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Shape coexistence in doubly-magic56Ni by the Monte Carlo shell model
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The structure of low-lying states of56Ni is studied by the Monte Carlo shell model based on the quantum
Monte Carlo diagonalization method. The coexistence of spherical yrast, prolate deformed, and other non-yrast
states is described by the fullp f-shell calculations, by employing the FPD6 realistic residual interaction. To
understand the properties of eigenstates thus obtained, we utilize a mean field analysis, such as a potential
energy surface by constrained Hartree-Fock method.@S0556-2813~99!50304-X#

PACS number~s!: 21.60.Cs, 27.40.1z
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Shape coexistence has been observed in many nucle
variety of deformations can coexist in nuclei, e.g., spheric
prolate or oblate deformed, and superdeformed shapes.
cently a clear shape coexistence has been observed@1# in the
doubly-magic56Ni. We shall study, in this Rapid Commun
cation, the shape coexistence in56Ni within a large-scale
shell model by the quantum Monte Carlo diagonalizat
~QMCD! method @2–5#. We have already applied thi
method to the study of the yrast states of56Ni @5#. The yrast
level scheme has been demonstrated to be properly desc
in the full p f-shell calculation with the FPD6 interaction@6#,
while the validity of theN5Z528 shell closure was exam
ined @5#. In this Rapid Communication, we present a mo
comprehensive description of the structure of the low-ly
states of56Ni, demonstrating the feasibility of the QMCD
calculations for non-yrast states. Moreover, we show that
shell model calculation within a full major shell can produ
a distinct spherical-deformed shape coexistence. While s
a full major shell calculation has so far been impossible
56Ni, it has been made possible by the QMCD method. C
sequently eigenstates with various types of deformation
be described simultaneously by the same Hamiltonian.

As 56Ni is a self-conjugate nucleus, the coherence
tween proton-neutron wave functions can get stronger.
effect of theT50 part of the effective interaction can b
enhanced, driving the nucleus more deformed. Whethe
not a deformation takes place crucially depends on the ef
tive interaction. For instance, if we take too large aT50
strength, the ground state of56Ni becomes deformed. In a
earlier study, we found that the FPD6 interaction@6# is quite
reasonable and indeed reproduces the yrast properties of56Ni
@5#. We therefore use the FPD6 interaction throughout t
Rapid Communication.

We investigate, in this study, collective excitation mod
for low-lying states of56Ni, in which several nucleons ar
excited from f 7/2 into otherp f-shell orbits and the nucleu
can be strongly deformed. In addition to these collect
modes, single particle excitations should be considered. S
modes and their competition can be properly handled in
shell model framework. We thus present a level scheme
56Ni by a Monte Carlo shell model calculation based on
QMCD method.

Mean field approaches are known to be simple, yet use
PRC 590556-2813/99/59~4!/1846~5!/$15.00
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in investigating collective modes of nuclei. It seems th
there has been no extensive use of the mean field approa
connection to a spherical shell model. However, a mean fi
analysis can be incorporated quite nicely into the QMC
calculation, providing us with some insight into the nature
these collective modes. First we consider a constrai
Hartree-Fock~CHF! method~see@8,9# for instance! within
the given shell model space. Constraints are given forJx and
Q’s in a quadratic way:

H85H1a(
m

~^Qm&2qm!21b~^Jx&2 j x!
2, ~1!

where H, Qm(m522, . . . ,2) andJx are the shell mode
Hamiltonian, the isoscalar quadrupole operators, and
x-component of the angular momentum operator, resp
tively, andqm’s and j x are parameters. The values ofa and
b are positive, and are taken so as to achieve convergen
the iteration of the gradient method. We setj x5AJ(J11)
with J being the total angular momentum of the state un
consideration. In the following analysis, we take the axia
symmetric ansatz:q05A5/(16p)q andqm50(mÞ0). Note
thatq is the intrinsic quadrupole moment. The HF solution
H8 in Eq. ~1! will be called the CHF state. The potentia
energy surface~PES! is defined as the expectation value ofH
with respect to the CHF state for a givenq. The PES for56Ni
is shown in Fig. 1~a! as a function ofq. Note that the
p f-shell model space and the FPD6 interaction are used
Fig. 1~b!, the occupation numbers of thef 7/2 orbit are shown.

In Fig. 1~a!, the first minimum appears atq;0 for low-
spin states. In the ground state, this minimum correspond
the (f 7/2)

16 configuration, i.e., the doubly-magic shell. On th
other hand, a pronounced deformed minimum shows up
q;85 e fm2 for each spin. These deformed minima are
ferred to as prolate minima hereafter. As we shall see
prolate band is constructed upon this minimum. The bar
between two minima is as high as 5 MeV for the 01 state,
and it decreases gradually as the spin goes up. These do
minima are a characteristic feature of shape coexistence.
occupation number of thef 7/2 orbit for the prolate minimum
is about 10.5 as shown in Fig. 1~b!. This value is rather
constant for each spin.
R1846 ©1999 The American Physical Society
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The CHF states are, in general, neither eigenstates o
shell model Hamiltonian nor of angular momentum. Wh
CHF can give some guidance concerning the nature of
tain states, the full wave function will contain many mo
configurations, and therefore a full diagonalization is
quired. To obtain the eigenstates, we proceed to the QM
shell model calculation.

In this method, as candidates for basis vectors for dia
nalization of the shell model Hamiltonian, Slater determ
nants are stochastically generated by starting from the m
field solution @4#. These Slater determinants have t
following form @4#: e2b(hMF1saOa)uC&, wherehMF is a mean
field one-body Hamiltonian; theO’s express one-body field
and thes ’s are taken randomly@2#. The generated bases a
selected from these candidates by referring to the ene
eigenvalue obtained by the diagonalization. Note that
energy eigenvalue can be the one for an excited state w
bases are sampled for the corresponding eigenstate.
basis-sampling process is actually done for the magn
quantum number (M -) projected@3# or total angular momen
tum (J-) projected@5# Slater determinant. The former~latter!
is calledM (J)-compression@5#. A calculation by the lates
method~i.e., phase III! is presented for yrast states in@5#.

In obtaining non-yrast eigenstates, there are, in gene
two aspects. One is the proper basis-sampling for consi
ing dynamics, while the other is an orthogonalization con
tion to other eigenstates with the same quantum num
during the basis-sampling process. The latter can be, in
eral, properly handled in theJ-compressioncalculation be-
cause each basis state has a definite angular momentum
to the angular momentum projection and the diagonaliza
ensures the orthogonality among eigenstates.

In the case of the prolate band of56Ni, the basis genera

FIG. 1. ~a! Potential energy surface in CHF;~b! occupation
numbers off 7/2 orbit; ~c! deformed single particle energies, as fun
tions of q.
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tion is simpler because the eigenstates are formed pred
nantly by states related to the deformed local minimum. W
therefore calculate such eigenstates by performing the ba
sampling around the second minimum. This is simp
achieved by substituting the CHF one-body Hamiltonian
q560;90 e fm2 to hMF . The orthogonality to the yras
state is fulfilled to a large extent because of the large diff
ence of deformation. Moreover, during theJ-compression
basis-sampling, the orthogonality condition between
yrast and the prolate states is explicitly taken into accoun
the diagonalization procedure.

Except for the spherical and prolate minima, there is
other definite minimum in Fig. 1~a! and it is difficult to fore-
see other eigenstates without the diagonalization of the s
model Hamiltonian. In order to obtain a non-yrast state,
carry out theJ-compressioncalculation as discussed below
The number of the basis-sampling steps depends on
choice ofhMF for a considered state. For yrast states, a o
body Hamiltonian of the HF@4# or cranked HF@5# is used
for hMF . For the state formed in a rather isolated minima,
one-body Hamiltonian of the constrained HF is utilized,
discussed above. For the general case, the structure o
J-projected energy surface can be useful. For instance, a
will discuss later, the generator coordinate method~GCM!
@8,9# calculation for the shell model can approximately gi
energy levels, including non-yrast states. The GCM eig
states are obtained by diagonalizing the Hamiltonian by
ing CHF states as the bases with constraints for appropria
chosen ‘‘coordinates.’’ These coordinates span a GCM
rameter space. In this space, we can find a region releva
the eigenstate being calculated. This is the region where
QMCD basis sampling is started and also is carried out
marily. ThehMF’s of this region are determined by the CH
method for the correspondingq values. In the GCM, a pa
rameter space is spanned by few variables, while in
QMCD basis sampling, this restriction is absent. Hence, a
the sufficient QMCD basis-sampling, QMCD eigenstates c
become quite different from the GCM eigenstates by inc
porating various correlations outside the GCM. In this wa
we can obtain precise wave functions, properly consider
the two aspects above.

In Fig. 2, the obtained energy spectra and theB(E2) val-
ues are shown, where 45 bases are taken in total for e
spin. Only the largeB(E2)’s are indicated. The effective
chargesep51.23e and en50.54e are taken@5# which is
similar to other choices in this region; see for comparis
@1,6,7#.

As we already reported in Ref.@5#, the experimental leve
scheme is well reproduced for yrast states by the pre
calculations. A salient feature of56Ni is the appearance o
the excited rotational band. The QMCD calculation inde
reproduces the experimental levels of this rotational band
seen in Fig. 1. This is nothing but the prolate band in CH
The bandhead energy calculated by the QMCD is 4.6 M
The rotational states are formed on top of this 0p

1 state in
Fig. 2. The subscriptp denotes the members of this prola
band hereafter. The sum of theB(E2)’s from the 0p

1 state is
2334e2 fm4, which is about three time larger than the o
for the 01

1 state@5#. This shows a large collectivity of the
prolate states.

We consider the quadrupole moments and inbandE2
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strengths. The intrinsic quadrupole momentq is about
85 e fm2 for the local minimum in Fig. 1~a!. AssumingK
50, the spectroscopic quadrupole moments are estimate
Q52J/(2J13)(q/e)(ep1en), which turn out to be243,
255, 260, and263 e fm2 for 2p

1 , 4p
1 , 6p

1 , and 8p
1 , re-

spectively. These are consistent with those computed f
QMCD eigenstates:243, 254, 261, and 265 e fm2,
respectively. In the same way, we can estimate the inb
E2 strengths by B„E2:J1→(J12)1

…MF5(5/16p)(ep

1en)2(q/e)2u^J020uJ12,0&u2, which take the values, 2251
1157, 1023, and 970e2 fm4, for J50,2,4,6, respectively. On
the other hand, in the QMCD calculation, the sameB(E2)’s
are 1865, 1118, 904, and 834e2 fm4, respectively. Sizable
differences exist, while the mean field values give a go
approximation. The deformation parameterb2 @10# evalu-
ated from theseB(E2)’s is about 0.32. This value appears
be large for thep f-shell and heavier nuclei, indicating
strong deformation. We comment that the intrinsic quad
pole moment has been studied by HF1SLy4 and truncated
shell model calculations in Ref.@1#.

The magnetic moments of the yrast~prolate! QMCD
states are 1.01~1.01!, 2.03~2.02!, 3.02~3.03!, and 4.04~4.05!
(mN

2 ) for 21, 41, 61 and 81 states, respectively, where w
use the sping factor quenched by a factor of 0.8.

The mean-field description gives us a rather good pict
of the prolate band. However, the projected energy of
intrinsic state is still about 2 MeV higher than the one o
tained by the QMCD calculation. The QMCD calculatio
gathers many correlated bases, and the mixing between
and prolate states is also included. Consequently a cons
able energy shift is obtained and the wave function is
proved. To clarify this point, we compute the overlap b
tween the wave function projected from the CHF state at
local minimum and the corresponding QMCD eigensta
The overlap probabilities are 0.45, 0.54, 0.46, 0.52, and 0
for 0p

1 , 2p
1 , 4p

1 , 6p
1 and 8p

1 , respectively. Mean field com
ponents in the QMCD wave functions are about half.

Next we consider the occupation numbers of each orb
the QMCD wave functions. The occupation numbers off 7/2

for the 01
1 , 21

1 , 41
1 , 61

1 , and 81
1 states are 14.6, 13.0, 13.

13.6, and 13.4, respectively. On the other hand, the co

FIG. 2. Experimental levels@1,12# of 56Ni compared with
QMCD and GCM results with a FPD6 Hamiltonian. The GC
energies are shown relative to the QMCD ground state.
B„E2:(J11 or 2)→J1

… values, which are larger than 100e2 fm4,
are indicated by the width of the arrows.
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sponding numbers for the prolate states are 10.9, 10.6, 1
10.5, and 10.5, respectively, and are rather constant. T
values are also consistent with the CHF value in Fig. 1~b!.
Thus, the prolate deformed band is mainly generated by
citing four nucleons to upperp f-shell orbits from the ground
state.

The conventional shell model diagonalization in the tru
cated model space is also carried out, allowing up to 6p6h
excitations fromf 7/2 to upper orbits. This calculation is on
of the state-of-the-art calculations with dimension reach
24.7 million in theM scheme. For the 01

1 and 21
1 states, the

results were reported in Ref.@5#. The QMCD results are
better than those of this shell model calculation, especia
in the 21

1 level @5#.
Here we make a similar comparison for prolate deform

states. Since the CHF result indicates that the aver
particle-hole excitation is about 6p6h, this 6p6h truncation
may not be rational. However the 6p6h truncated shell
model calculation can produce the precursor of the pro
band as intruder states. The bandhead energy appears
1.6 MeV higher than the QMCD calculation. The avera
number of excited nucleons is 3.5 for this 01 state of the
6p6h shell model, while it reaches 5.1 for the QMCD. Co
cerning the inbandB(E2:01→21), the 6p6h value is
smaller by a factor of 3 than the QMCD value. At the 6p6h
truncation, the prolate band structure keeps develop
gradually as the shell model space becomes larger.

In addition to the prolate states, we investigate other n
yrast levels. There are few experimental levels@1#, while the
FPD6 interaction predicts several non-yrast states at low
ergy. For these states, the PES does not help so much
cause the PES atq,0 is rather flat. The QMCD method ca
still describe these states without much difficulty, as sho
below. For instance, a third 01 state exists near the secon
01 state. The sum ofE2 strengths from the 03

1 state is
1660e2 fm4, i.e., about twice larger than the one for the 01

1

state. Thus, the 03
1 state is rather collective. Some other le

els are shown in Fig. 2.
In order to understand the origin of these states, we

back to the GCM calculation for the ‘‘coordinate’’q. Theq
axis is divided into 45 mesh points, and the Hamiltonian
diagonalized for theJ-projected bases on these mesh poin
As the realistic shell model has various degrees of freed
it is, in general, difficult to specify the shell model eigensta
only by one parameterq. Consequently the obtained eigene
ergies are rather poor compared to those of the QM
method: for instance, 2.7 MeV too high for 01

1 . The same
GCM calculations are done for other spins and the results
shown in Fig. 2. For other spins, eigenvalues are also
;2.5 MeV higher than those of the QMCD calculation
Consequently the GCM calculations can give a qualitativ
similar level scheme to the QMCD results. For the prola
states, the quadrupole moments and theB(E2)’s of the
GCM eigenstates are similar to those of the QMCD eig
states, except for the 0p

1→2p
1 transition. TheB(E2)’s of the

GCM calculations are 2514, 1049, 1081 and 865e2 fm4 for
0p

1→2p
1 , 2p

1→4p
1 , 4p

1→6p
1 , and 6p

1→8p
1 , respectively.

On the other hand, for other states, theB(E2)’s are quanti-
tatively rather different, as shown in Fig. 2.
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Although the eigenenergies of the GCM are not so ac
rate, the GCM can give us an improved understanding ab
the shell model, compared to the CHF. For instance, a G
eigenstate can be directly related to mean field by the ove
with a CHF state of a given value ofq. In Fig. 3, this overlap
is shown for 01, 41, and 81 states as functions ofq. We
confirm that the prolate states originate sharply in the pro
region. Moreover the 03

1 , 23
1 , 43

1 , and 62
1 states are found

to be excited states with nodal structure in the wide ob
well. Note that this seems to be a first attempt to apply
GCM to shell model calculations. The present GCM calc
lations are carried out under the axially symmetric ansatz
a forthcoming paper, this restriction will be lifted.

In Fig. 2, one state is experimentally known near the 81
1 ,

whose spin has not been assigned. In the QMCD le
scheme, a candidate of this state is 82

1 . This state is inter-
esting because in the QMCD calculation its quadrupole m
ment is 62e fm2 and the occupation number off 7/2 is 12.8.
The difference of the occupation number off 7/2 between the
ground state and this 82

1 state is 14.6212.851.8, which sug-
gests the 2p2h excitation from the correlated ground state
the main component of this state. By the GCM analysis,
state is composed of the bases atq525;75 e fm2 as shown
in Fig. 3. To understand the origin of this state, we exam
the CHF deformed single particle energies as shown in
1~c!. This diagram is somewhat similar to Nilsson’s diagra
@11#. In the FPD6 interaction, the spherical single parti
energies with respect to the40Ca core are taken as28.39,
26.50, 21.90, and24.48 MeV for f 7/2, p3/2, f 5/2, and
p1/2, respectively. In the diagram of Fig. 1~c!, on the other
side, thef 5/2 andp3/2 are almost degenerate atq50 for 56Ni.
At q,0, aN5Z528 shell gap remains prominent, while
q.0, orbits from the upper shell come down. For56Ni, the
fifth deformed orbit is relevant to the present point. Th
orbit is mainly an admixture off 5/2 and p3/2. At q
.50 e fm2, the upper orbits are considerably admixed w

FIG. 3. Overlaps between theJ-projected CHF state and GCM
eigenfunctions for 01, 41, and 81 states.
-
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f 7/2. The resultant CHF state has large components of up
orbits and becomes deformed. Thus the prolate band app

For q.20 e fm2, as the fifth orbit comes down, the exc
tation across the Fermi surface can easily take place.
generate a higher spin state, this excitation is energetic
favored around the crossing of the fourth and fifth orbits. W
expect that the 82

1 state is predominantly a CHF state of th
nature. We confirm this in two ways. TheK quantum num-
bers of these orbits before the crossing are 7/2 and 1/2
spectively. If two nucleons jump across the Fermi surfa
the totalK becomes 23(7/261/2)56 or 8. We assumeK
58. The spectroscopic quadrupole moment can be estim
from the mean field value asQ5 40

57 (q/e)(ep1en)
;62 e fm2, for q;50 e fm2. This estimate agrees with th
quadrupole moment of the QMCD wave function. Moreov
the angular momentum projection from the CHF state aq
;50 e fm2 produces a wave function with a quadrupole m
ment as large as that of the 82

1 state.
For the lower spin states, the ’1p1h’ excitation is enough

for spin coupling, because the ’1p1h’ excitation from f 7/2 to
f 5/2 brings about the angular momentum 11;61, while the
’2 p2h’ excitation 21;121. Here, ’ ’ means excitation from
the ground state to upper orbits. The former is energetic
favored for low-spin states. In the QMCD eigenstates,
occupation numbers off 7/2 for 01

1;71
1 and 82

1 states are
14.6, 13.7, 13.0, 13.4, 13.2, 13.5, 13.6, 12.4, and 12.8,
spectively. Thus, the 11

1;61
1 states are of ’1p1h’ excitation

nature.
In summary, we demonstrated the feasibility of QMC

calculations for non-yrast states. For obtaining such sta
we extended the QMCD method, considering the underly
dynamics. We utilized the CHF method and GCM as a gu
for the basis-sampling of the QMCD calculation. Cons
quently we were able to obtain the yrast, prolate, and ob
states of56Ni. To understand the obtained wave function
we performed a mean field analysis with the shell mo
Hamiltonian and space. By the CHF analysis, we found
existence of the prolate deformed band. In general the C
analysis can play an indispensable role in clarifying the ba
structure of the collective modes embedded in a shell mo
space. For instance, we found the deformed minima for
semimagic nuclei in thep f-shell region such as54Fe @13#.
Moreover, we predicted other low-lying non-yrast states.
introducing the GCM calculations and the single particle e
ergy diagram, the origin of these states can be suggeste
being a collective excitation mode in the oblate well a
single-particle excitation mode.

Recent experimental data@1# show that56Ni has two de-
formed side bands. In this study, we pointed out that
lower deformed band can be understood within thep f-shell
calculation. For the description of the other deformed ba
the explicitg9/2 degree of freedom seems to be essential.
are pursuing this interesting problem by the same meth
extending the shell model space.
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