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Mesons asq̄-q bound states from Euclidean two-point correlators in the Bethe-Salpeter approach

T. Meissner* and L. S. Kisslinger
Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213

~Received 3 June 1998!

We investigate the two-point correlation function for the vector current. Gluons provide dressings for both
the quark self-energy as well as the vector vertex function, which are described consistently by the rainbow
Dyson-Schwinger equation and the inhomogeneous ladder Bethe-Salpeter equation. The form of the gluon
propagator at low momenta is modeled by a two-parameter ansatz fitting the weak pion decay constantf p . The
quarks are confined in the sense that the quark propagator does not have a pole at timelike momenta. We
determine the ground-state massm0 in the vector channel from the Euclidean time Fourier transform of the
correlator, which falls off ase2m0T at largeT. m0 lies around 590 MeV, and is almost independent of the
model form of the gluon propagator. This method allows us to stay in Euclidean space and to avoid analytic
continuation of the quark or gluon propagators into the timelike region.@S0556-2813~99!08302-8#

PACS number~s!: 11.10.St, 12.38.Aw, 14.40.Cs
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I. INTRODUCTION

The purpose of the present work is the determination
the ground-state mass of the vectorq̄q bound state within the
Dyson-Schwinger~DS! and Bethe-Salpeter~BS! approach
@1–3#. The starting point is the two-point correlation functio

Pmn~q!5E d4x eiq•x^TJm~x!Jn~0!& ~1!

for the vector quark currentsJm(x)5q̄(x)gmq(x), with q(x)
a quark field. Within the approximations used in the pres
paper, which will be described below,Pmn is determined by
the dressed quark propagator^Tq̄(x)q(0)& and the vertex
three-point function^Tq̄(x)Jm(y)q(0)&. The objective of
this work is to study the large-time behavior of the two-po
correlator in Euclidean space in order to determine the m
of the lowest vector meson, as in lattice gauge calculati
@4# and instanton models@5#. QCD sum rules also conside
the Euclidean two-point correlator, but attempt to determ
the ground-state mass by using the Borel transform to iso
the lowest mass pole@6#. Our method should be seen
contrast to an earlier approach, which solves the BS equa
on shell@7#.

We now briefly review the DS-BS approach used he
The nonperturbative nature of QCD at low and intermedi
momentum transfers makes the use of effective mode
natural and necessary tool. During the past few years, st
progress has been made in the framework of the DS
proach@1–3#, which is based on a coupled set of relatio
between dressed quark, gluon, and ghost propagators
vertex functions. In order to handle this system it is of cou
necessary to make certain simplifications and truncatio
One approach, which is commonly referred to asrainbow
approximation, uses an undressed quark-gluon vertex
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solves the Dyson-Schwinger equation~DSE! for the dressed
quark propagatorG(p), with a given dressed gluon propa
gatorDmn

ab(p) as input~cf. Fig. 1!:

S~p!5E d4q

~2p!4
gs

2Dmn
ab~p2q!gm

lc
a

2
G~q!gn

lc
b

2
. ~2!

The quark propagatorG and the quark self-energyS are
related by

G~p!215 ig•p1S~p!. ~3!

The form of the gluon propagatorDmn
ab(p) for small mo-

menta is basically unknown from QCD, and therefore has
be modeled while following certain requirements which w
be discussed below. In case of this special truncation i
possible to formulate an effective field theory using fun
tional integral techniques, which is known as the global co
model~GCM! @2,3,8#. This has the striking advantage that
the chiral limit ~zero current mass for the light quarks, i.e
Mu5Md5Ms50) one is able to establish an easy conn
tion between the dressed quark self-energy, leading to
namical chiral symmetry breaking on one side and the e
tence of massless Goldstone bosons as pseudoscalaq̄q
bound states on the other side. As a consequence, it is
sible to perform a systematic chiral low energy expansion@9#
in terms of composite Goldstone boson field and theref
make a connection between the phenomenological ch

uite
FIG. 1. Rainbow Dyson-Schwinger equation for the quark se

energyS.
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PRC 59 987MESONS ASq̄-q BOUND STATES FROM EUCLIDEAN . . .
hadronic theory~chiral perturbation theory! @10,11# and an
effective quark based theory of QCD, the GCM.

Furthermore one is also able to study the coupling
compositeq̄q systems to an external electromagnetic gau
field while guaranteeing localU(1) gauge invariance which
is manifest in the corresponding Ward-Takahashi iden
@12,7#. It turns out that the chiral invariance and electroma
netic current conservation, which are both essential
studying low-energy hadronic phenomena, are very diffic
to maintain if one tries to go beyond the rainbow appro
mation@13#, and are lost in general if modelAnsätze for the
quark-gluon vertex are used.

Though the rainbow approximation and the GCM na
rally violate local color SU(3)c gauge invariance and reno
malizability, they provide a very successful description
e
n
al

fo
l s

-
to
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s
f
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various nonperturbative aspects of strong interaction phy
and the QCD vacuum as well as hadronic phenomena at
energies. These include, for instance, quark confinement@2#,
QCD vacuum condensates@8,14–16#, UA(1) breaking, and
theh-h8 splitting @17#, low-energy chiral dynamics of Gold
stone bosons (p,K,h) @18,9,19–21,16#, meson form factors
@22#, heavy-light mesons@23#, systems at finite temperatur
@24#, or soliton @25# and Fadeev@26# descriptions of the
nucleon.

The method is more involved when applied to high
mass states instead of Goldstone bosons, e.g.,r, v, s, or A

mesons. A mesonicq̄q bound state with massm in a channel
with spin-flavor indexu is determined in the ladder approx
mation as a solution of thehomogeneousBethe-Salpeter
equation~BSE! @7#:
Vu~P,q252m2!5E d4K

~2p!4
gs

2Dmn
ab~P2K !gm

lc
a

2
G~K1!Vu~K,q252m2!G~K2!gn

lc
b

2
, ~4!
p

the
on-
e-
r-
ctor
ar
where we have used the notationK65K6q/2. Vu(P,q) is
related to the Bethe-Salpeter amplitudexu(P,q) as

xu~P,q252m2!5G~P1!Vu~P,q252m2!G~P2!.
~5!

As mentioned above, in the pseudoscalar channel the
istence of a massless state, or, in other words a solutio
Eq. ~4! at q250, is automatically guaranteed in the chir
limit if the rainbow DSE~2! is satisfied. For a small finite
current quark massM0 , a perturbative expansion inM0 and
q2 can be performed. This is, however, not possible
larger meson masses, and therefore an explicit numerica
lution of the corresponding homogeneous BSE~4! is re-
quired. The trouble hereby is that the meson momentum
defined in the timelike region,q252m2, which in turn re-
quires the dressed quark propagatorG(p) in the timelike
region. However,G(p) is a priori only determined at space
like p from the DSE~2!, because the model gluon propaga
D(p) is defined only for spacelike Euclidean momenta. It
therefore necessary to perform an analytic continuation
the dressed quark propagatorG(p) from Euclidean space
into Minkowski spacep4→ ip0 @7#. This is a very dangerou
and unsafe procedure, because it requires a knowledge o
singularity structure ofG(p) in the whole complex plane
which we do not have. In Ref.@27# an alternative method ha
been proposed which stays completely in Euclidean sp
avoiding analytic continuations of any of the dressed pro
gators. It is the analog to what is used in instanton models@5#
and lattice QCD calculations@4# where working in Euclidean
space is essential.

The two-point correlation function

Pu1u2
~q!5E d4x eiq•x^TJu1

~x!Ju2
~0!&, ~6!
x-
of

r
o-

is

r

f

the

e,
-

with quark currentsJu5q̄Tuq, whereu stands for the spin
flavor of the operatorTu , is determined as a quark loo
containing the dressed vertex functionGu(P,q) ~cf. Fig. 2
for Tu5gm).Gu(P,q) itself is given as the solution of the
inhomogeneousladder BSE~cf. Fig.3!:

Gu~P,q!52 iTu1E d4K

~2p!4
gs

2Dmn
ab~P2K !

3gm

lc
a

2
G~K1!Gu~K,q!G~K2!gn

lc
b

2
, ~7!

with the inhomogeneity2 iTu . This form can also be written
as

Gu~P,q!52 iTu1Gu~P,q!NP, ~8!

whereTu is the bare vertex andGu(P,q)NP is the nonpertur-
bative~NP! dressed vertex. The nonperturbative parts of
vertex functions can be constrained by the forms of the n
local condensates@28#, which also has been used in our r
cent work @15#. Moreover, it has been shown that this fo
malism can be used for the nonperturbative part of the ve
vertex function used at low momentum transfer for nucle

FIG. 2. Two-point correlatorPnm in the vector channel.
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988 PRC 59T. MEISSNER AND L. S. KISSLINGER
magnetic dipole moments@29#. This gives possible con
straints for the dressed vertex function treated in the pre
work, which we discuss below.

The momentumq is in general off shell and can be eith
space or timelike. Close to the mass shellq2

'2m2, Gu(P,q) and the solution of the homogeneous BS
~4! Vu(P,q252m2) are related by

Gu~P,q2'2m2!'
Vu~P,q252m2!

q21m2
. ~9!

In our study q2 will be always spacelike. Other than th
dressed quark or gluon propagator the correlatorPu1u2

(q2)
has a known Kalle´n-Lehmann spectral representation@30#:
Its poles are atq252mI

2 , I 50,1, . . . , where mI are the
meson resonance masses and the pole residua are bas
given by the couplingsf I between the interpolating curren
Ju and the on-shell statesuI &. OtherwisePu1u2

(q2) is holo-
morph in the complex plane, and falls off sufficiently fast f
uq2u→`, so that Cauchy’s theorem can be applied. A co
venient method to filter out the lowest state with massm0 is
to take the the one-dimensional Fourier transform of Eq.~6!
with respect to the time component of the Euclidean mom
tum q4

Pu1u2
* ~T!5E

2`

1`dq4

2p
eiq4TPu1u2

~q4 ,qW 50!, ~10!

which falls off ase2m0T for large Euclidean timesT.
It is obvious that the method as described is only able

extract properties of the ground state but not of excited st
or the continuum. It presumably will also fail or run int
trouble for states with a large width, bound states in
continuum, or if the interpolating quark currentJu couples
predominantly not to the ground state but to an excited st
On the other hand, it is clear that we have indeed avoi
making any assumption about the analyticity of the propa
tors. Instead we are using the analyticity structure of

FIG. 3. Inhomogeneous ladder Bethe-Salpeter equation for
vector vertex functionGm .
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two-point correlatorPu1u2
(q2) in the complex plane, which

is well under control. The price which we have to pay is t
fact that we have to solve the inhomogeneous BSE over
whole range of spacelikeq2, instead of the homogeneou
BSE at only the on-shell pointq252m0

2 .
It is the aim of our paper to perform an analysis of t

two-point correlation function in the vector channel~i.e.,
Tu5gm) using this approach, and to extract the ground-st
massm0 . We will work in the chiral limit (Mu5Md5Ms
50); therefore, isospin effects are not present. Follow
Ref. @9# we will use a model gluon propagatorD(q2) with an
IR regularized Mandelstam 1/q4 singularity @31,32# at q2

'0. For largeq2 an asymptotic free UV tail is added. Th
parameters inD(q2) are fixed in such a way that the wea
pion decay constant in the chiral limitf p588 MeV is re-
produced and, as shown in Refs.@9,14,15#, a satisfactory
description of low-energy chiral physics and vacuum co
densates can be achieved. We demonstrate that the dre
quarks which are determined from the rainbow DSE~2! are
confined in the sense that the quark propagator doesnot
show an exponential falloff;e2MT for large T. We then
demonstrate the existence of a bound state in the ve
channel by showing the exponential falloff of the correla
Pmm* (T) for large T, from which we can determine th
ground-state massm0 .

Our paper is organized as follows: In Sec. II we brie
review the definition of the dressed quark propagatorG and
the vector vertexGm as well as the rainbow DSE forG and
the inhomogeneous BSE forGm , and demonstrate the valid
ity of the vector Ward-Takahashi identity. We then show
Sec. III how to obtain the expression for the vector two-po
correlator and its Fourier transform in Euclidean space. T
numerical results for gluon and quark propagators, the ve
function, and the correlator are presented, analyzed, and
cussed in Sec. IV. Finally, conclusions are offered in Sec.

II. DRESSED QUARK PROPAGATOR
AND VERTEX FUNCTION

A. Rainbow Dyson-Schwinger
and ladder Bethe-Salpeter equation

Following Ref. @12# the inverse of the dressed qua
propagatorG(p) has the form

G21~p![ igp@A~p2!21#1S~p![ igpA~p2!1B~p2!
~11!

in momentum space. The quark self-energy dressingS(p)
comprises the concept ofconstituentquarks by providing a
running massM (p2)5B(p2)/A(p2). It is determined as the
solution of the rainbow DSE,

S~p!5
4

3
gs

2 d4q

~2p!4
D~p2q!gnG~q!gn , ~12!

which is schematically shown in Fig. 1. For convenience
Feynman type gauge for the gluon propagator

Dmn
ab~q!5dmndabD~q2! ~13!

e
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has been used here, which defines the phenomenolo
function D(q2) in Eq. ~12!. In the rainbow DS-BS approxi
mation used in the present work, this functionD(q2) for the
dressed gluon propagator is our main physical input.

In terms of the componentsA andB, Eq. ~12! reads

@A~p2!21#p25gs
28

3E d4q

~2p!4
D~p2q!

A~q2!q•p

q2A2~q2!1B2~q2!
,

~14a!

B~p2!5gs
2 16

3 E d4q

~2p!4
D~p2q!

B~q2!

q2A2~q2!1B2~q2!
.

~14b!

In momentum space, the dressed vector vertex is de
mined by theinhomogeneous ladderBSE, which reads, in
momentum space~7!,

Gm~P,q!5~2 i !gm 2
4

3
gs

2

3E d4K

~2p!4
D~P2K !gnGS K1

q

2D
3Gm~K,q!GS K2

q

2Dgn , ~15!

and is schematically displayed in Fig. 3.
As was shown in Ref.@12# both the rainbow DSE~12!

and the ladder BSE~15! can beconsistentlyderived from the
action of the GCM in an external gauge fieldAm(z) using
standard functional integration techniques. The main step
this derivation are reviewed in Appendixes A and B.

A crucial consequence is that this formalism ensures
construction invariance under local U(1) gauge transform
tions. At the level of the dressed vertexGm this invariance is
reflected in the validity of the Ward-Takahashi ident
~WTI!

qmGm~P,q!5G21S P2
q

2D2G21S P1
q

2D , ~16!

which can be easily verified by substituting it into Eq.~15!
and using the DSE~12! for the quark self-energyS as well
as the definition~11!.

Expanding the right-hand side of Eq.~16! in qm and tak-
ing the limit qm→0 leads to the Ward identity

Gm~P,0!52
]G21~P!

]Pm
. ~17!

B. General form of the dressed vertexGµ„P,q…

Following Ref. @7# in the Feynman-type gauge~13! for
the model gluon propagator, the most general form for
vertex functionGm(P,q) which fulfills Eq. ~15! reads

Gm~P,q!51Lm
~1!~P,q!1 ignLnm

~2!~P,q!

1 ig5gnemnabPaqbh22L~3!~P,q!, ~18!
cal

r-

of

y
-

e

where for convenience an arbitrary mass scaleh has been
introduced in order to render allL ( i )’s dimensionless. Fur-
thermore it turns out to be convenient to perform a deco
position into longitudinal and transversal components w
respect to the external momentumqm :

Lm
~1!~P,q!5

qm

h

Pq

q2
l1

L1
Pm

T

h
l1

T , ~19a!

Lnm
~2!~P,q!5

Pnqm

h2

Pq

q2
l2

L1
PnPm

T

h2
l2

T

2
qnqm

q2
l3

L2S dnm2
qnqm

q2 D l3
T1

qnPm
T Pq

h4
l4

T ,

~19b!

L~3!~P,q!5l5
T . ~19c!

The eight scalar dimensionless coefficientsl i
L ( i

51, . . . ,3) and l i
T ( i 51, . . . ,5) depend onP2,q2 and

CPq
2 , whereCPq5Pq/q2 is the direction cosine betweenP

and q. Pm
T[Pm2Pqqm /q2 is the vector transverse toqm ,

i.e., qmPm
T50. The advantage of the decomposition~19! lies

in the fact that the longitudinal componentsl i
L ( i

51, . . . ,3) aredetermined automatically from the quar
propagatorG by means of the WTI~16!,

Pq

h
l1

L5B~P2
2 !2B~P1

2 !, ~20a!

Pq

h2
l2

L5A~P2
2 !2A~P1

2 !, ~20b!

2l3
L5A~P2

2 !1A~P1
2 !, ~20c!

whereP6[P6q/2.
This leaves only the five independent transversal com

nentsl i
T ( i 51, . . . ,5) to bedetermined as solutions of th

inhomogeneous BSE~15!. In order to do this, one has t
project out the singlel i

T for each i which can be done by
multiplying Eqs.~18! and~19! with appropriate Dirac matri-
ces and taking traces. Performing the same operations on
right-hand side of Eq.~15! finally leads to a set of five
coupled linear inhomogeneous integral equations forl i

T

( i 51, . . . ,5) @7#:

Xi5Ni j l j
T~P2,q2,CPq

2 !

1E
0

`

dK K3E
21

11

dCKqMi j ~q2,P2,CPq
2 ,K2,CKq

2 !

3l j
T~K2,q2,CKq

2 !. ~21!

The indicesi and j both run from 1 to 5. The vectorXi and
the nonzero components of the matricesNi j andMi j were
derived in Ref.@7#. For completeness, and because we n
them later for the determination of the correlator, they a
also listed in Appendix C.
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C. Asymptotic behavior

For large values of the quark momentumP2→` or for
large values of the external momentumq2→` the propaga-
tors reach their asymptotic free forms, and therefore the
nel in Eq. ~15! vanishes, which implies that alsoGm ap-
proaches the naked vertex. This means

Gm~P,q!uP2→`5~2 i !gm ~22!

or

l i
L~P2→`,q2,CPQ

2 !50, i 51,2, ~23a!

l i
L~P2→`,q2,CPQ

2 !51, i 53, ~23b!

l i
T~P2→`,q2,CPQ

2 !50, i 51,2,4,5, ~23c!

l i
T~P2→`,q2,CPQ

2 !51, i 53 ~23d!

and

Gm~P,q!uq2→`5~2 i !gm , ~24!

or

l i
L~P2,q2→`,CPQ

2 !50, i 51,2, ~25a!

l i
L~P2,q2→`,CPQ

2 !51, i 53, ~25b!

l i
T~P2,q2→`,CPQ

2 !50, i 51,2,4,5, ~25c!

l i
T~P2,q2→`,CPQ

2 !51, i 53, ~25d!

together withA(P2→`)51 andB(P2→`)50.

D. Constraints on vertex function

The nonperturbative part of the vector vertex functi
from Eqs.~7! and ~8! can be constrained by the work usin
QCD sum rules with nonlocal condensates.Gm(y1 ,y2 ;z)NP,
defined as the second term in Eq.~B8!, has also been show
to be given by the four-quark nonlocal condensate@28,29#

Gm~y1 ,y2 ;z!NP5^0u:q~y1!q̄~z!gmq~z!q̄~y2!:u0&.
~26!

Defining the nonlocal quark condensate by

^0u:q̄~0!q~y!:u0&[g~y2!^0u:q̄~0!q~0!:u0&, ~27!

the functiong(y2) gives the space-time structure of the no
local condensates. In particular, the vertex funct
Gm(0,0;z)NP, needed in the three-point determination of t
vector vacuum susceptibility is given by Eqs.~26! and ~27!
with the approximation of vacuum factorization as

Gm~0,0;z!NP5~2 igm!S ^q̄q&
12

D 2E d4yg~y2!g@~z2y!2#.

~28!

The vacuum factorization approximation has been found
be satisfactory for deriving vacuum susceptibilities@28,29#.
Using the forms ofg(y2) such as those studied in Ref
r-

-

o

@15,28,29#, one obtains constraints on the dressed ver
functions and thus further constraints on the gluon propa
tor. This will be the subject of future work.

III. VECTOR CORRELATOR

A. Definition and properties

We are now ready to study the main object of our inve
tigation which is the correlatorPm1m2

of two vector currents

j m(x)5q̄(x)gmq(x). In momentum space, it is defined as

Pm1m2
~q![E d4x eiqx^Tj m1

~x! j m2
~0!&. ~29!

It can be expressed in terms of the dressed quark pro
gatorG and the dressed vertex functionGm(P,q) as

Pnm~q!5 i E d4P

~2p!4
Tr@Gm~P,q!G~P1!gnG~P2!#,

~30!

which is schematically displayed in Fig. 2. The trace Tr go
over Dirac and color indices. A derivation of Eq.~30! from
the GCM is given in Appendix D. It should be stressed th
Eq. ~30! is a mean-field result.

The WTI ~16! for the dressed vertexGm ensures that the
correlatorPnm(q) is transversal,

qmPnm~q!50, ~31!

or

Pnm~q!5S dmn2
qmqn

q2 D P~q2!. ~32!

This can be easily verified by putting Eq.~16! into Eq. ~30!,
and again reflects manifest invariance of our approach un
U~1! gauge transformation and therefore conservation of
vector currentj m(x). Because of Eq.~32!, it is sufficient to
consider the contractionPmm(q2).

B. Spectral representation and bound states

The Kallén-Lehmann spectral representation@30# for
Pmm(q2) is obtained by saturating the correlator~29! with a
complete set of on-shell mesonic bound sta
uI (mI ,kI ,l I)& (I 50,1,2, . . . ) with massmI , 4-momentum
PI (PI

252mI
2 in Minkowski space!, and polarizationl I :

Pmm~q2!5E
0

`

dsr̃mm~s!
1

s2q21 i e
, ~33!

where

rmm~q!5 r̃mm~q2!u~q0!5~2p!3(
I

d~4!~PI2q!

3^0u j m~0!uI ~mI ,PI ,l I !&^I ~mI ,PI ,l I !u j m~0!u0&.

~34!
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The coupling between the on-shell stateuI & and the inter-
polating quark currentj m is denoted byf I , and defined by

^0u j m~x!uI ~mI ,PI ,l I !&5 f Ie
ikxem~PI ,l I !

1

A~2p!3~2vPI!
,

~35!

where em(PI ,l I) denotes the polarization 4 vector an
(vPI)

25mI
21kW I

2 . Inserting Eq.~35! into Eq. ~34! leads in
Euclidean space to

Pmm~q2!53(
I

f I
2

qI
21mI

2
. ~36!

In order to filter out the contribution from the ground sta
uI 50&, we take the Fourier transform of~36! with respect to
the Euclidean timeT,

Pmm* ~T!5E
2`

1` dq4

2p
eiq4TPmm~q4 ,qW 50!

5
3

2(I

f I
2

mI
e2mIT, ~37!
r-

ot
e
n
d

t
s

t

m

or
and consider the limitT→`,

Pmm* ~T→`!→
3

2

f 0
2

m0
e2m0T. ~38!

It should be noted in this context that in case of ther meson
there are in principal also 2p intermediate states in sum~34!,
and therefore the asymptotic behavior of the correlatorPmm
for large Euclidean times is actuallye22mpT. However the
diagrams with the two intermediatep states are suppresse
by one order 1/Nc with respect to the vector meson propag
tor, which is of leading order@11#. We are working at the
mean-field level, which is compatible with the leading ord
in 1/Nc as far as the quark degrees of freedom are conce
@9,17#, and therefore these intermediate 2p states do not ap-
pear in the present treatment.

C. Determination of Pµµ in terms of G and Gµ

The final task which remains in order to evaluatePmm is
to write it in terms of the quark self energy functionsA and
B @Eq. ~11!# and vertex functionsl i

T @Eqs. ~18! and ~19!#.
This is done straightforwardly by inserting definitions~11!,
~18!, and ~19! into Eq. ~30!, and carrying out the matrix
trace. The result is
Pmm~q2!5~2Nc!
1

h2p3E0

`

dP P3E
21

11

dCPqxH 2
P2

h2
x2Vl1

T~P2,q2,CPq
2 !1

P2

h2
x2S F122

P2

h2
TD l2

T~P2,q2,CPq
2 !

2S 3F122
P2

h2
x2TD l3

T~P2,q2,CPq
2 !22

P4q2

h6
x2CPq

2 Tl4
T~P2,q2,CPq

2 !22
P2q2

h4
x2Tl5

T~P2,q2,CPq
2 !J , ~39!
f

sult

e

where abbreviations from Appendix C have been used.
At this point we have to say how to handle the UV dive

gences inPmm(q2). For large quark loop momentaP the
quark propagator and vertex functions reach their asympt
forms specified in Sec. II C, and the loop in Fig. 2 is the fr
loop which is logarithmically divergent. In perturbatio
theory it can be renormalized in the standard way using
mensional regularization@33#. In our case it is actually no
necessary to evaluatePmm(q2), because we need only it
Fourier transformPmm* (T), which is UV finite, as any cor-
relator in coordinate space is UV finite. The reason for tha
that the quark propagator, which falls off like 1/P in momen-
tum space, will fall off likee2TP after Fourier transform, and
therefore the momentum integral*0

`dP P3 in Eq. ~39! is UV
finite. When evaluatingPmm* (T) from Eq.~39!, it is therefore
convenient to perform the Fourier transfor
*2`

1`(dq4/2p)eiq4T beforethe momentum integral*0
`dP P3,

which avoids a conceptually and technically intricate ren
malization procedure.

IV. RESULTS AND DISCUSSION

Our model gluon propagator has the form

D~q2!5D IR~q2!1DUV~q2!, ~40!
ic
e

i-

is

-

where

gs
2D IR~q2!5~4p2d!

x2

q41D
, ~41!

gs
2DUV~q2!5

4p2d

q21 lnS q2

LQCD
2

1t D . ~42!

The first termD IR @Eq. ~41!#, which dominates for smallq2,
is a regularized MandelstamAnsatz@31,32# with a strength
x2 and an IR regulatorD, which models the IR strength o
the quark-quark interaction. The second termDUV @Eq. ~42!#,
which dominates for largeq2, is an asymptotic UV tail and
matches the known one-loop renormalization group re
with d5@12/(3322Nf)#5 12

27 , LQCD5200 MeV, andt5e
@2#. The model parametersx andD are adjusted to reproduc
the weak pion decay constant in the chiral limitf p

588 MeV. We are using three different parameter sets:

Set 1: D51.031024 GeV4, x51.02 GeV,
~43a!
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Set 2: D55.031024 GeV4, x51.12 GeV,
~43b!

Set 3: D51.031023 GeV4, x51.18 GeV.
~43c!

The forms of D(q2) are displayed in Fig. 4, which als
shows for comparison the pure UV formDUV(q2). As one
can see in all three cases the asymptotic form is reac
already forq2'0.2 GeV2. In Ref.@9# it has been shown tha
with those values a satisfactorily description of all low
energy chiral observables can be achieved.

The second step is the determination of the dressed q
propagator~11! as a solution of the coupled set of integr
equations~14a! and~14b!. Figure 5 displays the running con
stituent massM (p2)5B(p2)/A(p2) at spacelikep2.0. In
order to demonstrate that the quarks are confined, one h
show that the quark propagatorG(p2) has no poles in the
timelike regionp2,0. This can again be done by studyin
the Fourier transform with respect to the Euclidean timeT
@2#. It is sufficient to consider the scalar partGs :

FIG. 4. Model gluon-2 point functionsD(s) @Eq. ~40!# for the
three different parameter sets~43!. In each case the value of th
pion decay constant in the chiral limitf p588 MeV is reproduced.
For comparison we also show the form of the UV tailDUV(s) @Eq.
~42!# ~dash-dotted line!.

FIG. 5. The dynamical~constituent! quark massesM (s) for the
three parameter sets~43!.
ed

rk

to

Gs* ~T!5E
2`

1` dq4

2p
eiq4TGs~q2!

5E
2`

1` dq4

2p
eiq4T

B~q2!

q2A2~q2!1B2~q2!
. ~44!

If G(p) had a pole atp252M2, the Fourier transform
Gs* (T) would fall off ase2MT for largeT or

ln@Gs* ~T→`!#;2MT. ~45!

However, from Fig. 6 we can see that (2)ln@Gs* (T)# is far
from rising linearly withT at largeT; it actually rises ap-
proximately quadratically withT. This strongly indicates tha
the the parameter set~43! indeed produces confined quark
We want to stress that this statement is based on a nume
argument, namely, Fig. 6. In the simple but somewhat
physical case of a gluon propagator, which is ad function in
momentum space,D(q2)}d (4)(q2), and which can be re-
garded as the limit of Eq.~41! for D→0, the DSE for the
quark propagator can be solved analytically, and it can
shown that the quark propagator indeed has no pole at ti
like momenta@2,3#. This is equivalent to quark confinemen
in the sense mentioned above.

The third step is now to solve the inhomogeneous BS
i.e., the coupled set of five inhomogeneous linear integ
equations~21!. We follow the numerical procedure from
Ref. @7#. One applies a Gauss quadrature using aboutnK

'30 Gauss points for*2`
1`dK and nCKq

'nCKT
'10 Gauss

points for both*21
11dCKq and*21

11dCKT . It should be noted
that the angular integration overCKT is running only over the
the gluon propagatorD and not over the functions
l i(K

2,q2,CKQ
2 ). This transforms the integral equations into

high-dimensional set of ordinary inhomogeneous line
equations for thel i at the Gauss points, which is solved b
inverting the (5nKnCKq

)3(5nKnCKq
)'150031500 coeffi-

cient matrix using standard packages@34#.
Other than in Ref.@7#, where the quark self-propagatorG

which appears in the kernel of the BSE~15! has been param

FIG. 6. The Euclidean time Fourier transformGS* (T) of the
scalar part of the quark propagatorGs ~arbitrary scale! for the three
parameter sets~43!.
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etrized by a simple analytic form without solving the DS
~14! explicitly, we are using the numerical solutionsA andB
of Eq. ~14! in the kernel for the BSE~15!. Our treatment is
therefore a fully consistent solution of both the rainbow D
for the quark propagatorG and the inhomogeneous ladd
BSE for the vector vertex functionGm using the same mode
gluon propagatorD specified in Eq.~40! as input. As one can
see from Eqs.~15! and~21!, this involves a numerical inter
polation of A(P2) and B(P2) to the pointsP6 . Figure 7
displays the coefficient functionsl i(P2) for the parameter
set 1 @Eq. ~43a!# for a fixed spacelike value ofq2

50.1 GeV2 and a fixed angleCPq50. As one can see, ou
result is qualitatively similar though quantitatively notic
ably different than the one from Ref.@7#. Similar than Ref.
@7#, we also find that thel i(P2,q2,CPQ

2 ) are only very
weakly dependent on the angleCPQ if P2 andq2 are fixed.

Finally, Fig. 8 shows our main result, the Fourie

FIG. 7. The five componentsl i(P2), i 51, . . . ,5 of thevertex
functionGm(P,q) as defined in Eq.~19! for a fixed spacelike value
of the off shell momentumq2510.1 GeV2 and angleCPq50 us-
ing the parameter set 1@Eq. ~43a!#.

FIG. 8. The Euclidean time Fourier transformPmm* (T) of the
vector correlator~arbitrary scale! for the three parameter sets~43!.
Our numerical results are denoted by circles, squares, and
monds, respectively. The straight full, dotted, and dashed stra
lines are the best linear fits.
transformed correlatorPmm* (T) for large Euclidean timesT
evaluated with the three sets~43!. As mentioned earlier it is
essential to evaluate the Fourier integral*2`

1`(dq4/2p)eiq4T

before doing the integral over the quark momentu
*2`

1`dP P3 in order to avoid UV infinities. From Fig. 8 we
see clearly thatP* mm(T) has an exponential falloff;e2m0T

for large T, and moreover that the ground-state massm0 is
practically the same for all three parameter sets, because
curves are parallel. The ground-state massm0 can be ex-
tracted by carrying out a linear fit to the numerical resu
One findsm0'590 MeV for all three sets. This has to b
compared with the phenomenological values of 780 M
for the ground-state vector meson mass. The instanton liq
model @5# finds m05950 MeV, whereas quenched lattic
QCD @4# obtainsm05720 MeV. Reference@7#, which con-
siders the same model as we do but solves the BSE
Minkowski space, finds a ground-state mass in the vec
channel of about 880 MeV. However, it should be not
that the gluon propagator of Ref.@7# is not exactly the same
as the one we use. We have taken care that we can in
reproduce the weak pion decay constantf p, which is not the
case in Ref.@7#. Furthermore, as mentioned above, in R
@7# the SDE and BSE were not solved consistently in
sense that the quark propagator which enters the BSE is
the one which comes from the DSE. Instead, Ref.@7# em-
ploys an analytic form for the quark propagator, which on
roughly fits the real solution of the DSE. A direct compa
son between the numerical values of Ref.@7# and the value
from our analysis is therefore not really conclusive.

V. CONCLUSIONS

To summarize, we have studied aq̄q bound state in the
vector channel using a nonlocal and confining model qua
quark interaction, which respects all global symmetries
QCD. The model parameters have been chosen to giv
good description of low-energy chiral physics for the Go
stone degrees of freedom (p,K,h). We have demonstrate
the existence of a higher mass state by evaluating the
relator of two interpolating vector currents in Euclidea
space, and showing the exponential falloff of its Four
transform at large Euclidean times. This employs a con
tent treatment of the dressed quark propagatorG and the
dressed vector vertexGm , which are both determined from
the model quark-quark interaction by the rainbow Dyso
Schwinger equation forG and the inhomogeneous ladd
Bethe-Salpeter equation forGm . The method stays until the
end in Euclidean space and all momenta are spacelike.
avoids any unsafe analytic continuations of the dres
propagators into the timelike region. We have found that
ground-state mass is practically independent of the par
eters of the model interaction and lies at about 590 MeV

For the creation of a bound state it is obviously necess
to have a highly nonlocal quark-quark interaction, which
reflected in its large nonperturbative strength in the IR. T
leads not only to dynamical chiral symmetry breaking b
also to a strong momentum dependence of the running
namical quark massM (p2) and, in our case, even to con
fined quarks. This is an important advantage over with
Nambu–Jona-Lasinio~NJL! interaction@35#, which can be

ia-
ht
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994 PRC 59T. MEISSNER AND L. S. KISSLINGER
regarded as a special case of the GCM with a local qu
quark interactionDmn

ab(x,y)5dabdmnd (4)(x2y), and has
been subject to extensive studies@36#. The NJL model has a
momentum-independent constituent massM and is therefore
not confining. Though it gives a satisfactory description
the physics associated with the Goldstone degrees of f
dom (p,K,h) it has trouble dealing with higherq̄q bound
states, which lie around the 2M threshold and are therefor
unstable or barely stable against decay into a quark-antiq
pair.

As long as ground-state properties are considered,
method which we have used can also be applied to o
channels, such as, e.g., the axial vector mesons, as well
three-point functions, which are the basis for a study of m
son form factors@27#. It is not adequate for extracting prop
erties of excited states.
g
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APPENDIX A: GLOBAL COLOR MODEL „GCM …

IN AN EXTERNAL VECTOR FIELD

Following Ref.@12#, we consider the Euclidean action o
the GCM in anexternal vector fieldAm(x):
SGCM@ q̄,q;A#5E d4x d4yH q̄~x!@g]x2 ignAn~x!#q~x!1
gs

2

2
j m
a ~x!Dmn

ab~x2y! j m
b ~y!J , ~A1!
er

of

he
where j m
a denotes the color octet vector current:

j m
a ~x!5q̄~x!gm

lc
a

2
q~x!. ~A2!

For convenience we will employ the Feynman-type gau
~13! @2,3# for the model gluon propagatorD. Applying the
standard bosonization procedure@37,38# the generating func-
tional

Z@A#[e2W[A]5E Dq̄Dqe2SGCM[ q̄,q;A] ~A3!

can be rewritten in terms of the bilocal auxiliary field
B u(x,y),

Z@A#5E DB ue2Seff[B u;A] , ~A4!

with the effective bosonic action

Se f f@B u;A#5~2 !Tr ln G21@B u;A#

1E d4x d4y
B u~x,y!B u~y,x!

2gs
2D~x2y!

~A5!

and the quark operator

G21@B u;A#5@g]x2 ignAn~x!#d~x2y!1LuB u~x,y!.
~A6!

The matricesLu arise from Fierz reordering the curren
current interaction in Eq.~A1!, and are given by
e

Lu5
1

2S 1D ,ig5 ,
i

A2
gn ,

i

A2
gng5D ^ S 1

A3
1F ,

1

A2
lF

a D
^ S 4

3
1C ,

i

A3
lc

aD . ~A7!

In the mean-field approximation, which is the leading ord
in 1/Nc , the fieldsB u(x,y) are substituted by their vacuum
valuesB 0

u(x,y), which are given as the stationary points
the effective action~A5!,

FdSeff

dB G
B0

50 ~A8!

or

B 0
u@A#~x,y!5gs

2D~x2y!tr@LuG0@A#21~x,y!#, ~A9!

where G 0
21(x,y) denotes the inverse propagator with t

self-energyS(x,y)5LuB 0
u(x,y) in the external background

field A(x):

G0@A#21~x,y!5@g]x2 ignAn~x!#d~x2y!1LuB 0
u~x,y!.

~A10!

We want to stress that bothB 0
u(x,y) andG 0

21(x,y) have an
implicit dependence on the external background fieldA(x).
If the external fieldA is switched off,G0 goes into the
dressed quark propagatorG[G0@A50#, which has the de-
composition@Eq. ~11!#

G21~p![ igp@A~p2!21#1S~p![ ig•pA~p2!1B~p2!
~A11!
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in momentum space. The quark self-energy dressingS(p) is
determined as the solution of the rainbow DSE@Eq. ~A9! for
A50)#, rendering@Eq. ~12!#

S~p!5
4

3
gs

2 d4q

~2p!4
D~p2q!gnG~q!gn . ~A12!

APPENDIX B: VERTEX DRESSING AND
INHOMOGENEOUS BETHE-SALPETER EQUATION

In coordinate space the dressed vector ver
Gm(y1 ,y2 ;z) is given as the functional derivative of the in
verse quark propagatorG0@A#21 ~A10! with respect to the
external fieldAm :

Gm~y1 ,y2 ;z![FdG0@A#21~y1 ,y2!

dAm~z! G
A50

. ~B1!

Taking the functional derivative in Eq.~A10! gives, for Eq.
~B1!,

Gm~y1 ,y2 ;z!5~2 i !gmd~y12y2!d~y12z!

1FdS@A#~y1 ,y2!

dA~z! G
A50

. ~B2!
or

ti-
g

x

The second term on the right-hand side of Eq.~B2! can be
determined by employing the stationary condition~A9!,
which, after Fierz reordering, can be cast into

S@A#~y1 ,y2!5
4

3
gs

2D~y12y2!gnFdG0@A#~y1 ,y2!

dAm~z! G
A50

gn .

~B3!

In order to find an expression for†dG0@A#(y1 ,y2)/
dAm(z)‡A50 in terms of the quark propagatorG, we write
the definition~A10! schematically as

G 0
21@A#5G211AmGm , ~B4!

which leads to the formal expansion

G0@A#5G2GAmGmG6•••. ~B5!

Putting Eq.~B5! into Eq. ~B3! gives
FdS@A#~y1 ,y2!

dA~z! G
A50

52
4

3
gs

2D~y12y2!E du1du2gnG~y1 ,u1!Gm~u1 ,u2 ;z!G~u2 ,y2!gn , ~B6!

which, after substituting the result into Eq.~B2!, renders theinhomogeneousBSE for Gm(y1 ,y2 ;z) in coordinate space:

Gm~y1 ,y2 ;z!5~2 i !gmd~y12y2!d~y12z!2 4
3 gs

2D~y12y2!E du1du2gnG~y1 ,u1!Gm~u1 ,u2 ;z!G~u2 ,y2!gn . ~B7!
Fourier transform leads then to the momentum space f
~15!.

APPENDIX C: MATRIX ELEMENTS OF THE BS KERNEL

In this appendix we list the explicit forms for the quan
ties which appear as kernel of the five transversal inhomo
neous BS integral, and will be also needed in Eq.~39!:

X5~0,3,1,0,0!, ~C1!

N1151, N2252
~PT!2

h2
, N2353, N2252

~PT!2

h2
,

N3351, N4251, N445
q2

h2
, N5551, ~C2!

and

M1152pD̂1F0

K

PT
,

m

e-

M1252pD̂1

K3

PTh2S V1
q2

h2
CKq

2 WD ,

M13522pD̂1

K

PT
V,

M1452pD̂1

K3qr2

PTh4
CKq

2 S V1
q2

h2
WD ,

M2152pD̂0

K2

h2
x2V,

M225pD̂0

K2

h2
x2S F122

K2

h2
TD ,

M2352pD̂0S 3F122
K2

h2
TD ,
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M24522pD̂0

K4q2

h6
x2CKq

2 T,

M2552pD̂0

K2q2

h4
x2T, ~C3!

M3152pD̂2

K2

h2
V,

M325pD̂2

K2

h2S F122
K2

h2
TD ,

M3352pS F1D̂022
K2

h2
TD̂2D ,

M34522pD̂2

K4q2

h6
CKq

2 T,

M355p~D̂0x22D̂2!
K2q2

h4
T,

M415pD̂1

K2

PLPT
CKqS V1

q2

h2
WD ,

M4252pD̂1

K2

PLPT
CKqF2 ,

M43522pD̂1

K2

PLPT
CKqT,

M4452pD̂1

K2

PLPT
CKq

q2

h2
F3 ,

M5352pD̂1

K

PT
T,
fo
c

M555pD̂1

K

PT
F0.

We have used the abbreviations

F0[S q2

4
2K2D 1

h2
T1U,

F1[S K22
q2

4 D 1

h2
T1U,

F2[F112S q2

4
2K2D 1

h2
,

F3[F112S q2

4
2K2CKq

2 D 1

h2
,

T[h4a~K1
2 !a~K2

2 !,

U[h2b~K1
2 !b~K2

2 !,

V[h3@a~K1!b~K2!1a~K2!b~K1!#,

W[h5Fa~K1!b~K2!2a~K2!b~K1!

2K•q G , ~C4!

as well as

a~p2!5
A~p2!

p2A2~p2!1B2~p2!
,

~C5!

b~p2!5
B~p2!

p2A2~p2!1B2~p2!
,

and
D̂n~P2,CPq ,K2,CKq![E
2x

x

dCKT

1

3h2p4
gs

2D~P21K222PKA12CPq
2 CKT22PKCPqCKq!~CKT!n. ~C6!
l

le
CKT is the direction cosine betweenKm andPm
T and

x[A12CKq
2 , PL[PCPQ , PT5PA12CKq

2 .
~C7!

APPENDIX D

In this appendix we give a derivation of Eq.~30!. The
time-ordered product of the two vector currents can be
mally written as functional derivative of the generating fun
r-
-

tionalZ@A# @Eqs.~A3! and~A4!# with respect to the externa
vector fieldA:

^Tj m1
~z1! j m2

~z2!&5
1

Z@0#
~2 !F d~2!Z@A#

dAm1
~z1!dAm2

~z2!G
A50

.

~D1!

At the mean-field level the integration in over all possib
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configurations of the bosonic auxiliary fieldB is substituted
by the stationary configurationB0 , and we can therefore
write

Z@A#5e2W[A]'e2W0[A] , ~D2!

where
.

l.

.
d,

e,
W0@A#5~2 !Tr ln G0@A#211E d4xd4y
B 0

u~x,y!B 0
u~y,x!

2gs
2D~x2y!

.

~D3!

This implies for the functional derivatives
dZ@A#

dAn~z!
5~2 !

dW0@A#

dAn~z!
e2W0[A] ,

FdW0@A#

dAn~z! G5F]W0@A#

]An~z! G1FdW0@A#

dB0@A# GFdB0@A#

dAn~z! G5F]W0@A#

]An~z! G5~1 i !^zutr@G0@A#gn#uz&,

FdW0@A#

dAn~z! G
A50

5~1 i !tr@G~z,z!gn#50, ~D4!

F dZ@A#

dAn~z!GA50

50,

F d~2!Z@A#

dAm1
~z1!dAm2

~z2!G
A50

5~2 !Z@0#F d~2!W0@A#

dAm1
~z1!dAm2

~z2!G
A50

.

Therefore we find, for the correlator, using Eq.~B1!,

^Tj m1
~z1! j m2

~z2!&5 iNcE d4y1d4y2trg@gm1
G~z1 ,y1!Gm2

~y1 ,y2 ;z2!G~y2 ,z1!#, ~D5!

which, after Fourier transform, gives Eq.~30!.
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