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A quantum mechanical analysis of the bremsstrahlung ina decay of210Po is performed in close reference to
a semiclassical theory. We clarify the contribution from the tunneling, mixed, outside barrier regions, and from
the wall of the inner potential well to the final spectral distribution, and discuss their interplay. We also
comment on the validity of semiclassical calculations, and the possibility to eliminate the ambiguity in the
nuclear potential between the alpha particle and daughter nucleus using the bremsstrahlung spectrum.
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PACS number~s!: 23.60.1e, 03.65.Sq, 27.80.1w, 41.60.2m

Bremsstrahlung duringa decay and fission is one of the
intriguing current topics of nuclear physics. Also, it will shed
light on macroscopic quantum tunneling, which has been a
very popular subject in the past decades in many fields of
physics and chemistry. Kasagiet al. @1# measured the brems-
strahlung in thea decay from210Po, and showed that the
emission of low energy photons is systematically hindered
from what one expects from the pure Coulomb acceleration
of thea particle in the outside region of the potential barrier.
They speculated that this reduction is caused by a destructive
interference between the radiations in the tunneling and clas-
sically allowed regions, and thus might offer a possibility to
learn about the tunneling time. They also calculated the spec-
tral distribution based on a semiclassical theory of Dyakonov
and Gornyi@2#. Their calculations reproduce the experimen-
tal cross section well for low energy photons. In addition, an
interesting thing is that their calculations give a hump in
agreement with the measurement, which however has large
error bars in that region. On the other hand, the intensity of
the radiation observed by D’Arrigoet al. @3# for the alpha
decay from226Ra and214Po is larger than the prediction of
the pure Coulomb acceleration model. Also, their data show
no structure in the spectral distribution as expected from a
classical formula. In nuclear fission, a measurement by Luke
et al. @4# gave an upper bound to the bremsstrahlung rate for
the spontaneous fission of252Cf.

Recently, Papenbrock and Bertsch performed a quantum
mechanical calculation for the bremsstrahlung ina decay in
perturbation theory@5#. Their spectral distribution is mono-
tonic, though it is within the error bars of the data in Ref.@1#.
The authors claim that the contribution from the tunneling
wave function under the barrier is small. However, the defi-
nition of either classical or tunneling is not unique. More
studies from various points of view are clearly needed in
order to clarify the situation. The aim of this paper is to
resolve these puzzling problems relating to the spectral dis-
tribution, especially on the role of the tunneling region. To
this end, we perform a quantum mechanical analysis in a
way which has a close relation to semiclassical theory. As
we show later, quantum mechanical calculations are required

to have quantitative accuracy, while a semiclassical theory
provides a clear physical understanding of the phenomena by
bridging the quantum mechanical and classical calculations
of the bremsstrahlung. It also provides a more definitive un-
derstanding of the role of quantum tunneling by naturally
dividing the whole region into the classical, mixed, and tun-
neling regions through classical turning points.

Fermi’s golden rule gives the following expression for the
photon emission per photon energy duringa decay in the
dipole approximation:
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whereV(r ) is the interaction between thea particle and the
daughter nucleus as a function of their separation distancer ,
m is their reduced mass, andEg is the photon energy. The
effective chargeZeff is given by Zeff5(ADZa2AaZD)/AP ,
whereAD , ZD , Aa , Za , andAP are the mass and atomic
numbers of the daughter nucleus and ofa particle, and the
mass number of the parent nucleus, respectively.F i(r ) and
F f(r ) are the appropriately normalized radial wave func-
tions of the initial and final states of thea particle, respec-
tively @5#.

As in Ref.@5#, we take the following simple model for the
interaction between thea particle and the daughter nucleus:

V~r !5~ZaZDe2/r !Q~r 2r 0!2V0Q~r 02r !. ~2!

The initial and final state wave functions are given by

F i5H ~m/\ki !
1/2Ri~r !/r ~r .r 0!,

Ni j 0~Kir ! ~r ,r 0!,
~3!

F f5H ~2m/p\2kf !
1/2Rf~r !/r ~r .r 0!,

Nf j 1~K fr ! ~r ,r 0!,
~4!

where Ri(r )5G0(h i ,kir )1 iF 0(h i ,kir ) and Rf(r )
5F1(h f ,kfr )cosa1G1(hf ,kfr)sina, a being the phase shift.
The wave numbers in these equations are given by
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Ki5\21A2m~Ei1V0!, ki5\21A2mEi , ~5!

K f5\21A2m~Ef1V0!, kf5\21A2mEf , ~6!

where Ei5Ea , Ea is the energy of thea decay,Ef5Ea
2Eg5Ea2\v andh the Sommerfeld parameter.

The transition matrix in Eq.~1! now reads

^F f u] rVuF i&5A 2m2

p\3kikf
H I W1E

r 0

`

drA~r !Rf~r !Ri~r !J ,

~7!

where A(r ) stands for] rV52ZaZDe2r 22, and the wall
contributionI W is given by

I W5~ZaZDe2/r 01V0!Rf~r 0!Ri~r 0!. ~8!

If we denote the external turning points in the initial and
final states byr ei andr e f , respectively, the integration in Eq.
~7! can be naturally divided into three parts, i.e., the integra-
tions betweenr 0 andr ei , betweenr ei andr e f , and between
r e f and `. We call them the tunneling, mixed, and outside
regions, respectively. Straightforward calculations of each
integral using the exact Coulomb wave functions will clarify
the role of each term, especially the role of the tunneling
region. Before we present the results of such quantum me-
chanical calculations, we wish to present semiclassical for-
mulas for radiation.

They can be derived by replacing the quantum mechanical
Coulomb wave functions by their semiclassical representa-
tions, which read@6#
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wherer e is the external classical turning point, andkl andk l
are the wave numbers for the orbital angular momentuml in
the classically allowed and forbidden regions, respectively.
Notice thatGl and Fl increase and decrease exponentially,
respectively, asr moves deeper inside the tunneling region.
We remark that the phase shifta in Eq. ~4! is proportional to
the tunneling probability and is very small. This can be
proved by matching the semiclassical wave function under
the potential barrier to the wave function in the region of the
potential well. We thus express tana as

tana5CaPt f , Pt f5expF22E
r 0

r e f
k1 f~r !drG , ~11!

wherePt f is the tunneling probability in the final state in the
WKB approximation. In Eq.~11! and in what follows, the

meaning of the lower indices will be obvious, e.g.,k1 f is the
wave number with angular momentum 1 in the final state.

We now derive the semiclassical formulas for the contri-
bution to the integral in Eq.~7! from the tunneling, mixed,
and outside regions separately.

~1! Tunneling region.The main contribution from the tun-
neling region comes from theF1•G0 term, whose semiclas-
sical representation is given by
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In obtaining the last expression, we expanded thek1 f(r )
2k0i(r ) up to the leading order of\21(111)/2m@r (t8)#2

1\v and introduced the time parameter along the~imagi-
nary! time axist i by

t i~r !5E
r 0

r dr

v i~r !
, v i~r !5A2

m
S ZaZDe2

r
2Ei D . ~14!

Ti5t i(r ei) is the tunneling time in the initial channel. The
lower index i of t i shows that the time is related to the
distancer through the velocity in the initial state. Notice that
the radiation amplitude in this region is given by the Laplace
transform of the acceleration if one could ignore the centrifu-
gal term. TheG1•G0 term is the largest as long as the inte-
gral itself is concerned. However, the contribution of this
term is reduced by the small value of tana in front of G1 .
We have a similar expression for theG1•F0 term, which is
also expected to be small. TheF1•F0 term is expected to be
the smallest.

~2! Mixed region.The mixed region, which is classically
allowed in the initial state but forbidden after radiation, is
beyond the scope of classical calculations in Refs.@1# and
@4#. Although quantum mechanical calculations are required
to quantitatively estimate the contribution from this region as
we show later, it is still interesting to see its semiclassical
representation. The contribution of theF1 term that domi-
nates in this region reads,
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We show later that this region strongly influences the behav-
ior of the spectral distribution at high energies.

~3! Outside the barrier.The main contribution in the clas-
sical region, i.e., outside the barrier, comes from theF1 term.
Its semiclassical expression reads
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This is nothing but the classical formula for the bremsstrah-
lung except for the existence of the centrifugal potential
term. The lower indexf of t f means that the timet is related
to the distancer through the velocity in the final state. We
have ignored the term where the action integrals in the initial
and final states enter with the same sign, because the sign of
the integrand in that case rapidly changes as a function ofr
and the value of integration becomes negligibly small.

We next consider the contribution from the wall. This
term has been overlooked in the calculations reported in Ref.
@1#. As we clearly demonstrate later, this is one of the key
issues to resolve the discrepancy between the calculations in

Refs. @1# and @5#. The contribution of theF0 term can be
safely ignored unless the energy of thea particle is very
close to the top of the potential barrier. Using Eq.~11!, the
remaining terms can be expressed as

Rf~r 0!G0~h i ,kir 0!

;
1

2 S kfki
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cosa~112Ca!
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2 1\v Ddt i G . ~17!

We now analyze the bremsstrahlung in thea decay from
210Po, whereEa55.3 MeV. We determine the potential pa-
rameters in the same way as in Ref.@5#, i.e., by matching the
quantum mechanical wave functions atr 0 , and by calculat-
ing the decay width by normalizing the current atr e to the
probability inside. An alternative is to use the semiclassical
quantization rule and theR-matrix theory for the decay rate
@see Eqs.~3! and ~4! in Ref. @7##. We found, however, that
the semiclassical quantization rule is not valid with signifi-
cant influences on the bremsstrahlung spectrum~see later
and Ref.@8#!.

Figure 1 shows the spectral distribution calculated quan-
tum mechanically with one of the potential parameter sets,
V0521.37 MeV andr 058.055 fm, which gives 5 nodes to
the wave function for the radial motion. The general behav-
ior of the theoretical results do not depend so much on the
particular choice of the potential parameters~see below,
however!. This potential parameter set corresponds to that in
Refs. @5,9#. The thick solid line represents the total photon
emission probability. It is a monotonically decreasing func-
tion and is consistent with the data except for the last data
point. The figure also shows that various components have
nearly the same order of magnitude, and that the final spec-
trum is the result of a complicated interference among them.
In order to see the role of tunneling and classical regions and
the interplay of each contribution more clearly, we show in
Fig. 2 spectral distributions by dividing into the classical and
tunneling contributions. We present two different combina-
tions depending on whether we consider the mixed region

FIG. 1. Total photon emission probability and its decomposi-
tion. The potential parameters areV0521.37 MeV and r 0

58.055 fm. The crosses are the mixed region contribution calcu-
lated semiclassically. All the other lines have been obtained quan-
tum mechanically. The data are taken from Ref.@1#.

FIG. 2. Grouping of each component into classical and tunnel-
ing contributions. The potential parameters are the same as those
for Fig. 1.
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classical or tunneling. We call the part containing the outside
barrier component the classical. In either case, the soft pho-
ton emission is dominated by classical contributions. This
follows from the strong cancellation between the wall con-
tribution and the contribution from the integral in the tunnel-
ing region. If the potential has a finite slope at the inner
turning point and if one could ignore the centrifugal term, the
net contribution from the tunneling region should be zero in
the soft photon limit. Our result matches with this general
aspect. For high energy photons, the classical and the tunnel-
ing contributions have nearly the same magnitude and inter-
fere destructively leading to a much smaller photon emission
than the prediction of the classical theory. The dot-dashed
line in Fig. 2 shows the photon emission probability obtained
by summing the contributions from the outside barrier and
tunneling regions. Interestingly, this has a hump at high pho-
ton energies, just like that discussed in Ref.@1#, which over-
looked the wall contribution and ignored the contribution
from the mixed region. However, this interesting interference
pattern is hidden by these contributions.

As is well known, the resonance position and the decay
width do not uniquely determine the potential. Each potential
gives a different value for the coefficientCa in our formal-
ism. An interesting question is then whether the bremsstrah-
lung can be used to give additional constraints to the poten-
tial. If one restricts to the simple square well potential in Eq.
~2!, various sets correspond to different number of nodesn in
the radial wave function inside the potential well. We found
that the spectral distribution is almost indistinguishable as
long asn<7. For larger values ofn, one starts to notice a
difference in that the soft photon emission probability is pre-
dicted to be recognizably larger than the prediction of the
classical theory. As an example, we show in Fig. 3 the spec-
tral distribution calculated by the potential set,V05107.3
MeV andr 057.947 fm, which corresponds ton511 implied
by the number of redundant states due to Pauli principle in a
simple cluster model. Notice that the total photon spectrum
~thick solid line! noticeably deviates from the classical spec-
trum ~thin solid line! for photon energies smaller than 150
keV in contrast to Fig. 1. In this respect, it would be ex-
tremely interesting to extend the data towards lower photon
energies to examine whether the shallow or the deep poten-
tial agrees better with the data of bremsstrahlung.Ca gradu-

ally decreases from 0.041 to20.055, and from20.25 to
20.28 for the potentials in Figs. 1 and 3, respectively, asEg
changes from 0 to 600 keV. Note that the emission probabil-
ity of zero energy photons is not influenced by the potential
parameters as discussed in Ref.@5#. We have confirmed that
our numerical calculations reproduce the emission probabil-
ity of zero energy photons given by Eq.~19! of Ref. @5# for
both potential sets for Figs. 1 and 3. We found also that the
finite spin of photons plays a negligible role in this respect.

We finally comment on the validity of semiclassical cal-
culations. We already mentioned a problem with the semi-
classical quantization rule in determining the potential pa-
rameters. SinceCa is sensitive to the slope of the wave
function at the matching point, it causes a serious error in
properly describing the bremsstrahlung spectrum. We found
that the wall contribution itself gets very small because of
the cancellation between theF1 andG1 terms in Eq.~17! if
we adopt any potential set determined by using the semiclas-
sical quantization rule. Consequently, the contribution from
the tunneling region dominates the spectrum at soft photons
giving larger cross section than the classical prediction. An-
other problem is that two turning pointsr ei and r e f lie too
close to each other to use naive semiclassical wave functions.
The crosses in Fig. 1 represent the contribution from the
mixed region calculated semiclassically. The deviation from
the dot-dashed line clearly shows the failure of the semiclas-
sical calculations. Since the contribution from the mixed re-
gion strongly influences the high energy spectrum, this is a
serious problem. The semiclassical calculations reproduce
the qualitative behavior of the quantum mechanical results
quite well for the contributions from the regions under and
outside the barrier, but have some quantitative inaccuracy
especially at high energies.

In summary, our analysis shows that the final bremsstrah-
lung spectrum results from a subtle interference of the con-
tributions of the tunneling, mixed, and classical regions as
well as the wall of the potential well, each of which has a
comparable magnitude. Semiclassical as well as classical
theories seem not to be reliable for describing these subtle
interference effects, though they give some clear understand-
ing of the phenomena. It would be very interesting if one
could perform more exclusive experiments to pick up each
contribution separately. The extension of data to more soft
photon side is awaited to provide a stringent test of the po-
tential between the alpha particle and the daughter nucleus.
Our study is based on the assumption of the validity of the
potential model. Though this assumption seems to work in
our analysis, it is a very interesting question to examine in
more detail whether the bremsstrahlung spectrum contains
some information beyond the scope of the potential model
such as the validity of the R-matrix theory and the preforma-
tion factor.
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FIG. 3. The same as Fig. 1, but forV05107.3 MeV andr 0

57.947 fm.
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