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Bound qq̄ systems in the framework of the different versions of the three-dimensional reductions
of the Bethe-Salpeter equation
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Boundqq̄ systems are studied in the framework of different three-dimensional relativistic equations derived
from the Bethe-Salpeter equation with the instantaneous kernel in the momentum space. Except the Salpeter
equation, all these equations have a correct one-body limit when one of the constituent quark masses tends to
infinity. The spin structure of the confiningqq interaction potential is taken in the formxg1

0g2
01(1

2x)I 1I 2 , with 0<x<1. At first stage, the one-gluon-exchange potential is neglected and the confining poten-

tial is taken in the oscillator form. For the systems (us̄),(cū),(cs̄) and (uū),(ss̄) a comparative qualitative
analysis of these equations is carried out for different values of the mixing parameterx and the confining
potential strength parameter. We investigate~1! the existence/nonexistence of stable solutions of these equa-
tions, ~2! the parameter dependence of the general structure of the meson mass spectum and leptonic decay
constants of pseudoscalar and vector mesons. It is demonstrated that none of the three-dimensional equations
considered in the present paper simultaneously describes even general qualitative features of the whole mass

spectrum ofqq̄ systems. At the same time, these versions give an acceptable description of the meson leptonic
decay characteristics.@S0556-2813~99!05201-2#

PACS number~s!: 11.10.St, 12.39.Ki, 12.39.Pn
is

ie
e

ve
ci
ar
o

th
ch
et

ke
s

f t

tr

m

c-
is

,
w

-

e
f
w

oid

in
3D
er-
the
he
lso

s
ay.
re

-
iga-
e-
s.

u-
n
s of
is
ad-
f
ion
to
r
m
3D

be
, it
o-

cter-
I. INTRODUCTION

The Bethe-Salpeter~BS! equation provides a natural bas

for the relativistic treatment of boundqq̄ systems in the
framework of the constituent quark model. At an earl
stage of the investigation of this problem various thre
dimensional~3D! reduction schemes for BS equation ha
often been considered, which shares most of the simpli
and transparency of the conventional nonrelativistic qu
models. The equal-time wave function which is a solution
the 3D equation, unlike the 4D BS wave function, has
probabilistic interpretation. An alternative approach whi
has recently become popular is based on the coupled s
the Schwinger-Dyson and Bethe-Salpeter equations~see,
e.g., Refs.@1–4#, and references therein!. An apparent ad-
vantage of this approach is that it from the beginning ta
into account the full content of global QCD symmetrie
Consequently, it has been successful in the description o
properties of the bound states containing light (u,d,s)
quarks where the role of the dynamical chiral symme
breaking effects become dominant@1–3#, as well as in the
description of the characteristics of the heavy-light syste
@4#.

As it is well known, the simplest version of the 3D redu
tion immediately arises if the kernel of the BS equation
taken in the instantaneous~static! approximation. As a result
the Salpeter equation is obtained. The Salpeter equation
used for the description of the boundqq̄ system without
further approximation in Refs.@5–16#, whereas some addi
tional approximations were made in Refs.@17,18#. However,
as it is well known, the Salpeter equation does not hav
correct one-body limit~the Dirac equation! when the mass o
one of the particles tends to infinity. From the general vie
PRC 590556-2813/99/59~2!/976~10!/$15.00
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point, this property is expected to be important for theqq̄
system with one heavy and one light quark. In order to av
the above difficulty, in Refs.@19,20# the effective noninter-
acting 3D Green’s function for two fermions was chosen
the form that guarantees the correct one-body limit of
relativistic equations with the static BS kernel. These v
sions of the 3D equations will be referred hereafter as to
MW and CJ versions, respectively. A new version of t
effective free propagator for two scalar particles which a
possesses this property was suggested in Ref.@21#. The ef-
fective 3D Green’s function for two noninteracting fermion
can be constructed from this propagator in a standard w

Taking into account the fact that the relativistic effects a

important forqq̄ systems with quarks from light and light
heavy sectors, it seems interesting to carry out the invest
tion of this sort of systems in the framework of the abov
mentioned different versions of 3D relativistic equation
This will allow one to shed light on the problem of ambig
ity coming from the choice of a particular 3D reductio
scheme of the BS equation, and to find the characteristic
the boundqq̄ systems, which are more sensitive to th
choice. For the meson mass spectrum this problem was
dressed in Refs.@22,23# where the MW and CJ versions o
3D relativistic equations together with the Salpeter equat
~Sal. version! were considered in the configuration space
~partially! avoid the difficulties related to a highly singula
behavior of the linear confining potential in the momentu
space at the zero momentum transfer. The version of the
reduction of the BS equation suggested in Ref.@21# signifi-
cantly differs from the MW and CJ versions and can
written down only in the momentum space. Consequently
seems interesting to study together all versions in the m
mentum space and to investigate a wider class of chara
976 ©1999 The American Physical Society
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PRC 59 977BOUND qq̄ SYSTEMS IN THE FRAMEWORK OF THE . . .
istics of the bound systems, including the decay characte
tics of the mesons, which are sensitive to the behavior of
meson wave functions, and the meson mass spectrum. T
problems will form the subject of the present paper.

The layout of the present paper is as follows. In Sec.
we present different versions of the 3D bound-state eq
tions in the momentum space, and perform the partial-w
expansion of the obtained equations. The numerical solu
of these equations with the oscillator-type potential is c
sidered in Sec. III. The general structure of the meson m
spectra obtained from the solution of these equations is
cussed in detail. In Sec. IV, the leptonic decay characteris
of the pseudoscalar and vector mesons are calculated u
the wave functions obtained from the solution of these eq
tions.

II. THE RELATIVISTIC 3D EQUATIONS

The relativistic 3D equations for the wave function of t
boundqq̄ systems, corresponding to the instantaneous ke
of the BS equation, i.e., whenK(P;p,p8)→Kst(pW ,pW 8), for
all versions considered below in the c.m.s. can be written
a common form

F̃M~pW !5G̃0eff~M ,pW !E d3pW 8

~2p!3
@ iK st~pW ,pW 8!

[V̂~pW ,pW 8!#F̃M~pW 8!, ~1!

whereM is the mass of the bound system and the equal-t
wave functionF̃M(pW ) is related to the BS amplitudeFP(p)
as

F̃M~pW !5E dp0

2p
FP5~M ,0W !~p! . ~2!

The effective 3D Green’s function of two noninteractin
quark systemG̃0eff is defined as

G̃0eff~M ,pW !5E dp0

2p i
@G0eff~M ;p!

5g0eff~M ;p!~p” 11m1!~p” 21m2!# ~3!

Here g0eff(M ;p) is the effective propagator of two scala
particles. The operatorG̃0eff is given in the form

G̃0eff~M ,pW !5 (
a156

(
a256

D ~a1a2!~M ;p!

d~M ;p!

3L12
~a1a2!

~pW ,2pW !g1
0g2

0 , p[upW u, ~4!

where the projection operatorsL12
(a1a2) are defined by
is-
e

ese

I,
a-
e
n
-
ss
s-
cs
ing
a-

el

in

e

L12
~a1a2!

~pW 1 ,pW 2!5L1
~a1!

~pW 1! ^ L2
~a2!

~pW 2!,

L i
~a i !~pW i !5

v i1a i ĥi~pW i !

2v i

~5!

ĥi~pW i !5g i
0~gW i pW i !1mig i

0 ,

v i5~mi
21pW i

2!1/2

and the functionsD (a1a2)(M ;p) and d(M ;p) are given by
the expressions~see Ref.@24#!

D ~a1a2!5
~21!a11a2

v11v22~a1E11a2E2!
, d51,

E11E25M , E12E25
m1

22m2
2

M
[b0 ~MW version!,

~6!

D ~a1a2!5~E11a1v1!~E21a2v2!,

d52~v11v2!a,

a5Ei
22v i

25@M21b0
222~v1

21v2
2!#/4 ~CJ version!.

~7!

Note that for the case of CJ version Eq.~7! is obtained from
Eqs.~3! and ~4! by using the expression forg0eff(M ;p) de-
fined from the dispersion relation which guarantees the e
tic unitarity. The same condition is satisfied by the expr
sion of g0e f f(M ;p) suggested in Ref.@21# @see formula~10!
from this paper#. According to this condition, the particles i
the intermediate states are allowed to go off shell proporti
ally to their mass, so that when one of the particles becom
infinitely massive, it automatically keeps that particle ful
on-mass-shell and the equation is reduced to the one-b
equation. Using this expression forg0eff(M ;p) in Eq. ~3!, we
derive the expression forG̃0eff having the form~4! where

D ~a1a2!5~E11a1v1!~E21a2v2!

2
R2b

2y FR2b

2y
1~E11a1v1!2~E21a2v2!G ,

d52RB, R5~b224y2a!1/2,

B5
R2b

2y FR2b

2y
1b0G1a,

b5M1b0y, y5
m12m2

m11m2
. ~8!

Hereafter this version will be referred to as the MNK versi
~for our comments on Ref.@21#, see Ref.@24#!.

Using the properties of the projection operatorsL12
(a1a2)

and Eqs.~4!–~8!, the following system of equations can b
derived from Eq.~1!:
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@M2~a1v11a2v2!#F̃M
~a1a2!

~pW !

5A~a1a2!~M ;p!L12
~a1a2!

~pW ,2pW !

3E d3pW 8

~2p!3
g1

0g2
0V̂~pW ,pW 8!

3 (
a1856

(
a2856

F̃
M
~a18a28!

~pW 8!, ~9!

whereF̃M
(a1a2)(pW )5L12

(a1a2)(pW ,2pW )F̃M(pW ) and the functions
A(a1a2)(M ;p) are given by

A~66 !561, A~67 !5
M

v11v2
~MW version!, ~10!

A~a1a2!5
M1~a1v11a2v2!

2~v11v2!
~CJ version!, ~11!

A~a1a2!5
1

2RBH a@M1~a1v11a2v2!#

2@M2~a1v11a2v2!#

3
R2b

2y FR2b

2y
1~E11a1v1!

2~E21a2v2!G J ~MNK version!. ~12!

As to the Salpeter equation, it can be obtained from the M
version by puttingA(67)50 andF̃M

(67)50.
Note that for quarks with the equal masses (m15m2

5m) andv5(m21pW 2)1/2, from Eqs.~10! and~11! we have

A~66 !561, A~67 !5
M

2v
~MW version!, ~13!

A~66 !5
M62v

4v
, A~67 !5

M

4v
~CJ version! . ~14!

One observes from Eqs.~13! and~14! that in the limit of the
equal-mass quarks the bound-state massM enters multiplica-
tively in the coefficients in front of the mixed-energy com
ponentsF̃M

(67)(pW ) both in the left- and right-hand sides o
Eq. ~9!. Consequently, dividing both sides of the equatio
for these components byM, one arrives at the~nondynami-
cal! constraints on all components of the wave functi
which must be considered together with the remaining t
dynamical equations for the componentsF̃M

(66)(pW ). These
equations for the bound state massM are linear in the MW
version and are nonlinear in the CJ version due to the
that the right-hand side~RHS! of the equations depends o
the value ofM one is looking for. In the MNK version with
an account of the property of the functionR given by Eq.~8!

lim
m1→m2

R/y5 lim
m1→m2

M /y,

from Eq. ~12! we have
s

o

ct

A~66 !5
M62v

2v
, A~67 !5

1

2
~MNK version!. ~15!

In this case, from Eq.~9! it follows that characteristic
features of the bound-state equations remain unchange
again it is the system of nonlinear equations inM and it
includes all components of the wave functionF̃M

(a1a2)(pW ), as
it is in the case for the quarks with nonequal masses.

Further, we write the unknown functionF̃
M

(a18a28)
in Eq. ~9!

in the form analogous to that used in Ref.@13#, where the
boundqq̄ systems were studied in the framework of the S
peter equation

F̃M
~a1a2!

~pW !5N12
~a1a2!

~p!S 1

a1~sW 1pW !/~v11a1m1!
D

^ S 1

2a2~sW 2pW !/~v21a2m2!
D xM

~a1a2!
~pW !,

~16!

where

N12
~a1a2!

~p!5S v11a1m1

2v1
D 1/2S v21a2m2

2v2
D 1/2

[N1
~a1!

~p!N2
~a2!

~p!. ~17!

Then, if the qq interaction potential operatorV̂(pW ,pW 8) is
taken in the form@13#

V̂~x;pW ,pW 8!5g1
0g2

0V̂og~pW 2pW 8!

1@xg1
0g2

01~12x!I 1I 2#V̂c~pW 2pW 8!~0<x<1!,

~18!

the following system of equations for the Pauli 2^ 2 wave
functionsxM

(a1a2) can be derived:

@M2~a1v11a2v2!#xM
~a1a2!

~pW !

5A~a1a2!~M ;p! (
a1856

(
a2856

E d3pW 8

~2p!3

3V̂
eff
~a1a2 ,a18a28!

~pW ,pW 8,sW 1 ,sW 2!xM
~a18a28!

~pW 8!, ~19!

where

V̂
e f f
~a1a2 ,a18a28!

~pW ,pW 8,sW 1 ,sW 2!

5N12
~a1a2!

~p!@V~1;pW 2pW 8!B̂1
~a1a2 ,a18a28!

~pW ,pW 8,sW 1 ,sW 2!

1V~x;pW 2pW 8!B̂2
~a1a2 ,a18a28!

~pW ,pW 8,sW 1 ,sW 2!#

3N
12
~a18a28!

~p8!, ~20!
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B̂
1
~a1a2a18a28!

51

1
a1a2a18a28~sW 1pW !~sW 2pW !~sW 1pW 8!~sW 2pW 8!

~v11a1m1!~v21a2m2!~v181a18m1!~v281a28m2!
,

~21!

B̂
2
~a1a2a18a28!

5
a1a18~sW 1pW !~sW 1pW 8!

~v11a1m1!~v181a18m1!

1
a2a28~sW 2pW !~sW 2pW 8!

~v21a2m2!~v281a28m2!
, ~22!

V~x;pW 2pW 8!5Vog~pW 2pW 8!1~2x21!Vc~pW 2pW 8!. ~23!

Now using the partial-wave expansion
xM
~a1a2!

~pW !5 (
LSJMJ

^ p̂uLSJMJ&RLSJ
~a1a2!

~p! S p̂5
pW

p
D , ~24!

V~pW 2pW 8!5~2p!3 (
LSJMJ

VL~p,p8!^ p̂uLSJMJ&^LSJMJu p̂&,

~25!

where

VL~p,p8!5
2

pE0

`

j L~pr ! j L~p8r !r 2dr, ~26!

with j L(x) being the spherical Bessel function, the followin
system of equations can be obtained from Eq.~19! for the
radial wave functionsRLSJ

(a1a2)(p):
@M2~a1v11a2v2!#R
J~1

0
!J

~a1a2!
~p!5A~a1a2!~M ;p!N12

~a1a2!
~p! (

a18a28
E

0

`

p82dp8$@„11a
12^ 12
~a1a2 ,a18a28!

~p,p8!…VJ~1;p,p8!

1a
%

~a1a2 ,a18a28!
~p,p8!V

% J
~1
0
!
~x;p,p8!#R

J~1
0
!J

~a18a28!
~p8!

2@a
*

~a1a2 ,a18a28!
~p,p8!V*J~x;p,p8!#R

J~0
1
!J

~a18a28!
~p8!%N12

~a18a28!
~p8!,

@M2~a1v11a2v2!#RJ611J
~a1a2!

~p!5A~a1a2!~M ;p!N12
~a1a2!

~p! (
a18a28

E
0

`

p82dp8H @VJ61~1;p,p8!1a
12^ 12
~a1a2 ,a18a28!

3~p,p8!VJ611J~1;p,p8!1a
%

~a1a2 ,a18a28!
~p,p8!VJ~x;p,p8!#RJ611J

~a18a28!
~p8!

1Fa
12^ 12
~a1a2 ,a18a28!

~p,p8!
2

2J11
V*J~1;p,p8!GRJ711J

~a18a28!
~p8!J N

12
~a18a28!

~p8 !, ~27!

where

a
12^ 12
~a1a2 ,a18a28!

~p,p8!5a12
~a1a2!

~p,p!a12
~a18a28!

~p8,p8!,

a
*
%

~a1a2 ,a18a28!
~p,p8!5a

11
~a1a18!

~p,p8!6a
22
~a2a28!

~p,p8!,

ai j
~a ia j !~p,p8!5ai

a i~p!aj
a j~p8!, ai

a i~p!5
a i p

v i1a imi
, ~28!

and

V
% J
~1
0
!
~x;p,p8!5

1

2J11F S J

J11DVJ21~x;p,p8!1S J11

J DVJ11~x;p,p8!G ,
V*J~x;p,p8!5

AJ~J11!

2J11
@VJ21~x;p,p8!2VJ11~x;p,p8!#, ~29!

VJ611J~1;p,p8!5
1

~2J11!2
@VJ61~1;p,p8!14J~J11!VJ71~1;p,p8!#,

V~x;p,p8!5Vog~x;p,p8!1~2x21!Vc~x;p,p8!.
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The main purpose of the present study is to carry out
comparative qualitative analysis of the different versions
3D relativistic equations~27!, addressing the question of ex
istence of stable solutions for different values of the sca
vector mixing parameterx in the confining part of the poten
tial @Eq. ~18!#. Also, we investigate the general structure
the meson mass spectrum and calculate the leptonic d
characteristics, namely, the pseudoscalar decay con
f P(P→mn̄) and the vector meson decay widthG(V
→e2e1). For these reasons, at the first stage we neglec
Eq. ~18! the one-gluon exchange potential. A full analysis
the problem will be made in further publications. Furth
according to Ref.@25#, we use the oscillator form for the
confining potentialVc(r ) which is a simplified, but justified
form of a more general potential used in Ref.@13# ~at least
for the quarks from the light and light-heavy sectors, wh
are considered in the present paper!. Namely, we take

Vc~r !5
4

3
as~m12

2 !S m12v0
2

2
r 22V0D , ~30!
e
f

r-

f
ay

ant

in
f
,

m125
m1m2

m12
, m125m11m2 ,

as~Q2!5
12p

3322nf
S ln

Q2

L2D 21

,

wherenf denotes the number of flavors. This potential in t
momentum space corresponds to the operator@see Eq.~26!#

Vc
L~p,p8!52

4

3
as~m12

2 !Fm12v0
2

2 S d2

dp82
1

2

p8

d

dp8

2
L~L11!

p82
D 1V0Gd~p2p8!

pp8
. ~31!

Now the system of Eqs.~27! can be reduced to the system
equations with the following structure:
@M2~a1v11a2v2!#R
J~1

0
!J

~a1a2!
~p!52

4

3
as~m12

2 !A~a1a2!~M ;p! (
a18a28

S V0@B
%

~a1a2 ,a18a28!
~p!1~2x21!A

%

~a1a2 ,a18a28!
~p!#R

J~1
0
!J

~a18a28!

3~p8!1
m12v0

2

2
FH D̂

B
~a1a2 ,a18a28!

~p!1~2x21!D̂A
~a1a2 ,a18a28!

~p!2
1

p2FB
%

~a1a2 ,a18a28!
~p!J

3~J11!1~2x21!A
%

~a1a2 ,a18a28!
~p!S J~J11!12

J~J11!
D G J R

J~1
0
!J

~a18a28!
~p8!2~2x21!

3S 2AJ~J11!

p2
A

*

~a1a2 ,a18a28!
~p!D R

J~0
1
!J

~a18a28!
~p!GD ,

@M2~a1v11a2v2!#RJ611J
~a1a2!

~p!52
4

3
as~m12

2 !A~a1a2!~M ;p! (
a18a28

S V0@B
%

~a1a2 ,a18a28!
~p!1~2x21!A

%

~a1a2 ,a18a28!
~p!#RJ611J

~a1a2!

3~p!1
m12v0

2

2 H S D̂
B
~a1a2 ,a18a28!

~p!1~2x21!D̂A
~a1a2 ,a18a28!

~p!2
1

p2FB
%

~a1a2 ,a18a28!
~p!

3S J~J11!116
1

2J11D6
4J~J11!

2J11
B

*

~a1a2 ,a18a28!
~p!1~2x21!A

%

~a1a2 ,a18a28!
~p!J

3~J11! D GRJ611J
~a1a2!

~p!1
1

p2

2AJ~J11!

~2J11!2
„B

%

~a1a2 ,a18a28!
~p!2B

*

~a1a2 ,a18a28!
~p!…RJ711J

~a1a2!
~p!J D ,

~32!
s

where

A
*
%

~a1a2 ,a1
, a28!

and

B
*
%

~a1a2 ,a18a28!
are given functions ofp, andD̂
A(B)

(a1a2 ,a18a28)
are certain second

order differential operators inp.

III. MESON MASS SPECTRUM

In order to solve the system of equations~32! for the
bound state massM, the unknown radial wave function
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RLSJ
(a1a2)(p) are expanded in the basis of the radial wave fu

tions RnL(p) being the solutions of the Shro¨dinger radial
equation with the oscillator potential in the momentum sp
~31!, as it was done in Refs.@13,25#

RLSJ
~a1a2!

~p!5„2M ~2p!3
…

1/2(
n50

`

CLSJn
~a1a2!RnL~p!, ~33!

where the multiplier@2M (2p)3#1/2 is introduced for appro-
priate normalization of the wave function and

RnL~p!5p0
23/2F S 2GS n111

3

2D
G~n11!

D 1/2

zLexp~2z2/2!

G~L13/2!

31F1S 2n,L1
3

2
;z2D[R̄nL~z!G , ~34!

z5
p

p0
, p05Fm12v0S 4

3
as~m12

2 ! D 1/2G1/2

.

Substituting the expression~33! into the system of differen-
tial equations~32!, the following system of algebraic equa
tions for the coefficientsCLSJn

a1a2 can be obtained:

MCLSJn
~a1a2!

5 (
a18a28

(
L8S8n8

H
LSJn,L8S8n8;J

~a1a2 ,a18a28!
~M !C

L8S8Jn8

~a18a28!
.

~35!

It is necessary to note here that the matrixHab explicitly
depends~except the Sal. version! on the meson massM we
are looking for. Consequently, the system of equations~35!
is nonlinear inM. Note also that for the quarks with equ
masses (m15m25m) part of the equations from the syste
~35!, corresponding to (a1a2)5(67) for the MW and CJ
versions, transforms into the nondynamical constraints
tween all coefficientsCLSJn

(a1a2) which should be considere
together with the remaining dynamical equations cor
sponding to (a1a2)5(66).

The numerical algorithm for the solution of the syste
of nonlinear equations~35! in the case of nonequa
mass quarks was discussed in Ref.@24# where the
systemsus̄(3S1 ,1P1 ,3P0 ,3P1 ,3P2 ,1D2 ,3D1 ,3D3),cū, and
cs̄(1S0 ,3S1 ,1P1 ,3P2) were considered. In brief, the infinit
set of equations~35! is truncated at some fixed valuen
5Nmax and the eigenvalue problem is solved for the fini
range matrixH. Increasing thenNmax, one checks the stabil
ity of the resulting spectrum with respect to the variation
Nmax. Since the RHS of Eq.~35! depends onM, the solu-
tions are obtained iteratively, starting from some value ofM.
In Ref. @24#, the existence of stable solutions of the system
equations~35! was investigated for different values of th
mixing parameterx in the confining potential~18!. It was
found that the existence/nonexistence of stable solution
Eq. ~35! critically depended on the value ofx, on the value of
confining interaction strength parameterv0 ~31!, and on the
particular state under consideration. This dependence is
ferent for the different versions of 3D reduction of the B
-

e

e-

-

-

f

f

of

if-

equation. The instability is primarily caused by the presen
of the mixed (12,21) energy components of the wav
function in the equations for theqq̄ bound system. Namely
for the parameterv05710 MeV that leads to a reasonab
description of the meson mass spectrum in the framewor
the Salpeter equation@13#, stable solutions for CJ, MNK, and
Sal. versions simultaneously exist for the values of the
rameterx from the interval 0.3<x<0.620.7. For the MW
version, in order to provide the existence of stable solutio
in the same interval ofx, v0 must be set to a smaller valu
~450 MeV!. However, in this case the values of masses
all states under consideration turn out to be smaller than
experimental ones. Keeping in mind that the calculated v
ues of masses will further decrease after adding the o
gluon interaction potential, we conclude that the MW versi
seems to poorly describe the meson mass spectrum. For
reason, along with the Sal. version, below we consider o
the CJ and MNK versions, both having a similar theoreti
foundation: the effective Green’s function~3! in these ver-
sions is constructed from the elastic unitarity condition.

The results of calculations are given in Figs. 1,2,3, fro
which one can see that the level ordering is similar for
three versions under consideration. Further, atx50.5 the
states 3P0 ,3P1 ,1P1 are degenerate and spin-orbit splittin
exists only between the degenerate3P0 ,3P1 states and the
3P2 state. ForxÞ0.5 this degeneration is removed and t
calculated level ordering agrees with the experiment for
value x50.3, except the3P2 state. For theD states (us̄),
experimentally there is degeneration between1D2 ,3D3

FIG. 1. The mass spectrumM ~in GeV! of theus̄ system for the
different 3D equations and different values of the scalar-vector m
ing parameterx. The multiplicity of degenerate levels is indicate
by the number inside the dash (v05710 MeV).
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states. In our calculations we do not have this degenera
but for the MNK and CJ versions atx50.3 the splitting is
very small and increases forx50.5 andx50.7. Note, how-
ever, that only for these values ofx the sequence of the3D1
state and other twoD states agrees with the experiment. F
the qq̄ states with the quarks from light-heavy secto
(cū,cs̄) the spin-dependence of the energy levels for all v
ues ofx is much weaker than the experimental one, but at
same time forx>0.5 the level ordering agrees with expe
mental data.

As to the pseudoscalarqq̄ systems~the 1S0 state! with the
quarks from the light sector (us̄), the calculated masses i
the model under consideration are much larger than the
perimental ones. This might serve as an indication of the
that if the constituent quark model is used for the descript
of this sort of systems, the chiral symmetry breaking eff
should be taken into account, at least in a phenomenolog
manner, e.g., by the inclusion of the ’t Hooft interaction

FIG. 2. The same as in Fig. 1 for thecū system.

FIG. 3. The same as in Fig. 1 for thecs̄ system.
n,

r

l-
e

x-
ct
n
t
al

the kernel of the Salpeter equation~see Ref.@12#!. In order to
take into account a full content of global QCD symmetries
a systematic way, a coupled set of Dyson-Schwinger and
equations should be considered~see Refs.@1,2#!, as was
mentioned in the introduction.

Note that the number of terms (Nmax) in the expansion
~33!, which is necessary to get stable solutions of the sys
of equations~35!, varies with the constituent quark masse
with the value of the mixing parameterx, with the state un-
der consideration and is different for the CJ, MNK, and S
versions. Namely, when the quark masses increase,Nmax de-
creases. The convergence of the numerical procedure us
the calculations is better forx<0.5 and worse forx.0.5.
For all values ofx the convergence is better for the Sa
version than for the CJ and MNK versions.

We have also calculated the mass spectrum ofqq̄ systems
with the equal quark masses from the light quark sec
(uū,ss̄). This problem was the subject of our primary inte
est in the present study. The results of calculations are sh
in Figs. 4 and 5. Note that for this sort of systems the c
vergence of numerical algorithm used in the calculations
pears to be not so good for the values of the parametersv0
5710 MeV andx.0.5. The convergence becomes bet
for smaller values ofv0 . Namely, for the (uū) system for
v05710 MeV andx50.6, stable solutions in the MNK ver
sion for the 3S1 state do not exist. In the CJ version such
situation holds for other states (3P2 ,3D1 ,3D3) as well. For
smaller values of the potential strength parameter, e.g.,v0
5550 MeV, the stable solutions exist for all states~just
these results are shown in Fig. 4!. Further, in this case the
sequence of the energy levels corresponding to the3PJ states

FIG. 4. The mass spectrumM ~in GeV! of theuū system for the
different 3D equations and different values of the scalar-vector m
ing parameterx. The multiplicity of degenerate levels is indicate
by the number inside the dash. The parameterv0 for the 3S1 state
in the MNK version and for all states in the CJ version atx50.6 is
fixed at the value 550 MeV, otherwisev05710 MeV.



e
f t
i

l f

th

e

n
ob
n’
e

i-

PRC 59 983BOUND qq̄ SYSTEMS IN THE FRAMEWORK OF THE . . .
~the spin-orbit splitting! agrees with the experiment atx
.0.5 in all versions, and in the3D1 and 3D3 states the
agreement appears to occur atx,0.5. Consequently, on th
basis of the above analysis one can conclude that none o
3D equations with the simple oscillator kernel considered
the present paper simultaneously describes even genera
tures of the mass spectrum of allqq̄ systems under study.

IV. SOME DECAY CHARACTERISTICS OF MESONS

For the investigation of the meson decay properties,
normalization condition for the wave functionF̃M(pW )
5(_(a1a2)F̃M

(a1a2)(pW ) is needed. For the Salpeter wav
function this condition is well known@26#

E d3pW

~2p!3
@ uF̃M

~11 !~pW !u22uF̃M
~22 !~pW !u2#52M . ~36!

As for the MW, CJ, and MNK versions, the normalizatio
condition for the corresponding wave functions can be
tained with the use of the fact that the effective Gree
operators~4! in Eq. ~1! can be inverted. As a result, th
corresponding full 3D Green operatorsG̃eff can be defined
analogously to the 4D case

G̃eff
21~M ;pW ,pW 8!5~2p!3d~3!~pW 2pW 8!

3G̃0eff
21 ~M ;pW !2V̂~pW ,pW 8!. ~37!

SinceV̂(pW ,pW 8) does not depend onM, the normalization con-
dition reads

FIG. 5. The same as in Fig. 1 for thess̄ system.
he
n
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e

-
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E d3pW

~2p!3
@ F̃̄M~pW !5F̃M

1
~pW !g1

0g2
0#

3F ]

]M
G̃0eff

21 ~M ;pW !GF̃M~pW !52M . ~38!

Using Eqs.~4!–~8!, from Eq. ~38! one obtains

(
a1a2

E d3pW

~2p!3
F̃

M

1~a1a2!

~pW ! f 12
~a1a2!

~M ;p!F̃M
~a1a2!

~pW !52M ,

~39!

where

f 12
~a1a2!

5
a1E11a2E2

M
~MW version!, ~40!

f 12
~a1a2!

5
2~v11v2!

M

a1v1E21a2v2E1

~E11a1v1!~E21a2v2!
~CJ version!,

~41!

f 12
~a1a2!

5
2

D ~a1a2!H FM

R
B~12y2!1

M2

2
22S R2M

2y D 2G
2

B

D ~a1a2!F S M1
a1v11a2v2

2 D
3R2

M2

2
12S R2M

2y D 2

1~a1v12a2v2!

3S R2M

2y
1

M

2
yD G J ~MNK version!. ~42!

Note that form15m25m the normalization condition~39!
for the MW version is reduced to Eq.~36! which can be
written in the form of Eq.~39! where

f 12
~a1a2!

5
a11a2

2
~Sal. version!. ~43!

From the normalization condition~39! for the wave function
given by Eqs.~16!,~17! one obtains the normalization cond
tion for the wave functionsRLSJ

(a1a2)(p) with the use of the
partial-wave expansion~24!

E
0

` p2dp

~2p!3 (
a1a2

f 12
~a1a2!

~M ;p!@RLSJ
~a1a2!

~p!#252M . ~44!

The functionsf 12
(22) ~41!,~42! have second order poles atp

5ps , where

a~ps!5Ei
22v i

2~ps!50,

ps5
1

2
@M21b0

222~m1
21m2

2!#1/2. ~45!
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The functionsf 12
(67) turn out to be finite@ f 12

(11)(ps) is ap-
parently finite#. Consequently, the normalization conditio
~44! for the CJ and MNK versions involves a singular int
gral of the type

I ~x0!5E
0

` f ~x!dx

~x2x0!2
~46!

which, taking account of the conditionsf (0)505 f (`)
valid in our case, can be regularized as

E
0

` f ~x!dx

~x2x0!2
5E

0

2x0@ f 8~x!2 f 8~x0!#dx

~x2x0!
1E

2x0

` f 8~x!dx

x2x0
.

~47!

Now we can calculate the pseudoscalar (S5L5J50) decay
constant f P(P→mn̄) and the leptonic decay width of th
vector (L50, S5J51) meson G(V→e2e1) ~the corre-
sponding decay constant is denoted byf V). In these calcula-
tions, instead of the functionsF̃M

(a1a2)(pW ) ~16! given

as a column with the componentsF̃aa
(a1a2) ,F̃ab

(a1a2) ,

F̃ba
(a1a2) ,F̃bb

(a1a2) , it is convenient to introduce the wav
function C (a1a2) written in the form~see Ref.@26#!

C~a1a2!5S F̃aa
~a1a2!

F̃ab
~a1a2!

F̃ba
~a1a2!

F̃bb
~a1a2!D ~C5 ig2g0!, ~48!

whereC is the charge conjugation operator. Then, the de
constantsf P and f V are given by the expressions

dm0M f P5A3Tr@C000~rW50!gm~12g5!#, ~49!

f V~l!5A3Tr@C011l~rW50!gm#«m~l50,61!. ~50!

Here, the factorA3 stems from the color part of the wav
functions,«m(l) is the polarization vector of the meson, an

CLSJMJ
~rW50!5E d3pW

~2p!3FCLSJMJ
~pW !5 (

a1a2

CLSJMJ

~a1a2!
~pW !G .

~51!

Using Eqs.~16!, ~17!, ~24!, ~48!, and ~51!, from Eqs.~49!
and ~50! one obtains

f P5
A24p

M E
0

` p2dp

~2p!3 (
a1a2

@N1
~a1!

~p!N2
~a2!

~p!2a1a2

3N1
~2a1!

~p!N2
~2a2!

~p!#R000
~a1a2!

~p!, ~52!

f V~l!5H 2A24pE
0

` p2dp

~2p!3 (
a1a2

FN1
~a1!

~p!N2
~a2!

~p!

1
a1a2

3
N1

~2a1!
~p!N2

~2a2!
~p!GR011

~a1a2!
~p!J dl0 .

~53!
y

For a givenf V ~53! the leptonic decay width of the vecto
meson is given by

G~V→e2e1!5
aeff

2

4pM3

1

3 (
l50,6

u f V~l!u2, ~54!

where

ae f f
2 5

1

137S 1

2
,

1

18
,
1

9D
for %0, v, andw mesons, respectively.

Finally, using Eqs.~33!, ~34!, ~44!, ~52!, ~53!, and ~54!,
we obtain

f P5
A6p0

3/2

pAM
U (

a1a2

E
0

`

z2dz@N1
~a1!

~p0 ,z!

3N2
~a2!

~p0 ,z!2a1a2N1
~2a1!

~p0 ,z!

3N2
~2a2!

~p0 ,z!#R̄000
~a1a2!

~z!U, ~55!

G~V→e2e1!5
4ae f f

2 p0
3

~2p!3M2U (a1a2

E
0

`

z2dz

3FN1
~a1!

~p0 ,z!N2
~a2!

~p0 ,z!

1
a1a2

3
N1

~2a1!
~p0 ,z!N2

~2a2!
~p0 ,z!G

3R̄011
~a1a2!

~z!U2

, ~56!

where the functions

R̄LSJ
~a1a2!

~z!5 (
n50

`

CLSJn
~a1a2!R̄nL~z! ~57!

satisfy the normalization condition

(
a1a2

E
0

`

z2dz f12
~a1a2!

~M ;p0 ,z!@R̄LSJ
~a1a2!

~z!#251. ~58!

The results of numerical calculations of the quantitiesf P and
G defined by Eqs.~55! and~56!, are given in Table I. We see
from Table I that the calculated values off P in the MNK and
CJ versions, as a rule, are smaller than in the Sal. version
this fact is related to the presence of the contributions fr
the ‘‘12 ’’ and ‘‘ 21 ’’ components of the wave function
~contribution from the ‘‘22 ’’ component is negligibly
small!. Further, the calculated value off P is larger in the CJ
version than in the MNK version. The calculated value of t
quantity G(V→e2e1) weakly depends on the particula
choice of the 3D reduction scheme of the BS equation. W
the increase of the mixing parameterx both the quantitiesf P
andG(V→e2e1) slightly increase. The calculated values
f P andG(V→e2e1) are smaller than the experimental one
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TABLE I. The pseudoscalar decay constantf P(P→mn̄) ~in MeV! and the leptonic decay width
G(V→e2e1) ~in KeV! with the allowance for only~11! and all components of the wave function.

Decay characteristics f P(P→mn̄) G(V→e2e1)

Meson D(cd̄) Ds(cs̄) %(uū) w(ss̄)
Versions a1a2 x50.3 x50.5 x50.3 x50.5 x50.3 x50.5 x50.3 x50.5

Sal. 11 149.0 156.0 177.0 183.0 3.94 4.31 0.84 0.90
all 148.0 155.0 176.0 182.0 3.96 4.38 0.84 0.90

MNK 11 148.0 155.0 176.0 181.0 4.44 4.85 0.89 0.95
all 141.0 145.0 168.0 172.0 4.11 4.20 0.85 0.89

CJ 11 150.0 158.0 179.0 186.0 3.98 4.45 0.86 0.94
all 149.0 152.0 176.0 180.0 3.91 4.23 0.85 0.90

Expt. ,220 1704180 6.860.3 1.3760.05
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On the basis of the analysis of the different versions of
3D reductions of the bound state BS equation carried ou
the present paper, one arrives at the following conclusio
The existence or nonexistence of stable solutions of the
bound-state equations critically depends on the value of
scalar-vector mixing parameterx. For all 3D versions~Sal.,
MNK, CJ! stable solutions coexist for the value ofx from a
rather restricted interval 0.3<x<0.620.7. The level order-
ing in the mass spectrum is similar for all versions und
consideration. However, the sequence of the calculated
ergy levels agrees with the experiment for some statesx
,0.5 and for other states atx.0.5. Consequently, a simul
taneous description of even general features of the me
whole mass spectrum turns out not to be possible for a g
value ofx from the abovementioned interval. It is interestin
to investigate the dependence of this results on the form
the confining potential. Also, it is interesting to study how
changes when the one-gluon exchange potential is taken
,
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account. This aspect of the problem will be considered at
next step of our investigation. Further, we plan to include
’t Hooft effective interaction in our potential in order t
~phenomenologically! take into account the effect of sponta
neous breaking of chiral symmetry which is important in t
pseudoscalar (1S0) sector of the constituent model.

The calculated leptonic decay characteristics of mes
are quite insensitive to the particular 3D reduction sche
used and give an acceptable description of experimental d
In future, we also plan to study the validity of this conclusio
for a wider class of realistic interquark potentials.

ACKNOWLEDGMENTS

One of the authors~A.R.! acknowledges the financial sup
port from the Russian Foundation for Basic Research un
Contract No. 96-02-17435-a.
tt.
@1# P. Jain and H. J. Munczek, Phys. Rev. D48, 5403~1993!.
@2# P. Maris and C. D. Roberts, Phys. Rev. C56, 3369~1997!.
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