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Mesons asg-q bound states from Euclidean two-point correlators in the Bethe-Salpeter approach
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We investigate the two-point correlation function for the vector current. Gluons provide dressings for both
the quark self-energy as well as the vector vertex function, which are described consistently by the rainbow
Dyson-Schwinger equation and the inhomogeneous ladder Bethe-Salpeter equation. The form of the gluon
propagator at low momenta is modeled by a two-parameter ansatz fitting the weak pion decay €pnsthat
quarks are confined in the sense that the quark propagator does not have a pole at timelike momenta. We
determine the ground-state masg in the vector channel from the Euclidean time Fourier transform of the
correlator, which falls off a@~ ™" at largeT. m, lies around 590 MeV, and is almost independent of the
model form of the gluon propagator. This method allows us to stay in Euclidean space and to avoid analytic
continuation of the quark or gluon propagators into the timelike redi®0556-28189)08302-9

PACS numbgs): 11.10.St, 12.38.Aw, 14.40.Cs

[. INTRODUCTION solves the Dyson-Schwinger equatiddSE) for the dressed
quark propagatoG(p), with a given dressed gluon propa-
The purpose of the present work is the determination ogatorD‘Zt;(p) as input(cf. Fig. 1):
the ground-state mass of the veatjgr bound state within the
Dyson-SchwingenDS) and Bethe-SalpetefBS) approach d%q A2 AP
[1-3]. The starting point is the two-point correlation function z(p):f > )4952D23(p—q)yM?CG(q)'yV70. (2
T

II — 4y, AIG-X 1
w9 Jd X ETHDL(X)3,(0) @) The quark propagato6G and the quark self-energy are

. related by
for the vector quark currents, (x) =q(x) v,d(x), with q(x)
a quark field. Within the approximations used in the present G(p) l=iv-p+ 3
paper, which will be described beloW,,, is determined by (P) 7PEE(P). @

the dressed quark pro_pagat(jfa(x)q(o» and the vertex

three-point function(7q(x)J,(y)d(0)). The objective of
this work is to study the large-time behavior of the two-point

The form of the gluon propagatdbf‘ﬁ(p) for small mo-
menta is basically unknown from QCD, and therefore has to
be modeled while following certain requirements which will

. : "aFe discussed below. In case of this special truncation it is
of the lowest vector meson, as in lattice gauge calculatio

nB . . . .
. ) ossible to formulate an effective field theory using func-
[4] and instanton modelg]. QCD sum rules also con5|de_r tional integral techniques, which is known as the global color

the Euclidean two-point correlator, but attempt to determ'nemodel(GCM) [2,3,8). This has the striking advantage that in

the ground-state mass by using the Borel transform to isqlatﬁ\.]e chiral limit (zero current mass for the light quarks, i.e.,

the lowest mass polé6]. Our method should be seen in —My=M_=0) one is able to establish an easy connec-

contrast to an earlier approach, which solves the BS equatiotribl;]_between the dressed quark self-energy, leading to dy-

on shell[7]. ; ; . ; s
We now briefly review the DS-BS approach used here.namlcal chiral symmetry breaking on one side and the exis

The nonperturbative nature of QCD at low and intermediatd€c€ of massless Goldstone bosons as pseudosgalar
momentum transfers makes the use of effective models 30Und states on the other side. As a consequence, it is pos-

natural and necessary tool. During the past few years, stronﬁbIe to perfform a sy.sterga}:jc chiralgow enf,r?é’ ex%anhsﬁjnf
progress has been made in the framework of the DS agh !€rms of composite Goldstone boson field and therefore

proach[1-3], which is based on a coupled set of relationsMake a connection between the phenomenological chiral
between dressed quark, gluon, and ghost propagators and

vertex functions. In order to handle this system it is of course P;K

necessary to make certain simplifications and truncations.

One approach, which is commonly referred torasibow

approximation, uses an undressed quark-gluon vertex and @ -
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hadronic theory(chiral perturbation theody[10,11 and an
effective quark based theory of QCD, the GCM.

MESONS ASg-q BOUND STATES FROM EUCLIDEA . . . 987

various nonperturbative aspects of strong interaction physics
and the QCD vacuum as well as hadronic phenomena at low

Furthermore one is also able to study the coupling ofenergies. These include, for instance, quark confinefi&gnt

compositeqq systems to an external electromagnetic gaugédCD vacuum condensat¢8,14—16, Ux(1) breaking, and
field while guaranteeing local (1) gauge invariance which the »-»’ splitting[17], low-energy chiral dynamics of Gold-
is manifest in the corresponding Ward-Takahashi identitystone bosons+,K, ») [18,9,19-21,1f meson form factors
[12,7). It turns out that the chiral invariance and electromag{22], heavy-light meson§23], systems at finite temperature
netic current conservation, which are both essential fof24], or soliton [25] and Fadee\[26] descriptions of the
studying low-energy hadronic phenomena, are very difficulfhucleon.

to maintain if one tries to go beyond the rainbow approxi-

mation[13], and are lost in general if modéinsazefor the
guark-gluon vertex are used.

The method is more involved when applied to higher
mass states instead of Goldstone bosons, @.gw, o, orA

mesons. A mesonﬁq bound state with massin a channel

Though the rainbow approximation and the GCM natu-with spin-flavor indexd is determined in the ladder approxi-
rally violate local color SU(3) gauge invariance and renor- mation as a solution of thévomogeneoudethe-Salpeter
malizability, they provide a very successful description ofequation(BSE) [7]:

d*K
2 _m2\—
Q4(P,g°=—m") f(an')“

where we have used the notatibn =K=*=q/2. Q,(P,q) is
related to the Bethe-Salpeter amplitudg P,q) as

xo(P,q?=—m?)=G(P,)Qy(P,q?°=-m?)G(P_). .

a b

A A
9 °D3(P—K) 7,5 G(K QK= —m)G(K_ ), (4

with quark currents),=qT,q, where # stands for the spin
flavor of the operatoiT,, is determined as a quark loop
containing the dressed vertex functibh(P,q) (cf. Fig. 2
for Ty=7v,).I'4(P,q) itself is given as the solution of the
inhomogeneouldder BSE(cf. Fig.3:

4K )
2a _
77)4gS D/_Lv(P K)

As mentioned above, in the pseudoscalar channel the ex- I'y(P,q)=~— 'Tﬁf (2
istence of a massless state, or, in other words a solution of
Eq. (4) at g°=0, is automatically guaranteed in the chiral A2 )\‘g
limit if the rainbow DSE(2) is satisfied. For a small finite XYy G(KOTHK,GK )y, (7)
current quark mashkl,, a perturbative expansion M, and
q* can be performed. This is, however, not possible foryith the inhomogeneity-iT ,. This form can also be written
larger meson masses, and therefore an explicit numerical sgg
lution of the corresponding homogeneous BSE is re-
quired. The trouble hereby is that the meson momentum is
defined in the timelike regiorg?=—m?, which in turn re-
quires the dressed quark propaga@(p) in the timelike ~WhereT, is the bare vertex anf,(P,q)"" is the nonpertur-
region_ HoweverG(p) isa priori Only determined at space- bat|Ve(NP) dressed vertex. The nonperturbative pal’tS of the
like p from the DSE(2), because the model gluon propagator Vertex functions can be cpnstrained by the forms pf the non-
D(p) is defined only for spacelike Euclidean momenta. It islocal condensatel28], which also has been used in our re-
therefore necessary to perform an analytic continuation of€nt work[15]. Moreover, it has been shown that this for-
the dressed quark propagat6i(p) from Euclidean space malism can _be used for the nonperturbative part of the vector
into Minkowski spacep,—ip, [7]. This is a very dangerous Vertex function used at low momentum transfer for nuclear
and unsafe procedure, because it requires a knowledge of the
singularity structure ofG(p) in the whole complex plane,
which we do not have. In Reff27] an alternative method has
been proposed which stays completely in Euclidean space,
avoiding analytic continuations of any of the dressed propa-
gators. It is the analog to what is used in instanton mddgls
and lattice QCD calculatior{g] where working in Euclidean
space is essential.

The two-point correlation function

FO(P!q):_iT0+F0(P1q)NPI (8)

= 4y @ld-x
H"lf’z(q) f d’xe <7391(X)‘392(0)>’ ©) FIG. 2. Two-point correlatolI,, in the vector channel.
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two-point correlatorHﬁlgz(qz) in the complex plane, which

is well under control. The price which we have to pay is the

fact that we have to solve the inhomogeneous BSE over the

q whole range of spacelikg?, instead of the homogeneous

BSE at only the on-shell poir?=—m3.

It is the aim of our paper to perform an analysis of the

pP_¢ two-point correlation function in the vector channgle.,
Ts=1,) using this approach, and to extract the ground-state
massmgy. We will work in the chiral limit M, ,=My4=Mg
=0); therefore, isospin effects are not present. Following
Ref.[9] we will use a model gluon propagatbi(g?) with an

K+i IR regularized Mandelstam g singularity [31,32 at g2
~0. For largeg? an asymptotic free UV tail is added. The
iy, + . L | P-& parameters irD(g?) are fixed in such a way that the weak
pion decay constant in the chiral limit,=88 MeV is re-
g produced and, as shown in Ref€,14,15, a satisfactory

2 description of low-energy chiral physics and vacuum con-
densates can be achieved. We demonstrate that the dressed
qguarks which are determined from the rainbow D@Eare

FIG. 3. Inhomogeneous ladder Bethe-Salpeter equation for theonfined in the sense that the quark propagator duss
vector vertex functiorl’, . show an exponential fallofi~-e™M7 for large T. We then
demonstrate the existence of a bound state in the vector

magnetic dipole moment§29]. This gives possible con- channel by showing the exponential falloff of the correlator
straints for the dressed vertex function treated in the presef{* (T) for large T, from which we can determine the
M 1

. . 1
work, which we discuss below. ground-state massi, .

The momentuny is in general off shell and can be either = oy paper is organized as follows: In Sec. Il we briefly

Space - or timelike. Close to the mass shel® (ayiew the definition of the dressed quark propag&@and
~—m?, I'y(P,q) and the solution of the homogeneous BSEne vector vertex, as well as the rainbow DSE fa and

(4) Q4(P,q*=—m?) are related by the inhomogeneo(fs BSE fdr, , and demonstrate the valid-
5 5 ity of the vector Ward-Takahashi identity. We then show in
T ,(P q2~ —m?)~ Qy(P,q°=—m°%) ) Sec. Il how to obtain the expression for the vector two-point
ot g2+ m?2 ' correlator and its Fourier transform in Euclidean space. The

numerical results for gluon and quark propagators, the vertex
In our studyq? will be always spacelike. Other than the function, and the correlator are presented, analyzed, and dis-
dressed quark or gluon propagator the correlﬁ[g{(,z(qz) cussed in Sec. IV. Finally, conclusions are offered in Sec. V.
has a known Kalle-Lehmann spectral representatig8o]:
Its poles are aq2= —m|2, 1=0,1,...,wherem, are the Il. DRESSED QUARK PROPAGATOR
meson resonance masses and the pole residua are basically AND VERTEX FUNCTION
given by the couplingg, between the interpolating current
J, and the on-shell states). Otherwisell glgz(qz) is holo-
morph in the complex plane, and falls off sufficiently fast for
|q2|_)00, so that Cauchy’s theorem can be app“ed A con- FO”OWing Ref. [12] the inverse of the dressed quark
venient method to filter out the lowest state with magsis ~ PropagatoiG(p) has the form
to take the the one-dimensional Fourier transform of @By. _ . .
with respect to the time component of the Euclidean moqmen- G H(p)=iyp[A(p>) —1]+2(p)=i YDA(IOZ)JFB(IOzgll)
tum g,

A. Rainbow Dyson-Schwinger
and ladder Bethe-Salpeter equation

+odq, . in momentum space. The quark self-energy dres&ifp)
H§192(T)=f 5-€%M,(0,,9=0),  (10)  comprises the concept abnstituentquarks by providing a
- running masd (p?) =B(p?)/A(p?). It is determined as the

which falls off ase™™Mo" for large Euclidean timeg. solution of the rainbow DSE,

It is obvious that the method as described is only able to
extract properties of the ground state but not of excited states 4.,
or the continuum. It presumably will also fail or run into E(p)—§gs(zw)4D(p—q)yVG(q)yw (12
trouble for states with a large width, bound states in the

continuum, or if the interpolating quark curredy couples which is schematically shown in Fig. 1. For convenience the
predominantly not to the ground state but to an excited statq: y 9. -
eynman type gauge for the gluon propagator

On the other hand, it is clear that we have indeed avoided
making any assumption about the analyticity of the propaga- ab e s o
tors. Instead we are using the analyticity structure of the D2.(9)=6,,6%"D(q") 13

4
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has been used here, which defines the phenomenologicahere for convenience an arbitrary mass scaldas been
function D(g?) in Eq. (12). In the rainbow DS-BS approxi- introduced in order to render al()’s dimensionless. Fur-

mation used in the present work, this functibfig?) for the
dressed gluon propagator is our main physical input.
In terms of the components and B, Eq. (12) reads

thermore it turns out to be convenient to perform a decom-
position into longitudinal and transversal components with
respect to the external momentup:

8 dg A(g?)q-p q.Pa. . P,
A(p?)—1]p?= 2—f D(p— , ADP,g) =2 —Nt+ 0T, 19
(A~ 1I0° =055 | 3P0 5 o e e PP, RS (193
(14a
. P PP
: B(e?) AZP =t PN
apt-g2 [ 4o . &
(P=0:3 | Gmi® P~ Zatiep - 62D
14b Y v v P
(14b) LI (% qqﬂ>)\T q,P BN
In momentum space, the dressed vector vertex is deter- q* q? K
mined by theinhomogeneous laddeBSE, which reads, in (19b
momentum spacé’),
ACG(P,g)=\¢. (190
4
o _ N2
Lu(P.a)=(=1)v, 39S The eight scalar dimensionless coefficientsiL @i
, =1,...,3) and\ (i— .,5) depend onP?g® and
d’K g c2 whereC Pag/g? is the direction cosine betwedh
—_ = q’ Pq~
Xf (277)4D(P K) v, G| K+ 2 and g. P;— quM/q is the vector transverse m,,
i.e.,q,P,=0. The advantage of the decompositid®) lies

XFM(K,q)G(K— g) Yo (15

and is schematically displayed in Fig. 3.

As was shown in Ref[12] both the rainbow DSE12)
and the ladder BSEL5) can beconsistentlyderived from the
action of the GCM in an external gauge fielt},(z) using

standard functional integration techniques. The main steps of

this derivation are reviewed in Appendixes A and B.

in the fact that the longitudinal componenm" (i
=1,...,3) aredetermined automatically from the quark
propagatorG by means of the WT(16),

A crucial consequence is that this formalism ensures by
construction invariance under local U(1) gauge transforma-

tions. At the level of the dressed vertE>,g this invariance is

reflected in the validity of the Ward-Takahashi identity

(WTI)

1 pyd

5|, 18

_ q _
q,l.(P.q)=G 1( P— 5) -G

which can be easily verified by substituting it into Ed5)
and using the DSE12) for the quark self-energ}, as well
as the definition(11).

Expanding the right-hand side of E.6) in g, and tak-
ing the limitg,—0 leads to the Ward identity

IG Y(P)
P,

"

I,(P0)=— (17)

B. General form of the dressed vertex",,(P,q)

Following Ref.[7] in the Feynman-type gaugd3) for

the model gluon propagator, the most general form for th

vertex functionI” ,(P,q) which fulfills Eq. (15) reads
—1AD i (2)
I (P.a)=1A7(P,q)+iy,A,(P.q)

+iYSyvéuvaBPann_zA(3)(P!q)l (18)

@xl B(P2)—B(P2), (203
Pq 5=A(P2)-A(P?), (20b)
205=A(P?)+A(P?%), (200

whereP.=P=*q/2.

This leaves only the five independent transversal compo-
nents\{ (i=1,...,5) to bedetermined as solutions of the
inhomogeneous BSKL5). In order to do this, one has to
project out the singlslkiT for eachi which can be done by
multiplying Egs.(18) and(19) with appropriate Dirac matri-
ces and taking traces. Performing the same operations on the
right-hand side of Eq(15) finally leads to a set of five
coupled linear inhomogeneous integral equations )f&r
(i=1,...,9[7:

NijA[(P2,0%,C3y)
© +1
+f dK K3f dCyqMij(9?,P?,C8,K2,.CEy)
O —

XN (K2,02,Cgy). (21)

The indices andj both run from 1 to 5. The vectok; and

the nonzero components of the matridk{»§ and M;; were
derived in Ref[7]. For completeness, and because we need
them later for the determination of the correlator, they are
also listed in Appendix C.
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C. Asymptotic behavior [15,28,29, one obtains constraints on the dressed vertex
For large values of the quark momentUPi— o or for functions and thus further constraints on the gluon propaga-
large values of the external momentufi—= the propaga- - This will be the subject of future work.
tors reach their asymptotic free forms, and therefore the ker-
nel in Eqg. (15 vanishes, which implies that alsb, ap- Ill. VECTOR CORRELATOR

proaches the naked vertex. This means A. Definition and properties

TL(P,)|pz_=(—1), (22 We are now ready to study the main object of our inves-
tigation which is the correlatdd, ,, of two vector currents
or _
1 .(X)=0(x) 7,4(x). In momentum space, it is defined as
M (P?—2,g%,C8q)=0, =12, (239
I Efd“xeiq"T X)j,.(0)). 29
)\iT( P2—>00,q2,C'éQ)=O, i=1.245, (230 It can be expressed in terms of the dressed quark propa-
gatorG and the dressed vertex functidh,(P,q) as
N (P2—,g2,C3)=1, i=3 (230 sp
and Hw(q)=if (277)4Tr[Fﬂ(P,q)G(P+)7,,G(P_)],
T (P e=(~1)7,, (24 (30
or which is schematically displayed in Fig. 2. The trace Tr goes
over Dirac and color indices. A derivation of E(O) from
)\iL(pZ,qZ_mo,ch):o, i=1,2, (253 the GCM is given in Appendix D. It should be stressed that
Eq. (30) is a mean-field result.
)\iL(PZ,qz_mo,C%Q): 1, i=3, (25b) The WTI (16) for the dressed verteK,, ensures that the
correlatorll, ,(q) is transversal
N (P3g?—»,C8g)=0, i=1245, (250
q,11,,(q)=0, (3D
N (P3g2—2,Ci)=1, =3, (250
or
together withA(P2—x)=1 andB(P?—x)=0.
B 4.9, 2
D. Constraints on vertex function HVﬂ(q)_( 5#“’_ qz )H(q ). (32)

The nonperturbative part of the vector vertex function _ B _ _
from Egs.(7) and(8) can be constrained by the work using This can be easily verified by putting E4.6) into Eq. (30),
QCD sum rules with nonlocal condensatE§.(y1,y2;z)NP, and again reflects manifest invariance of our approach under
defined as the second term in EBS8), has also been shown U(1) gauge transformation and therefore conservation of the
to be given by the four-quark nonlocal condend&@,29 vector curreng ,(x). Because of Eq(32), it is sufficient to
- o consider the contractioHM(qz).
T .(y1,Y2:2)""=(0]:a(y1)a(2) v,a(2)a(y2):|0).
B. Spectral representation and bound states

Defining the nonlocal quark condensate by The Kallen-Lehmann spectral representati¢B80] for
. . I1 W(qz) is obtained by saturating the correlat@®) with a
(0]:9(0)q(y):|0)=g(y?)(0|:q(0)q(0):/0), (27) complete set of on-shell mesonic bound states
[I(m;,k ,\)) (1=0,1,2...) with massm,, 4-momentum
the functiong(y?) gives the space-time structure of the non-p, (p|2: —m{ in Minkowski spacg, and polarization\, :
local condensates. In particular, the vertex function
I',(0,02)"", needed in the three-point determination of the o
vector vacuum susceptibility is given by Eq86) and (27) Hw(qz)ZJ dsp,.(s)
with the approximation of vacuum factorization as 0

1

ST IR (33
S—Qg°+le

<aq> 2 where
T#(O,O;Z)NF’:(—W)(?) Jd“yg(yz)g[(z—y)z]-

(28) pW<q)=BW<q2>0(qo)=(2#)32 5P —q)

The vacuum factorization approximation has been found to . .
be satisfactory for deriving vacuum susceptibilit[@8,29. X{O[1u(O)[Hmy, Py AD)( My, Py (0)]0).
Using the forms ofg(y?) such as those studied in Refs. (34
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The coupling between the on-shell stéite and the inter-
polating quark current,, is denoted byf,, and defined by

_ 1
. =f ikx _
(0]j OO (M, Py ) =TFe"%e, (P ,\y) 2n)(20p,)

(39

where €,(P;,\|) denotes the polarization 4 vector and
(wp))?=mZ+Kk?2. Inserting Eq.(35) into Eq. (34) leads in
Euclidean space to

f2
M,,(4%)=3> —— (36)

2 2°
[ q|+m,
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and consider the limiT— o,

f2
(T g

1 e MoT,

i (38)

It should be noted in this context that in case of phmeson
there are in principal also2 intermediate states in su(84),
and therefore the asymptotic behavior of the correlatqy,

for large Euclidean times is actually >™=". However the
diagrams with the two intermediate states are suppressed
by one order M, with respect to the vector meson propaga-
tor, which is of leading ordefl11]. We are working at the
mean-field level, which is compatible with the leading order
in 1/N,, as far as the quark degrees of freedom are concerned
[9,17], and therefore these intermediate 2tates do not ap-

In order to filter out the contribution from the ground state pear in the present treatment.

|l =0), we take the Fourier transform (86) with respect to
the Euclidean timd,

+eo dg, . -
M5 (M= f 2 @ (00,0=0)

(37

3o f2
=N e mT
22| m,

) 1 (= +1 2
Hw(q ):(_NC)ﬁfo dP P?’fildeqX —

|

where abbreviations from Appendix C have been used.
At this point we have to say how to handle the UV diver-
gences inHW(qz). For large quark loop momenta the

2

P 4
3F1—2—x°T
n

P"q

N3(P?%0%,CEp) 2 "

guark propagator and vertex functions reach their asymptotic
forms specified in Sec. Il C, and the loop in Fig. 2 is the free

loop which is logarithmically divergent. In perturbation

theory it can be renormalized in the standard way using di-

mensional regularizatiof33]. In our case it is actually not
necessary to evaluatﬁw(qz), because we need only its
Fourier transforrrH;M(T), which is UV finite, as any cor-

relator in coordinate space is UV finite. The reason for that is

that the quark propagator, which falls off likePLin momen-
tum space, will fall off likee™ TP after Fourier transform, and
therefore the momentum integrgfd P P in Eq. (39) is UV
finite. When evaluatingl’;, (T) from Eq.(39), it is therefore
convenient to perform the  Fourier transform
J12(dqgs/27)€e'%T beforethe momentum integralgdP P2,
which avoids a conceptually and technically intricate renor
malization procedure.

IV. RESULTS AND DISCUSSION
Our model gluon propagator has the form

D(a?)=Dr(9*)+Dyy(d?), (40)

P P
?XZV)\I( P2,0%,Ch,) + ?xz

2

C. Determination of I, in terms of Gand I',,

The final task which remains in order to evaluélg, is
to write it in terms of the quark self energy functioAsand
B [Eqg. (12)] and vertex functionskiT [Egs. (18) and (19)].
This is done straightforwardly by inserting definitioffsl),
(18), and (19 into Eq. (30), and carrying out the matrix
trace. The result is

2 P2
F1—2¥T N3(P?0%,CEp)

2

Pq

774

2

X?C3 TN (P?,0%,C3,) —2 szxg(PZ,qZ,cﬁ,q)] , (39

where

2

X
92D R(q%) = (42d) Y (42)
5 ) 47°d
9iDuv(g?)= . (42
Q*+In| ——+7
QCD

The first termD g [Eq. (41)], which dominates for smatj?,

is a regularized Mandelstafinsatz[31,32 with a strength

x? and an IR regulatoA, which models the IR strength of
the quark-quark interaction. The second téqy, [Eq. (42)],
which dominates for largg?, is an asymptotic UV tail and
matches the known one-loop renormalization group result
with d=[12/(33-2N¢)]=3%5, Agcp=200 MeV, andr=e
[2]. The model parametessandA are adjusted to reproduce
the weak pion decay constant in the chiral [limit,

=88 MeV. We are using three different parameter sets:

Setl: A=1.0x10% GeV*, x=1.02 GeV,

(433
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2.0e+05 T 7.0

6.5 -

— A=10x 10: GeV: ; X=1.02 GeV —— A=10x 107 GeV* : X=1.02 GeV
— A=5.0%107GeV'; X=1.12 GeV 60 e A=5.0% 107 GeV' s X=1,12 GeV
156405 | === A=10x 107GeV'; X=1.18 GeV - —--= A=10x 107 GeV' ; X=1.18 GeV

—-— D(s) = (4r'DAs In(s/A ey +€)

1.0e+05

Dis) (GeV™)
—In[G, ()] (arbitrary scale)

5.0e+04

i
0.0e+00 =
0.0 0.1 0.2

s(GeV') 1.0 2.0 3.0 4.0 5.0 6.0 7.0

T (Gav”
FIG. 4. Model gluon-2 point functionB(s) [Eq. (40)] for the e

three different parameter sef43). In each case the value of the FIG. 6. The Euclidean time Fourier transfor@&(T) of the

pion decay constant in the chiral limfit, =88 MeV is reproduced. scalar part of the quark propagaf®g (arbitrary scalgfor the three

For comparison we also show the form of the UV @jly(s) [Eq. parameter set&l3).

(42)] (dash-dotted ling

* dq4 i94T 2
Set2: A=5.0x10"* GeV*, x=1.12 GeV, G*(T)= e9TG(g?)
(43b) - 2m
0 2
Set3: A=1.0x10% GeV’, x=1.18 GeV. :f* 4% g,r B(q%) R
(439 - 27 g?AX(q?)+ B0

The forms ofD(qg®) are displayed in Fig. 4, which also |t G(p) had a pole ap?=—M?, the Fourier transform
shows for comparison the pure UV forBy,(g?). As one G*(T) would fall off ase M7 for large T or

can see in all three cases the asymptotic form is reached®
already forg>~0.2 Ge\?. In Ref.[9] it has been shown that IN[G* (T—%)]~—MT. (45)
with those values a satisfactorily description of all low- s

energy chiral observables can be achieved. However, from Fig. 6 we can see that {In[GZ (T)] is far
The second step is the determination of the dressed qua I'(om rising Imearl?/ withT at largeT:; it {;mtuallgl 2|ses ap-

propagator(11) as a solution of the coupled set of integral . . . : S
proximately quadratically witf. This strongly indicates that
equationd143 and(14D). Figure 5 displays the running con- the the parameter sé43) indeed produces confined quarks.

H 2\ _ 2 2 H 2
stléuer:t rgass!\/l ([t) )t_ ltah(pt %A(p ) Et spacehl;_ep d>0. Inh X\/e want to stress that this statement is based on a numerical
order 1o demonstrate that the quarks are confinéd, one has 9gument, namely, Fig. 6. In the simple but somewhat un-

show that the quark propagat@®(p?) has no poles in the : o L

S o . / .~ physical case of a gluon propagator, which i8 function in

the-Foutier tansform with respect (© the Euclidean e, MOMENUM spaceb(q?)54(q?), and which can be re-
b garded as the limit of Eq41) for A—0, the DSE for the

[2]. Itis sufficient to consider the scalar p&t: quark propagator can be solved analytically, and it can be
shown that the quark propagator indeed has no pole at time-
like momentd2,3]. This is equivalent to quark confinement

—— A-10% 107 GeV* ; X102 GeV in the sense mentioned above.
L e A=5.0% 10 ' GeV' : X=1.12 GeV 4 i i i
04 1 T o Yo Ta oy The third step is now to solve the inhomogeneous BSE,

e., the coupled set of five inhomogeneous linear integral
equations(21). We follow the numerical procedure from
Ref. [7]. One applies a Gauss quadrature using abgut
~30 Gauss points fof “2dK and Ney, = Ney ™ 10 Gauss

points for bothf " 7dCy, andf“dCKT It should be noted
that the angular integration ov€xt is running only over the
the gluon propagatorD and not over the functions
\i(K?,02,Cgo). This transforms the integral equations into a
high-dimensional set of ordinary inhomogeneous linear
equations for the\; at the Gauss points, which is solved by
%00 05 10 inverting the (S1cnc, )X (5nknc, ) ~1500x 1500 coeffi-
26V cient matrix using standard packadéd].

FIG. 5. The dynamicalconstituent quark masseM (s) for the Other than in Ref[7], where the quark self-propagatGr
three parameter se(d3). which appears in the kernel of the B$E5) has been param-

03 1

M(s) (GeV)

02 r

0.1 r
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8.0

transformed correIatoH;M(T) for large Euclidean time§
evaluated with the three se43). As mentioned earlier it is

e essential to evaluate the Fourier integfdl”(dq,/27)e'%47
- Qj 1 before doing the integral over the quark momentum
k] f*%dP P® in order to avoid UV infinities. From Fig. 8 we

see clearly thatl* ,,(T) has an exponential falloff-e~ MoT

for large T, and moreover that the ground-state magsis
practically the same for all three parameter sets, because the
curves are parallel. The ground-state magscan be ex-
tracted by carrying out a linear fit to the numerical result.
One findsmy=~590 MeV for all three sets. This has to be
compared with the phenomenological values of 780 MeV
for the ground-state vector meson mass. The instanton liquid

g

:?::*“:O‘-—"-— = model [5] finds my=950 MeV, whereas quenched lattice
P* (GeV?) ' ‘ QCD [4] obtainsmy=720 MeV. Referencg7], which con-
siders the same model as we do but solves the BSE in
FIG. 7. The five components(P?), i=1,...,5 of thevertex  \jinkowski space, finds a ground-state mass in the vector

functionT" ,(P,q) as defineg in Eq(19) for a fixed spacelike value  channel of about 880 MeV. However, it should be noted

of the off shell momentung®=+0.1 GeV* and angleCpa=0 US-  that the gluon propagator of Réf7] is not exactly the same

ing the parameter set[Eq. (433]. as the one we use. We have taken care that we can indeed
reproduce the weak pion decay constapntwhich is not the

etrized by a simple analytic form without solving the DSE case in Ref[7]. Furthermore, as mentioned above, in Ref.

(14) explicitly, we are using the numerical solutioAsandB  [7] the SDE and BSE were not solved consistently in the

of Eq. (14) in the kernel for the BSE15). Our treatment is  sense that the quark propagator which enters the BSE is not

therefore a fully consistent solution of both the rainbow DSEthe one which comes from the DSE. Instead, R&f.em-

for the quark propagato& and the inhomogeneous ladder ploys an analytic form for the quark propagator, which only

BSE for the vector vertex functiohi, using the same model roughly fits the real solution of the DSE. A direct compari-

gluon propagatob specified in Eq(40) as input. As one can son between the numerical values of R&f and the value

see from Eqgs(15) and(21), this involves a numerical inter- from our analysis is therefore not really conclusive.

polation of A(P?) and B(P?) to the pointsP... Figure 7

displays the coefficient functions;(P?) for the parameter

set 1 [Eq. (43a] for a fixed spacelike value ofg? V. CONCLUSIONS

=0.1 GeVf and a fixed angl€p,=0. As one can see, our ) — ,

result is qualitatively similar though quantitatively notice- 10 Summarize, we have studiedgg bound state in the

ably different than the one from Ref7]. Similar than Ref. vector _channe_l using a nonlocal and confining model quark-

[7], we also find that the\i(Pz,qZ,CﬁQ) are only very quark interaction, which respects all global symmetries of

weakly dependent on the angB( if P2 andg? are fixed. QCD. The model parameters have been chosen to give a

Finally, Fig. 8 shows our main result, the Fourier- good description of low-energy chiral physics for the Gold-
Y, F9 stone degrees of freedomr(K, 7). We have demonstrated

the existence of a higher mass state by evaluating the cor-
relator of two interpolating vector currents in Euclidean
space, and showing the exponential falloff of its Fourier
transform at large Euclidean times. This employs a consis-
tent treatment of the dressed quark propag&@oand the
dressed vector vertek ,, which are both determined from
the model quark-quark interaction by the rainbow Dyson-
Schwinger equation foG and the inhomogeneous ladder
Bethe-Salpeter equation fér, . The method stays until the
end in Euclidean space and all momenta are spacelike. This
avoids any unsafe analytic continuations of the dressed
propagators into the timelike region. We have found that the

6.5

6.0 -

o
o

o
o

P
o

—In[l'[w“(T)] (arbitrary scale)

® A=1.0x 107 GeV'; X=1.02 GeV

40 7 & AcS.0x 107 GeV* + X=1.12 GeV ] ground-state mass is practically independent of the param-
* =10 107 GeV'; X=1.18 GeV eters of the model interaction and lies at about 590 MeV.
o5 . . . For the creation of a bound state it is' obviou_sly necessary
40 5.0 T(Gev_1)6-0 7.0 to have a highly nonlocal quark-quark interaction, which is

reflected in its large nonperturbative strength in the IR. This

FIG. 8. The Euclidean time Fourier transfodty; (T) of the leads not only to dynamical chiral symmetry breaking but
vector correlatoarbitrary scalgfor the three parameter se$3).  @lso to a strong momentum dependence of the running dy-
Our numerical results are denoted by circles, squares, and digamical quark mas#(p?) and, in our case, even to con-
monds, respectively. The straight full, dotted, and dashed straigtfined quarks. This is an important advantage over with the
lines are the best linear fits. Nambu-Jona-Lasini¢NJL) interaction[35], which can be
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regarded as a special case of the GCM with a local quark-

quark interaction D3°(x,y) = 6%°5,,,6)(x~y), and has
been subject to extensive stud[@6]. The NJL model has a
momentum-independent constituent miksand is therefore
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As long as ground-state properties are considered, the
method which we have used can also be applied to other

APPENDIX A: GLOBAL COLOR MODEL
IN AN EXTERNAL VECTOR FIELD

(GCM™M)

channels, such as, e.g., the axial vector mesons, as well as to

three-point functions, which are the basis for a study of me-

son form factorg27]. It is not adequate for extracting prop-
erties of excited states.

Socul 0,041 [ dx d‘*y{

Whereji denotes the color octet vector current:

a

— A2
J00=0(0) 7,5 a(x). (A2)

Following Ref.[12], we consider the Euclidean action of
the GCM in anexternal vector field4,,(x):

2
E(X)[Wx—i%fly(x)]Q(X)Jrg— 2(x)D2(x—y)j (y)] (A1)
|
A= 1 | i ® i1 i)\a)
D '?’5,\/57% 27»?’5 3 F 2 F
4 i
& §1C’ﬁ)\c . (A7)

For convenience we will employ the Feynman-type gauge

(13) [2,3] for the model gluon propagat®. Applying the
standard bosonization proced{8¥,38g the generating func-
tional

Z[A]Ee*W[A]:f Dapqefsecm[aq;A] (A3)

can be rewritten in terms of the bilocal auxiliary fields

BUx.y),
Z[A]= f DB e Sl 2", (A4)
with the effective bosonic action
Set B Al=(—)TrinG " [B%A]
jd“ BY(x,y)B(y.x) (A5)
292D(x~y)

and the quark operator

G B AI=[yox— iy, A (0]18(x—y) + A’B(x,y).

(AB)

The matricesA? arise from Fierz reordering the current-
current interaction in EqA1), and are given by

In the mean-field approximation, which is the leading order
in 1/N,, the fieldsB?(x,y) are substituted by their vacuum
vaIueng(x,y), which are given as the stationary points of
the effective action(A5),

=0

0

{ O0Seit (A8)

3B |,

or

Bl Al(x,Y)=giD (x=Y)HTAG[ AT M (x,y)], (A9)
where G,*(x,y) denotes the inverse propagator with the
self—energyE(x,y)=A‘988(x,y) in the external background
field A(x):

—iy,A4,(0)]8(x=y) +ABE(x,y).
(A10)

Gol A1~ 1(x,y)=[ydx

We want to stress that botBig(x,y) andggl(x,y) have an
implicit dependence on the external background fig(c).
If the external field A is switched off, G, goes into the
dressed quark propagat@r=Gy[ .A=0], which has the de-
composition[Eq. (11)]

G Yp)=iyp[A(p?) —1]+Z(p)=iy-pA(p?) +B(p?)
(A11)
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in momentum space. The quark self-energy dresSiflg) is  The second term on the right-hand side of E8R2) can be
determined as the solution of the rainbow D&g. (A9) for  determined by employing the stationary conditioA9),

A=0)], rendering Eq. (12)] which, after Fierz reordering, can be cast into
0= 22 D nG(@y.  (AL2
P)=30s P=—)y,6Q)Y,. 4 85Go[ Al(Y1,Y>)
37 (2m? A PD(y1—yy) | 2FLAIYLY2)
2|:~’4:|(y1!y2) BQSD(yl y2)7v 5./4#(2) o v
APPENDIX B: VERTEX DRESSING AND (B3)

INHOMOGENEOUS BETHE-SALPETER EQUATION

In coordinate space the dressed vector vertexn order to find an expression fof5Go[Al(y1,Y2)/
I' ,(y1.Y2;2) is given as the functional derivative of the in- 8.4,(2)]4-¢ in terms of the quark propagat@®, we write
verse quark propagat@,[.A]" ! (A10) with respect to the the definition(A10) schematically as
external fieldA,, :

8Go[ A1 H(y1.Y2)
3A(2)

Go[AI=G 1+ A,T,, (B4)

Lu(y1.y2:2)= (B1)

A=0

Taking the functional derivative in EGA10) gives, for Eq.  which leads to the formal expansion
(BY),

Iu(y1,¥2:2)=(=1)7,6(y1=¥2) 6(y1-2) Go[A]=G-GA,I,G=*---. (B5)
)
{ 2[Al(Y1,Y2) (B2)
6A(2) A=0 Putting Eq.(B5) into Eq. (B3) gives

[ S2[Al(y1,Y2)
0A(2)

4
=—§g§D(y1—yz)f duyduzy,G(y1,un)T (U1, U2;2)G(Uz,Y2) s, (B6)
A=0

which, after substituting the result into E@2), renders thénhomogeneouBSE forI",(y;,Y,;2) in coordinate space:

F,L(yla)’ziz):(_i))’ﬂ5()’1_y2)5()/1_2)_%ggD(h_yz)fdUldU27uG(Y1vul)rﬂ(ul,Uziz)G(Uz,yz)?’v- (B7)

Fourier transform leads then to the momentum space form K3 9
(15). Mp=27D;——| V+ —=C2 W],
PT7]2 772 q
APPENDIX C: MATRIX ELEMENTS OF THE BS KERNEL
In this appendix we list the explicit forms for the quanti- M= —277f)1£V,
ties which appear as kernel of the five transversal inhomoge- PT
neous BS integral, and will be also needed in B29):
_ . K3qr? q°
X=(0,3,1,0,0, (CD M14:277D1PT—7]4Cﬁq V+ =W,
(PT)? (PT)?
N]_l:l, Ngzz - > N23:3, N22: - > 1 K2
g May=—mDo— 32V,
n

2

q
Naz=1, Np=1, N44=?, Nss=1, (C2

2

S K2
M22:7TD0_2X2 F1—2—T ,
Y Y

and

KZ
3F;—2—T
n

~ K ~
MllZZWDlFOEr Mz=—mDy
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4.2
My,=—27Dy " X*CiqT.
. K2 2
Mas=2mDo—, x°T, (C3
]
K2

Maz=— 7T|52—2V,
7

2

M If)
2= TU2—
7 7

2
Fl_Z_T y

2

. Ke .
M33: —ar F1D0_2_2TD2
7

4

K'q

7

2

May=—27D, CiqT.

K?q

7]4

2

Mas=m(Dx?—D,) T,

X

Dn(P2,Cpq,K2,Cyg) = f

Ckr is the direction cosine betweéq, and P; and

x=y1-Cg, P.=PCpqg, P7y=Py1-Cg,.

(C7)

APPENDIX D

In this appendix we give a derivation of E¢30). The

. K
M55: WDlE FO-
We have used the abbreviations

2
_(4 2|1
FO=(Z—K )}T"‘U,

2
1
Fls(KZ— q—)—T+U,

42
2
q 1
FZEF1+2 Z_Kz)?’

q2

— 2n2 1
F3=Fl+2 Z_K CKq .

a
T=r*a(K?)a(K?),
U=7’B(K%)B(K?),

V=7na(K,)B(K_)+a(K_)B(K,)],

W=7 2K-q
as well as
o AP
AP 0D+ B D)
2 B(p*)
PP~ aa o) 1 827

and

1
Xchng'g’D( P2+ K2=-2PK\1—C3,Cir—2PKCpqCiq)(Ckr)"

J (K )BK )~ a(K )B(K.)

PRC 59

(C4

(CH

(C6)

tional Z[ A] [Eqs.(A3) and(A4)] with respect to the external

vector field A:

5(2)Z[A]

1
<7-j,u1(zl)j/1,2(22)>zz[o] (_)

time-ordered product of the two vector currents can be for-
mally written as functional derivative of the generating func- At the mean-field level the integration in over all possible

5AM1(21) 5AM2( Z,)

g

(B1)
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configurations of the bosonic auxiliary fielfl is substituted

BE(x,y)By(Y.X)
by the stationary configuratiol8,, and we can therefore Wy[A]=(—)Trin QO[A]_1+j d“xd“y#-

write 295D (x—y)
(D3)
Z[A]l=e MAl<eg Mol Al (D2)
where This implies for the functional derivatives
|
52["4] _ _) 5WO[A] ~Wol Al
6A,(2) 0A,(2) ’
OWOLAT| | WOl Al| | SWol Al|| SB[ ATl | aWol Al
{ 54,2 ‘[ 7,2 { 5B A] H 54,2 ‘[ 7,z |- CHETGL ALY,
FWO[A] —(+DU[G =0 D4
A A:O_( Dt G(z,2)y,]=0, (D4)
SZ[A1]
SAD] _y
8@z A] ~ 82l A]
5AM1(21)6AM2(22)L=0_( )Z[O]{6,4#1(21)5,4#2(22)}#0
Therefore we find, for the correlator, using E§1),
<7] ,ul(zl)j ,LLZ(ZZ)): INCJ d4yld4y2tr7[ yﬂlG(Zl aY1)FM2(Y1 Y2 ;ZZ)G(yZ 121)]! (D5)

which, after Fourier transform, gives E(O).
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