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Nonlinear enhancement of the multiphonon Coulomb excitation in relativistic heavy ion collisions
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We propose a soluble model of the nonlinear effects in the Coulomb excitation of the multiphonon giant
dipole resonances. Analytical expressions for the multiphonon transition probabilities are derived, based on the
SU(1,1) algebra. For reasonably small magnitude of nonlineaxity0.1- 0.2 enhancement factor for the
double giant resonance excitation probabilities and the cross sections reaches vaildn3patible with
experimental data. The enhancement factor is found to decrease with increasing bombarding energy in the
range 70—700 MeV per nucleof50556-28139)50303-9

PACS numbses): 24.30.Cz, 13.75.Cs, 21.30.Fe, 25-78.

Coulomb excitation in collisions of relativistic ions is one [12—14. The use of this method is justified due to the small
of the most promising methods in modern nuclear physicsvavelenghts associated with the relative motion in relativis-
[1-6]. One of the most interesting applications of this tic heavy ion collisions. The intrinsic staf@ (t)) of excited
method to studies of nuclear structure is the possibility toucleus is the solution of the time dependent Sdimger
observe and study the multiphonon giant resonafitkdhe  equation

double dipole giant resonanc8GDR) have been observed 3w (1)

in a number of nuclef7—9]. The “bulk properties” of the i =[Ho+V()[1|¥(V),

one- and two-phonon GDR are now partly understpbf dt

and they are in a reasonable agreement with the theoretical

picture based on the concept of GDR-phonons as almost har- _ .

monic quantized vibrations. W) NE:O an(OIN yexp —iEnD), @

Despite that, there is a persisting discrepancy between the
theory and the data, observed in various experimghtd1]  whereH, is the intrinsic Hamiltonian an¥ is the channel-
that still remains to be understood: the double GDR excitacoupling interaction(we setfi=c=1). The problem is to
tion cross sections are found enhanced by factor 1.3—2 witfind the expansion amplitudes,(t) in the wave packefty)
respect to the predictions of the harmonic phonon picturés functions of impact parametewhereEy, is the energy of
[1,3,12,13. This discrepancy, which almost disappears athe stategN) with the numbers of excited GDR phonoNs
high enough bombarding energy, has attracted much attef-he excitation probabilityVy, of an intrinsic statgN) in a
tion in current literaturg¢4,14—21; among the approaches to collision with impact parametds and the total cross section
resolve the problem are the higher-order perturbation theoryy for excitation of the statéN) are
treatment 18], and studies of anharmonic/nonlinear aspects
of GDR dynamicg4,19-21. Recently, the concept of hot _ 2 _ -
phonons[16,17] within Brink-Axel mechanism was pro- Wi(B)=lan()[% o zwfbgerN(b)db' @
posed that provides microscopic explanation of the effect.
These seemingly orthogonal explanations deserve clarificavhereby, = 1.2(Abe+ ALY is the grazing impact parameter,
tion which we try to supply here. the labels exdsp refer to excited(spectator nucleus in a
The purpose of this work is to examine, witha a soluble  colliding pair. It is convenient to treat the coupled channel
model, the role of the nonlinear effects on the transition amEgs. (1) in terms of the unitary evolution operattl, such
plitudes that connect the multiphonon states in a heavy-iothat|(t))=U,(t)|0) solves Eq(1) in the interaction repre-
Coulomb excitation process. Most studies of anharmonisentation:
correctiong 19—-21] concentrated on their effect in the spec-
trum [22,23. Within our model, the nonlinear effects are el _ _ aiHgt —iHgt
described by a single parameter, and the model contains the IdtU'(t) VithU(®), - Vi) =eTev(te ’
harmonic model as its limiting case when the nonlinearity
goes to zero. We obtain analytical expressions for the prob- Uj(t=—oo) =1, (©)]
abilities of excitation of multiphonon states which substitute . I .
the Poisson formula of the harmonic phonon theory. For reawher? the tlme-erenden't Hamiltonieit) - Ho+ V(1) that
sonably small values of the nonlinearity, the present model igcts n th_e |r_1tr|n5|c mult-GDR statis W'tb the GDR fre-
able to reproduce the observed enhancement of the doubfi'€ncye IS given byHo=wNg,  Ng=Zn0dnydm and
GDR cross §ections _and it_s energy dependence. V() =0,(O[(EL1_y) = (EL1, )+ vo(t)(ELly) +H.c.,
We work in a semiclassical approalt?] to the coupled-
channels problem, i.e., the projectile motion is approximated
by a classical trajectorystraight ling and the excitation of WhereElﬁ1 andE1,, are the dimensionless operators acting
the giant resonances is treated quantum mechanicaliy the space of the multi-GDR states created by the boson
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operatorsl., mis the angular momentum projection. The - t ot
functionsu, are given in[2], e.g., Elm:dm+X; dndm dm,
1
x? Tt t
vi(t)= B EmEm A, A, A, A, -+~
{L+[(yo/b)t]?>? v
(5) =d!(1+2xNy)*? ®
Fo Zye’y NexcZexc where the single paramet&e>0 controls nonlinearity, and
- 2h2 Az’irnN-SO MeV the problem reduces to the harmonic one with linear cou-
ex

pling whenx— 0. The ansatz8) that we adopt here accounts
for many higher-order contributions to E() while leading
Here,my ande are the proton mass and chargeN, andA {5 soluble, but nontrivial model.
denote the nuclear charge, the neutron number, and the massTg solve the nonlinear problei3) with Egs.(4) and(8),

number of the colliding partners;=(1—v?)~*?is relativ- e introduce the following triad of operators:
istic factor andv is the velocity[1].

In the harmonic approximation, the operatcﬁ"ﬂn,Elm B 1 1
are linear in the GDR phonon&1! =d! . This model of D™= zx T 3Na(d-1=ds1),
“ideal bosons” coupled linearly to the Coulomb field admits 9)
well known exact nonperturbative solutiésee, e.gl13]) for 1
the excitation probabilities DO:z{(dfl—dil)(d—l—d+1)+2[1/(2X)+Nd]},
' pama |@™@M2N andD™" the conjugateD " =(D ). It is easy to check that
Wy=e ] N they obey the commutation relations for tin@ncompact
' ©) SU(1,1) algebra

[D-,D°=D", [D*,D°]=-D*, [D ,D"]=2D°.
|a,harn‘12:m:0+l |a?nam]2:2|aliam'|2+|agam]2, (10)
The dynamics of the system can be expressed in terms of the

i.e., the Poisson formula with the amplitude®™ expressed ~operatorD = andD? (9) only. Evolution equatiori3) and its
through the modified Bessel functions. At the colliding ener-formal exact solution, the time-ordered exponential now read

gies sufficiently high, the longitudinal contributida®™?

is suppressed by a factor proportional £62 [3]. We will iiu|(t)=2x1’2[v1(t)e“‘"DT+v1(t)e"“’tD’]U|(t),
work in the “transverse approximation” dropping the term dt
|ab¥™M? (the results are still qualitatively valid at lower en- t (13)
ergies. U,(H)=Tex —if dt' v, (t’

Now, we consider the nonlinear effects. Our idea is to 1 —w (],

keep the spectrum of GDR system harmonic with the Hamil-

tonianH,= wN. That is supported by the systematics of thewhere Eq.(10) and[Ng4,D*]==D" has been used in Egs.
observed DGDR energiess,, which yields E,~(1.75 (3), (4) and(8). From a purely mathematical viewpoint, the
—2)w [1], so anharmonicity in the spectrum is weak. Thisproblem described by the last equation drops into the univer-
conclusion follows also from theoretical considerationssality class of the systems with $1J1) dynamics that can be
[22,23. The transition operator§1",E1 that couple intrin- analyzed by means of generalized coherent sti28:26.

sic motion to the Coulomb field can however include nonlin-For other algebraic approaches to scattering problems, see

ear effects: the expansion in terms of GDR bosons reads Ref.[27].
Due to closure of the commutation relations between the

operatorsD*, D™, andD°, the time-ordered exponential
E1ll=d' + x> d;rnd;rnldmlJFE XmldIndleTml (11) can be represented in another equivalent form that in-
my

volve ordinary operator exponentidlsee, e.g.[28])

+xp > dhdl dp ol dpy (7 Uy(t) =exf 2yxa(t)D "]
e X exp{In[1—4x| (1) 2]~ $(t)}D°)
“Boson expansion” of such type plays a role in microscopic X exp[—z\/Qa*(t)D*] (12

treatment of the nonlinearities and coupling to noncollective

degrees of freedom in the nuclear collective excitati@g.  and some time-dependent complex numbgt) (star de-
To keep the theory treatable, the number of the nonlineanotes complex conjugatiorand real numbegp(t) (phasé
parameters; in Eq. (7) must be reduced. A reasonable way [25]. The unknown functions(t) and ¢(t) can be found
to do so is to save in Eq7) a convergent series with the from simple differential equations which relate them to the
leading term proportional t®, vis functiono 4(t) in the HamiltoniarH (t). These equations can
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be restored after substituting the right-hand side of [#8)

into the Schrdinger equation for the operatbr,(t) (11) and
collecting the terms which have the same operator structure.
Proceeding this way, we obtain, after some algebraic ma-
nipulations, the following Riccati-type equation for the com-
plex amplitudec:

i(d/dt)ya=v,(t)e'“ +4xv,(t)e . (13

The phase ¢(t) is given by a simple integralg(t)

=8xJ' . dt;Rdv(t;)a(t;)e "*1]. The simple nonlinear
equation(13) accounts forall orders of quantum perturba-
tion theory for the problem Eqg$3), (4), and(11). From Eq.

FIG. 1. N-phonon excitation probabilitie®/y as compared to
W™ in the harmonic limit as functions of the phonon number

(12), we have (schematic plot One sees that while botW, and Wi™ are de-
/4 214 creasing rapidly aBl increases, their ratidvy, /W 2™is bigger than
[g(t))=U,(1)[0)=e (1-4x|a(D)]?) unity atN=2. It is seen thaW,<WI*™ as unitarity implies that

o _y® harm_
x exf] 2\/xa(t)D*]|0). Zn-oWh= 2n-oWiT= L
] o _ The first factor in this expression reflects kinematic enhance-
It is seen from Eq(12), that unitarity is preserveq automatl- ment of the transition probabilities due to nonlinearity. The
cally within present formalism asU[=U[", thus |ast factor in Eq(15) results from dynamical effects caused
(¢(t)[(t))=1. The expression for the amplitudes(t) by nonlinearity, which are incorporated in the asymptotic
follows from Eq.(12) immediately after projection of the solution of the nonlinear equatiofi3). This second “dy-
state|#()) onto the states with definite number of GDR namical factor” depends on the bombarding energy and it
phononsN. gives rise to additional enhancement in low-energy domain.
The interesting feature of these results is that the enhance-
Wy =|an(=)|?, ment factor in the cross sectiana=cr2/a'§5‘”‘1 is more sensi-
tive to the bombarding energy than to the parameters of the
12 spectator partner. This is just what has been observed in
experiments: the values of® found for DGDR in 2%Pb
o projectile  using different targets '2°Sn, !6%Ho,
X [4x] a(x)|2]N2. (14  %%b, 2%y [10] are close to

T(1/2x+N)
NIT(1/2%)

|aN<oo>|=[1—4x|2<x>|211'4x(

_ 208 _ _
Here, the quantitya(x) is the asymptotic solution to the ro("7 PH=133, y=17, (16

Riccati equatior(l:';) att—oo Subject to the initial condition bombarding energy:;z64o MeV/per nucleon. The same
a(—»)=0. Equation(14) is our final analytical result. The pijcture was found in experiments on Coulomb desintegration
constanx*? a(x)| in Eq. (14) can be viewed as a “special of °’Au target using various projectile$Ne, #Kr
function” of the two parameterx’F/w and the adiabatic- ,*°’Au, 2°Bi [9]. Nearly constant value of, has been

ity parameterwb/vy. It can be easily tabulated by solving found in 2°%b targef11] while scattering different projec-
Eq. (13). The cross sections are then obtained from the usudiles at low bombarding energy=60—100 MeV/per

formula (2) using Eq.(14). nucleon. In this case,
The harmonic limit of these results corresponds to the 00
casex—0, when the coupling to electromagnetic field via ro(**Ph=2, y=1.06-1.10. 17

Eq. (8) becomes linear. The last term drops from EtB), Within present nonlinear model, these enhancement fac-

— h _ ks iw —
andz la(¥)|[—= a7 =] ~1[Z. 04 (t)€ _t_dt|_2(':/“’)(“’b( tors would correspond to reasonably small nonlinearity pa-
vy)°Ki(wb/vy) whereK; is the modified Bessel function gmeterx

[13,1]. The expression folWW (14) reduces ax—0 to the
Poisson formuld6), thus the harmonic resulf4¢3,1] are re- x(?°%Pb)=0.16—0.20.
stored.

At nonzero nonlineariti>0, the excitation probabilites Below, we present the exact results for the cross sections
Wy, (14) for multiple GDR (N>1) turn out to be enhanced Calculated according to Eq&2) and (14) and with solving
as compared to their values in the harmonic liW*™, as  Ed. (13 numerLcaIIy. The dependence of the enhancement
illustrated in Fig. 1. The deviation of thid-phonon excita-  factorr,=a, /a3 "for the DGDR excitation on the strength

tion probabilities from their harmonic valua§h®™ (6) (the gg the ZrE)onIinearityx is shown in Fig. 2 for the process
enhancement factpis given by the ratio *Pb+2%%Pb,  bombarding energy ¢=0.64 GeV/per

nucleon. One sees that the enhancement factor drops to unity
A TN 2912 [ (2N at small values ofx (harmonic limi) and approaches the
W = F(/x+N) [1 4X|a(h§)|2] |(x)] ] observable values at still reasonably weak nonlinearity.
wham - peax) (N e 2ler™ | 2N We discuss now the dependence of the enhancement fac-
(15  tor on bombarding energy. Deviationsmoffrom the straight
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FIG. 3. The cross-section enhancement facter o, / oh>™ for
the Double GDR excitation in the proce$¥Pb+2%%Pb, as a func-
tion of relativistic factory (circles, solid curve is to guide the eye

X The value of the nonlinear parameteris kept to be equal tx
FIG. 2. The cross-section enhancement facge#azlcrgarm for =0.19. The constantt2x is shown by dashed line. Average ex-

the Double GDR excitation if°Pb+ 2%%Pb process at bombarding Perimental datdEgs.(16), (17)] are also shown.
energye =640 MeV/per nucleon as a function of the nonlinearity . .
parametex (circles, solid curve is to guide the eydhe value 1 substantially the enhancement factors in the energy range

+2x is shown by the dashed curve. considered here. _
To conclude, we presented here a simple model that ac-

line T'(1/2x+2)/T(1/2x)(1/2x)?>=1+2x [cf. Eq. (15)] oc-  counts for the nonlinear effects in the transition probabilities
cur at both low and high energies. At—1, one can solve for the excitation of multiphonon giant dipole resonances in
(13) within an adiabatic perturbation theory to see that ~ Coulomb excitation via relativistic heavy ion collisions. The

>|a'113”‘]_ Thus,r,>1+2x. At higher energies, by contrast, model is based on the group theoretical properties of the

the dynamical nonlinear effects tend to reduce the magnitud@oson operators. It allows one to construct the solution for
of |a|. One can see from Eq.(13 that at y the dynamics of the multiphonon excitation within coupled-

>1, |a|/|a'{ar”]:tanh(2\/§| a*l‘a”ﬂ)/(z \/;| a'l‘ar"1)<1, and channel approach in terms of the generalized coherent states
of the corresponding algebras. The harmonic phonon model
appears to be a limiting case of the present model when the
nonlinearity parametex goes to zero. The model enjoys the
nucleon to 1.2—1.3 (for e~640—700 MeV per nucleon main advantages of the harmonic casmrestricted mul-
tiphonon basis, preservation of unitarity, and analytical re-

while fixed value of nonlinearity is used. In Fig. 3, we . . . .
plotted the value of the enhancement factor calculated nEults in nonperturbative domain Therefore, this soluble

merically for the case of®Pb+ 29%b process as a function model can be viewed as a natural nonlinear extension of the

L . . - harmonic phonon model.
of the_relatl\ﬁstm factory. The magnitude of nonlinearity is The double GDR excitation probabilities and cross sec-
kept fixedx=0.19. One sees that reasonably small nonlin-

; tions are found enhanced by the factors which agree with
earity reproduces correctly the observable value of the en- . . . .

; experiment for reasonably weak nonlineartyThis can be
hancement factor and its energy dependence.

. L viewed as a hint that the discrepancy between the measured
To go beyond the “transverse approximation” adopted . .
; L . cross sections of double GDR and the harmonic phonon cal-
above one needs to include the longitudinal contribuftbe culations can be resolved within present nonlinear model b
component withm=0) in Eq. (4). This can be done at the P y

expense of complementing the 3 generators ofISL alge- means of using an appropriate value of the nonlinear param-
bra of Egs.(9) and(10) with 5 extra operatorf31] to obtain eterx for a given nucleus. The enhancement factor drops as

. the bombarding energy grows. This is consistent with the
closed SU2,1) algebra .W'th 8 generatofishe noncompact data and gives results similar to those recently obtained in a
analogue of S(B)]. This full problem though seemingly

much comolicated can be solved in a similar arou _possibly different context, with a theory based on the con-
P group cept of fluctuationgdamping and the Brink-Axel mecha-

theoretical way. The analysis will be reported elsewhererlism [16,17,29,30 It would be certainly worthwhile to es-

[31]. According to our preliminary results, the enhancement ) . ; .
factorsr,=2.09 for y=1.09 andr,=1.28 for y=1.69 (cf. Yablish possible connections between the two approaches.

Fig. 3 can be altered by 10 and 5 percent, respectively. The work has been supported by FAPE&Rndacao de
Accounting for the longitudinal components does not affectAmparo a Pesquisa do Estado de Sao Paulo

0.25 0.126 0.07 0.05

thusr,<<1+2x. To sum up, the enhancement factor for the
DGDR excitation cross sectiony,= o, /o)™ drops from 2
—2.5 (for low bombarding energies~100 MeV per
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