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Boundqq systems are studied in the framework of different three-dimensional relativistic equations derived
from the Bethe-Salpeter equation with the instantaneous kernel in the momentum space. Except the Salpeter
equation, all these equations have a correct one-body limit when one of the constituent quark masses tends to
infinity. The spin structure of the confiningqg interaction potential is taken in the formy2y2+(1
—X)I41,, with 0sx=<1. At first stage, the one-gluon-exchange potential is neglected and the confining poten-
tial is taken in the oscillator form. For the systemss),(cu),(cs) and (uu),(ss) a comparative qualitative
analysis of these equations is carried out for different values of the mixing paraxatet the confining
potential strength parameter. We investigéiethe existence/nonexistence of stable solutions of these equa-
tions, (2) the parameter dependence of the general structure of the meson mass spectum and leptonic decay
constants of pseudoscalar and vector mesons. It is demonstrated that none of the three-dimensional equations
considered in the present paper simultaneously describes even general qualitative features of the whole mass
spectrum ohasystems. At the same time, these versions give an acceptable description of the meson leptonic
decay characteristic§S0556-28139)05201-3

PACS numbds): 11.10.St, 12.39.Ki, 12.39.Pn

. INTRODUCTION point, this property is expected to be important for the

system with one heavy and one light quark. In order to avoid
The Bethe-SalpetdBS) equation provides a natural basis the above difficulty, in Refs[19,20 the effective noninter-
for the relativistic treatment of boundqg systems in the acting 3D Green'’s function for two fermions was chosen in
framework of the constituent quark model. At an earlierthe form that guarantees the correct one-body limit of 3D
stage of the investigation of this problem various three-elativistic equations with the static BS kernel. These ver-
dimensional(3D) reduction schemes for BS equation havesions of the 3D equations will be referred hereafter as to the
often been considered, which shares most of the simplicitfW and CJ versions, respectively. A new version of the
and transparency of the conventional nonrelativistic quarleffective free propagator for two scalar particles which also
models. The equal-time wave function which is a solution ofpossesses this property was suggested in [R&f. The ef-
the 3D equation, unlike the 4D BS wave function, has thefective 3D Green'’s function for two noninteracting fermions
probabilistic interpretation. An alternative approach whichcan be constructed from this propagator in a standard way.
has recently become popular is based on the coupled set of Taking into account the fact that the relativistic effects are

the Schwinger-Dyson and Bethe-Salpeter equati®e®, jmportant forqq systems with quarks from light and light-
e.g., Refs[1-4], and references therginAn apparent ad- heavy sectors, it seems interesting to carry out the investiga-
vantage of this approach is that it from the beginning takesion of this sort of systems in the framework of the above-
into account the full content of global QCD symmetries. mentioned different versions of 3D relativistic equations.
Consequently, it has been successful in the description of thenis will allow one to shed light on the problem of ambigu-
properties of the bound states containing light,d;s) ity coming from the choice of a particular 3D reduction
quarks where the role of the dynamical chiral symmetryscheme of the BS equation, and to find the characteristics of
breaking effects become domingit-3], as well as in the e poundqq systems, which are more sensitive to this

description of the characteristics of the heavy-light systemgnice. For the meson mass spectrum this problem was ad-
[4]. dressed in Refg22,23 where the MW and CJ versions of
As itis well known, the simplest version of the 3D reduc- 3p relativistic equations together with the Salpeter equation
tion immediately arises if the kernel of the BS equation is(sal. versioh were considered in the configuration space to
taken in the instantaneogstatig approximation. As a result, (partially) avoid the difficulties related to a highly singular
the Salpeter equation is obtained. The Salpeter equation Waghavior of the linear confining potential in the momentum
used for the description of the bourgt system without space at the zero momentum transfer. The version of the 3D
further approximation in Ref§5—16], whereas some addi- reduction of the BS equation suggested in R21i] signifi-
tional approximations were made in Reff$7,18. However, cantly differs from the MW and CJ versions and can be
as it is well known, the Salpeter equation does not have aritten down only in the momentum space. Consequently, it
correct one-body limifthe Dirac equationwhen the mass of seems interesting to study together all versions in the mo-
one of the particles tends to infinity. From the general view-mentum space and to investigate a wider class of character-
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istics of the bound systems, including the decay characteris- (arap), > =\ plag) > (a) =
tics of the mesons, which are sensitive to the behavior of the Azz" 7 (P1P2) = Ay TP @A, E(P2),
meson wave functions, and the meson mass spectrum. These . o
problems will form the subject of the present paper. A(py = w;i+a;hi(p;)

The layout of the present paper is as follows. In Sec. Il, i P 2w,
we present different versions of the 3D bound-state equa- (5)
tions in the momentum space, and perform the partial-wave F\~(|5-)= 7-0(775')+m' 40
expansion of the obtained equations. The numerical solution R AR A
of these equations with the oscillator-type potential is con- 5 =
sidered in Sec. lll. The general structure of the meson mass o= (m;+p;
spectra obtained from the solution of these equations is dis-
cussed in detail. In Sec. IV, the leptonic decay characteristicand the functiond(*1#2(M;p) andd(M;p) are given by
of the pseudoscalar and vector mesons are calculated usiffee expressiontsee Ref[24])
the wave functions obtained from the solution of these equa-
tions.

212
)

(_ 1)a1+a2

D(®1@2) =
(,()1+ Wo— (a1E1+ CY2E2) ’

d=1,

Il. THE RELATIVISTIC 3D EQUATIONS mi_mg
E1+E2:M, El_EZZ

The relativistic 3D equations for the wave function of the =bo (MW version,

boundqasystems, corresponding to the instantaneous kernel (6)

of the BS equation, i.e., wheki(P;p,p’)—K(p,p’), for
all versions considered below in the c.m.s. can be written in
a common form

D19 = (E; + ayw1)(Ey+ apw,),

d=2(w1+ (l)z)a,

- . S dp L. a=E2— w?=[M?+b2—2(w2+ w?)]/4 (CJ version.
q)M(p):GOeﬁ(M:p)j—[let(pvp,) el om Mot ')'(7)
(2m)°
=V(p,p")1®u(p"), (1)  Note that for the case of CJ version K@) is obtained from

Egs.(3) and(4) by using the expression fag.{(M;p) de-
fined from the dispersion relation which guarantees the elas-
whereM is the mass of the bound system and the equal-timéc unitarity. The same condition is satisfied by the expres-
wave function®,(p) is related to the BS amplitud®p(p)  Sion of goer(M;p) suggested in Ref21] [see formula(10)
as from this pape}. According to this condition, the particles in
the intermediate states are allowed to go off shell proportion-
ally to their mass, so that when one of the particles becomes
B, (p)= f %q) S (D) @) infinitely massive, it automatically keeps that particle fully
m(P 27 L P=M0(P) on-mass-shell and the equation is reduced to the one-body
equation. Using this expression foge(M;p) in Eq. (3), we

The effective 3D Green’s function of two noninteracting- derive the expression fdBoey having the form(4) where

quark systenG. is defined as D(®192) = (E; + a1 (Eo+ aw,)
d R_b{R_b+(E+ )= (Ep+ ay,)
~ ~ Po T Tou 1 Ty 1T @wy) — (BT apwy) |,
GOef«M,m:fz—Wi[G%ﬁ(M;p) 2y L 2y
— — 2__ 2,\1/2
=oer( M;P) (B +my) (B +mp)]  (3) d=2RB, R=(b"~4y"a)™,
R—b|R—-b
Here goe(M;p) is the effective propagator of two scalar B= 2y | 2—y+b0 +a,
particles. The operatd®,e is given in the form
b=M+b _ MM 8
GoetlM.p)= > > D(*1%2/(M;p) “MEDY Y ©
Oeff( ,p)_alzi ot d(M,p)

Hereafter this version will be referred to as the MNK version
XAglm(p'_ Py, p=lpl, (4  (for oyr comments orl Ref21], see _Ref[24]). "
Using the properties of the projection operat(z)rg1 2
and Egs.(4)—(8), the following system of equations can be
where the projection operatofs(lcz‘l‘”) are defined by derived from EqJ(1):
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[M— (@101 + apw,) ]DL1? (p)

=A“192(M;p) AL512(p, ~ p)

d35 '
XJ(2 )37172 V(p.p")

= (ajap), =,
x Bl pr), ©

’
= +
a;==*

r_
a2—7

whered!#1°2(p) = A {512 (p, — p)®,(p) and the functions
A(“1“2)(M p) are given by

AFT) = (MW version, (10)

w1+ w2

M +(a1w1+ a2w2)
2(w1t o))

Ala122) = (Cdversion, (11

1
A(alaz): m{ a[l\/l + (alwl-l— 012(1)2)]

—[M—=(a101+ ay;)]

—(Extaswy) |t (MNKversion. (12

As to the Salpeter equation, it can be obtained from the MW

version by puttingA=*)=0 and@ﬁ;*):O.
Note that for quarks with the equal massen;€m,

=m) andw=(m?+p?¥2 from Egs.(10) and(11) we have

+ + + M .
AES)=+1, A(J):E(MW version), (13
vy M*20 5 M
(=) v AET) :—(CJ version. (14)

One observes from EqéL3) and(14) that in the limit of the
equal-mass quarks the bound-state nMsnters multiplica-

tively in the coefficients in front of the mixed-energy com-

ponents®{; *)(p) both in the left- and right-hand sides of
Eqg. (9). Consequently, dividing both sides of the equations

for these components iy, one arrives at th¢nondynami-

cal) constraints on all components of the wave function
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vy M*f2o Ve )
AFH)= ., AET)== (MNK version. (15
2w 2

In this case, from Eq(9) it follows that characteristic
features of the bound-state equations remain unchanged—
again it is the system of nonlinear equationshhand it

includes all components of the wave functwlaz)(ﬁ), as
it is in the case for the quarks with nonequal masses.

Further, we write the unknown functicffafv‘flaz) in Eq.(9)
in the form analogous to that used in REi3], where the

boundqasystems were studied in the framework of the Sal-
peter equation

F ( )= ( ) 1
D% (p)=N5" "% (p) - =
M ay(o1p)/ (w1 + a;mg)

1
(arap), =

(‘042((;25)/(602"‘ a,my) Xu (P

(16)
where
N(ala2) . w1+a1m1 12 a)2+a2m2 12
12 (p)_ 2w1 2(1)2
=N{"Y(p)NY?(p). (17

wAhen, if theqq interaction potential operatov(p,p’) is
taken in the form{ 13]

V(x:p,p")=¥3Y3Vog(P—P')

+[XxY3y5+ (1=X)141,]V(p—p')(0<x<1),
(18)

the following system of equations for the Paulb2 wave
functions X(“m) can be derived:

[M—(a101+ aw,) X022 (p)

A S 3 [ 22

=+ =+
ag az

d3 '
(2m)*

X\A/é?flaz'alaz(p p’ 01,02))(( 1aZ)(p'), (19

which must be considered together with the remaining two

dynamical equations for the componewi§; ~)(p). These
equations for the bound state madsare linear in the MW

version and are nonlinear in the CJ version due to the fa
that the right-hand sideRHS) of the equations depends on

the value ofM one is looking for. In the MNK version with
an account of the property of the functi®ygiven by Eq.(8)

lim R/y= lim Mly,

mp—mp m;—mp

from Eq.(12) we have

where

! !
(agap,ajay)

G\t/eff “(p.p’,01,02)

Ny (p)IV(L;p—p")BL" 2 12 (BB’ 0, 02)
+V(X, 5_ 5/)é(201102xa1a2)(5’5/ 1(;1!5-2)]

(a’a’) ’
XN (p'), (20
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é(alazaiaé) -1
1

arazagay(o1p)(oop)(o1p’)(o2p’)

+ H
(w1+ @ M) (wo+ axmp) (w1 + aymy)(wy+ aymy)
(21
B(zalazaiaé): alai(alp)(glp,)
(w1+ aymy)(w;+ aimg)
azap(o2p)(a5p")
205(072 2 22

(@t asmy)(ws+ asmsy) '

V(X;p—Pp')=Vog(p—p') +(2x—1)V(p—p'). (23

Now using the partial-wave expansion
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) . (29

T | T

X2 (p)= E <D|LSJMJ>R(LC§1J“2)(P) (f)=

V(5—5'>=(2w>3LSEJM VE(p,p")(PILSIM;){LSIM,|p),
(25)

where

L ’ :E <. ; ’ 2
V-(p,p’) Wf ju(pn)ju(p'r)redr, (26)
0

with j, (x) being the spherical Bessel function, the following
system of equations can be obtained from Ed) for the

radial wave functionR(L"glJ”)(p):

12212

ajas) ara ajap,a]al ’ . '
[M— (a1w1+a2wz)]R( , *(p)=AlM2(M; PIN{SE 2(|o)2 f p'2dp'{[(1+a'e%2 1) (p p'))V(1;p,p’)

+a(@alaz’alaz)(lo,p’)V JxPPIR 0

_ [a(alaz ,a]’_aé)
S}

(p,p" )Ves(x;p,p") IR

“1“2

((1/10(2)

(P")

(ai 2)

(ayaj)
b (POINGGZ(p"),

[M = (a101+ ap07) IRTAE (p) = A12 (M; PN (p) 2 f pzdp([VJ*luppHa(“l“Z"’l“Z)

1212
“1“2

X(P,p)Vyx115(1;p,p) +a 12 (p,p )V (x;p,p) IR L2 (p')

ajay,a)al ’ 2 ’ a ’ alal
+ |85t P (p,p) 5 Veal Lipp )}Rﬁ 3P )]N(121 Y. @

12912
where

’
(alaz,alaz

a12® 12

(a
a“(p,p")=a/"(p)a

and

1
2J+1

Viap.p')=
eI J+1

NATEE)

Vei(x;p,p')=

1 +
Vjye113(1;p,p") = ——— V5!

(2J+1)?

(p.p")=a3"?(p,p)a

'(p’),

V7Y (x;p,p’) +

(ala’z)

(p",p"),

% eneied (p.p')= a“’l‘“1 (p,p )+a<“2‘”2 (p.p"),

a;p

a’l(p)= pr— (28)

J+1
3 )V”l(x;p,p’)},

W[VJ_l(XJP,p’)—VJ”(X:p'p')], (29

(L;p,p") +433+ 1)V H(1;p,p")],

V(X p,p")=Vog(X;p,p") +(2X=1)Vc(X;p,p").
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The main purpose of the present study is to carry out the
comparative qualitative analysis of the different versions oftt12=
3D relativistic equation$27), addressing the question of ex-
istence of stable solutions for different values of the scalar-
vector mixing parametex in the confining part of the poten-

tial [Eqg. (18)]. Also, we investigate the general structure of

the meson mass spectrum and calculate the leptonic decay
characteristics, namely, the pseudoscalar decay ConSta\W/herenf

p(P—>,uv) and the vector meson decay width(V
—e~e"). For these reasons, at the first stage we neglect in
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m;m;
UEP)

y m12: m1+ m2 y

Q)= 352,

127
AZ

Qz)l
|

denotes the number of flavors. This potential in the

momentum space corresponds to the opela®ee Eq.(26)]

Eq. (18) the one-gluon exchange potential. A full analysis of ppodl 42 2 d
the problem will be made in further publications. Further, Vlc'(pap')=——as(m§z) 71270 - 4= =
according to Ref[25], we use the oscillator form for the 3 dp'z p' dp’
confining potentialV(r) which is a simplified, but justified
form of a more general potential used in REf3] (at least L(L+1) 8(p—p")
for the quarks from the light and light-heavy sectors, which - |t Vo|/———. (3D
are considered in the present pgp&tamely, we take p'2 PP
B Ih120 2 Now the system of Eqg$27) can be reduced to the system of
Vel = g as(Myp)| —5—r _VO)’ (30 equations with the following structure:

|
4
3 (M)A 192 (M; p) 2

“1“2

(ayap)
(M- (a1w1+a2w2)]R ; 2(p)

2
M12Wq

X(p")+ 5

B

X (3+1) +(2x— 1)A"7291%2) )

2VJ(‘]+1) (aqa ,a’a’)
x(—p2 AT Z(p) IR sl
(aya@p) 4 (aqas)
[M = (@101 + az07) IR (p) = — gag(ME) A 192 (M;p) X

“1“2

2
M120Wq
X( )4— > [

X[ JJI+1)+1=+ A0+
( ) T2J+1) 7 23+1
X(I+1) R(ﬂ%() 1 23(3+1)

2 (2J+1)2

Vo[BI 1% (p) + (2x— )AL 1 (p) R

[ f)(alaz,alaz)(p)_l_(zx_ 1)f)l(a\a1a2'a1a2)(p)__2 B

RY“I?(p)

B {1212 (p) + (2x— 1)B 1212 () -

ay)
3¢ )J

(alaz,aiaé)
. (p)3

JJI+1)+2
J(J+1)

)

}R“’l“z)(p )—(2x—1)

)J

Vo B 2212/ (p) + (2x— DAL 42 () IRV

J*=11)

i B(”‘lQZ’“j,L“é)( )
o2 e P

BU12 172 (p) + (26— DAL 12 ()

ajay,alal) (aqa alal)
o (B (p) - B ()R

(p)]),

(32

where
(aqa ,a’a/)
Ag; 142:*1%)
[S]
and
(alaz,aiaé)
Be
S}

are given functions of, andD (%12 %12 are certain second

A(B)

order differential operators ip.

Ill. MESON MASS SPECTRUM

In order to solve the system of equatio(®2) for the
bound state mas#l, the unknown radial wave functions
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R(L?J“Z)(p) are expanded in the basis of the radial wave func-* @
tions R, (p) being the solutions of the Shiimger radial ¢

. N . . . 2.
equation with the oscillator potential in the momentum space
(31), as it was done in Ref$13,25 .
o —Dy P
(agap) o\ _ 3)1/2 (agap) 1.800 *Ds —D, 11132 >
RLSJ (p) - (2M (277) ) Z CLSJn Rn L( p)- (33) >, —'D; _ s, —p, —Ds
n=0 _333 — —1p, =:gz
——D; —3p, 1 3
. . . . —_— 3 Dy —3 .
where the multiplie{ 2M (2)%]*? is introduced for appro- | —, —r T ’
priate normalization of the wave function and ' —n, ‘D, e
/ —3D, —3p, _z? ‘P:
3 12 3p, p 1p °P, _ZP _3_31,; =P
2| n+1+ = —, o R L
R 3 2 Zexp(—Z%/2) 1.400 =3§1 P bk :Sgl =
= K 1 —3p, Py —! 1 *Po
n.(P)=Po I'(n+1) T(L+312) — =n =
—p, P2
1.200—
3 2 - 3 3, —
X1Fi| —=n,L+5:2°|=Ry.(2) |, (34 s —s — %
2 —%, —3, —s,
—33, 33,
Z_R . . (A_la, (mz))llz 1/2 1.000 —
Do’ 0~ | M12Wo 3 @s\12 .
Substituting the expressidi33) into the system of differen- 500
tial equations(32), the following system of algebraic equa- x—+ 03 05 07 03 05 07 03 05 06
tions for the coefficient€ 'L’} can be obtained: BPE. Sal. version YK vexsion ¢ version
( | (ayap.a ab) (alal) FIG. 1. The mass spectrum (in GeV) of the ugsystem for the
a1 ’ . . . .
M Clean = E z HleanL’é’ nz,_J(M )CL/ls'Jzn' . different 3D equations and different values of the scalar-vector mix-
ajay L'S'n’ ' ing parametex. The multiplicity of degenerate levels is indicated

(35 by the number inside the dasb{=710 MeV).

It is necessary to note here that the matrix, explicitly  equation. The instability is primarily caused by the presence
dependgexcept the Sal. versioron the meson masd we o the mixed (+—,—+) energy components of the wave

are looking for. Consequently, the system of equati@t function in the equations for thqaabound system. Namely,

Li;sosr:'sn;]ar: 'r?]M:‘ r’:;) tea?tlig :E:tefoil;{;gnguf?glﬁ tvr\lneths esqtgzrir: for the parametew,=710 MeV that leads to a reasonable
(35) correls or12din tg - +(1 for the MW andyCJ description of the meson mass spectrum in the framework of
' P g todyaz) =(* ) the Salpeter equatidi 3], stable solutions for CJ, MNK, and

versions, transforms into the nondynamical constraints bez . . .
y Sal. versions simultaneously exist for the values of the pa-

tween all coefficientsCy'cy? which should be considered rameterx from the interval 0.3:x=0.6-0.7. For the MW
together with the remaining dynamical equations correversjon, in order to provide the existence of stable solutions
sponding to ;@) =(+ *). in the same interval of, w, must be set to a smaller value
The numerical algorithm for the solution of the system 450 MeV). However, in this case the values of masses for
of nonlinear equations(35) in the case of nonequal g states under consideration turn out to be smaller than the
mass quarks was discussed in ReR4] where the experimental ones. Keeping in mind that the calculated val-
systemsus(®S;,'P,,%Py,°P;,%P,,'D,,°D;,3D3),cu, and ues of masses will further decrease after adding the one-
C§(1301331,1pl,3p2) were considered. In brief, the infinite gluon interaction potential, we conclude that the MW version
set of equationg35) is truncated at some fixed valug  S€ems to poorly.describe the meson mass spectrum. For this
=Npnax and the eigenvalue problem is solved for the finite-réason, along with the Sal. version, below we consider only
range matrixH. Increasing theiN, ., one checks the stabil- the CJ gnd MNK versions, both havmg' a S|_m|lar theoretical
ity of the resulting spectrum with respect to the variation offoundation: the effective Green’s functidB) in these ver-
Npay. Since the RHS of Eq(35) depends orM, the solu-  SiONs is constructed from_ the elastlc_: unitarity condition.
tions are obtained iteratively, starting from some valu®lof The results of calculations are given in Figs. 1,2,3, from
In Ref.[24], the existence of stable solutions of the system ofVhich one can see that the level ordering is similar for all
equations(35) was investigated for different values of the three versions under consideration. Furtherxat0.5 the
mixing parameterx in the confining potentia(18). It was sta}tes3P0,3P1,1P1 are degenerate and spin-orbit splitting
found that the existence/nonexistence of stable solutions @jXists only between the degenerdf,,°P; states and the
Eq.(35) critically depended on the value Bfon the value of P2 state. For#0.5 this degeneration is removed and the
confining interaction strength parametes (31), and on the ~ calculated level ordering agrees with the experiment for the
particular state under consideration. This dependence is difralue x=0.3, except the’P, state. For theD states (s),
ferent for the different versions of 3D reduction of the BS experimentally there is degeneration betweéb,,’D,



982 T. BABUTSIDZE, T. KOPALEISHVILI, AND A. RUSETSKY PRC 59
M (GeV) M (GeV)
4 4
2.600 2.300
—sp, 5P,
2a00-] T T —l e », R 200 T
. 3p Py . 3p, — Py tp, 1p, .
=tp —P Py =sp,
—'Py 3P,
s,
—sp, —s
2.200 —| 1700 —Ds N D 1?
D. 1 —3 1 2
3g, 3 . iS; 2 _iDa D jDS 132 ==3p, 3p,
33, _150 5 33, 15, e —S1 So s D, —3D, 3D, 3D2 J— 1p, 5
3 —_8 18, Sy 8 —D 3D, =D, Dy * 3p, D3
—3 15 t o —, 3p, 1D, ap —1D
So D. Py B 3p 3p, 3p Py 2
3 3p, — sp° 3p, 3P‘ sp, —1p _SPO —-3-%P, Dy
2.000-] —8 1300 Tap?_ Pomgmep, TP o omolt ap Tt 'y 3
—P1 —sp, 10 3P, 3p, —3—Pg ! 123 2
Py —1p, P 3p, ip, Po ip, _;P1
p, 1p =3§1
o
—13, 5 —3s —*8,
—P —35 ag —33, —35
1.800 0.900 — —33 ! 5 —33,
- &
x— 0.3 0.5 0.7 0.3 0.5 0.7 0.3 0.5 0.7 —_sg
1
Expt. Sal. version MNK version CJ version
FIG. 2. The same as in Fig. 1 for tlwai system. 0.500

i i . x—= 03 0.5 0.7 0.3 0.5 0.7 0.3 0.5 0.6
states. In our calculations we do not have this degeneration, Expt.  Sal. version MIK version

but for the MNK and CJ versions at=0.3 the splitting is
very small and increases far=0.5 andx=0.7. Note, how-
ever, that only for these values »the sequence of théD,

CJ version

FIG. 4. The mass spectruM (in GeV) of the uUsystem for the
different 3D equations and different values of the scalar-vector mix-

. . ing parametex. The multiplicity of degenerate levels is indicated
state and other twb states agrees with the experiment. Forby the number inside the dash. The parametefor the S, state

the qq states with the quarks from light-heavy sectorsj, the MNK version and for all states in the CJ versionat0.6 is
(cu,cs) the spin-dependence of the energy levels for all valfixed at the value 550 MeV, otherwise,=710 MeV.

ues ofx is much weaker than the experimental one, but at the

same time forx=0.5 the level ordering agrees with experi- the kernel of the Salpeter equatitsee Ref[12]). In order to
mental data. take into account a full content of global QCD symmetries in

As to the pseudoscalqﬁsystems{the 15, state with the @ systematic way, a coupled set of Dyson-Schwinger and BS

quarks from the light sectoru@), the calculated masses in equations §hou|d' be conslderéslee Refs[1,7]), as was
mentioned in the introduction.

the model under consideration are much larger than the ex- Note that the number of terms\(..,) in the expansion
perimental ones. This might serve as an indication of the fac S & . P
3), which is necessary to get stable solutions of the system

that if the constituent quark model is used for the descriptio Lt equations(35), varies with the constituent quark masses
of this sort of systems, the chiral symmetry breaking effect . d ; L =t 9 ’
ith the value of the mixing parametgy with the state un-

should be taken into account, at least in @ phenomenologic er consideration and is different for the CJ, MNK, and Sal.

manner, e.g., by the inclusion of the 't Hooft interaction in versions. Namely, when the quark masses incredsg, de-

¥ (Get) creases. The convergence of the numerical procedure used in
i the calculations is better for<0.5 and worse fox>0.5.

2.700 For all values ofx the convergence is better for the Sal.

version than for the CJ and MNK versions.

—3p,

—e, . —t1 o, — = ' ‘We have also calculated the mass spect_rumcpiystems
I e —n =, w@ me equal quark masses from the light quark sector
R ’ (uu,ss). This problem was the subject of our primary inter-
est in the present study. The results of calculations are shown
in Figs. 4 and 5. Note that for this sort of systems the con-
2.300 7 —3 3 _j§; vergence of numerical algorithm used in the calculations ap-
° §; = 1T g,

2.100

1.900

x— 0.3 0.5 0.7 0.3 0.5 0.7 0.3 0.5 0.7
Expt. Sal. version MNK version

CJ version

FIG. 3. The same as in Fig. 1 for tioes system.

pears to be not so good for the values of the parameigrs
=710 MeV andx>0.5. The convergence becomes better
for smaller values ofv,. Namely, for the (u) system for
wg=710 MeV andx=0.6, stable solutions in the MNK ver-
sion for the3S, state do not exist. In the CJ version such a
situation holds for other states$R,,3D,,3D;) as well. For
smaller values of the potential strength parameter, ag.,
=550 MeV, the stable solutions exist for all statgsst
these results are shown in Fig). &urther, in this case the
sequence of the energy levels corresponding tc*fhestates
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M (GeV) >
d3p = - PORTIEN
: _ 0.0
| el =B s
d ~_, I U
X| o CoetM;p) | Pw(p)=2M.  (39)
_3P2
1.700 —
—" . o, _jgn sp, Using Eqgs.(4)—(8), from Eq.(38) one obtains
=T == =, »
1.500 — —3p __ s 1 2 (b aja 2(-> (ayap) . = (ajap), 2y
—, : P, 2 (Mip) @y, (p)=2M,
—3p, i ajay (277)3 M 12 M
(39
R s, . | where
—33, —ss, 5 —3,
—35, —33, aE1+asE
(alaz)_ 11 22 .
1 100 f == (MW version), (40
_881 f(l‘;jl_az)
0.900
x— 0.3 0.5 0.7 0.3 0.5 0.7 0.3 0.5 0.7 — 2((1)1+ (1)2) (11(1)1E2+ azszl (CJ VeI‘SiOI)I
Expt. Sal. version MNK version CJ version M (E1+ alwl)(E2+ azwz) !
FIG. 5. The same as in Fig. 1 for tiss system. (41)
(the spin-orbit splitting agrees with the experiment at flaras) _ 2 M B(l 2)+M_2_2 R-M
>0.5 in all versions, and in théD,; and 3D states the D(@1a2) y 2y
agreement appears to occurxat 0.5. Consequently, on the
basis of the above analysis one can conclude that none of the B a1w+ arw;
3D equations with the simple oscillator kernel considered in - D(@1a2) - 2
the present paper simultaneously describes even general fea-
tures of the mass spectrum of gltj systems under study. 2 R—M)?2
XR__+2 +(CY1(1)1_(12(1)2)
2 2y
IV. SOME DECAY CHARACTERISTICS OF MESONS R—-M M
. — . ><< + —y) (MNK version). (42
For the investigation of the meson decay properties, the 2y 2

normalization condition for the wave functioﬁSM(ﬁ)

=3 _(aya2)®"1*?(p) is needed. For the Salpeter wave

function this condition is well knowh26]

d3p
J (277)3[|(b§w++) 2

—|®4 (P)F1=2M.  (36)

Note that form;=m,=m the normalization conditiori39)
for the MW version is reduced to E@36) which can be
written in the form of Eq.(39) where

f(alaz) _

1T A2 .
———— (Sal. version (43

From the normalization conditiof89) for the wave function

As for the MW, CJ, and MNK versions, the normalization 9/Ven by Eqs(16),(17) one obtains the normalization condi-

( )
condition for the corresponding wave functions can be obiion for the wave fuchonQéﬂ“z (p) with the use of the
tained with the use of the fact that the effective Green'spartial-wave expansio(24)

operators(4) in Eg. (1) can be inverted. As a result, the

corresponding full 3D Green operatdB can be defined
analogously to the 4D case
Gt (M;p,p")=(2m)%5 (p—p")

XGoeM;p)—V(p,p').  (37)

SinceV(p,p’) does not depend aw, the normalization con-
dition reads

= p2dp
0 (27)3dre

2 MR (PF=2M. (44

The functionsf{, ) (41),(42) have second order poles @t
=ps, Where

a(ps) =Ef— 0f(ps) =0,

1
Ps=5[M?+bg—2(mi+m3)]*2 (45)
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The functionsf{; ™) turn out to be finite f{} 7(p,) is ap-  For a givenfy (53) the leptonic decay width of the vector
parently finitg. Consequently, the normalization condition meson is given by
(44) for the CJ and MNK versions involves a singular inte-

ral of the type aZe 1
’ P F(V—ee)=—2 23 R (68
47M3 30+
| B foc f(x)dx 46
%)= | xmxar? 48 where
which, taking account of the conditions(0)=0=f(x) o? =i 1 i }
valid in our case, can be regularized as eff 713712189
= f(x)dx 2x[F/(x)— ' (xg)]dx [ f'(x)dx for QO, w, anQ¢ mesons, respectively.
f 2=f +f . Finally, using Egs(33), (34), (44), (52), (53), and (54),
0 (x—xg)? Jo (X=Xo) 2xg X—Xo we obtain
(47)
\/— 3/2
Now we can calculate the pseudoscalds(L =J=0) decay 600 E Zdz[N(““(po 7)
constantfp(P— uv) and the leptonic decay width of the W\/M a1y
vector L=0,S=J=1) mesonI'(V—e e*) (the corre- ay) (—ay)
sponding decay constant is denotedfky. In these calcula- N3 *(Po,2) — @1a2N; "*(po,2)
tions, instead of the functions"ﬁf\,‘l"laz)(ﬁ) (16) given
. % (a102) g (a102) Ny “?(po,2) IRy (2) (55
as a column with the componentd 2 & "2, 0:2)]Rgg0 '
dlared §lad it s convenient to introduce the wave
function W(@192) written in the form(see Ref[26]) 4a2..p3 »
I‘(V—>e‘e+)=e—f;po2 > f z°dz
F (ayap) (ajap) (277) M<|aay Jo
q)aa q)ab .
W= en g aen |(C=TYY) (49 N @)
Dy, D X (Po, Z)N (Po,2)
whereC is the charge conjugation operator. Then, the decay 2 (Ca .
constantst, andfy are given by the expressions +—3—N; "T(Po,2)N; “*(Po,2)
SuoMTp=\BTH Woodr=0)y*(1=y5)], (49 R |
Row1 - (2) (56)
fu\) =BT Wy (r=0)y*]e*(A=0,£1). (50 ,
where the functions
Here, the factor/3 stems from the color part of the wave .
functions,e*(\) is the polarization vector of the meson, and a e
_I(_SlJZ 2 Cf_sljnz RnL(2) (57)

g (aqap)
\PLSJMJ(p) E q’LSJM(p) . satisfy the normalization condition

N0 (r=0) J—dsﬁ
r= =
LSIM, (2m)°

(51
22 ajay) R(4192) 2_
Using Egs.(16), (17), (24), (48), and (51), from Egs.(49) a§2 de( (Mipo.2)[R5, " (2)]"=1. (58)
and (50) one obtains
The results of numerical calculations of the quantifieand
V247 (= p2dp () () I" defined by Eqs(55) and(56), are given in Table 1. We see
P=M 73 > NS (PINGZ(p) = g, from Table | that the calculated valuesfofin the MNK and
0 (2m) araz CJ versions, as a rule, are smaller than in the Sal. version and
> N(l_“l)(p)N( ay (p)]Rog%)aZ)(p)* (52) this fact is related to the presence of the contributions from

the “+—"and “ —+" components of the wave function

2 (contribution from the component is negligibly
*pap @ a smal). Further, the calculated value ©f is larger in the CJ
fv<x>=[—% [N< D(pING(p) D O 15 larg

version than in the MNK version. The calculated value of the
quantity I'(V—e~e') weakly depends on the particular
192 (“ay (—ap) (ayay) choice of the 3D reduction scheme of the BS equation. With
+—3 Ny (PN, "2(P)|Rpy1 “(P) [ Oro- the increase of the mixing parameteboth the quantitie$p
andl'(V—e~e") slightly increase. The calculated values of
(53 fp andl'(V—e~e™") are smaller than the experimental ones.

77) azap
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TABLE I. The pseudoscalar decay COnStdﬁi’(PHILL:) (in MeV) and the leptonic decay width
I'(V—e e*) (in KeV) with the allowance for only++) and all components of the wave function.

Decay characteristics fp(p_w;) r(\v—e-e")

Meson D(cd) D(cs) e(uu) ¢(s9
Versions aLa, x=03 x=05 x=03 x=05 x=03 x=05 x=03 x=05
Sal. ++ 149.0 156.0 177.0 183.0 3.94 4.31 0.84 0.90

all 148.0 155.0 176.0 182.0 3.96 4.38 0.84 0.90
MNK ++ 148.0 155.0 176.0 181.0 4.44 4.85 0.89 0.95
all 141.0 145.0 168.0 172.0 411 4.20 0.85 0.89
CJ ++ 150.0 158.0 179.0 186.0 3.98 4.45 0.86 0.94
all 149.0 152.0 176.0 180.0 3.91 4.23 0.85 0.90

Expt. <220 170-180 6.8-0.3 1.370.05

On the basis of the analysis of the different versions of theaccount. This aspect of the problem will be considered at the

3D reductions of the bound state BS equation carried out imext step of our investigation. Further, we plan to include the
the present paper, one arrives at the following conclusionst Hooft effective interaction in our potential in order to
The existence or nonexistence of stable solutions of the 3lpphenomenologicallytake into account the effect of sponta-
bound-state equations critically depends on the value of theous breaking of chiral symmetry which is important in the
scalar-vector mixing parameter For all 3D versiongSal.,  pseudoscalar'@,) sector of the constituent model.
MNK, CJ) stable solutions coexist for the value ofrom a The calculated leptonic decay characteristics of mesons
rather restricted interval 0s8x<0.6—-0.7. The level order- are quite insensitive to the particular 3D reduction scheme
ing in the mass spectrum is similar for all versions undefysed and give an acceptable description of experimental data.
consideration. However, the sequence of the calculated efn future, we also plan to study the validity of this conclusion

ergy levels agrees with the experiment for some states at for a wider class of realistic interquark potentials.
< 0.5 and for other states at>0.5. Consequently, a simul-

taneous description of even general features of the meson
whole mass spectrum turns out not to be possible for a given
value ofx from the abovementioned interval. It is interesting
to investigate the dependence of this results on the form of One of the authoréA.R.) acknowledges the financial sup-
the confining potential. Also, it is interesting to study how it port from the Russian Foundation for Basic Research under
changes when the one-gluon exchange potential is taken int@ontract No. 96-02-17435-a.
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