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The structure of low-lying states 6fNi is studied by the Monte Carlo shell model based on the quantum
Monte Carlo diagonalization method. The coexistence of spherical yrast, prolate deformed, and other non-yrast
states is described by the fuif-shell calculations, by employing the FPD6 realistic residual interaction. To
understand the properties of eigenstates thus obtained, we utilize a mean field analysis, such as a potential
energy surface by constrained Hartree-Fock meth®8@556-28139)50304-X]

PACS numbd(s): 21.60.Cs, 27.46-z

Shape coexistence has been observed in many nuclei. it investigating collective modes of nuclei. It seems that
variety of deformations can coexist in nuclei, e.g., sphericalthere has been no extensive use of the mean field approach in
prolate or oblate deformed, and superdeformed shapes. Reennection to a spherical shell model. However, a mean field
cently a clear shape coexistence has been obs¢tyeuthe  analysis can be incorporated quite nicely into the QMCD
doubly-magic®®Ni. We shall study, in this Rapid Communi- calculation, providing us with some insight into the nature of
cation, the shape coexistence ¥Ni within a large-scale these collective modes. First we consider a constrained
shell model by the quantum Monte Carlo diagonalizationHartree-Fock(CHF) method(see[8,9] for instance within
(QMCD) method [2-5]. We have already applied this the given shell model space. Constraints are gived fand
method to the study of the yrast states®@fli [5]. The yrast Q’s in a quadratic way:
level scheme has been demonstrated to be properly described
in the full pf-shell calculation with the FPD6 interactid@l,
while the validity of theN=2Z=28 shell closure was exam- H' =H+aX ((Q.)—-a,)%+B(3)—i0% (@
ined [5]. In this Rapid Communication, we present a more "
comprehensive description of the structure of the low-lying
states of >*Ni, demonstrating the feasibility of the QMCD WhereH, Q, (x=-2,...,2) andJ, are the shell model
calculations for non-yrast states. Moreover, we show that th&lamiltonian, the isoscalar quadrupole operators, and the
shell model calculation within a full major shell can produce X-component of the angular momentum operator, respec-
a distinct spherical-deformed shape coexistence. While sudiively, andq,’s andj, are parameters. The values @fand
a full major shell calculation has so far been impossible for are positive, and are taken so as to achieve convergence of
%Ni, it has been made possible by the QMCD method. Conthe iteration of the gradient method. We get yJ(J+1)
sequently eigenstates with various types of deformation cawith J being the total angular momentum of the state under
be described simultaneously by the same Hamiltonian. consideration. In the following analysis, we take the axially

As Ni is a self-conjugate nucleus, the coherence besymmetric ansatzg,= \5/(167)q and d,=0(u+#0). Note
tween proton-neutron wave functions can get stronger. Th#éhatq is the intrinsic quadrupole moment. The HF solution to
effect of theT=0 part of the effective interaction can be H' in Eq. (1) will be called the CHF state. The potential
enhanced, driving the nucleus more deformed. Whether oenergy surfacéPES is defined as the expectation valuetbf
not a deformation takes place crucially depends on the effeawith respect to the CHF state for a givgnThe PES for®Ni
tive interaction. For instance, if we take too largel &0 is shown in Fig. 1@ as a function ofg. Note that the
strength, the ground state 8fNi becomes deformed. In an pf-shell model space and the FPD6 interaction are used. In
earlier study, we found that the FPD6 interactj6iis quite  Fig. 1(b), the occupation numbers of tlfig, orbit are shown.
reasonable and indeed reproduces the yrast propertiéiliof In Fig. 1(a), the first minimum appears gt~0 for low-

[5]. We therefore use the FPD6 interaction throughout thispin states. In the ground state, this minimum corresponds to
Rapid Communication. the (f;,,) 1® configuration, i.e., the doubly-magic shell. On the

We investigate, in this study, collective excitation modesother hand, a pronounced deformed minimum shows up at
for low-lying states of°®Ni, in which several nucleons are gq~85 e fm? for each spin. These deformed minima are re-
excited fromf, into otherpf-shell orbits and the nucleus ferred to as prolate minima hereafter. As we shall see, a
can be strongly deformed. In addition to these collectiveprolate band is constructed upon this minimum. The barrier
modes, single particle excitations should be considered. Sudbetween two minima is as high as 5 MeV for thé 8tate,
modes and their competition can be properly handled in thend it decreases gradually as the spin goes up. These double
shell model framework. We thus present a level scheme afinima are a characteristic feature of shape coexistence. The
%8Ni by a Monte Carlo shell model calculation based on theoccupation number of thg,, orbit for the prolate minimum
QMCD method. is about 10.5 as shown in Fig(Hd. This value is rather

Mean field approaches are known to be simple, yet usefukonstant for each spin.
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(a) ] tion is simpler because the eigenstates are formed predomi-
nantly by states related to the deformed local minimum. We
therefore calculate such eigenstates by performing the basis-
sampling around the second minimum. This is simply
achieved by substituting the CHF one-body Hamiltonian at
q=60~90e fm? to hye. The orthogonality to the yrast

-180}

<H> (MeV)
|
2

-200} state is fulfilled to a large extent because of the large differ-
F— ence of deformation. Moreover, during tllecompression
15 basis-sampling, the orthogonality condition between the
I yrast and the prolate states is explicitly taken into account by
A 12 the diagonalization procedure.
o I Except for the spherical and prolate minima, there is no
Vo9 other definite minimum in Fig. (&) and it is difficult to fore-
I see other eigenstates without the diagonalization of the shell
6 model Hamiltonian. In order to obtain a non-yrast state, we
i carry out theJ-compressiortalculation as discussed below.
=~ ‘5_ The number of the basis-sampling steps depends on the
< 10 choice ofhy for a considered state. For yrast states, a one-
~ L ] body Hamiltonian of the HF4] or cranked HH5] is used
w 15[ for hye. For the state formed in a rather isolated minima, the
20' [N ] one-body Hamiltonian of the constrained HF is utilized, as
B NN BN discussed above. For the general case, the structure of the
-100 -50 q (f;fmz)ﬁ'o 100 J-projected energy surface can be useful. For instance, as we

will discuss later, the generator coordinate metiGLCM)

FIG. 1. (a) Potential energy surface in CHRb) occupation [8,9] calculation for the shell model can approximately give

numbers off ;,, orbit; () deformed single particle energies, as func- €N€rgy levels, including non-yrast states. The GCM eigen-
tions of g. states are obtained by diagonalizing the Hamiltonian by us-

ing CHF states as the bases with constraints for appropriately

The CHF states are, in general, neither eigenstates of tHg10sen “coordinates.” These coordinates span a GCM pa-
shell model Hamiltonian nor of angular momentum. While "ameter space. In this space, we can find a region relevant to
CHF can give some guidance concerning the nature of cefh€ eigenstate being calculated. This is the region where the
tain states, the full wave function will contain many more QMCD basis sampling is started and also is carried out pri-
configurations, and therefore a full diagonalization is re-marily. Thehye's of this region are determined by the CHF
quired. To obtain the eigenstates, we proceed to the QMcmethod for the corresponding values. In the GCM, a pa-
shell model calculation. rameter space is spanned by few variables, while in the

In this method, as candidates for basis vectors for diagoQMCD basis sampling, this restriction is absent. Hence, after
nalization of the shell model Hamiltonian, Slater determi-the sufficient QMCD basis-sampling, QMCD eigenstates can
nants are stochastically generated by starting from the meaR€come quite different from the GCM eigenstates by incor-
field solution [4]. These Slater determinants have thePorating various correlations outside the GCM. In this way,
following form [4]: efﬂ(hMF+oaOa)|q;>, wherehy- is a mean We can obtain precise wave functions, properly considering
field one-body Hamiltonian; th®’s express one-body fields he two aspects above.
and theg's are taken randomlf2]. The generated bases are !N Fig. 2, the obtained energy spectra andB{&2) val-
selected from these candidates by referring to the energyeS are shown, where 45 bases are taken in total for each
eigenvalue obtained by the diagonalization. Note that thi$Pin- Only the largeB(E2)'s are indicated. The effective
energy eigenvalue can be the one for an excited state whé&fargese,=1.2% and e,=0.54 are taken[5] which is
bases are sampled for the corresponding eigenstate. THeimilar to other choices in this region; see for comparison
basis-sampling process is actually done for the magnetiE:1’6’7]- _ )
quantum numberNl-) projected 3] or total angular momen- As we already reported in Rdf], the experimental level
tum (J-) projected 5] Slater determinant. The forméatten scheme' is well reproduced for yragt states by the present
is called M (J)-compressiorf5]. A calculation by the latest calculat_lons. A s_allent feature 8fNi is the appearance of
method(i.e., phase Il is presented for yrast states . the excited rotatlonal_ band. The QMCD_ calcul_atlon indeed

In obtaining non-yrast eigenstates, there are, in generaqurOQucgs the ex_pe.rlmential levels of this rotational _band, as
two aspects. One is the proper basis-sampling for considef€€n in Fig. 1. This is nothing but the prolate ba.nd in CHF.
ing dynamics, while the other is an orthogonalization condi-The bandhead energy calculated by the QMCD is 4.6 MeV.
tion to other eigenstates with the same quantum numberkhe rotational states are formed on top of this State in
during the basis-sampling process. The latter can be, in gefig. 2. The subscripp denotes the members of this prolate
eral, properly handled in thd-compressiorcalculation be-  band hereafter. The sum of tB§E2)’s from the @ state is
cause each basis state has a definite angular momentum dR@34e” fm*, which is about three time larger than the one
to the angular momentum projection and the diagonalizatiofior the 0/ state[5]. This shows a large collectivity of the
ensures the orthogonality among eigenstates. prolate states.

In the case of the prolate band &iNi, the basis genera- We consider the quadrupole moments and inb&
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sponding numbers for the prolate states are 10.9, 10.6, 10.6,
QMCD EXP. 10.5, and 10.5, respectively, and are rather constant. These
I o values are also consistent with the CHF value in Fidp).1
10f . N Thus, the prolate deformed band is mainly generated by ex-
- 6 8 ) @) citing four nucleons to uppgrf-shell orbits from the ground
= 4 ¢ —8_ ) state.
%’/ o - - @) The conventional shell model diagonalization in the trun-
. > —_— 2 cated model space is also carried out, allowing up péi6
= o — excitations fromf,,, to upper orbits. This calculation is one
. of the state-of-the-art calculations with dimension reaching
24.7 million in theM scheme. For theDand 2 states, the
- . results were reported in Ref5]. The QMCD results are
0- -0 - better than those of this shell model calculation, especially,

; +
FIG. 2. Experimental level§1,17 of *Ni compared with "M the 2, level[5]. o )
QMCD and GCM results with a FPD6 Hamiltonian. The GCM ~ Here we make a similar comparison for prolate deformed

energies are shown relative to the QMCD ground state. Thetates. Since the CHF result indicates that the average
B(E2:(J+1 or 2)—J") values, which are larger than 1@8 fm*, particle-hole excitation is aboutp®&h, this 6p6h truncation
are indicated by the width of the arrows. may not be rational. However thep6h truncated shell
model calculation can produce the precursor of the prolate
strengths. The intrinsic quadrupole momegtis about pand as intruder states. The bandhead energy appears about
85 e fm? for the local minimum in Fig. (&). AssumingK 1.6 MeV higher than the QMCD calculation. The average
=0, the spectroscopic quadrupole moments are estimated @§mper of excited nucleons is 3.5 for thig Gtate of the
Q= —J/(2J+3)(q/e)(e,7+2ev), which turn out to be=43,  gpeh shell model, while it reaches 5.1 for the QMCD. Con-
—55, 60, and—63 e fm? for 2., 4;, 6;, and § , re-  ceming the inbandB(E2:0°—2+), the 6p6h value is
spectlvely_. These are consistent with those computeczj fror@maller by a factor of 3 than the QMCD value. At thp@h
QMCD eigenstatesi—43, —54, —61, and —65e ", 4 ncation, the prolate band structure keeps developing
respectively. In the same way, we can estimate the 'nbangradually as the shell model space becomes larger.

L1+ + —
52 2St|’(/3ngzt|h3 0 2b8|' JE(ZE(Z).]JZ _)rEJ ;]r ?)k )'\{'E_ (5116’7) (2e2775 1 In addition to the prolate states, we investigate other non-
e,)*(a/e)"( )", which take the values, ' yrast levels. There are few experimental le\@l while the

1157, 1023, and 978" fm*, for J=0,2,4,6, respectively. On FPD6 interaction predicts several non-yrast states at low en-

the other hand, in the QMCD calculation, the sa&{&2)’'s P y

are 1865, 1118, 904, and 884 fm*, respectively. Sizable <97 For these states, the PES does not help so much be-
' ¥ : ; fause the PES at<0 is rather flat. The QMCD method can

differences exist, while the mean field values give a goo il d ive th th h difficul h
approximation. The deformation paramejgs [10] evalu- still describe these states without much difiiculty, as shown
below. For instance, a third"0state exists near the second

ated from thes®(E2)’s is about 0.32. This value appears to -~ i
be large for thepf-shell and heavier nuclei, indicating a O* State. The sum oE2 strengths from the D state is
strong deformation. We comment that the intrinsic quadru1660€” fm*, i.e., about twice larger than the one for thg 0
pole moment has been studied by HELy4 and truncated state. Thus, the D state is rather collective. Some other lev-
shell model calculations in Refl]. els are shown in Fig. 2.

The magnetic moments of the yragtrolate QMCD In order to understand the origin of these states, we go
states are 1.31.01), 2.032.02, 3.023.03, and 4.044.05 back to the GCM calculation for the “coordinatej. Theq
(u2) for 2%, 4™, 6% and 8 states, respectively, where we axis is divided into 45 mesh points, and the Hamiltonian is
use the spirg factor quenched by a factor of 0.8. diagonalized for the-projected bases on these mesh points.

The mean-field description gives us a rather good picturés the realistic shell model has various degrees of freedom,
of the prolate band. However, the projected energy of thét is, in general, difficult to specify the shell model eigenstate
intrinsic state is still about 2 MeV higher than the one ob-0nly by one parametey. Consequently the obtained eigenen-
tained by the QMCD calculation. The QMCD calculation €rgies are rather poor compared to those of the QMCD
gathers many correlated bases, and the mixing between yra®ethod: for instance, 2.7 MeV too high fof 0 The same
and prolate states is also included. Consequently a conside®iCM calculations are done for other spins and the results are
able energy shift is obtained and the wave function is im-shown in Fig. 2. For other spins, eigenvalues are also 2
proved. To clarify this point, we compute the overlap be-~2.5 MeV higher than those of the QMCD calculations.
tween the wave function projected from the CHF state at théConsequently the GCM calculations can give a qualitatively
local minimum and the corresponding QMCD eigenstatesimilar level scheme to the QMCD results. For the prolate
The overlap probabilities are 0.45, 0.54, 0.46, 0.52, and 0.58tates, the quadrupole moments and BE2)’'s of the
for 0;, 2; , 4;, 6; and Eg , respectively. Mean field com- GCM eigenstates are similar to those of the QMCD eigen-
ponents in the QMCD wave functions are about half. states, except for the;0—>2; transition. TheB(E2)'s of the

Next we consider the occupation numbers of each orbit ifGCM calculations are 2514, 1049, 1081 and &5m* for
the QMCD wave functions. The occupation numberspf 0, —2,, 2, —4,, 4,—6,, and § —8, , respectively.
forthe Of , 27, 4, , 6], and § states are 14.6, 13.0, 13.2, On the other hand, for other states, BgE2)’s are quanti-
13.6, and 13.4, respectively. On the other hand, the corrdatively rather different, as shown in Fig. 2.
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f4;5. The resultant CHF state has large components of upper
orbits and becomes deformed. Thus the prolate band appears.
For g>20 e fm?, as the fifth orbit comes down, the exci-
tation across the Fermi surface can easily take place. To
generate a higher spin state, this excitation is energetically
favored around the crossing of the fourth and fifth orbits. We
expect that the 8 state is predominantly a CHF state of this
nature. We confirm this in two ways. Thé quantum num-
bers of these orbits before the crossing are 7/2 and 1/2, re-
spectively. If two nucleons jump across the Fermi surface,
the totalK becomes X (7/2+1/2)=6 or 8. We assum&
=8. The spectroscopic quadrupole moment can be estimated
from the mean field value asQ=23(qg/e)(e,+e,)
~62 e fm?, for q~50 e fm?. This estimate agrees with the
quadrupole moment of the QMCD wave function. Moreover
the angular momentum projection from the CHF state at
~50 e fm? produces a wave function with a quadrupole mo-
ment as large as that of the Sstate.
For the lower spin states, theplh’ excitation is enough
for spin coupling, because theplh’ excitation fromf, to
f5, brings about the angular momenturii-£6*, while the
'2 p2h’ excitation 2" ~ 12" . Here, ’ ' means excitation from
the ground state to upper orbits. The former is energetically
favored for low-spin states. In the QMCD eigenstates, the
occupation numbers of;, for 0 ~7; and 8 states are

Although the eigenenergies of the GCM are not so accul4.6, 13.7, 13.0, 13.4, 13.2, 135, 13.6, 12.4, and 12.8, re-
rate, the GCM can give us an improved understanding abowpectively. Thus, the 1~6, states are of 'p1h’ excitation
the shell model, compared to the CHF. For instance, a GChMature.
eigenstate can be directly related to mean field by the overlap In summary, we demonstrated the feasibility of QMCD
with a CHF state of a given value df In Fig. 3, this overlap calculations for non-yrast states. For obtaining such states,
is shown for 0, 4%, and 8" states as functions af. We  we extended the QMCD method, considering the underlying
confirm that the prolate states originate sharply in the prolatelynamics. We utilized the CHF method and GCM as a guide
region. Moreover the , 25 , 45 , and 6 states are found for the basis-sampling of the QMCD calculation. Conse-
to be excited states with nodal structure in the wide oblatéluently we were able to obtain the yrast, prolate, and oblate
well. Note that this seems to be a first attempt to apply thestates of*°Ni. To understand the obtained wave functions,
GCM to shell model calculations. The present GCM calcu-we performed a mean field analysis with the shell model
lations are carried out under the axially symmetric ansatz. Ifdamiltonian and space. By the CHF analysis, we found the
a forthcoming paper, this restriction will be lifted. existence of the prolate deformed band. In general the CHF

In Fig. 2, one state is experimentally known near thje 8 analysis can play an indispensable role in clarifying the basic
whose spin has not been assigned. In the QMCD levegtructure of the collective modes embedded in a shell model
scheme, a candidate of this state i§.8This state is inter- SPace. For instance, we found the deformed minima for the

1 * . . P . 4
esting because in the QMCD calculation its quadrupole moSemimagic nuclei in thef-shell region such as’Fe[13].
ment is 62e fm? and the occupation number 6§, is 12.8. Moreover, we predicted othe( low-lying non-yrast states. By
The difference of the occupation numberfef, between the introducing the GCM calculations and the single particle en-
ground state and this;8state is 14.6-12.8= 1.8, which sug- €9y diagram, the origin of these states can be suggested as
gests the P2h excitation from the correlated ground state asb_e'ng a C(_)Ilectlve_ excitation mode in the oblate well and
ingle-particle excitation mode.

the main component of this state. By the GCM analysis, this® . .
P Y y Recent experimental dafa] show that®Ni has two de-

state is composed of the basesjat25~ 75 e fm? as shown ) i :

in Fig. 3. To understand the origin of this state, we examin ormec(jj sf|de bgn;ls.dln th'i StUdg’ we %om.ter:]gl out tr?aﬁ the

the CHF deformed single particle energies as shown in Fi ower deformed band can be understood within frieshe

1(c). This diagram is somewhat similar to Nilsson’s diagramcaICUIat'on' For the description of the other deformed band,
the explicitgy, degree of freedom seems to be essential. We

[11]. In the FPD6 interaction, the spherical single particle : 9 .
energies with respect to tHCa core are taken as 8.39, are pursuing this interesting problem by the same method,

—6.50, —1.90, and—4.48 MeV for f7, Pajp, fe, and extending the shell model space.

P12, respectively. In the diagram of Fig(d, on the other

side, thef 5, andps,, are almost degenerategt 0 for >®Ni. We acknowledge Professor P. von Brentano and Professor
At q<0, aN=2Z=28 shell gap remains prominent, while at A. P. Zuker for fruitful discussions. We are grateful to Pro-
g>0, orbits from the upper shell come down. FONi, the  fessor A. Gelberg for reading the manuscript. This work was
fifth deformed orbit is relevant to the present point. Thissupported in part by Grant-in-Aid for Scientific Resea(Bh

orbit is mainly an admixture offs, and ps,. At q (No. 08454058 and (A)(2)(10304019 from the Ministry of
>50 e fm?, the upper orbits are considerably admixed withEducation, Science and Culture.

FIG. 3. Overlaps between thkprojected CHF state and GCM
eigenfunctions for ¢, 4", and 8" states.
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