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Microscopic calculation of the multistep compound process
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~Received 8 September 1998!

The Feshbach, Kerman, and Koonin@Ann. Phys.~N.Y.! 125, 429 ~1980!# model of the statistical multistep
compound~MSC! process is calculated microscopically, and comparisons of the microscopically calculated
MSC process with a phenomenological phase-space model are made. The microscopic model gives a small
particle emission probability in comparison with the constant wave function approximation, and a simple way
to reconcile the difference is proposed. A 2p-1h doorway state formation cross section is calculated with the
spherical Nilsson model, and a strength of the residual interactionV0 is estimated from the doorway state
formation cross section. The obtainedV0 is of the same magnitude as those derived in the previous multistep
direct analyses. Comparisons of the microscopic MSC calculations with the experimental data show that the
calculated particle emission spectra reproduce the measurements at backward angles.
@S0556-2813~99!08602-1#

PACS number~s!: 24.10.2i, 24.60.Dr, 24.60.Gv, 25.40.2h
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I. INTRODUCTION

The quantum-mechanical theory of preequilibriu
nuclear reaction by Feshbach, Kerman, and Koonin@1#
~FKK! has a rather simple and feasible formulation in co
trast with the theories of Tamura, Udagawa, and Lenske@2#
and Nishioka, Weidenmu¨ller, and Yoshida@3#, and it has
been applied to analyses of the medium- and high-ene
nuclear reactions~see Ref.@4#, for example!. According to
the FKK theory, particle emission is calculated from an
coherent sum of the multistep compound~MSC! process and
the multistep direct~MSD! process. At low energies an
large backward scattering angles, the MSD contribution
been regarded as negligible, and MSC analyses had
adopted to interpret double-differential cross section d
@5,6#. Bonetti, Colli Milazzo, and Melanotte@7# applied the
FKK theory to the double-differential cross-section data
the energy range of 13–18 MeV, and estimated the resid
interaction strengthV0 .

Chadwick and Young@8# showed in the analysis of93Nb
data that the MSD component still persists at energies be
20 MeV, and the assumption that the MSC process do
nates at backward angles can be invalid. The importanc
the MSC emission is reduced, and only the first two step
the MSC process, in addition to the MSD and the Haus
Feshbach decay, were included@8# to analyze the experimen
tal data.

In spite of the small contribution of MSC to the tot
emission spectra, an open question of physical interest
exists. A matrix element between the initial and final sing
particle states contains a radial overlap integral. Origina
FKK assumed constant wave functions within a nucleus fo
bound and an unbound particles, because it has a grea
vantage to evaluate the transition matrix element eas
More realistic wave functions were used in Ref.@9#, and
these authors developed a MSC codeGAMME @10# which
calculates the transition matrix elements microscopica
However, it has been pointed out that there is a consider
difference between the constant wave assumption and
realistic wave functions, and that a strength of the resid
PRC 590556-2813/99/59~2!/865~11!/$15.00
-

gy

-

d
en

ta

al

w
i-
of
of
r-

till
-
,
a
ad-
y.

.
le
he
al

interaction,V0 , obtained from MSC analyses is quite diffe
ent from the values used for MSD calculations.

The entrance strength function gives the probability o
doorway state excitation, which is proportional toV0

2 .
Bonetti et al. @11# proposed a microscopic expression
evaluate the strength. Another expression was obtained
Chadwick and Young@8#. They introduced a factorRMSC

which is a fraction of flux into the initial bound 2p-1h state.
The strength is calculated from an optical model transm
sion coefficient multiplied byRMSC, and this expression doe
not depend uponV0 . These two expressions for the entran
strength should give a reasonable agreement, and from
agreement one can use the microscopic expression to
mate theV0 values for the MSC process.

In Sec. II, we describe the formal MSC theory with tw
cases of treatment of the single-particle wave functions.
amples of the overlap integral calculation are shown in S
III to study the validity of the constant wave approximatio
and the microscopic calculations of the entrance strength
provided to estimate the strength of residual interaction
the MSC process. Comparisons of the theoretical predic
with experimental data are shown in Sec. IV.

II. MICROSCOPIC DESCRIPTION OF
THE MSC PROCESS

A. Particle emission spectrum

The MSC energy spectrum is given by@1#

ds

d«
5

p

k2 (
J

~2J11!2p
^G1J&

^D1J&

3(
N

(
n j

^GNJ
↑n jrn~U !&

^GNJ&
)

M51

N21
^GMJ
↓ &

^GMJ&
, ~1!

whereN is the class of preequilibrium state,j is the angular
momentum of the emitted particle,n labels the three exit
modes (DN50 and 61), 2p^G1J&/^D1J& is the entrance
strength for producing bound 2p-1h states of spinJ,
865 ©1999 The American Physical Society
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^GNJ
↑n jrn(U)& is the escape width,̂GMJ

↓ & is the damping
width, and^GNJ& is the total width.

The escape and damping widths are factorized byX andY
functions, where theX function contains the possible angul
momentum coupling and overlap integrals between the in
and final states. TheY function contains the possible pha
space for the transition. TheX andY functions for the escape
of

le

n

ia
o

l

processX↑N61, X↑N,Y↑N61, andY↑N, and for the damping
processX↓N11 andY↓N11, in which the number of excitons
changes by12 were defined by FKK in Ref.@1#. More
practical and simple formulations are shown in Refs.@8# and
@11#. TheX functions for the escape process using the no
tions in Ref.@8# are
XNJ
↑N11 j52p

~2 j 11!~2s11!

Rn~J! (
Q j3 j 4

~2 j 311!~2Q11!F~ j 3!Rn21~ j 4!R1~Q!S j
0

Q
0

j 3

0 D 2H j
j 4

j 3

J
Q
s J 2

I 2~Q, j 2 , j 1 , j !,

~2!

XNJ
↑N j52p

~2 j 11!~2s11!

Rn~J! (
Q j3 j 4

~2 j 311!~2Q11!F~Q!Rn22~ j 4!R1~ j 3!S j
0

j 3

0
Q
0 D 2H j

j 4

j 3

J
Q
s J 2

I 2~ j 1 , j 2 , j 3 , j !, ~3!

XNJ
↑N21 j52p

Rn23~s!

Rn~J! (
Q j3

~2 j 311!~2Q11!F~Q!R1~ j 3!S j
0

j 3

0
Q
0 D 2

I 2~ j 1 , j 2 , j 3 , j !, ~4!

and for the damping process is

XNJ
↓ 52p (

jQ j 3 j 4

~2 j 11!~2 j 311!
Rn21~ j 4!R1~Q!R1~ j !

Rn~J!
F~ j 3!S j

0
Q
0

j 3

0 D 2

I 2~Q, j 2 , j 1 , j !D~Q, j 4 ,J!, ~5!
-
le-

q.
rals

ve
is-
whereF(Q) is the angular momentum density of a pair
states,I ( j 1 , j 2 , j 3 , j ) is the radial overlap integral, andRn( j )
is the spin distribution given by

Rn~ j !5
2 j 11

2A2psn
3

expH 2
~ j 11/2!2

2sn
2 J , ~6!

with the spin cutoff parametersn
250.24nA2/3 @12#.

B. Overlap integral

The radial overlap integral in Eqs.~2!–~5! with a zero-
range interaction assumption is defined as

I ~ j 1 , j 2 , j 3 , j !

5
4

3
pr 0

3V0

1

4pE0

`

uj 1
~r !uj 2

~r !uj 3
~r !uj~r !r 2dr, ~7!

whereuj 1
(r ) anduj 2

(r ) are the radial parts of single-partic

radial wave functions for the initial state,uj 3
(r ) and uj (r )

are those for the final state,r 0 is the radius parameter take
to be 1.2 fm, andV0 is the residual interaction strength.

According to the assumption made by FKK, the rad
wave functions for the bound and unbound states are c
stant within the nuclear volume, so that

uB~r !5A 3

R3 ~r ,R! ~8!

and
l
n-

uj~r !5
4p

~2p!3/2

AmkTj

\
, ~9!

whereR5r 0A1/3,m is the reduced mass,k is the wave num-
ber of the emitted particle, andTj is the transmission coef
ficient. The unbound wave function carries the sing
particle state density of free particles@13# inside the nuclear
volumeV54pR3/3; then

E
0

R

uuj~r !u2r 2dr5
4p

~2p!3V
mk

\2 Tj[rc~Ec!Tj . ~10!

With the wave functions in Eqs.~8! and ~9!, one obtains
analytical expressions of the radial overlap integrals in E
~7!. The bound-unbound and bound-bound overlap integ
are @1#

I j
25

1

2p

4

3

V0
2r 0

3kmTj

\2A
~11!

and

I B
25

V0
2

A2 . ~12!

To calculate the overlap integral with more realistic wa
functions, the unbound wave function is replaced by a d
torted wave@14# normalized in unit energy,

uj~r !5
4p

~2p!3/2

Amk

\

i

2kr
$H j* ~r !2SjH j~r !%expid l ,

~13!
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PRC 59 867MICROSCOPIC CALCULATION OF THE MULTISTEP . . .
whereH j (r )5Gj (r )1 iF j (r ) is the outgoing-wave Coulomb
function, Sj the scattering matrix element, andd l the Cou-
lomb phase shift. In this paper, Eq.~13! is calculated with
the Walter and Guss’s global optical potential@15#.

The bound wave function is calculated with a Wood
Saxon potential of V550 MeV, Vso57 MeV, r
51.2 fm, anda50.7 fm. The quantum numbers and th
binding energies of the bound states are determined acc
ing to the spherical Nilsson model with the parameters
Seeger and Howard@16#.

Equation~10! implies that the unbound wave function
obtained by averaging of thel sum including the factor of
(2l 11) @17#. Thus the microscopic calculation of the ove
te

ta
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n
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rd-
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lap integral should be multiplied by (2l 11) to allow a com-
parison of the two approaches.

A particle-hole configuration is selected according to e
ergy, angular momentum, and parity conservation. There
several configurations for a possible transition for a giv
angular momentum transfer. The overlap integrals for all
possible transitions are averaged to give an appropriately
eraged matrix element.

A more realistic interaction was introduced to calcula
the overlap integral by Bonetti and Colombo@18#. The re-
sidual interaction of zero-range form in Eq.~7! was replaced
by a Yukawa form, because it is possible to obtain an a
lytical expression of the matrix element@19#. The overlap
integral becomes
I ~ j 1 , j 2 , j 3 , j !5V0E
0

`E
0

`

uj 1
~r !uj 2

~r !gL~r ,r 8!uj 3
~r 8!uj~r 8!r 82dr8r 2dr, ~14!

wheregL is calculated from the modified Bessel functions,

gL~r ,r 8!5H ~mrmr 8!21/2KL1
1
2
~mr !I L1

1
2
~mr 8! ~r>r 8!

~mrmr 8!21/2I L1
1
2
~mr !KL1

1
2
~mr 8! ~r ,r 8!, ~15!
in
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wherem21 is the range of interaction.

C. Entrance strength function

In the MSC emission spectrum in Eq.~1!, the emission
probability and the damping probability can be calcula
regardless to the residual interactionV0 , sinceV0 cancels in
the ratio of the emission and damping widths to the to
width. The entrance strength still depends uponV0 , and one
can evaluate the strength ofV0 if the entrance strength i
calculated microscopically@11#,

2p
^G1J&

^D1J&
5~2p!2v~2,1,E!(

Q j3
~2Q11!~2 j 311!

3F~Q!R1~ j 3!S j
0

j 3

0
Q
0 D 2

I 2~ j 1 , j 2 , j 3 , j !,

~16!

wherev(2,1,E) is the 2p-1h state density at the excitatio
energyE, and the angular momentum coupling scheme
defined in Fig. 1.

Chadwick and Young@8# proposed that the entranc
strength can be evaluated by the optical model transmis
coefficients corrected by a factor RMSC

5vB(2,1,E)/v(2,1,E), which is the fraction of flux into the
bound 2p-1h state. The entrance strength becomes

2p
^G1J&

^D1J&
5RMSCTJ . ~17!
d

l

s

on

III. RESULTS OF NUMERICAL CALCULATIONS
AND DISCUSSIONS

A. Microscopic calculation of the overlap integral

The overlap integral for the entrance strength function
Eq. ~16! describes a transition in which an incident partic
of total spinj is captured in the shell model orbitj 1, creating
a particle-hole pairj 2 and j 3 , as shown schematically in Fig
1. The energy of the final 2p-1h state is an excitation energ
of the composite system given byEm5E11E22E3 , where
Ei( i 51,2,3) is the binding energy of the particle or ho
state. This configuration is only excited if the incident ener
Ej is about the same asEm . We assume that the energy o
2p-1h state has a Gaussian distribution@4#

FIG. 1. The angular momentum coupling scheme for the
trance channel. The incident particlej is captured in the single-
particle orbit j 1 , creating the particle-hole pairj 2 and j 3 .
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868 PRC 59TOSHIHIKO KAWANO
G~Ex ,Em!5
1

A2pG
expH 2

~Ex2Em!2

2G2 J , ~18!

with the spreading widthG taken to be 4 MeV. This distri-
bution is used for weighing to average the overlap integ
for all possible transitions.

A comparison of the escape widths calculated with
constant wave approximation and the microscopic mode
shown in Fig. 2, which is the93Nb(n,n8) reaction (En
514 MeV) at the first stage (N51). The ratio of the escap
width to the total width is expressed by

RJ5(
n

(
j
E ^GNJ

↑n jrn~U !&

^GNJ&
dU. ~19!

The dependences ofRJ on the total spinJ for both the con-
stant wave calculation and the microscopic calculation
similar, but they differ in the magnitude. The values for t
microscopic calculation are about1

4 of those for the constan
wave approximation.

In order to estimate an averaged squared matrix elem
with the constant wave approximation, which yields bet
results than Eq.~9!, we recall the results obtained by Lee a
Griffin @17#. The distorted wave normalized in unit energy
given by Eq.~13!. Supposing the wave function inside th
nucleus is constant, its amplitude is just the same value a
nuclear surfacer 5R. What we need is the average value
uuj (R)u2 over the phase shift taken from 0 to 2p. It is given
by

uuj~R!u2.
2

p

m

\2k

1

2
. ~20!

FIG. 2. Comparison of the ratio of the escape width to the to
width for 14-MeV neutron-induced reactions on93Nb. The thick
dashed line represents the calculated ratio with the constant w
approximation, the thick solid line is the microscopic calculatio
and the thin dashed line is the result of the constant wave app
mation in Eq.~22!.
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We can evaluate the smooth average ofl sum of Eq.~20!
with the approximation ofl max.kR. For kR@1, we have
@20#

( ~2l 11!uuj~R!u2.
2

p

mk

\2

R2

2
5

3

R

1

2
rc~Ec!. ~21!

Therefore the constant unbound wave becomes

uj~r !5
4p

~2p!3/2

AmkTj

\
A3

R

1

2
. ~22!

The calculatedRJ with Eq. ~22! is shown in Fig. 2 by the
light dashed line, which is in good accordance with the m
croscopic calculation.

B. Entrance strength function

The constant wave approximation has an advantage
calculations of a composite system decay rate because
computational time-requirement is much less than the mic
scopic calculation. However we cannot apply this appro
mation for calculations of the entrance strength, because
strength is not calculated from the ratio of the escape wi
to the total width, but it is proportional to the width of th
2p-1h doorway state.

Figure 3 shows the calculated strength for 14-Me
neutron-induced93Nb reaction„multiplied by (2J11)p/k2

to give an initial 2p-1h state formation cross section…. The
distorted wave and the transmission coefficient are calcula
with the Walter-Guss global optical potential@15#. The
single-particle state density parameterg is taken asg
5A/13 MeV21, and the pairing energy correctionD50.
The solid line was calculated microscopically according
the coupling scheme in Fig. 1, and the dashed line was
tained from Eq.~17!. The total reaction cross section of th
microscopic calculation is normalized to the same va

l

ve
,
xi-

FIG. 3. Comparison of the partial MSC cross sections of 1
MeV neutron-induced reactions on93Nb. The solid line is the result
of the microscopic calculation in Eq.~16!, and the dashed line is th
phase-space model in Eq.~17!.



PRC 59 869MICROSCOPIC CALCULATION OF THE MULTISTEP . . .
FIG. 4. Comparison of the entrance strength functions of 14.5-MeV neutron-induced40Ca, 14.7-MeV proton-induced59Co, 14.8-MeV
proton-induced89Y, and 18.0-MeV proton-induced103Rh reactions, with those obtained by Bonetti, Colli Milazzo, and Melanotte~Ref. @7#!.
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FIG. 5. Comparison of the 2p-1h doorway state formation cros
sections of neutron-induced reactions on93Nb. The solid lines are
the results of the microscopic calculation in Eq.~16! with V0

512 MeV, and the dashed line is calculated with Eq.~17!. The
thick solid line represents the zero-range interaction, and the
solid line is the Yukawa interaction with the range of 1 fm.
given by Eq. ~17!, and one obtains the value ofV0
512.0 MeV when the zero-range interaction in Eq.~7! is
assumed. In the microscopic calculation, the particle a
hole states which obey angular momentum and energy c
servation are included. This restricts the possible final sta
and results in small cross sections for largeJ.

There is a pioneering work of microscopic calculations
the entrance strength by Bonetti, Colli Milazzo, and Mela
otte @7#. Comparisons of the calculated entrance stren
functions for the 40Ca1n,59Co1p,89Y1p, and 103Rh1p
reactions are shown in Fig. 4, where the entrance streng
divided byV0

2 . One can see the large difference between
present results and those obtained in Ref.@7#. The difference
is obvious for 40Ca and59Co at small spins, and it tends t
decrease as the target mass number increases. Both ca
tions are based on the shell model, however, Bonetti, C
Milazzo, and Melanotte included a large number of orb
which are not expected from strict adoption of the sh
model. This assumption allows a number of transitions
various angular momentum transfer, and it results in a la
probability of the 2p-1h doorway state formation. On th
other hand, our approach follows the shell model which
stricts the possible transitions; then the doorway state for
tion probability becomes smaller, especially for the comp
ite states with small spin. The obtained spin distributio
become very similar to those given by the phase-sp
model, as seen in Fig. 3.

in
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FIG. 6. Comparisons of the MSC emission spectra of neutron-induced reactions on93Nb up to five steps. The drawings on the left sid
are the results of the microscopic calculation, and those on the right side are calculated with the constant wave approximation.
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C. Strength of the residual interaction

The 2p-1h doorway state formation cross section is pr
portional toV0

2 when Eq.~16! is employed, and it is possibl
to estimateV0 roughly if one compares the cross sectio
given by Eq. ~16! and those given by Eq.~17!. Figure 5
shows the 2p-1h state formation cross sections for neutro
induced 93Nb reactions as functions of the incident energ
The thick solid line is calculated from Eq.~16! with V0
512.0 MeV, and the dashed line is Eq.~17!. The value of
V0 was chosen to give the same cross section at 14 Me

As shown in Fig. 5, the value ofV0512.0 MeV gives the
2p-1h state formation cross sections those are reasonab
agreement with the phase space calculation of Eq.~17!. This
V0 value is larger than the value of 5 MeV obtained
Bonetti, Colli Milazzo, and Melanotte@7# in their MSC
analysis, but it is still smaller than values used in the rec
MSD analyses@4,8,21#. Bonetti and Colombo@18# showed
that theV0 value increases when a Yukawa interaction w
the range of 1 fm is adopted to calculate the matrix elem
This is shown in Fig. 5 by the thin solid line. The effect
-

-
.

in

nt

t.

inclusion of the finite-range correction is very large, but
can be compensated for if one adjustsV0 appropriately. The
value of V0523.3 MeV yields approximately the sam
cross section as the zero-range calculation withV0

512.0 MeV, and this value agreesV0523.9 MeV derived
by Koning and Chadwick@4# from the FKK analysis of
90Zr(n,xn) reaction data at 14 MeV.

Watanabeet al. @21# discussed an effect of the nonlocali
correction@22# to the MSD cross sections, and they foun
that the correction reduces the MSD emission considera
When the nonlocality correction is incorporated into the e
trance strength calculation, it results in smaller 2p-1h state
formation cross sections. The correction with the nonloca
b50.85 @19# reduces the cross sections to 40–60 %. T
reduction can be compensated for by the largerV0 . The V0
value of 30.0 MeV gives roughly the same cross section
the result without the nonlocality correction; however, th
value is still smaller than the published values~39.3 MeV in
Ref. @8# and 42.8 MeV in Ref.@21#, for example! in which
the nonlocality correction was incorporated.
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D. Particle emission spectra

As demonstrated by Fig. 3, the phase-space model in
~17! is a good approximation of the microscopic calculati
of the entrance strength. We adopt Eq.~17! here to calculate
the initial 2p-1h state formation cross section, then we c
compare energy spectra of emitted particles regardless o
value of V0 for both the microscopic calculation and th
traditional constant wave-function approximation.

Figure 6 shows comparisons of the MSC particle emiss
spectra for 14-MeV neutron induced reactions on93Nb up to
five steps. Parameters adopted for those calculations w
Walter and Guss’s global optical potential@15#, the single-
particle state density parameterg5A/13, and no pairing en-
ergy. The shape of the energy spectra, not only the t
MSC emission spectra but also the emissions from vari
stages, is almost the same for both cases, and the differ
mainly appears in the absolute values of the cross sec
The microscopic calculation gives a smaller MSC emiss
probability than the constant wave approximation. This d
ference will be masked by the larger MSD emission and
Hauser-Feshbach statistical decay components in prac
applications of the FKK theory to the experimental data.

The doorway state formation cross section in Fig. 6 is 4
mb, which is given by Eq.~17!, and its 8% is emitted during
the MSC process up to five steps when the process is ca
lated microscopically. In the case of the constant wave
proximation, this fraction increases to 32%. As discussed
Sec. III A, if one introduces the factor of 3/2R into the con-
stant wave calculations, this fraction decreases to 9%, w
agrees with the microscopically calculated result. The ca
lated spectra with the constant wave approximation mu
plied by 3/2R are shown in Fig. 7 by the thin dotted line
The neutron emission spectra with the modified cons
wave approximation is consistent with the microscopic c
culation. The proton emission is still slightly larger, but t
discrepancy between them becomes smaller.

The microscopic calculations with the Yukawa interacti
of 1-fm range are shown in Fig. 7 by the thin solid lines.
was found that the differences between the zero-range
finite-range calculations are small for this case, althoug
has great influence on the entrance strength calculation
shown in Fig. 5. The dot-dashed lines in Fig. 7 are calcula
with the nonlocality correction as well as the finite-ran
interaction. The adopted nonlocality parameter is 0.85@19#.
The effect of this correction for emission process is a
small.

Finally, we can conclude that the constant wave appro
mation for the MSC process gives almost the same c
sections as the microscopic calculation, if it is corrected
the factor of 3/2R. The approximation has a great advanta
for computation, because it reduces the radial overlap i
grals which contain bound and unbound wave functions i
the simple analytical expressions in Eqs.~8! and~9!. Conse-
quently, the computational time-requirement becomes v
small. For example, almost 4 h were needed to calculate th
MSC spectra with the Yukawa interaction in Fig. 7 with
modern workstation, while the constant wave calculat
took only 5 s.

IV. COMPARISON WITH EXPERIMENTAL DATA

Comparisons of the microscopic MSC calculations w
the experimental data are made for 14.1- and 18.0-M
q.
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neutron-induced93Nb reactions@23#. At these energies the
MSD emission competes with the MSC, but only the on
step component is important. The one-step MSD cross
tion is given by a weighted sum over squared DWBA mat
elements which excite a 1p-1h state. We adopt a traditiona
one-component theory to evaluate the one-step MSD em
sion. The DWBA matrix elements for various transitions a
averaged to give an appropriate one-component matrix
ment, and the one-component state density formula of W
iams @24# is employed. This approach is a simplified tec
nique rather than the microscopic two-component theory
Koning and Chadwick@4#.

The parameters used were the Walter and Guss’ op
potential @15#, the single-particle state density parameterg
5A/13, the spin cutoff parameter of Gruppelaar@12#, and no
pairing energy. The nonlocality correction withb50.85 was
adopted for both MSC and MSD. The level density para
eter a513.0 MeV21 @25# was adopted to calculate th
Hauser-Feshbach particle emission spectra, and the Ha
Feshbach component was renormalized so as to conserv
total reaction cross section. The direct reaction and the m
tiple particle emission such as an (n,2n) reaction were not
taken into account.

At first, we tried to fit the calculated cross sections to t

FIG. 7. Comparisons of the total MSC emission spectra
neutron-induced reactions on93Nb. The solid lines are the results o
the microscopic calculation, and the dotted lines are calculated
the constant wave approximation.
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FIG. 8. Comparisons of the calculated double-differential cross sections ofn1 93Nb reaction atEn514.1 MeV with the experimenta
data. The MSC process on the left side is calculated microscopically, and the right side shows the results with the constant wave
mation.
-
s

is
ion
ss
mi-
experimental double-differential cross section~DDX! data
with the sameV0 value for both MSC and MSD. The ob
tainedV0 value atEn514.1 MeV was 45.0 MeV, and it wa
in accordance with the previous work@21#. However, the
2p-1h MSC doorway state formation cross section with th
V0 is 986 mb, which is twice as large as the cross sect
given by Eq.~17!. If one equates the doorway state cro
sections calculated from the phase-space model and the
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FIG. 9. Same as Fig. 8, but forEn518 MeV.
e
h

n
x-
croscopic model, the estimate ofV0 is 30.0 MeV; thus
V0

MSD51.5V0
MSC. The problem of the difference between th

V0 values for MSC and MSD has not yet been solved. T
two-component theory of Koning and Chadwick@4# has an
impact on theV0 value for the one-step MSD cross sectio
e

.

Further work is needed to obtain the consistentV0 value for
both MSC and MSD. At this moment, we allow theV0 val-
ues to be different for MSC and MSD.

Comparisons of the calculated DDX spectra with the e
perimental data atEn514.1 MeV are shown in Fig. 8, on
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the left side. The value ofV0
MSC530.0 MeV, which was

derived from the phase-space model, was adopted for
calculation of the MSC spectra. This value was fixed, a
V0

MSD was adjusted to the experimental data. The obtai
V0

MSD is 47.3 MeV. The calculated DDX spectra are in go
agreement with the experimental data from the forw
(30°) to the backward angles (150°).

The calculations of the MSC and MSD spectra in Fig
include the nonlocality correction. If this correction is e
cluded, V0

MSC523.2 MeV andV0
MSD535.6 MeV give al-

most the same fitting to the experimental data.
So far the constant wave approximation have been app

to analyze experimental DDX data. The right side in Fig
shows the calculated DDX spectra with the constant w
approximation. The obtainedV0

MSD is 41.4 MeV, which is
consistent with the published value, 42.862.1 MeV of Wa-
tanabeet al. @21#. They employed theFKK-GNASH code@8#,
and fitted to the different experimental data set@26#.

The MSC components calculated with the constant
proximation are much larger than those calculated mic
scopically. The total MSC emission cross section with
constant wave approximation is 138 mb, while the mic
scopic calculation is 30.5 mb. The ratio of those cross s
tions is 0.22, which is consistent with the correction fac
3/2R50.276 proposed in Sec. III A. The increase in t
MSC emission can be compensated for by the reduction
the MSD emission. Thus it is possible to obtain a good fit
the experimental DDX spectra even if the MSC cross sec
is four times larger. However, the difference appears at
backward angles. At 150°, the calculated spectrum exce
the experimental data in the energy range of 7–10 MeV. T
overestimation does not occur for the microscopic calcu
tion.

Figure 9 shows the comparisons of the calculated D
spectra with the experimental data atEn518 MeV. The
drawings on the left side show the results of the microsco
calculation, and those on the right side are the case of
constant wave approximation. TheV0

MSC value of 29.3 MeV
was obtained from the phase-space model. The obta
V0

MSD’s are 39.7 MeV for the microscopic calculation, an
35.0 MeV for the constant wave approximation. The latte
consistent with the value of 36.063.6 MeV in Ref. @21#
within the uncertainty. The fitting to the DDX data at bac
.
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d
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ds
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ward angles was difficult when the constant wave appro
mation was employed. This difficulty is due to the larg
MSC emission there. Since the microscopic calculat
yields the smaller MSC emission, it results in a good fit
the experimental data at backward angles.

V. CONCLUSION

The microscopic calculations of the MSC process w
compared with the simple MSC model which has be
adopted in the data analysis with the FKK theory. Parti
emission spectra with the microscopic model resulted in c
siderably smaller cross sections in comparison with the c
stant wave function approximation, although the shape
energy spectra is almost the same. If the cross sections
the constant wave function approximation are corrected
the factor of 3/2R, whereR is the nuclear radius, the differ
ence between them becomes very small.

An energy dependence of the 2p-1h doorway state for-
mation cross section calculated with the microscopic mo
was almost the same as that obtained with the phase-s
model. A comparison of the microscopic calculation with t
phase-space model calculation yielded a rough estimatio
the residual interaction strengthV0 . In the case of the zero
range interaction,V0 was about 12.0 MeV for neutron
induced reactions on93Nb. The strength increased to 23
MeV if a Yukawa interaction with the range of 1 fm wa
assumed. When the nonlocality correction withb50.85 was
incorporated, the strength became 30.0 MeV.

The microscopically calculated MSC spectra were co
pared with the experimental data of double-differential cro
sections atEn514.1 and 18.0 MeV. The one-step MSD an
Hauser-Feshbach statistical emissions were added to
MSC spectra, and fitting of the calculated spectra to the
perimental data yielded the strength of residual interact
V0 for MSD. It was found that the obtainedV0 value for
MSD differs fromV0 value of MSC. The microscopic MSC
calculations gave smaller emission spectra than those
the constant wave approximation, and a fitting to the dat
backward angles were improved.
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