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The nonrelativistic impulse approximation for the induced-tensor interaction has been ana-
lyzed in detail. ft values for mirror transitions have been calculated using electron Coulomb
wave functions for the extended charge distribution and introducing higher-order corrections.
14 angular B-y correlations, the  transition being allowed, have been analyzed, showing that
this process is sensitive to the presence of the induced-tensor interaction. The amount of in-
formation about the induced tensor at present obtainable from circular y polarization in nucle-
ar transitions has been investigated. A limit on the induced-tensor coupling constant has been
obtained which does not contradict the evidence based on ft values. B—y angular correlations
seem to yield evidence for the weak-magnetism term, while not excluding the existence of

the induced tensor.

1. INTRODUCTION

Recent papers of Wilkinson! have initiated re-
newed interest in the search for the induced-tensor
term in the weak axial-vector current matrix ele-
ment.2"® Since this term was mentioned and in-
vestigated in our earlier papers,®~!* we want to
make our previous work up-to-date and fully rele-
vant to the present level of knowledge. The im-
pulse approximation was not quite correctly car-
ried out in many of the previously published B-de-
cay calculations.’~*¢ In fact, the effective induced-
tensor term as used in earlier papers®™'® corre-
sponds to a particular model® in which the effec-
tive off-mass-shell two-body exchange corrections
are taken into account in a particular way. We con-
clude that the difference between the two induced-

$

tensor forms [see Egs. (1) and (2)] is due to ex-
change corrections estimated according to Ref. 5.

Forbidden B8 decays lead to rather uncertain con-
clusions about the value of the induced-tensor cou-
pling constant f, !* 7 because of the many experi-
mental and theoretical difficulties. 0~ - 0* transi-
tions seem to favor f; <0, while unique forbidden
transitions favor f>0.

It has already been demonstrated! that f¢ values
for mirror transitions seem to be rather sensitive
to the presence of the induced tensor; they are al-
so sensitive to the form of the effective induced-
tensor interaction, i.e., our Eq. (22) or Eq. (23),
as has already been noticed in a slightly different
context.’ In order to have this piece of evidence
as a reference point, we have recalculated ft val-
ues including the contributions from various higher-
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order corrections to the spectrum-shape factor
such as weak magnetism and the so-called “second-
forbidden” contributions. The wave functions of

the emitted electron (positron) were calculated us-
ing the Coulomb field for the finite-size nuclear
charge distribution.!® All these corrections do not
significantly change previous conclusions.® The
binding energy effects,'* 22 which lower the value

of fr or eliminate the necessity for the induced ten-
sor in some cases, are obviously more important.

The study of various angular correlations has al-
ready been suggested™ 2 as a way of gaining fur-
ther information about the sign of {;, thus enabling
us to differentiate various effective weak induced -
tensor Hamiltonians. In this connection one should
also include B-y angular correlations. In the re-
cent past, a few -y angular correlations have been
measured in the case of allowed 8 decays,?*~%® the
accuracy of measurements being unfortunately
rather low. The theoretical expression given in
Sec. IV shows that in allowed 8 decays the whole
effect is proportional to the induced terms in high-
er-order corrections. The induced-tensor contri-
bution, therefore, has to compete with relatively
small terms. The sign of its contribution is differ-
ent for the p* or the 8~ decay, respectively, de-
pending also on the y transition which follows.

This piece of evidence, combined with the analysis
of ft values and experimental data of higher accu-
racy, might solve our problem completely. How-
ever, such a possibility is frustrated by experi-
mental inaccuracies and theoretical difficulties in
calculating nuclear-matrix-element ratios. The
ft values and the B-y correlations are actually rath-
er sensitive to certain matrix-element ratios, as
can be seen from Eqgs. (B2) and (30). We analyzed
B-y correlations for 14 cases. Since experimental
errors and uncertainties are rather large, we did
not attempt any very elaborate calculations of nu-
clear-matrix-element ratios, but tried only to
reach some general conclusions. It seems that in
most of the cases the measured effect might be
due to the induced weak-magnetism term. The in-
clusion of the induced tensor definitely favors f,
>0, which together with the evidence based on the
Jt value decides in favor of our case A [Eq. (22)].
It is possible, however, that all effects, i.e.,
those in ff values as well as those in f-y correla-
tions, might be understandable with no tensor in-
cluded.

Our next aim was to evaluate the amount of in-
formation on the induced tensor obtainable at pres-
ent from the parity-violating processes in heavy
nuclei. Limits on the induced-tensor effective
coupling constant are deduced from circular y po-
larization in nuclear transitions. A more elaborate
evaluation of the effect leads to rather large limits

on the induced-tensor coupling constant
-15sf,<19,

in contrast to a preliminary estimate.’® These
limits do not seem to contradict the analysis of ft
values.! A few rather large values required there
(see Tables I, II, and IV; A=18, 28, 30) cannot
be taken too seriously, in view of experimental
and theoretical uncertainties.

We hope that this paper might prompt some ex-
perimentalists to measure again 8-y angular cor-
relations, the B transition being allowed.

II. IMPULSE APPROXIMATION

Since all questions raised recently® concerning
the existence of the induced tensor and its connec-
tion with second-class currents have been cleared
up,” we confine our consideration to the nonrelativ-
istic approximation (NRA), often also called the
impulse approximation. Although the off-mass-
shell element of the axial-vector current can, in
principle, be decomposed into 12 form factors,> %’
numerical calculations involving the induced ten-
sor have so far been limited to two forms, which
are equal for nucleons on the mass shell:

(Vfr@) 577 TP 0 b= Pvulp), (1)

(2@ =i, + ) vl ). (2

Other forms of the induced tensor are either
equivalent to these or equal to zero on the mass
shell.5 38

Questions have been raised regarding the rela-
tion between the expressions in Egs. (1) and (2) off
the mass shell.®* Equation (1) was previously used
in B-decay calculations®~'® with the weak-interac-
tion Hamiltonian given in the NRA by case B3°:

_ Y Y - > Y . =
Hint—<gA4:2ME0_2M 2§>O L4imo (—ZV)L4.

®3)

Here only terms due to axial-vector currents are
written. All notation has the usual meaning.* In
deriving Eq. (3) the important off-mass-shell con-
tributions were neglected. Equation (3) was de-
rived from the following “relativistic” %! expres-
sion for the induced tensor*:

Y
IT:‘W %(Yp'}/u—YU'}/y)YsavLu7 (4)

Ly =¥y v, 7Y, . (5)
In deriving the NRA of Eq. (3), the contribution
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coming from the combination of indices

u:j’ v=~k, j’k=172)3 (6)

was neglected. In the strict nonrelativistic shell
model for nucleons*® this contribution, denoted by

D, is not negligible in the NRA. It can be written
in the form**

D=D,+D,, (M

D=5 W] v G- BNE- D)+ (@ D)6 D)%,
(8)

Dy ¥y 3+ D) +(E D] )

Here ¥; and ¥, refer to the initial and final “rela-
tivistic” nucleon wave functions, respectively, and
the impulse p is taken to be an operator. The NRA
follows from these functions by approximating*s

xp"z<‘°'px"/2M>. ' (10)
Xn
Here y, are nuclear shell-model functions satisfy-
ing

PZXn=2M(En_V)Xn‘ (11)
One then obtains*®

D=~ (2;)2 Xf[p((y L)‘(U L)pz]
='2—YM(EJ‘_E£)XIT6'EX|" (12)

The importance of the nuclear shell-model equa-
tion (11) is obvious, since Eq. (12) would vanish for
nucleons on the mass shell. The contribution (12)
cancels the second and the third term in Eq. (3).%
We are left with the effective NRA of the inter-
action (4) for the case of allowed B transitions.
In the case of forbidden g transitions, additional
terms play an important role. As shown in Appen-
dix A, one can extract from the term D, of Eq. (9)
the term

Y

- V)L, D, (13)

Dy =
which is negligible in the case of allowed transi-
tions, but does contribute to 0¥ - 0* and to 2*=07
transitions.

An additional contribution, important for the
case of 07 - 0* transitions, comes from the com-
bination of indices in Eq. (4):

u=4, v=j. (14)
This contribution, denoted by C, is
Y .
C= ZM‘I’f YalG D, L] ¥;. (15)

Previously, the relativistic nuclear wave functions
¥, were simply replaced by the nonrelativistic
ones, thus giving the last term appearing in Eq. (3).
As we know from the analogous induced-pseudo-
scalar case,'* this replacement is not always justi-
fied. In Appendix A we show for  transitions in
the NRA that

Y . = YQ > >
C@m(—ZU'VL4)+Wz" L40'-p,
(18)

Q=E,+2E.

In the case of 0¥ =0* transitions the last term in
Eq. (16) leads to the nuclear matrix element
(iG+p/M), while the first term is proportional
to (F+F). The ratio of the two matrix elements

f=GG-p/M)/(T-T) (17)

is rather large,*® so the two terms in Eq. (16) con-
tribute comparably.

The alternative form in Eq. (2) of the induced
tensor leads to the effective B-decay interaction

Y .
T__EJ_W'\I’}'}/sl(puLu')'Ly pp)‘yi’ (18)

where

pu = (5: p4) b
pa=UM~+Ty), (19)
T,=p*/2M .

§=—i_V.,

In the NRA expression (18) is completely equiva-
lent to expression (4). The selection of indices

i =7 leads to the term D, of Eq. (9), while u=4 in
the NRA (see Appendix A) leads to the term C of
Eq. (16).%

Equations (1) and (2) lead to the same NRA in the
usual nuclear shell-model impulse-approximation
limit. In that sense the two forms are equivalent.
They are, however, not equivalent when exchange
effects, i.e., two-body contributions to the weak-
interaction Hamiltonian are considered. This cor-
responds to a more elaborate form of the nuclear
shell-model description, i.e., to a form which in-
cludes two-body residual interactions. It is in this
sense, in our opinion, that one should understand
the discussion given in Ref. 5.

Let us illustrate this by a simple one-pion-ex-
change diagram shown in Fig. 1. The nucleon prop-
agator indicated in the diagram has the form

u(ps s)
P= X TR (20)

s, EgSo

Its E, >0 part contributes to the nonrelativistic per-
turbation series, while its E,<0 part leads to the



4 EMAN, TADIC, KRMPOTIC, AND SZYBISZ 6

two-body-exchange contribution

2 a(pa)vs7; 3(1+B)Orulp)R - 21)
s

Here the denominator was approximated by ~|E,|
+w—E,#2M, and the summation over the nega-
tive energy spinors #° was carried out. Oy is the
induced-tensor operator either in the form of Eq.
(1) or in the form of Eq. (2). R symbolizes the
left side of the Feynman diagram, Fig. 1. The
end result is different for forms (1) and (2), the
contribution from Eq. (1) being negligible in the
NRA.* The summation over all possible E;>0
contributions, including higher-order terms,
should somehow average to the shell-model poten-
tial appearing in Eq. (11). In this way higher-order
terms are included in the impulse approximation.5!
We remind the reader that a completely analogous
discussion for parity-nonconserving meson ex-
change, combined with v emission, is given in de-
tail in Ref. 52, especially in the appendixes.®

The contributions of the type (21) were estimated
in Ref. 5 for a special case of the conserved sec-
ond-class axial-vector current. In this special
model, the induced tensor of the form (1) receives
no significant contributions from the exchange ef-
fects. Two-body contributions to the induced ten-
sor (2), when approximated through the effective
single-body operators, add to Eq. (22) completing
it back to Eq. (3),* i.e., case B [Eq. (23)] in the
NRA. This explains how our results compare with
those of Ref. 5. As mentioned in this reference,
other models for exchange contributions could lead
to significant complications, necessitating studies
of other off-mass-shell induced terms.

In concluding this section, we want to summarize
our results regarding the NRA:

FIG. 1. The full lines are nucleons, the dashed line
is the pion. The cross marks the induced-tensor vertex,
while the curly bracket indicates the propagator cor-
responding to the energy denominator.

Case A,
> = Y -~ .=
Him=ng-L4+§—Mo-(—z )L,
YT, 7B (s lad |
+2M [2(E0+2§)L4 i +(-2G V) i

Here all signs refer to 8~ decay. The terms in-
side the square brackets are important only in for-
bidden decays. The vector-current contribution
should be assumed. Case A follows from either
Eq. (1) or Eq. (2) when two-body-exchange contri-
butions are neglected. Equation (22) corresponds
to Eq. (1) with the two-body-exchange contribu-
tions calculated as in Ref. 5.

Case B,
Hint =Hint Of Eq' (22)
with
Y
ga~8a=—g37 (Eo+28). (23)

This Hjy, corresponds to Eq. (2) with the two-body
exchange contributions calculated as in Ref. 5.

III. ft VALUES AND MIRROR TRANSITIONS

The existence of the induced-pseudoscalar term
is characterized by the ratio b of the effective cou-
pling constant ¥ and the axial-vector coupling con-
stant g,

b= YgA—l- (24)

Instead of merely quoting the values for b follow-
ing from the analysis,! we recalculated them using
Bhalla and Rose’s wave functions!® for electrons
and taking into account vector-axial-vector inter-
ference corrections. The correction factors neces-
sary to the spectrum shape were published a long
time ago® and for the convenience of the reader are
listed in Appendix B. We calculated the half-lives

t by the formula

(27)%In2
g (o)’
(25)

where E, is the maximal energy, E is the electron
energy, and p and g are the electron and neutrino
momenta, respectively. F(Z,E) is the Fermi func-
tion, while C®(E, b) is the spectrum-shape correc-
tion factor depending on the induced tensor through
the » of Eq. (24).

The ft values for electron and positron mirror
transitions are expected to be approximately equal.
Thus the magnitude of the deviation of 6 from zero,
when b is taken as zero and

o= () /(ft)y" -1, (26)

Eg2-1 ~
ft=t fo Pa*F(Z, E)CP(E, b)dp=
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TABLE 1. Deviations ¢, of ft values and the induced-tensor coupling constant  for mirror nuclei.

B+ o+ Casel Case 2
A Ez‘ (MeV) 2 ;- (sec) b 6y ba bg o ba by
14.05 0.774
8 15.10 0.849 0.072£0.005 6.6 -2.9 0.067 +£0.005 6.2 -2.9
16.32 0.0116
12 13.37 0.0210 0.122 £0.006 9.6 —4.8 0.111+0.006 9.2 -4.8
20 11.26 0.51¢ 0.046 +£0.02 © 7.3 -3.7 0.045£0.02 7.3 3.7
5.40 11.03 —0.064 4 -9.2 4.6 —0.061 -9.9 5.1
8.737 26.12 —0.018+0.015
24 1392 53 980 0.37¢ -4.8 2.2 —0.017+0.015 —-4.8 2.2
11.537 0.52
28 2,856 136.4 0.282 +0.005 45.9 —22.4 0.270 £0.005 44.8 -21.3

3 Maximal energy of positrons and electrons.
b partial half-lives.

¢ Partial half-life from D. H. Wilkinson and D. E. Alburger, Phys. Rev. Letters 24, 1134 (1970).

d¥or ¢t*=0.453 sec.

€For t*=36.25 sec. All other data are taken from D. H. Wilkinson, Phys. Letters 31B, 447 (1970).

can be interpreted! as an indication of the existence
of the induced tensor. With reference to Table I,
we calculated §, by putting =0 in Eq. (25) for (f)*
and (f2)~. The actual value of b was selected in
such a way as to give 6 =0 when using the full ex-
pression for C?, as given in Appendix B.

The results for case 1 in Table I were obtained
by neglecting the cross terms with the vector cou-
pling (i.e., weak magnetism). The values for b in
case 2 in Table I were calculated taking into ac-
count all corrections. The calculations were per-
formed both for case A [Eq. (22)] and for case B
[Eq. (23)]. The ratios of mairix elements were
estimated on the basis of the simple shell model
as follows: «,=2, a,=-0.13, 8,=8x107%, B,
=3x107¢, B,=1.

Inspection of Table I shows that the additional
corrections are not of much importance. Newer
measurements for A=20 and A=24 are also in-
cluded in Table I. The signs of the induced-tensor
coupling constants b for A=8, 12, 20, 24, and 28
show complete mutual consistency and their abso-
lute values for A=8, 12, and 20 are rather close.
The transitions with A =18 and A =30 (Table II) cor-
respond to two successive 8* decays, and the cor-
responding nuclear-matrix-element ratios in these
cases are not necessarily correctly predicted by
their single-particle values. Furthermore, as
cases A =20 and 24 show, slight changes in experi-
mental values can reverse the sign of the theoreti-
cal b.

A detailed analysis confirms a rather obvious
qualitative conclusion that, in contrast to the weak-
magnetism term,% the induced tensor is not seen
in the B spectrum shape.

Table III gives the slopes for the spectrum-shape
factors for the decays of N'? and B!?, respectively,
for various combinations of higher-order correc-
tions as calculated using formulas from Appendix
B.° Even for a rather large value of our parame-
ter b (b=+2200Y) the spectrum-shape-factor slope
is practically unchanged.

In Table IV we recalculated the results appear-
ing in Table I taking into account corrections to
the matrix-element ratios.?’ The value of b was
chosen in such a way as to obtain

(O ®)/(f)"(B)=A"/A". 27)

The ratio A~/A* was taken from case B in Ref. 20.
As is to be expected, the values of the induced-
tensor constant b are generally reduced. One case,
A =20, is explainable even with no induced tensor
included. This becomes particularly suggestive
when compared with the results on 8-y angular
correlations presented in the next section.

TABLE II. Deviation 6, of the (f¢)*/(f¢)* ratio from
unity, and the induced-tensor coupling constant &.

E1+ i

A 9. MeV) % (sec) I ba bpg
Ej ty

18 3.425 1.58 —0.097£0.005 —110 51
0.633 6796 0.033 2
5.085 5.9

30 3.92 1506  ~—0:052%£0.003  -74 39

2¢f=1.807 sec, from D. W. Alburger and D. H. Wilkin-
son, Phys. Letters 32B, 190 (1970).
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IV. B-v ANGULAR CORRELATIONS

In the general search for the induced-tensor in-
teraction it is worthwhile to turn our attention to
B-y angular-correlation measurements in the case
of allowed B decays. In this case the whole effect
is directly proportional to the induced terms and
the so-called “second-order corrections.” The in-
duced tensor, therefore, has to compete with other
terms of the same order of magnitude and its pres-
ence should be readily noticeable. The sign of its
contribution changes going from g8~ to 8* decays,
depending also on the y transition. In general, the
whole effect depends strongly on the sign of the in-
duced-tensor term, as can be seen from the re-
sults presented in Table V. This should, in princi-
ple, enable us to distinguish case A from case B
defined in Sec. II. In both cases, only the term

Y . =
5770 (V)L (28)

can contribute. It therefore shows a certain simi-
larity with other angular correlations, such as
electron-neutrino or electron-nuclear spin.*>? We
emphasize that the sign of ¥ should come out the
same from the analysis of both the angular corre-
lations and the f¢ values.

Starting with the standard interaction Hamilton-
ian written in Appendix B, and adding to it either
Eq. (22) or Eq. (23), we arrive at the following ex-
pression for B-y angular correlations:

w()=1 +A2(B)F2(LLI,I)P2(c0s9) s (29)
where

A,(B) = —4F,(111,1)

gy B, b

x3262N12+|: (Bl+262)+—ig-—: TK}'*W
%, 1 /2\' g,

ea(s) o

(30)

The upper and lower sign refer to 8~ and g* decay,
respectively. We assumed a § transition I; - I fol-
lowed by a pure 2X-pole y transition I-1I,. The nu-

clear-matrix-element ratios «; and ; are defined
in Appendix B, while all other notation has the us-
ual meaning.?®% Neglecting the so-called “second-
order-correction” contributions, i.e., setting o
=0, B;=0, and using plane waves for electrons we
can approximate Eq. (30) by

2
A, (B)= ; v <2];Wi§_: %iﬁ—ﬁz(min, (1)
where p and W are the momenta and the energy of
the electron (positron), respectively. In order to
indicate the order of magnitude of A,(8), we men-
tion that the expression in the large brackets is
1.4x 1073 for B~ decay or (-)0.9x1072 for 8* decay,
with no tensor included, i.e., when b=0.

Although several measurements of g-y angular
correlations have appeared in the literature,?*~3°
most of them are still associated with large un-
certainties and experimental errors. We decided
to calculate A, () for all of them on the basis of
the full formula of Eq. (30). The nuclear-matrix-
element ratios o; and B; were estimated on the ba-
sis of the simple shell model, as in Sec. III. More
elaborate nuclear-matrix-element calculations do
not seem warranted by the present state of experi-
ments.?” Final results were obtained by averaging
over the experimental range of electron energy.
The errors quoted with the theoretical results cor-
respond to the difference between -y correlation
values for the average experimental energy and
B~y correlation values for the minimal or maximal
experimental energies. Since it is difficult to de-
cide which experiment should be given more weight
in theoretical analysis, we want to look only for
some general features at this stage of confronta-
tion between theory and experiment.

General features emerging from Table V can be
summarized as follows:

(i) Weak magnetism alone (b =0). Agreement be-
tween experimental and theoretical signs has been
achieved in 10 cases out of 14. Absolute values

TABLE IV. Values of the induced-tensor coupling con-
stant when binding-energy effects (Ref. 20) are taken into
account.

TABLE III. Slopes of spectra in 4 =12 mirror nuclei. A op? 6g — Oy b 134 124
Energy Slope per MeV 8 0.048 0.020 1.8 -0.9
interval for —0.6 <x <0.6 Experimental 12 0.098 0.013 1.0 -0.44
Decay  (MeV) Al BY slope 20 0.045 0.00 0 0
24 0.040 —0.058 -14.7 7.0
2N 10.08 —0.48 —0.54 —0.52+0.06 28 0.051 0.22 35.2 -16.9
12p 7.48 0.60  0.53 0.55+0.10 18 0.007 0.026 23.9 -12.9
30 0.005 —-0.057 -77 42

2 All parameters from single-particle estimates.
>Only €, gr and terms multiplied by x and B, are kept.
See Appendix B. Here x=b/2M.

2 6y from Ref. 20 is defined as A™/AT -1,
b§, is the value from our case 2 in Table I.
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' TABLE V (Continued)
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0.15£0.01 0.39+0.02 0.63+0.02 1.4+0.1 1.55+0.11 1.8+0.2 2.2+0.3

-0.08+0.01

16+20D

1.39
>1.31

152Eu
37(B7)2"
160Tb

0.44+£0.05 —0.89+0.10 —2.2+0.2 -3.5+0.5 1.9+0.2 0.57+0.06 —0.76+0.06 —2.1+0.2

90+30 P
40201
17030 k

2.108
2.1

37(g)3”

kReference 33.

¢Reference 25. ¢ Reference 27. gReference 35. iReference 29.

2 Reference 34.

IReference 30.

dReference 26. f Reference 28. hReference 32. iReference 31.

bReference 24.

agree within the errors only in two to three cases,
though disagreement is generally not too bad.

(ii) Induced tensor b >0 included (case A). In
nine or ten cases experimental signs seem to be
in agreement with theoretical ones.® In three tran-
sitions there also exists excellent agreement in
magnitude. In general, when the theoretical sign
agrees with experiment the magnitude is closer to
the experimental one than in the case of weak mag-
netism alone. One should mention the decay of F?°,
where b="17.3, as fixed from f values (see Table I),
also fits the angular-correlation experiment. How-
ever, in that particular case (see Table 1V), the
binding-energy effects can probably completely®®
account for the discrepancy in f¢ values, thus lead-
ing to 5=0.

(iit) Induced tensor b <0 included (case B). The
sign seems to be predicted correctly only in three
to four cases. In two of them, the predicted mag-
nitude is almost correct.

At the present stage of experimental knowledge,
our theoretical efforts displayed in Table V may
serve mostly as an indication how important -y
correlation analysis would be in our investigation
of weak interactions. As experimental uncertain-
ties are really large, it is difficult to estimate
how much importance should be attached to our
findings in favor of (i) and/or (ii).

V. PARITY VIOLATION IN HEAVY NUCLEI

It has been pointed out that the second-class-
current contribution to the weak parity-violating
(PV) internucleon potential should behave as an
isovector.®!3 When applied to PV nuclear forces,
the two cases of the NRA, Eq. (22) and Eq. (23),
are equivalent. Roughly speaking, one has to in-
troduce in those formulas the vector nuclear cur-
rents instead of the lepton bilinears I, and L,. In
the very low-energy zero-momentum transfer lim-
it and for unit or zero charged nucleons,® the quan-
tities multiplied by E, and ¢ are negligible, so
both cases of the NRA are equivalent.

Neglecting many-body exchange corrections, one
can use in the first-approximation the potential al-
ready published in®® 3

YG . ..\ -
Vie= 5757 @1+ [Bus FT, (32)
where
=) =T Toe =Ty Ty - (33)

Here all notation has the usual meaning. The ra-
dial function appearing in Eq. (32) depends on the
induced -tensor-producing mechanism, which is

unknown. In order to have some numerical esti-
mate, we make use of the function appearing with
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the normal (first-class-current) axial-vector
vertex

1 e-mpr
FO)= g (34)
where m , is the p-meson mass. This approxima-

tion seems to be natural to some extent, if one
imagines the corresponding PV nucleon-nucleon
interaction being dominated by the particle having
the necessary quantum numbers and the lowest
possible mass. However, longer-range 27 ex-
change could, in principle, result in larger contri-
butions. This 27-exchange contribution is not as
yet completely understood even for first-class cur-
rents. Preliminary estimates indicate that there
it could be of the same order of magnitude as the
contribution from p exchange. Unless something
violent happens, this might continue to hold also
for second-class currents. It means that our es-
timate based on Eqs. (32) and (34) can differ by a
factor of 2, which does not change the conclusion
in any significant way.

Some discussion on the value of Y, based on cir-
cular-polarization measurements, has already
been presented.’® As the approximation used there
overestimates the effect,® some change in the con-
clusions is to be expected. The circular polariza-
tion of v emission in the 482-keV decay of Ta'®!,
obtained by the method described in Ref. 52, is,
for the conventional model of the weak Hamiltonian,

p=[<g:;"7">_7.19y]x10~6. (35)

The two values in the first column correspond to
two possible relative signs of the pion-exchange
contribution, while the parameter Y, defined in
Eq. (3) and Eq. (32), measures the strength of the
induced-tensor contribution. When calculating
short-range correlations among nucleons in a
more exact way,% we obtain

[ (3.07 i ,
P~[<5.75>—1.73Y}><10 . (36)

One group of experimental results® leads to an av-
erage

Py =(=5.021.5)x107°. @37)

An essentially different sign is given by Kuphal,
Daum, and Kankeleit,% where

Py =(2.0£4.0)x107°. (38)

In the wide spectrum of the published experimen-
tal results one can also find some giving larger P
than those quoted above.®* % They would naturally
set higher bounds on Y than the ones following
from Eqgs. (36) and (37), and therefore we are ac-
tually dealing with the most sensitive cases.

Looking for such combinations of numbers from
Eq. (35) which would fit Eqs. (37) and (38), we ob-
tain the limits

O<y=s<2. (39)
In the same way Eq. (36) leads to
-1.7T<sY<sT. (40)

If additional residual nucleon-nucleon interactions
are introduced in theoretical calculations, in the
way outlined by Vinh-Mau,® the theoretical value
for P is decreased; so we can estimate

~15<y<19. (41)

The estimated limits in Eqgs. (40) and (41) are in
agreement with the ff value estimated in Sec. III.

For other weak-Hamiltonian models, the situa-
tion is either approximately the same as for the
conventional model, or the induced-tensor contri-
bution is relatively insignificant in comparison
with the strongly enhanced one-pion-exchange con-
tribution. In that case, even larger limits on Y
result.

APPENDIX A

The very form of expression D, in Eq. (9) shows
that parts of it should be negligible in the NRA. It
contains the derivative of the lepton combination
L,, which is equal to

—iVL,=m, ¥Ry ¥, +(Ey +26)U ]y, ¥, = X", (A1)

The corresponding part of D,,

D2a Ef VSX,‘I’i ’ (AZ)

X
2M
is, according to Eq. (2) of Ref. 14, equal to, in
the NRA,

D & VX! +Q—X'6-f>) , (A3)

Y
22~ QM) \~ 2M
and therefore is negligible.
The rest of D, in the NRA is of the form

N Y - -
Dyy= ~i WU «V(L,* D). (A4)

It gives no contribution to the allowed spectrum-
shape factor in the lowest order of expansion of
lepton covariants in powers of the nuclear radius ».
The only vector one can build in that case is the
one of wrong parity, GxXP. One has to go to higher
order in the expansion of the lepton combination,
which is clearly negligible when multiplied by M 2.
The term D,, cannot be neglected in the case of
0~ - 0* transitions. One can construct the opera-
tor &+ to the lowest order in ». There is a close
analogy with the interaction L, +PpM™!, which is
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very important in the case of 0~ - 0* transitions,
while being a small “relativistic correction” in
the case of allowed decays.®®

It is easy to see that the expression in Eq. (2)
and the corresponding expression in Eq. (18) lead
straightforwardly to Eq. (22) in the NRA. The
term D, in Eq. (9) is obtained when p =j is select-
ed. The p=4 part

(IT)4 \I/fy5L4\If @2M+T;+T;) (A5)

is, in the NRA,® equal to

c X (LitT E T, Ty
(IT)4~2M(—w VL4)< ATy TAL Y TR Yy

YE,

4M2L4o (A6)

Equation (A6) is exactly equal to the NRA of the
term C of Eq. (15). The proof closely follows
Appendix A of Ref. 14. We have to find the NRA
for the matrix element

<f I'}’q[6 * f’: L4]- li>R . (A7)

The index R in Eq. (A7) is to remind us of its
“relativistic” character. We can approximate

<f|74[5'-15: L4]-|i>R:<f|[5'5y L4]-’i> +a,
a=-(2M) ¥ f[6- DG DLy~ LG D)~ Dlé)
=(=) (86 - p2)f 1B - B, Labilo)
~ 3(p2 +pAF1E+ B, Lol [0)) @) 2.
(A8)
The last line follows by successive partial inte-
grations. For C in the NRA one encounters all
terms that appeared in Eq. (A6). Neglecting small
contributions and making the gauge-inspired re-

placement E,—~Q, one arrives at the expression
of Eq. (16) from either Eq. (A6) or Eq. (A8).

APPENDIX B

Though detailed formulas for allowed transitions
have already been published,’ they might be rela-
tively inaccessible. Therefore, we repeat some
essentials.

A standard p-decay Hamiltonian is

Hin=8vL, "’E%—f’z, : -f'4 +%_f’4 D + 2M =L B, x Lq)
+g,6+ T, +2M 5LL4+—%L46-5. (B1)

The induced-pseudoscalar and -tensor terms are
omitted here. To account for the induced-tensor
terms, one should add to Eq. (B1) the Hy, of Eq.
(22) or (23), respectively. The notation D indi-

K=}

cates that D affects only the lepton covariants —f.4
and L,.

The correction factor for Gamow-Teller transi-
tions, including the induced-tensor contribution,
is of the form

CH(E, b)=(1-2x{2¢ + E;}) Cy01 +B,Csor
ii_: (B4Cygr + BuBsCsgr+ @,Cogr)

+(Cro1+B5Cao1) + @Cocr 2 %(Cy +B5C5) -

(B2)

The upper and lower sign refer to 8~ and g* de-
cay, respectively. Here x=(2M)™'b, B,=u, - iy,
~ 4.7, and the nuclear-matrix-element ratios are
defined as follows:

B1=A7"T0)/(T1o)» (B3)

=V2(r*T ,)/(Tyo), (B4)

By =V2(T,)/(Ty,), (B5)

a,=@rT,®)/(Ty), (B6)

= (7 ¥, - DY/ (T )3, (®7)
where T are standard tensor operators

=UZ) (lvAm|JM) oy Y4 . (B8)

In @, the operator ¢ is replaced by the operator p.
Combinations of lepton wave functions are as
follows:

Cicr=Lo, (B9)

Cocr=—59°Lo— 5 aN,, (B10)

Cser=—%qN,, (B11)
2

Cacr =557 (Po=ULo), (B12)
1 1

csGT=mC3=3—M-[PO_3NO_(W_V)Lo]; (B13)
2 1

CSGTZM(? qL0+N0), (B14)
1 1

C7GT=2_A7C2=§M[(U+2(I)L0 - Py, (B15)

Cscr=Csor> (B16)

Coor = M( gLy~ N,). (B17)

All other notation has the usual meaning.

Equation (B2) as written corresponds to case B.
In order to obtain case A, one should omit the
term in the curly brackets, i.e., one should make
the replacement

{2t +E}-0.
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The y-ray yield for the reaction *Be(p,y)!'B has been measured over the range of bombard-
ing energies 0.20—0.85 MeV and the radiative decay of the 6.88-MeV resonance level in 1B
studied. A large nonresonant contribution to the reaction cross section has been identified
and compared with calculated cross sections based on an extranuclear direct-capture pro-
cess. The previously measured high isospin impurity of the 6.88-MeV state is consequently
significantly reduced; the amplitudes for the T'=0 and T =1 parts of the wave function for
this state are determined to be 0.92 and 0.39, respectively.

I. INTRODUCTION

A substantial effort has been directed towards
studying the level structure of the nuclei °Be and
o8B, The excitation region between 5.0 and 8.0
MeV in these nuclei has been of particular inter-
est,'~® but the investigation of levels is made dif-
ficult by the high density of broad states in °B in
this region. In addition, the 1~ level in '°B at
6.88 MeV with nominal isospin zero has been mea-
sured to have a high 7'=1 admixture,® * viz. more
than 25%.

The present work was undertaken to help clarify
the situation in '°B and to search for another 1-
level lying close to the 6.88-MeV state but with
T =1 which would give rise to the high isospin
impurity.

Cooper et al.® and Roush ef al.! have proposed
that the 7.44-MeV level in °B (corresponding to
a proton excitation energy of 948 keV) has J" =1~
and is the 7 =1 analog of the 1~ state at 5.96 MeV
in °Be. It is further suggested that the 7'=1
strength of the 5.96-MeV state is divided between

the two 1~ levels in '°B; the states at 6.88 and
7.44 MeV would then be expected to be highly iso-
spin mixed, a situation similar to that of the well-
studied® 16.63-16,93-MeV doublet in ®Be.

In the present investigation, a careful study of
the y decay of the 6.88-MeV level in !°B was made
with a high-resolution Ge(Li) spectrometer. Ex-
citation curves for the various decay modes were
measured and branching ratios obtained. No evi-
dence was found for a 1~ level in '°B lying closer
to the 6.88-MeV state than the 7.44-MeV level.

II. SELECTION RULES

Self-conjugate nuclei have been used extensively
for studying the isospin properties of nuclear lev-
els, since several electromagnetic transition
rules apply. In particular, E1 and M1 transitions
between states of the same isospin in these nuclei
are known to be strongly inhibited.”™® The energy
level diagram of °B is given in Fig. 1; branching
ratios and other level parameters are weighted
means from previous work.*



