ± 1.5	0.56 ± 0.07	8.71		3146.2	+0.2	82+06	0.20+0.02	7 51	
2268.1 ± 0.1	5.4 ± 0.2	0.26 ± 0.01	9.00		3149.2	+0.2	13 1 + 0.9	0.39 ± 0.03	7.90	(1 0)
2275.4 ± 0.1	44.1 ± 2.2	2.08 ± 0.10	8.09	1 - 0	3165.6	+0.10	13.1 ± 0.8 25.2 ± 1.7	0.02 ± 0.04	1.30	(1 - 0)
2289.3 ± 0	-0.4 ± 0.3	0.02 ± 0.01	>10		3169.6	+0.3	23.3 ± 1.7	1.20 ± 0.08	0.90	1 - 1
2351.8 ± 0.05	62.5 ± 2.0	2.96 ± 0.09	7.66	0 - 0	3179.8	+0.0	0.0 ± 0.1	0.04 ± 0.005	8.43	
2364.05 ± 0.05	332.3 ± 10.5	15.75 ± 0.50	7 13	1 - (1)	3186 7	+0.2	11.3 ± 1.0	0.54 ± 0.05	7.27	
2367.70 ± 0.05	117.4 ± 4.4	5.56 ± 0.20	7 50	(0 - 0)	2105.5	+0.2	12.8 ± 0.8	0.61 ± 0.04	7.20	
2400.15 ± 0.10	3.2 ± 0.6	0.15 ± 0.03	9.11	(0 - 0) 1 - 1	32774 4	+0.4	9.0 ± 0.9	0.43 ± 0.04	7.32	(1 - 0)
2429.1 ± 0.1	0.8 ± 0.8	(0.04 ± 0.03)	>9.7	1-1	3214.4	± 0.4	2.2 ± 0.2	0.10 ± 0.01	7.64	
2496.15 ± 0.10	44.4 + 2.7	2.10 ± 0.04	7 94	1_1	2204.0 2214 1	± 0.4	0.8 ± 0.1	0.04 ± 0.005	7.74	
	-1,1 - 0,1	~	1.00	1-1	əə14 . l	±0.4	1.0 ± 0.1	0.05 ± 0.005	7.59	

	Mihelich	Bonch- Osmolovskaya	Our	Mihelich	Bonch- Osmolovskaya
This work	(Ref. 13)	(Ref. 12)	$I\pi K$	$I\pi K$	ΙπΚ
0	0	0	0+0	0 + 0	0 + 0
84.262	84.3	84.26	2 + 0	2 + 0	2 + 0
277.39	277.6	277.8	4 + 0	4 + 0	4+0
1069.40	1069.6	1069.1	0+0	0+0	0+0
1138.58	1138.5	1138.25	2 + 2	2 + 2	2 + 2
1145.65	1145.7	1145.5	2 + 0	2 + 0	2 + 0
1225.4	1225.2		3 + 2	3 + 2	
1228.9	1228.5	1228.4	0 + 0	0+0	0+0
1306.35	1306.3	1306.2	2 + 0	2 + 0	2 + 0
1364.55	1364.5	1364.2	1 - 0	1 - 0	1 - 0
1397.0					
1425.30	1425.5		2 - 2	2 - (2)	
1479.90	1480.0	1479.6	0 + 0	0 + 0	0 + 0
1512.4	1512.0	1511.6	1-0	1 - 0	1 - 0
1534.53	1534.6	1534.2	2+0	2+0	2+0
1566.4	1566.3	1565.9	0 + 0	0 + 0	0 + 0
1634.8	1635.1	1634.8	(2 + 0)	0 - 0	2 + 0
1658.0					
1717.95	1717.9		2 - 2	2 - (1)	
		1757.6			2 + (2)
		1961.4			1 - 0
1985.6	1985.4		2 - (2)	(1-)	
2040.0	2040.2	2039.6	1 + 1	1 + 1	1+1
2052.6			0 - 0		
		2113.2			(2+)
2116.0			1 - 0		
2126.10	2126.2	2125.6	1 - 0	1 – 0	1 - 0
2200.8					
2268.1					
2275.4	2275.5	2275.1	1 - 0	1 - 0	1 - 0
2289.3					
2351.8	0.050 0		0 - 0		
2264.05	2352.3			1-, 2-	
2364.05	2364.2	2363.4	1 - (1)	1 - (0)	1 - (1)
2367.70	2367.8	2367.2	(0 - 0)	1-, 2-	1-
2400.15	2400.2	2399.1	1-1	1-1	1-1
2429.1	0400 0		2+		
2408 3	2490,3 2400 0	2496.0	1 - 1	1-	1 - (0)
0.00F	2490.0	9591 9	(0 - 0)	1-, 2-	
		4021.3			(2+)
2522.9			(1+)		
		2533.1			1+0
2536.8			1 - (0)		- • •
	2584.5			1+, 0+	
2661.0		2641.4			1+
2667 39					
2007.00	9749 9	9848 0	1-0	_	
2140.10	4140.Z	2141.8	1-1	1-1	1 – 1
2100.0	2100.1			1-, 2-	
2783.0	4110.8 9709 1	2775.3	1-	2-	2-
2100.0	4103.L 2010 0	2782.6	1+1	1+1	1+1
2013.00	2013'8	2819.3	0 - 0	1-, 2-	1-
000 55	9090 0	2883.6			1+
1949.00 0000 70	2929.9	2929.6	1-0	1 - 0	1 - 0
	7940 0	9090 9		-	

TABLE IV. Comparison of level and $I\pi K$ assignments from this work and two other references.

This work	Mihelich (Ref.13)	Bonch- Osmolovskaya (Ref. 12)	Our IπK	Mihelich IπK	Bonch- Osmolovskaya IπK
2947.85	2948.1	2947.5	1 – 1	1-	1 – (1)
2956.7			1-		
2965.6	2966.2	2965.3	1+1	1+	1+1
2969.5					
2075 2			0,1-		
2913.2					
3007.2					
3065 1					
3067.2		3067.6			1-, 2-
0001.1	3092.5	3091.9		(1 -)	1+1
3099.6	3100.0	3099.4		1+	1-
3115.2	3115.6	3114.7	1 - 0	1 - 0	1-0
3131.0	0				
3140.6					
3146.2)		3148.3			1+
3149.2	3149.4		1 - 0	1+	
3165.6			1 - 1		
3169.6					
3179.8					
		3184.1			1+
3186.7					
3195.5	3195.7	3196	1 - 0	1+	1 - 0
3274.4	3274.8	3274.9		1-	1-
	3287			(0-)	
3302.6		3301.7			1+
3314.1			(1 + 1)		
		3336.5			1-
		3432.6			1-

TABLE IV (Continued)

ratio, supports the 1-0 assignment for the 1512.4-keV state.

1566.4- and 1634.8-keV states. The 1566.4- and 1634.8-keV states form the beginning of the fourth low-lying K = 0+ excited band. Again, the E0 branches to the ground and first two excited 0+ states make the assignment of $0+0_4$ to the 1566.4keV level unambiguous. Although the 1357.4-keV transition to the 4+ ground-band member is conspicuously absent from the 1634.8-keV level, the E2 character of the 1634.8-keV $2 \rightarrow 0$ transition and the apparent E0 enhancement of the 1550.6keV conversion coefficient argue strongly for an assignment of $2+0_4$ for this state.

1658.0-keV level. The 1658.0-keV level is the second state for which no definite spin and parity assignment is possible. Once again, as for the 1397.0-keV state, weak γ -ray branches to the 2+ and 4+ ground-band members are seen, but the conversion lines were not observed and little feeding occurs from higher-lying levels. This level may decay to the ground state, but unfortunately, a ¹⁶⁹Lu line occurs at the same energy, and a ground-state transition thus remains questionable.

The $\log ft$ is quite large, so a relatively high spin seems justified on this basis.

1718.0-keV state. A trio of E1 transitions deexcites the 1718.0-keV state into the $K = 2+\gamma$ vibrational band and the apparently strongly mixed $2+0_1$ state at 1145.7-keV. The γ -ray branching ratios do not provide convincing support for the K = 2 assignment, and it is therefore based largely on the absence of any observable feeding into the ground band.

Levels above 1800 keV. Beginning at 1985.6 keV, a multitude of low-spin states is populated by the ¹⁷⁰Lu decay. Most of these states appear to have 0 or 1 unit of angular momentum and odd parity. Several exhibit the peculiar γ -ray branching characteristic of 0-0 states. Strangely enough (in view of the four lower-lying 0+ excitations already discussed), no conclusive evidence for further population of 0+ excited states is seen. Thus, with but four exceptions, all the remaining levels in ¹⁷⁰Yb for which sufficient data are available appear to be either 0- or 1-. Abbreviated arguments for the assignments proposed for the remaining ¹⁷⁰Yb states populated in ¹⁷⁰Lu decay follow. In general, the remaining assignments are based on γ -ray multipolarities from K conversion coefficient data, selective feeding to lower-lying states of known $I\pi K$, and γ -ray branching ratios. Most of these higherlying states must await considerable further information before any attempts can be made to understand their structure in detail.

States of $I\pi K = 0-0$. We propose 0- assignments for states at 2052.6, 2351.8, 2498.3, and 2819.8 keV. In every case, decay from these states picks out lower-lying $I\pi K = 1-0$ and 1-1 states, or, in a few instances, states with $I\pi K = 2-2$. Decay to the ground band and other K = 0+ band members is strictly forbidden except for M2 or higher-order transitions that are not observed. The 0-0 assignment is also supported in each case by conversion data that indicate M1 multipolarity for the deexciting γ rays.

States of $I\pi K = 1-0$. In addition to the two lowlying 1-0 states at 1364.6 and 1512.4 keV, other such states are assigned at 2126.1, 2275.4, 2667.4, 2929.6, 3115.2, 3149.2, 3195.5, and possibly 2116.0 and 2536.8 keV. In those cases where we make definite assignments, one or more transitions to the ground or excited 0+ bands have been identified as E1, and the characteristic factor-oftwo enhancement of the 1 - - 2 + transition relative to the $1 \rightarrow 0+$ branch is observed. In the case of some of the higher-lying levels, assuming states of $I\pi K = 1+0$ do not occur (not necessarily a valid assumption, as we note later), feeding to the 0+and 2+ ground-band members with the correct reduced-intensity ratio is considered sufficient to support the 1-0 assignment, even though the E1character may not be established.

States with $I\pi K = 1-1$. The 1-1 assignment is established for states at 2400.1, 2496.1, 2748.2, 2939.7, 2947.8, 3165.6, and possibly 2364.0 keV. The basis is rather similar to that just discussed for the 1-0 levels, except that the reduced branching ratio of 0+ band members is now reversed to 2:1 in favor of the 0+ spin state. Generally, a greater tendency to feed states with $I\pi K = 2\pm 2$ is noted for the states assigned 1-1.

States with $I\pi K = 1+1$. At least three states of this interesting class of excitation are thought to be identified in ¹⁷⁰Yb. The states at 2040.0, 2783.0, and 2965.6 keV seem well characterized; *M*1 transitions are observed to feed the 0+ and 2+ groundrotational-band members, with some *E*2 mixture apparent in the 1+- 2+ transitions.

It is noteworthy that we are unable to identify any states of the 1+0 configuration, such as those proposed by Gabrakov, Kuliev, and Pyatov.²⁵ In particular, we fail to establish the existence of a state at 2533.1 keV previously proposed¹² to be the $I\pi K$ = 1+0 two-quasineutron state of configuration

 $\left[\frac{5}{2}(523)_{n} \right] - \left[\frac{5}{2}(512)_{n} \right].$

States with $I_{\pi}=2-$. Only one state with proposed spin of two units is definitely identified above 1800 keV, and the *K* quantum number assigned for this state must be considered tentative. The state at 1985.6 keV is assigned on the basis of the single γ ray of apparent *E*1 multipolarity leading to the ground-rotational-band 2+ state.

III. DISCUSSION OF THE ¹⁷⁰Yb LEVEL SCHEME

In the simplest sense, an overview of the level structure of the ¹⁷⁰Yb nucleus provides a graphical illustration of the distinction to be made between those excited states clearly influenced by coherent many-particle interactions and those whose structure may be dominated by essentially two or four quasiparticle configurations. Such a generalization is encouraged by the presumably fortuitous appearance of a distinct gap at about 1800 keV in the observed low-spin ¹⁷⁰Yb states. It is interesting to note that a similar phenomenon seems to occur in ¹⁷⁶Hf, another even-even deformed nucleus for which numerous low-spin states have been identified from radioactive decay.²⁶ In both nuclei, this dearth of at least low-spin states occurs near 2Δ , the upper limit of the pairing energy gap expected to be ~1.6 MeV for 176 Hf and ~1.7 MeV for 170 Yb. In both nuclei there also seems to be some evidence for a similar decrease in level density near the energy 4Δ .

At the present time, it is perhaps only for the lowest-lying group of excited states, those within the energy gap 2Δ , that one may hope for a degree of success in characterizing the exact nature of the observed states. This is particularly so in view of the uncertainty associated with the spin and parity assignments for many of the higher-lying levels. In the light of present understanding, we proceed to discuss the several classes of "collective" states seen in the ¹⁷⁰Yb level scheme and then we provide a brief comparison with the few published quantitative calculations attempted for this nucleus.

A. K = 0+ Excitations in ¹⁷⁰Yb

The observation in 170 Yb of four 0+ excitations, all presumably within the pairing energy gap 2 Δ , lends further interest to the lively discussion that already surrounds the occurrence of multiple lowlying 0+ states in deformed nuclei. It is well known that the simplest quadrupole vibrational mode allows for only one such low-energy 0+ excitation, but it is also well known by now that numerous deformed nuclei exhibit multiple low-lying 0+ excitations. Various explanations for this phenomenon have been made by invoking the quadru-

water and the second				
Level (keV)	$\frac{I_n \pi \xrightarrow{e} I_m \pi}{I_n \pi \xrightarrow{y} I'_m \pi}$	$\frac{E_{e^-} (\text{keV})}{E_{\gamma} (\text{keV})}$ Transition energies	$\frac{I_{e^-}}{I_{\gamma}}$	X ^a
1069.4	$\frac{0_1 + \rightarrow 0_0 +}{0_1 + \rightarrow 2_0 +}$	$\frac{1069.4}{985.1}$	$\frac{34(3)}{1.2 \times 10^5}$	0,0049(5)
1145.6	$\frac{2_1 + \rightarrow 2_0 +}{2_1 + \rightarrow 0_0 +}$	$\frac{1061.4}{1145.8}$	$\frac{\leq 10}{3.9 \times 10^4}$	≤0.0021 ^b
	$\frac{2_1 + \rightarrow 2_0 +}{2_1 + \rightarrow 2_0 +}$	$\frac{1061.4}{1061.4}$	$\frac{\leq 10}{4.7 \times 10^4}$	≤0.0017 ^b
	$\frac{2_1 + - 2_0 +}{2_1 + - 4_0 +}$	$\frac{1061.4}{868.1}$	$\frac{\leq 10}{1.7 \times 10^3}$	≤0 . 032 ^b
1228.9	$\frac{0_2 + \rightarrow 0_0 +}{0_2 + \rightarrow 2_0 +}$	$\frac{1228.9}{1144.6}$	$\frac{94(9)}{3.7 \times 10^4}$	0.080(9)
1306.4	$\frac{2_2 + \rightarrow 2_0 +}{2_2 + \rightarrow 0_0 +}$	$\frac{1222.2}{1306.3}$	$\frac{86 \le I_{e^-} \le 114}{1.1 \times 10^4}$	$0.085 \le X \le 0.14$ c
	$\frac{2_2 + \rightarrow 2_0 +}{2_2 + \rightarrow 2_0 +}$	$\frac{1222.2}{1222.2}$	$\frac{114(12)}{1.4 imes 10^4}$	0.100(12) ^b
	$\frac{2_2 + - 2_0 +}{2_2 + - 4_0 +}$	$\frac{1222.2}{1028.8}$	$\frac{86 \le I_{e^-} \le 114}{1.8 \times 10^4}$	$0.041 \le X \le 0.068$ ^c
1479.9	$\frac{0_3 + \rightarrow 0_0 +}{0_3 + \rightarrow 2_0 +}$	$\frac{1479.9}{1395.6}$	$\frac{650(70)}{4.9 \times 10^4}$	0.94(11)
1534.5	$\frac{2_3 + \rightarrow 2_0 +}{2_3 + \rightarrow 0_0 +}$	$\frac{1450.2}{1534.6}$	$\frac{870 \le I_{e^-} \le 910}{2.0 \times 10^4}$	$0.86 \le X \le 1.2^{\text{c}}$
	$\frac{2_3 + \rightarrow 2_0 +}{2_3 + \rightarrow 2_0 +}$	$\frac{1450.2}{1450.2}$	$\frac{910(100)}{3.5 \times 10^4}$	0.64(8) ^b
	$\frac{2_3 + \rightarrow 2_0 +}{2_3 + \rightarrow 4_0 +}$	$\frac{1450.2}{1257.2}$	$\frac{870 \le I_{e^-} \le 910}{3.0 \times 10^4}$	$0.55 \le X \le 0.77$ c
	$\frac{2_3 + \rightarrow 2_1 +}{2_3 + \rightarrow 2_1 +}$	$\frac{388.8}{388.8}$	$\frac{53(6)}{2.0 \times 10^3}$	0.0031(3) ^b
	$\frac{2_3 + \rightarrow 2_2 +}{2_3 + \rightarrow 2_2 +}$	$\frac{228.0}{228.0}$	<u>290 (80)</u> 800	0.0039(5) ^b
1566.4	$\frac{0_4 + \cdots 0_0 +}{0_4 + \cdots 2_0 +}$	$\frac{1566.4}{1482.2}$	$\frac{83(13)}{1.4 \times 10^4}$	0.54(9)
1634.8	$\frac{2_4 + \rightarrow 2_0 +}{2_4 + \rightarrow 0_0 +}$	$\frac{1550.6}{1634.8}$	$\frac{24 \le I_{e^-} \le 31}{2100}$	$0.30 \le X \le 0.50$ ^c
	$\frac{2_4 + \rightarrow 2_0 +}{2_4 + \rightarrow 2_0 +}$	$\frac{1550.6}{1550.6}$	$\frac{31(4)}{1.0 \times 10^4}$	0.101(13) ^b

TABLE V. Derived values of the E0-E2 branching parameter $X = \rho^2 R_0^4 e^2 (I_n 200 | I'_m 0) / B (E2)$ for decay of $K = 0 + \text{ states in } 1^{10} \text{Yb}$.

^a The error limits placed on X are based only on the assigned γ -ray and electron relative intensities. It should be noted that most authors extract values for the electronic factor, Ω_K in the expression for the nuclear monopole transition strength parameter $\rho^2 = W/\Omega_K$ from the graph (or a poor reproduction thereof) of W/ρ^2 in Ref. 29 (where W is the E0 transition probability). The inaccuracy of such a procedure (and an unfortunate misprint for the Z = 85 line that should not affect any published results for Z = 70) probably requires that a reading error of at least 10% also be assigned to the values Ω_K used in the calculation of X. For example, we read $\Omega_K = 1.3 \times 10^{11} \text{ sec}^{-1}$ for 1069 keV, while the authors of Ref. 12 read 1.1×10^{11} .

^b Assumes the $2 \rightarrow 2' \gamma$ -ray transition is pure E2.

^c Limits based on assumptions of pure M1 or pure E2 for $2 \rightarrow 2'$ transitions.

pole-quadrupole, pairing, and spin-quadrupole interactions, and combinations and variations of all three phenomena.^{26, 27} On the basis of the considerable volume of literature treating the subject from the standpoint of both experiment and theory, the picture now seems to be developing that the low-lying 0+ states in the deformed regions are not so much pure states of any single type, but rather consist of mixed-mode excitations where the quadrupole vibrational strength in particular may often be spread over several close-lying states.

One of the more useful properties of K = 0+ excitations that may be extracted from decay data is the ratio of monopole to quadrupole decay into other 0+ bands. The usual expression is that proposed by Rasmussen²⁸:

$$X\left[\frac{B(E0; 0'+ - 0_{g})}{B(E2; 0'+ - 2_{g})}\right] = \frac{\rho^{2}e^{2}R_{0}^{4}}{B(E2; 0'+ - 2_{g})}.$$
 (1)

Similar expressions, including the applicable angular momentum coupling coefficients, may be written for transitions from higher spin members of the K = 0+ bands to the ground band, and for interband transitions between excited 0+ band members. Table V displays the X parameters deduced for ¹⁷⁰Yb. Perhaps the most notable departure from the theoretical values allowable for a "good" β vibration, $0.15 \le X \le 0.80$,²⁸ is the very small X = 0.005 observed for the lowest 0+ excitation. It is also for this state that the isospin-forbidden Fermi β decay is most highly hindered.

The quadrupole vibrational strength of 0+ excitations may be sensed by Coulomb excitation, and in the case of ¹⁷⁰Yb we are fortunate to have preliminary results from the (¹⁶O, ¹⁶O' γ) work of Riedinger *et al.*,³⁰ as shown in Table VI. On the basis of these data, one would conclude that there is little β -vibrational character in the first ¹⁷⁰Yb 0+ excitation at 1069 keV, and considerably more in the second, at 1229 keV. It is most remarkable that the 2+0₁ state apparently has a large *E*2 transition moment to the ground state, while the 0+0₁ - 2+0₀ moment to ground is at least an order-of-magnitude

TABLE VI. B(E2) data for K = 0+ states in ¹⁷⁰Yb (from Ref. 30).

		B(E	2)
$E_i \rightarrow E_f$	$I_i \pi K_i \to I_f \pi K_f$	$e^2 \mathrm{fm}^4$	spu
g.s.→1138.5	$0+0_0 \rightarrow 2+2_{\gamma}$	~440	1.5
g.s.→1145.6	$0+0_0 \rightarrow 2+0_1$	~440	1.5
1069.4→84. 3	$0+0_1 \rightarrow 2+0_0$	<30	<0.1
1228.9→ 84.3	$0+0_2 \rightarrow 2+0_0$	420 ± 80	1.44

smaller. This is again consistent with the picture already suggested that the $2+2_{\gamma}$ and $2+0_1$ states are strongly mixed.

With the aid of the B(E2) data of Riedinger *et al.*, it is also possible to calculate the values $\rho(E0)$, the nuclear E0 matrix elements, for the first two 0+ excited states in ¹⁷⁰Yb. With use of Eq. (1), we obtain the results shown in Table VII. It should be noted that in deriving the values for ρ in Table VII, we have made the assumption

 $B(E2; 0_n + - 2_0 +) = B(E2; 0_0 + - 2_n +).$

If in fact a simple first-order correction to the reduced E2 transition moment is allowed, then one has²⁷

$$B(E2; 0_n + \rightarrow 2_0 +) = B(E2; 0_0 + \rightarrow 2_n) \left(\frac{1 + 6z_0}{1 - 6z_0}\right)^2,$$
(2)

where $z_0 = (M_2/M_1)$ according to the first-order expansion of Mikhailov³¹:

$$B(E2; I + 0_n - I' + 0_0)$$

= $(I 200 | I'0)^2 \{ M_1 + M_2 [I'(I' + 1) - I(I + 1)] \}^2 .$
(3)

The relation (2) should be valid if a consistent value of the parameter z_0 is found to adequately describe the branching from the members of a given " β -vibrational" band. Table VIII shows that in ¹⁷⁰Yb, except for the second excited 0+ band, the various derived z_0 parameters are *not* consistent for branching from the 2+0 excited states into the ground band. The 2 - 2 transitions are assumed to be pure E2. It would be most surprising if this assumption were eventually shown to be valid for all 2+0 states in ¹⁷⁰Yb.

In the case of the second excited 0+ band, a single value of z_0 [i.e., consistent values of M_1 and

TABLE VII. E0 matrix elements in ¹⁷⁰Yb.

	Energy		B(E2; 0→	2) ^b
Level	(keV)	X	$e^2 \mathrm{fm}^4$	p
0+0 ₁	1069.4	0.0049 ± 0.0005	<30	<0.009
2+0 ₀	1145.6	≤0.0021 ^a	440	≤0.01
0+0 ₂	1228 .9	0.080 ±0.009	420 ± 80	0.13 ± 0.03

^a Assumes the $2+0_1 \rightarrow 2+0_0$ transition is pure E2. If this transition has M1 admixture, then ρ is still smaller. Similar calculations could be listed for the other $e^-\gamma$ branches from this level (Table V), but in view of the uncertainty in the $2+0_1 \rightarrow 2+0_0$ monopole conversion intensity, these data provide no additional information.

 M_2 in Eq. (3)] is found to fit the limited data nearly perfectly, so we may be justified in using Eq. (2) to modify the calculated value of ρ . This correction is only 27% for ρ^2 , so that ρ_{corr} is 0.15. The fact that a single mixing parameter seems to describe the γ -ray branching from the 2+0₂ state and that one deduces the relatively large value of $\rho \simeq 0.15$ for this band argues further for the characterization of the second excited K = 0+ state as predominantly quadrupole-vibrational in nature. One notes in Pyatov's tabulation of experimental data²⁷ that the presumed "good" β -vibrational states in ¹⁵⁰Sm, ¹⁵²Sm, ¹⁵⁴Sm, ¹⁵⁴Gd, and ¹⁵⁶Gd all have values of $\rho(E0)$ in the range 0.2 to 0.5.

The early work of Reiner³² considered the collective monopole transition moment arising from quadrupole surface oscillations of an incompressible uniformly charged spheroid and predicted values of $\rho(E0)$ in the range 0.2 to 0.6 for the β vibrational states in deformed nuclei. The more general calculations of Bès³³ and, most recently, of Kuliev and Pyatov³⁴ have not changed the expectation that excited 0+ states that may be characterized as β vibrations should exhibit relatively large E0 moments as well as large E2 transition moments.

It is unusual that in ¹⁷⁰Yb one is also able to see E0 transitions between excited 0+ states. In Table IX the monopole transition matrix elements for transitions between the excited 0+ states and the ground-band 0+ state are compared. There appears to be little difference in the monopole matrix elements between the various 0+ states in the cases where the E0's could be observed. The greatest

TABLE VIII. 🛪	z₀ parameters	for γ-ray	branching from	m excited K	$=0+$ bands in 170 Y	Ъ.
---------------	---------------------------------	-----------	----------------	-------------	---------------------------	----

Transitions	Energies (keV)	$\frac{B'(E2)}{B(E2)}$	Alaga's rule	z ₀
1145.8-keV 2+0 ₁ state				
$\frac{2+\mathbf{0_1} \rightarrow 0 + \mathbf{0_0}}{2+\mathbf{0_1} \rightarrow 2+\mathbf{0_0}}$	$\frac{\underline{1145.8}}{\underline{1061.4}}$	0.566	0.699	0.016
$\frac{2+0_1 \rightarrow 4+0_0}{2+0_1 \rightarrow 2+0_0}$	$\frac{868.1}{1061.4}$	0.099	1.80	-0.60
$\frac{2+\mathbf{0_1} \rightarrow 0 + \mathbf{0_0}}{2+\mathbf{0_1} \rightarrow 4 + \mathbf{0_0}}$	$\frac{1145.8}{868.1}$	5.71	0.388	-0.048
1306.3 $2 + 0_2$ state				
$\frac{2+0_2 \rightarrow 0 + 0_0}{2+0_2 \rightarrow 2+0_0}$	$\frac{1306.3}{1222.2}$	0.549	0.699	0.020
$\frac{2+0_2 \rightarrow 4+0_0}{2+0_2 \rightarrow 2+0_0}$	$\frac{1028.8}{1222.2}$	2.97	1.80	0.020
$\frac{2+0_1 \rightarrow 0+0_0}{2+0_1 \rightarrow 4+0_0}$	$\frac{1306.3}{1028.8}$	0.185	0.388	0.020
$1534.5 2 + 0_3$ state				
$\frac{2+0_3 \rightarrow 2+0_0}{2+0_3 \rightarrow 2+0_0}$	$\frac{1534.5}{1450.2}$	0.440	0.699	0.034
$\frac{2+0_3 \rightarrow 4+0_0}{2+0_3 \rightarrow 2+0_0}$	$\frac{1257.3}{1450.2}$	1.78	1.80	-0.0005
$\frac{2+0_3 \rightarrow 0+0_0}{2+0_3 \rightarrow 4+0_0}$	$\frac{1534.5}{1257.3}$	0.247	0.388	0.012
$1634.8 2 + 0_4$ state				
$\frac{2+0_4 \rightarrow 0+0_0}{2+0_4 \rightarrow 2+0_0}$	$\frac{1634.8}{1550.6}$	0.160	0.699	0.087
$\frac{2+0_4 \rightarrow 4+0_0}{2+0_4 \rightarrow 2+0_0}$	<u>(1357.4)</u> 1550.6	<0.384	1.80	<-0.038
$\frac{2+0_4 \rightarrow 0+0_0}{2+0_4 \rightarrow 4+0_0}$	$\frac{1634.8}{(1357.4)}$	>0.416	0.388	<-0.002

departure of the value ρ^2 is shown for the $0_3 + - 0_1 +$ transition, where the E0 strength is about 20% that to ground.

Finally, it is worth noting that the 0+ bands higher in energy exhibit larger moments of inertia, perhaps indicating their greater two-particle character as compared with the lower 0+ bands; the 1479.9-keV 0+ band, for example, exhibits a moment of inertia some 50% greater than that of the ground band.

One of the most useful probes of the nature of excited 0+ states is provided by the transfer of a single nucleon or pair of nucleons to populate excited 0+ bands in the residual nucleus. The (p, t), $(^{3}\text{He}, d)$, (α, t) , (p, d), and similar reactions can be particularly useful in this regard. Preliminary 172 Yb(*p*, *t*)¹⁷⁰Yb pickup reaction data from Oothoudt, Hintz, and Vedelsby³⁵ have shown only that the twoneutron-transfer reaction cross section for 0+ states drops off sharply as one moves toward lighter Yb isotopes, until in ¹⁷⁰Yb only tentative identification can be made of the 1069.3-keV 0+ state. This state appears to be populated with a cross section only 1% that of the ground 0+ state. These data seem to argue against the presence of much neutron pairing-vibrational character in the $0+0_1$ state of ¹⁷⁰Yb, at least.

Recent data from ¹⁶⁹Tm(α , t)¹⁷⁰Yb reaction studies carried out at the Michigan State Cyclotron Laboratory³⁶ indicate strong l=2 proton transfer into the same 1228.9-keV 2+0₂ excited state we have tentatively identified as the best candidate for a ¹⁷⁰Yb β -vibrational state. Since the (α , t) reaction in this case should predominantly involve transfer of a proton into the $\frac{1}{2}$ +[411]¹⁶⁹Tm ground-state orbital, this result seems difficult to harmonize with the supposed collective nature of the state in question. Transfer-reaction studies aimed at further elucidating the 0+ states in ¹⁷⁰Yb are continuing.

As the experimental data on 0+ states in deformed nuclei have become more complete in recent years, some attempts have been made to develop a theoretical understanding for them. In most cases, however, little is known about absolute E0 transition probabilities or the details of the nuclear wave functions associated with excited 0+ states, and it seems rather futile to attempt to further characterize the different 0+ levels in ¹⁷⁰Yb on the basis of the still rather limited experimental data. Some workers have published theoretical calculations for the ¹⁷⁰Yb 0+ states, and in Fig. 15 the results of Kuliev and Pyatov³⁴ are displayed. Kuliev and Pyatov invoked the spinquadrupole residual force and investigated the effect of coupling β vibrations with excitations of the spin-quadrupole type. They also included estimates of the X parameters, which are shown with the associated levels in Fig. 15, but it should be noted that these calculations are very sensitive to interference between the different 0+ excitation modes. The X parameters also depend on the effective charge used for calculating the E0 and E2moments, so it is difficult to distinguish between the ¹⁷⁰Yb 0+ states on the basis of these parameters alone. Kuliev and Pyatov also show results for 0+ states induced by coupling proton and neutron pairing-vibrational modes with the quadrupole mode. The lowest roots of these calculations are shown as dashed lines in Fig. 15. It is noteworthy that addition to their calculations of both the pairing and spin-quadrupole interactions succeeds in lowering one 0+ state to an energy near that of the β vibrational state as calculated by Bès, ³³ but this refinement still fails to reproduce the observed four low-lying 0+ states. Kuliev and Pyatov do, however, predict B(E2) = 1.3 single-particle units and $\rho(E0) = 0.16$ for the lowest (1240 keV) 0+ excitation. This state may correspond to that seen

Level	Transitions	Transition energies	Relative e ⁻ intensity	$R(E0) = \frac{\rho^2(E0)}{\rho_0^2(E0)}$
1479.9	$\frac{0_3 + 0_1 + 0_1}{0_3 + 0_0 + 0_0 + 0_0}$	$\frac{410.5}{1479.9}$	$\frac{35 \le I_{e^-} \le 48}{652}$	$0.18 \le R \le 0.24^{\text{a}}$
	$\frac{0_3 + \rightarrow 0_2 +}{0_3 + \rightarrow 0_0 +}$	$\frac{251.0}{1479.9}$	$\frac{247}{652}$	1.7
1566.4	$\frac{0_4 + \rightarrow 0_1 +}{0_4 + \rightarrow 0_0 +}$	$\frac{497.1}{1566.4}$	$\frac{31 \le I_{e^-} \le 43}{83}$	$1.2 \le R \le 1.6^{a}$
	$\frac{0_4 \rightarrow 0_2 +}{0_4 \rightarrow 0_0 +}$	$\frac{338.0}{1566.4}$	$\frac{15}{83}$	0.73

TABLE IX. Relative reduced E0 transition probabilities, $\rho^2(E0)/\rho_0^2(E0)$, from K = 0+ states with multiple E0's.

^a A weak γ ray was observed at this same energy. The limits correspond to an assumed E1 or M1 multipolarity for the γ ray.

experimentally at 1229 keV.

Mikoshiba et al.³⁷ also carried out calculations for 0+ excitations in rare-earth nuclei. These authors considered the effects of coupling the quadrupole and pairing field fluctuations to generate mixed-mode 0+ excitations. They show no explicit results of 0+ level calculations for the $^{170}\mathrm{Yb}$ case, but the general pattern of their results for other nuclei seems to predict a single lower-lying 0+ state that does not in every case carry the bulk of the quadrupole collectivity. A series of higherlying 0+ states, near or above the upper limit of the pairing gap 2Δ , is normally expected then, according to their results. For ¹⁷⁰Yb, as for most other nuclei near the middle of the rare-earth region of deformation. Mikoshiba $et \ al.^{37}$ note that the quadrupole sum rule is far from exhausted on the " β -vibrational" state, which carries no more than 60% of the collective quadrupole strength.

Bernthal, Rasmussen, and Hollander²⁶ also reported attempts at calculating the 0+ excited levels for the single case of ¹⁷⁶Hf by means of an exact diagonalization of the pairing and quadrupole interaction matrix in a seniority-zero subspace of nine-proton and nine-neutron Nilsson orbitals nearest the Fermi surface. The results of these preliminary calculations for ¹⁷⁶Hf seemed to explain a very large value of the X parameter for one of two low-lying 0+ states in that nucleus, but the theory could not account for another 0+ state at still lower energy, relative to the first. Similar calculations have now been attempted for ¹⁷⁰Yb, but in this case the results are even more difficult to interpret in the absence of detailed B(E2), $\rho(E0)$, and transfer-reaction data, or of unusual β - or γ -decay patterns that might label any of the ¹⁷⁰Yb 0+ states as being of one particular type or another.

In summary, it can be said that data of the kind required to resolve the problem of the multiple low-lying 0+ states in deformed nuclei are now becoming available, but much more work will be required before these states in ¹⁷⁰Yb and other deformed nuclei can be characterized in detail.

B. $2+2 \gamma$ -Vibrational Band

The experimental location of the γ -vibrational band head in ¹⁷⁰Yb is very close to that predicted by Bès *et al.*³⁸ It should be noted that some ambiguity still exists regarding the assignment of the 1138.6- or 1145.6-keV state as the γ -vibrational state, because of the failure of Alaga's branching rules to dictate one choice or the other. The breakdown of the geometrical branching relations for the transitions from these two states into the ground band may well indicate very strong mixing between the close-lying 2+0₁ and 2+2_{γ} excited states. It is fashionable to gauge the degree of first-order mixing of the ground band into the γ vibrational band by calculating the so-called z_2

FIG. 15. Comparison of ¹⁷⁰Yb levels with theory from Kuliev and Pyatov (Ref. 34), Bès (Refs. 33 and 38), Neergård and Vogel (Ref. 40), and Grabakov, Kuliev, and Pyatov (Ref. 25).

parameter. The appropriate first-order expansion of the reduced E2 moment is similar to that written earlier for mixing between ground and excited 0+ bands³¹:

$$B(E2; I\pi 2_{\gamma} \rightarrow I'\pi 0) = 2(I22-2|I'0)^2 |M_1 + M_2[I'(I'+1) - I(I+1)]|^2,$$
(4)

where M_1 and M_2 are proportional to the principal and first-order E2 transition matrix elements. The z_2 parameter is then defined as

$$z_2 = \left[\frac{2M_2}{(M_1 - 4M_2)} \right].$$

For ¹⁷⁰Yb, we find $z_2 = 0.052$ for transitions from the 2+2 state into the ground-rotational band, and $z_2 = 0.054$ for transitions from the 3+2 state. The expression of Mikhailov *et al.* and equivalent earlier relations involving the *z* parameter assume that the intrinsic quadrupole moments of the ground and γ -vibrational bands are equal. Reich and Cline³⁹ worked out the expressions whereby one may compare $z_2(0)$ with $z_2(2)$ for the presumed first-order mixing into the γ -vibrational band, where

$$z_2(0) \propto (Q_{00}/Q_{20})$$

and

$$z_2(2) \propto (Q_{22}/Q_{20})$$

with Q_{00} and Q_{22} representing the intrinsic quadrupole moments of the ground and γ -vibrational bands, respectively, and Q_{20} the E2 transition moment between the two bands. Within the precision of the experimental data, no difference is found between $z_2(0)$ and $z_2(2)$ for the ¹⁷⁰Yb γ -vibrational band. Still, it is noteworthy that the simple first-order mixing theory predicts an intensity of 3500 units for the unseen 861.6-keV (2+2)- (4+0) transition, a factor of 6 greater than the experimental upper limit for the intensity. The intensity of this unseen transition is in serious disagreement with Alaga's branching rules, and it is evident that the first-order mixing theory does not explain the discrepancy.

C. Low-Lying States of Odd Parity

Of the numerous odd-parity states excited in ¹⁷⁰Yb by ¹⁷⁰Lu decay, those states within or slightly above the energy gap 2Δ and thought to be influenced by the octupole-octupole interaction lend themselves most readily to interpretation. Neergård and Vogel⁴⁰ carried out extensive collectivemodel calculations for the octupole states in deformed even-even nuclei. They used a pairing and octupole-octupole residual force and solved the random-phase equations for quasiparticles in a Nilsson deformed potential well. With use of the intrinsic wave functions thus obtained, they also calculated the Coriolis interaction matrix elements and diagonalized the interaction matrix for the lowest-lying multiplet of octupole states: $K\pi = 0-$, 1-, 2-, and 3-. Their calculated energies for the members of this quartet of states in ¹⁷⁰Yb are shown in Fig. 15.

Perhaps the most puzzling feature of the ¹⁷⁰Yb level scheme in comparison with the calculations of Neergård and Vogel is the apparent presence of two states of $I\pi K = 1-0$, quite low in energy, at 1364 and 1512 keV. Such states are not particularly collective in this region, however, and Neergård and Vogel emphasize the extreme sensitivity of their calculations to the two-quasiparticle energies for single-particle states near the Fermi surface. This explanation may account for the 500keV discrepancy between the calculated and the experimental location of the lowest 1-0 state in ¹⁷⁰Yb. The remaining anomaly, the apparent presence of a second 1-0 state at low energy, might be explained as resulting from strong mixing between the several low-lying odd-parity states in this region. The experimental assignment of zero K quantum numbers to the two states in question depends largely on γ -ray branching ratio data. In the case of the 1364-keV state, the data seem unassailable - the expected 2:1 favored feeding to the 2+0 ground-rotational-band member is very clear. In the case of the 1512-keV state, however, there is some room for doubt, though the $1 \rightarrow 2+$ reduced transition strength is still 60% greater than the $1 \rightarrow 0+$ strength, and far from the 50% smaller value that would imply a K = 1 assignment. The inclination to identify this state with the 1-1octupole branch is further strengthened by our failure to identify any other 1-1 state below 2400 keV.

The lowest 2-2 root in ¹⁷⁰Yb is predicted in Ref. 39 to lie at 1730 keV; we observe 2-2 states at both 1425 and 1718 keV. Finally, it seems unlike-ly that we could identify the 3-3 octupole branch as being either of the two spin-three states tentatively proposed at 1397 and 1658 keV, since both states decay primarily into the K=0 ground-rotational band.

D. States of $I\pi = 1 +$

We have already noted the recent work of Gabrakov, Kuliev, and Pyatov²⁵ wherein the properties of excited states of the type of $I\pi = 1 +$ with K = 0 or 1 are calculated. These authors show predicted energies of numerous states with $I\pi K = 1 + 1$ in ¹⁷⁰Yb, and although all of these states are predicted to be predominantly two-quasiparticle structures, in many cases they may also possess a weak collectivity proposed to arise from oscillations of the spin part of the nuclear magnetic dipole moment. The bulk of the strength of these collective oscillations is predicted to lie near 10 MeV, but smaller influences are expected at lower energies and would be evidenced primarily by enhanced M1 moments and hindered β feeding.²⁵

Shown in Fig. 15 are only the lowest few 1+ states predicted by Gabrakov, Kuliev, and Pyatov to exist in ¹⁷⁰Yb. Others are proposed to lie at 2930, 2990, 3030, 3200, 3330, 3350, 3500, and 3520 keV. Only two of these states are predicted to have K = 0 quantum numbers: one at 2500 keV and the other at 3520 keV.

In comparing the calculations of Gabrakov, Kuliev, and Pyatov with our experimental results, we can draw at least two conclusions: (1) Very few states of even parity appear to be directly populated by $^{170}\mathrm{Lu}\;\beta$ decay. In fact, only four such states are identified in our work. This would appear to bear out the expectation that β decay to such states will be highly hindered.²⁵ (2) Bonch-Osmolovskaya et al.¹² propose a state at 2533.1 keV and assign to it the 1+0 $\left[\frac{5}{2}(523)_n - \frac{5}{2}(512)_n\right]$ two-neutron configuration proposed by Ref. 25. We fail to observe any state at 2533.1 keV, thus negating the earlier-suggested experimental identification of a state $I\pi K = 1+0$ in this nucleus. Such a state would be expected to be part of a rotational sequence 1, 3, 5, ..., with even parity.²⁵

IV. CONCLUSIONS

The staggering complexity of the ¹⁷⁰Yb level scheme raises the question of the feasibility and even the necessity of experimentally detailing the structure of the myriad excited states in this and other similarly complex nuclei. The objective of an increased understanding of structure in such nuclei is perhaps best achieved by concentrating further study on a few of the states most representative and perhaps least understood of a particular type of excitation or interaction. In ¹⁷⁰Yb, the best candidates for such detailed further investigations are those states lying within the energy gap 2Δ . High-resolution direct-reaction particle spectroscopy can reveal much about the exact nature of the four low-lying 0+ states. Coulomb-excitation studies with ions heavier than ¹⁶O may shed still more light on the structure of these interesting states. It is also of interest to further detail the nature of the low-lying odd-parity states, in order to better define the structure of the various octupole collective-vibrational modes. Higherlying states meriting additional study include the 1+1 and 1+0 excitations. It would be of considerable interest to be able to document the proposed collective properties of these states. Finally, one must note again the curious gaps in the level structures of both ¹⁷⁰Yb and ¹⁷⁶Hf that seem to occur near the energies 2Δ and perhaps also 4Δ . It is important to determine from further study in ¹⁷⁰Yb and other nuclei whether this feature is indeed fortuitous, a result only of selective β -decay feeding perhaps, or whether it represents a more general phenomenon that may provide new insight into the pairing interaction in nuclei.

ACKNOWLEDGMENTS

The authors wish to thank Jesse Meadows for the excellent chemical separations and Paul Johnson for his many efforts that led to a successful isotopic separation. We also wish to express our appreciation to Keith Grant for his analysis of the conversion-electron data, Dr. Jorma Routti for his assistance in operating VISTA, Lou Maynard for his assistance with the experimental equipment, and Allan Van Lehn for assistance with SAMPO on the Livermore computers. Discussions with Professor J. O. Rasmussen were both stimulating and helpful. We thank Dr. Lee Riedinger for permission to cite preliminary results from his ¹⁷⁰Yb Coulomb-excitation studies. Special thanks are due Dr. Lloyd Mann for aid in the final stages of preparing the manuscript. One of us (FMB) thanks the members of the Radiochemistry Division of the Lawrence Livermore Laboratory for their hospitality during a brief but fruitful visit in August of 1970.

Part of the work reported here was carried out at the Lawrence Berkeley Laboratory.

1080

[†]Work performed under the auspices of the U. S. Atomic Energy Commission at the Lawrence Laboratories and at Michigan State University under Contract No. AT(11-1)-1779.

^{*}On leave of absence, September 1971-August 1972, to Interuniversitair Reactor Instituut, Delft, Netherlands.

¹B. S. Dzhelepov, A. I. Medvedev, S. A. Shestopalova, and I. F. Uchevatkin, Nucl. Phys. <u>56</u>, 283 (1964).

²B. Harmatz, T. H. Handley, and J. W. Mihelich, Phys. Rev. <u>119</u>, 1345 (1960).

³V. V. Tuchkevich, V. A. Romanov, and M. G. Iodko, Izv. Akad. Nauk SSSR, Ser. Fiz. <u>24</u>, 1457 (1960) [transl.: Bull. Acad. Sci. USSR, Phys. Ser. 24, 1451 (1960)].

⁴N. A. Bonch-Osmolovskaya, J. Vrzal, E. P. Grigoriev, N. G. Zayseva, J. Liptak, B. G. Tishin, and J. Urbanec, Joint Institute for Nuclear Research Report No. 6-3452,

1967 (unpublished).

⁵B. S. Dzhelepov, V. E. Ter-Nersesyants, and S. A. Shestopalova, Izv. Akad. Nauk SSSR, Ser. Fiz. <u>31</u>, 1633 (1967) [transl.: Bull. Acad. Sci. USSR, Phys. Ser. <u>31</u>, 1673 (1967)].

⁶V. A. Balalaev, B. S. Dzhelepov, A. I. Medvedev, V. E. Ter-Nersesyants, I. F. Uchevatk, and S. A. Shestopalova, Izv. Akad. Nauk SSSR Ser. Fiz. <u>32</u>, 730 (1968) [transl.: Bull. Acad. Sci. USSR, Phys. Ser. <u>32</u>, 671 (1969)].

⁷B. S. Dzhelepov, V. E. Ter-Nersesyants, and S. A. Shestopalova, Izv. Akad. Nauk SSSR, Ser. Fiz. <u>33</u>, 2 (1969) [transl.: Bull. Acad. Sci. USSR, Phys. Ser. <u>33</u>, 3 (1969)].

⁸D. C. Camp and F. M. Bernthal, Bull. Am. Phys. Soc. 15, 522 (1970). ⁹P. G. Hansen, H. L. Nielsen, K. Wilsky, and J. Tre-

³P. G. Hansen, H. L. Nielsen, K. Wilsky, and J. Treherne, Phys. Letters 19, 304 (1965).

¹⁰C. J. Paperiello, E. G. Funk, J. W. Mihelich, and G. Schiling, in *Proceedings of the International Conference on Properties of Nuclear States, Montréal, Canada,* 1969 (Presses de l'Université de Montréal, Montréal, Canada, 1969).

¹¹N. Bonch-Osmolovskaya, H. Ballund, A. Zglinski, A. Plochocki, and Z. Preibisz, Joint Institute for Nuclear Research Report No. P6-4773, 1969 (unpublished).

¹²N. A. Bonch-Osmolovskaya, H. Ballund, A. Plochocki, Z. Preibisz, and A. Zglinski, Nucl. Phys. <u>A162</u>, 305 (1971).

¹³J. W. Mihelich, private communication.

¹⁴Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U. S. Atomic Energy Commission to the exclusion of others that may be suitable.

¹⁵D. C. Camp, in *Proceedings of the International Conference on Radioactivity in Nuclear Spectroscopy* (Gordon and Breach, N.Y., 1971); also, Lawrence Livermore Laboratory Report No. UCRL-71825, 1969 (unpublished).

¹⁶L. B. Robinson, F. Gin, and H. Cingolani, Nucl. Instr. Methods <u>75</u>, 121 (1969); L. B. Robinson, F. Gin, and F. S. Goulding, Nucl. Instr. <u>62</u>, 237 (1968); F. M. Bernthal, Lawrence Berkeley Laboratory Report No. UCRL-

¹⁷J. T. Routti, Lawrence Berkeley Laboratory Report

No. UCRL-19452, 1969 (unpublished).

¹⁸J. T. Routti and S. G. Prussin, Nucl. Instr. Methods
 <u>72</u>, 125 (1969).
 ¹⁹The VISTA hardware consists of a large TV screen,

¹³The VISTA hardware consists of a large TV screen, a function-control box and a light pen. The light pen allows the user to interact with the data shown on the TV screen and to exercise through the function-control box any program option of SAMPO.

²⁰R. Gunnink, R. A. Meyer, J. B. Niday, and R. P.

Anderson, Nucl. Instr. Methods <u>65</u>, 26 (1968). ²¹D. C. Camp and F. M. Bernthal, Lawrence Livermore

Laboratory Report No. UCRL-72295 (1971).

²²M. A. S. Mariscotti, G. Scharff-Goldhaber, and B. Buck, Phys. Rev. 178, 1864 (1969).

²³D. G. Burke and B. Elbek, Kgl. Danske Videnskab. Selskab, <u>36</u>, No. 6 (1967).

²⁴C. M. Lederer, J. M. Hollander, and I. Perlman, *Table of Isotopes* (Wiley, New York, 1967), 6th ed.

²⁵S. I. Gabrakov, A. A. Kuliev, and N. I. Pyatov, Ya-

- dern. Fiz. 12, 82 (1971) [transl.: Soviet J. Nucl. Phys.
- 12, 44 (1971)]; to be published; Joint Institute for Nu-

clear Research Report No. E4-4908, 1970 (unpublished).

²⁶F. M. Bernthal, J. O. Rasmussen, and J. M. Hollander, Bull. Am. Phys. Soc. <u>15</u>, 523 (1970).

²⁷For a summary of current thinking on these different approaches see N. I. Pyatov, Joint Institute for Nuclear Research Report No. P4-5422, 1970 (unpublished); B. S. Dzhelepov and S. A. Shestopalova, in *Proceedings of the International Symposium on Nuclear Structure*, *Dubna*, 1968 (International Atomic Energy Agency, Vienna, 1969), p. 39; S. T. Belyaev, *ibid.*, p. 155.

²⁸J. O. Rasmussen, Nucl. Phys. <u>19</u>, 85 (1960).

²³E. L. Church and J. Weneser, Phys. Rev. <u>103</u>, 1035 (1956).

³⁰L. Riedinger, G. Schilling, A. E. Rainis, E. G. Frank, and J. W. Mihelich, private communication of preliminary results.

³¹V. M. Mikhailov, Izv. Akad. Nauk SSSR Ser. Fiz. <u>30</u>, 1334 (1966) [transl.: Bull. Acad. Sci. USSR, Phys. Ser. <u>30</u>, 1392 (1966).

³²A. S. Reiner, Nucl. Phys. <u>27</u>, 115 (1961).

³³D. R. Bes, Nucl. Phys. 49, 544 (1963).

³⁴A. A. Kullev and N. I. Pyatov, Izv. Akad. Nauk SSSR Ser. Fiz. <u>32</u>, 831 (1969) [transl.: Bull. Acad. Sci. USSR, Phys. Ser. <u>32</u>, 767 (1969)].

³⁵M. Oothoudt, N. M. Hintz, and P. Vedelsby, Phys.

Letters <u>32B</u>, 270 (1970).

³⁶F. M. Bernthal, work in progress.

³⁷O. Mikoshiba, R. K. Sheline, T. Udagawa, and S. Yoshida, Nucl. Phys. A101, 202 (1967).

³⁸D. R. Bès, P. Federman, E. Maqueda, and A. Zuker, Nucl. Phys. 65, 1 (1965).

³⁹C. W. Reich and J. E. Cline, Idaho Nuclear Corporation Report No. IN-1317 (1970).

⁴⁰K. Neergård and P. Vogel, Nucl. Phys. <u>A145</u>, 33 (1970).