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Microscopic calculation of the multistep compound process
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The Feshbach, Kerman, and Koofifinn. Phys.(N.Y.) 125 429(1980] model of the statistical multistep
compound(MSC) process is calculated microscopically, and comparisons of the microscopically calculated
MSC process with a phenomenological phase-space model are made. The microscopic model gives a small
particle emission probability in comparison with the constant wave function approximation, and a simple way
to reconcile the difference is proposed. p-2h doorway state formation cross section is calculated with the
spherical Nilsson model, and a strength of the residual interadjpis estimated from the doorway state
formation cross section. The obtaingg is of the same magnitude as those derived in the previous multistep
direct analyses. Comparisons of the microscopic MSC calculations with the experimental data show that the
calculated particle emission spectra reproduce the measurements at backward angles.
[S0556-28189)08602-1

PACS numbe(s): 24.10—i, 24.60.Dr, 24.60.Gv, 25.46.h

[. INTRODUCTION interaction,Vg, obtained from MSC analyses is quite differ-
ent from the values used for MSD calculations.

The quantum-mechanical theory of preequilibrium The entrance strength function gives the probability of a
nuclear reaction by Feshbach, Kerman, and Kooffih doorway state excitation, which is proportional Mf)
(FKK) has a rather simple and feasible formulation in con-Bonetti et al. [11] proposed a microscopic expression to
trast with the theories of Tamura, Udagawa, and Lengke evaluate the strength. Another expression was obtained by
and Nishioka, Weidenniier, and Yoshida[3], and it has Chadwick and Yound8]. They introduced a factoRMS©
been applied to analyses of the medium- and high-energwhich is a fraction of flux into the initial bound®1h state.
nuclear reactiongsee Ref[4], for examplg. According to  The strength is calculated from an optical model transmis-
the FKK theory, particle emission is calculated from an in-sion coefficient multiplied byR"SC, and this expression does
coherent sum of the multistep compouiMiSC) process and not depend upol,. These two expressions for the entrance
the multistep directtMSD) process. At low energies and strength should give a reasonable agreement, and from this
large backward scattering angles, the MSD contribution hadgreement one can use the microscopic expression to esti-
been regarded as negligible, and MSC analyses had beemate theV, values for the MSC process.
adopted to interpret double-differential cross section data In Sec. Il, we describe the formal MSC theory with two
[5,6]. Bonetti, Colli Milazzo, and MelanottE7] applied the cases of treatment of the single-particle wave functions. Ex-
FKK theory to the double-differential cross-section data inamples of the overlap integral calculation are shown in Sec.
the energy range of 13-18 MeV, and estimated the residudll to study the validity of the constant wave approximation,
interaction strengthv,. and the microscopic calculations of the entrance strength are

Chadwick and Young8] showed in the analysis dfNb  provided to estimate the strength of residual interaction for
data that the MSD component still persists at energies belotwhe MSC process. Comparisons of the theoretical prediction
20 MeV, and the assumption that the MSC process domiwith experimental data are shown in Sec. IV.
nates at backward angles can be invalid. The importance of
the MSC emission is reduced, and only the first two steps of
the MSC process, in addition to the MSD and the Hauser-
Feshbach decay, were included] to analyze the experimen-
tal data. A. Particle emission spectrum

In spite of the small contribution of MSC to the total
emission spectra, an open question of physical interest still

Il. MICROSCOPIC DESCRIPTION OF
THE MSC PROCESS

The MSC energy spectrum is given [/

exists. A matrix element between the initial and final single- do (T'1y)

particle states contains a radial overlap integral. Originally, PP > (2J+1)277<D ;

FKK assumed constant wave functions within a nucleus for a J B

bound and an unbound particles, because it has a great ad- <FijpV(U)>N71 (Fi )

vantage to evaluate the transition matrix element easily. x> > A Mo (U]
More realistic wave functions were used in RE3], and N7 (Pngy - w=1 (Pwy)

these authors developed a MSC coglevme [10] which

calculates the transition matrix elements microscopicallywhereN is the class of preequilibrium stateis the angular
However, it has been pointed out that there is a considerabl@omentum of the emitted particle, labels the three exit
difference between the constant wave assumption and thmodes AN=0 and 1), 2#(I"1;)/(D,;) is the entrance
realistic wave functions, and that a strength of the residuastrength for producing bound p2lh states of spinJ,
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(Tp"(V)) is the escape width(T'},,) is the damping processX'N=1 XN YIN=1 andYIN and for the damping
width, and(T"y;) is the total width. processX!N*1 andY!N*1 in which the number of excitons
The escape and damping widths are factorizeXlaywdY  changes by+2 were defined by FKK in Ref[1]. More
functions, where th& function contains the possible angular practical and simple formulations are shown in Rg#3.and

momentum coupling and overlap integrals between the initiaf 11]. The X functions for the escape process using the nota-
and final states. Th¥ function contains the possible phase tions in Ref.[8] are
space for the transition. ThéandY functions for the escape

oy, @iFDEsH) o | Qs s Q%, .
R ) (2ia+ DEQ+ DRy (iR} ’03) [j‘4 5 f} 12(Quizuin ),

Jala
(2
(2j+1)(2s+1)

P 20 2
INj_ - : (103 QYT Ja Q%L .
XN R.(J) J2311_4(213+1)(2Q+1)F(Q)Rn2(14)R1(13)(0 0 o) [j4 7 of Plvizisi), @
vy Rn-3(S) : (i ds QL. .
IN-1j _ n-3 3 2
XNJ _277 Rn(\]) sz3 (213+1)(2Q+1)F(Q)Rl(13)(0 0 0 I (]l!J21J31J)1 (4)
and for the damping process is
. o Ria(DR(QRG) (] Q s, .
Xjo=27m 2 (2] +1)(2]3+ 1)~ F(ja) S 1(Qui2,i1.)AQu4d), (5)
iQizig R,(J) 00O
|
whereF(Q) is the angular momentum density of a pair of A \/MTTJ
states) (j1.j2.j3.]) is the radial overlap integral, ariR},(j) uj(r)=m Py 9

is the spin distribution given by

whereR=r,AY3 4 is the reduced mask,is the wave num-

©) ber of the emitted particle, angj is the transmission coef-
ficient. The unbound wave function carries the single-
particle state density of free particlgk3] inside the nuclear
volume V=47R3/3; then

R(0) 2j+1 p|’ (j+1/2)2]
=———eXp——F—= ¢,
= o 207

with the spin cutoff parameter2=0.241A?? [12].

R _— 4w pk_
B. Overlap integral o luj(N]*redr= (ZT)SV FszpC(EC)Tj . (10
The radial overlap integral in Eq$2)—(5) with a zero-
range interaction assumption is defined as With the wave functions in Eqg8) and (9), one obtains
o analytical expressions of the radial overlap integrals in Eq.
I(J1.02.03:1) (7). The bound-unbound and bound-bound overlap integrals
are[1]
4 L 1 (= )
=§7Trovoﬂ o Ujl(r)UjZ(r)Uj3(r)Uj(r)r dr, (7) I2:ifVSrgk,uTj 1D
i7" 273  AK2A
whereujl(r) andujz(r) are the radial parts of single-particle and
radial wave functions for the initial state; (r) andu;(r)
are those for the final statey is the radius parameter taken 5 vg

to be 1.2 fm, and/, is the residual interaction strength. l5=22- (12)
According to the assumption made by FKK, the radial
wave functions for the bound and unbound states are con- 1 cajculate the overlap integral with more realistic wave

stant within the nuclear volume, so that functions, the unbound wave function is replaced by a dis-

torted wave] 14] normalized in unit energy,
3
ug(N="Ygs (<R ) Ar ki
uj(r)= 2 0 m{Hj*(r)—SjHj(r)}eXpi o,
and (13
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whereH;(r)=G;(r) +iF;(r) is the outgoing-wave Coulomb lap integral should be multiplied by (2 1) to allow a com-

function, S; the scattering matrix element, aj the Cou-  parison of the two approaches. _

lomb phase shift. In this paper, E(L3) is calculated with A particle-hole configuration is selected according to en-

the Walter and Guss’s global optical potenfizb). ergy, angular momentum, and parity conservation. There are
The bound wave function is calculated with a Woods-S€veral configurations for a possible transition for a given

Saxon potential of V=50 MeV, V,,=7 MeV, r angular momentum transfer. The overlap integrals for all the

—1.2 fm, anda=0.7 fm. The quantum numbers and the possible transitions are averaged to give an appropriately av-

. ! ; Sraged matrix element.
binding energies of the bound states are determined accord- A" more realistic interaction was introduced to calculate

ing to the spherical Nilsson model with the parameters othe overlap integral by Bonetti and Colombb8]. The re-
Seeger and Howarid.6]. sidual interaction of zero-range form in E) was replaced

Equation(10) implies that the unbound wave function is by a Yukawa form, because it is possible to obtain an ana-
obtained by averaging of thlesum including the factor of Iytical expression of the matrix elemefit9]. The overlap
(21+1) [17]. Thus the microscopic calculation of the over- integral becomes

Gz =Vo | | uu, 0L () Zarear, (14

whereg, is calculated from the modified Bessel functions,

(pr pur ) 2D R ) (r=1)
LT =Y (ur )R Hun)K Ky (r<r)s (15

whereu 1 is the range of interaction. Ill. RESULTS OF NUMERICAL CALCULATIONS
AND DISCUSSIONS

C. Entrance strength function A. Microscopic calculation of the overlap integral

In the MSC emission spectrum in E(L), the emission The overlap integral for the entrance strength function in
probability and the damping probability can be calculatedgq, (16) describes a transition in which an incident particle
regardl'ess to the regidyal interactlva,. sincevo cancels in  of total spinj is captured in the shell model orif, creating
the ratio of the emission and damping widths to the totaly particle-hole paif, andjs, as shown schematically in Fig.
width. The entrance strength still depends upgn and one 1 The energy of the finalf21h state is an excitation energy
can evaluate the strength & if the entrance strength is of the composite system given I8, =E,+E,— E;, where
calculated microscopicallyl 1], Ei(i=1,2,3) is the binding energy of the particle or hole

(T'15) state. This configuration is only excited if the incident energy
27— = (27)2w(2,1E) D> (2Q+1)(2j5+1) E; is about the same &, . We assume that the energy of
(D1y) QT3 2p-1h state has a Gaussian distributieH
(i QL
XF(Q)Rl(Js)(O 03 0) 12(j1.J2.03:0), Q

(16) /_/%

wherew(2,1E) is the 2p-1h state density at the excitation
energyE, and the angular momentum coupling scheme is
defined in Fig. 1.
Chadwick and Young[8] proposed that the entrance
strength can be evaluated by the optical model transmission
coefficients  corrected by a  factor RMSC
=wB(2,1E)/»w(2,1E), which is the fraction of flux into the j
bound Z-1h state. The entrance strength becomes

h

(T'yy) FIG. 1. The angular momentum coupling scheme for the en-
B =RMSCT,, (17) trance channel. The incident partidles captured in the single-
(D1 particle orbitj,, creating the particle-hole pajs andj;.

2
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FIG. 2. Comparison of the ratio of the escape width to the total FIG. 3. Comparison of the partial MSC cross sections of 14-
width for 14-MeV neutron-induced reactions §fNb. The thick  MeV neutron-induced reactions dfiNb. The solid line is the result

dashed line represents the calculated ratio with the constant way the microscopic calculation in E¢L6), and the dashed line is the
approximation, the thick solid line is the microscopic calculation, Phase-space model in EQ.7).

and the thin dashed line is the result of the constant wave approxi-
mation in Eq.(22). We can evaluate the smooth averagel sum of Eq.(20)

with the approximation ol ,,;,=kR. For kR>1, we have

1 E,—E,)? [20]
G(E,.,E,)= —exp{ - MJ , (18)

J2aT 21?2

with the spreading widti" taken to be 4 MeV. This distri-
bution is used for weighing to average the overlap integrald herefore the constant unbound wave becomes
for all possible transitions.

——— 2upkR* 31
S @+ DlyRP= 257 5 =g 5rdE. @D

A comparison of the escape widths calculated with the B 4 \pkT, /EE 22
constant wave approximation and the microscopic model is uj(r)= 2m?? 4 R2 22

shown in Fig. 2, which is the®*Nb(n,n’) reaction €,
=14 MeV) at the first stageN=1). The ratio of the escape The calculatedr; with Eq. (22) is shown in Fig. 2 by the
width to the total width is expressed by light dashed line, which is in good accordance with the mi-
. croscopic calculation.
(Tip*(V))
RJZEV: EJ: j—<FNJ> du. (19 B. Entrance strength function

The constant wave approximation has an advantage for
The dependences &; on the total spin) for both the con-  calculations of a composite system decay rate because the
stant wave calculation and the microscopic calculation aréomputational time-requirement is much less than the micro-
similar, but they differ in the magnitude. The values for thescopic calculation. However we cannot apply this approxi-
microscopic calculation are abotitof those for the constant mation for calculations of the entrance strength, because the
wave approximation. strength is not calculated from the ratio of the escape width
In order to estimate an averaged squared matrix elemeri@ the total width, but it is proportional to the width of the
with the constant wave approximation, which yields better2p-1h doorway state.
results than Eq9), we recall the results obtained by Lee and ~ Figure 3 shows the calculated strength for 14-MeV
Griffin [17]. The distorted wave normalized in unit energy is neutron-induced®Nb reaction(multiplied by (2J+1)/k?
given by Eq.(13). Supposing the wave function inside the to give an initial 2-1h state formation cross sectipriThe
nucleus is constant, its amplitude is just the same value at th@istorted wave and the transmission coefficient are calculated
nuclear surface=R. What we need is the average value of with the Walter-Guss global optical potentifl5]. The
lu;(R)|? over the phase shift taken from 0 tar21t is given ~ single-particle state density parametgris taken asg
by =A/13 MeV !, and the pairing energy correctiah=0.
The solid line was calculated microscopically according to
the coupling scheme in Fig. 1, and the dashed line was ob-
(200  tained from Eq(17). The total reaction cross section of the
microscopic calculation is normalized to the same value

luj(R)[?=

M
%2k

IR
N|
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FIG. 4. Comparison of the entrance strength functions of 14.5-MeV neutron-indd€ag 14.7-MeV proton-induceé®Co, 14.8-MeV
proton-induced®Y, and 18.0-MeV proton-inducetf*Rh reactions, with those obtained by Bonetti, Colli Milazzo, and Melar@&ef.[7]).
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FIG. 5. Comparison of thef21h doorway state formation cross
sections of neutron-induced reactions Bhib. The solid lines are

25

30

the results of the microscopic calculation in E{.6) with V,
=12 MeV, and the dashed line is calculated with E&j7). The
thick solid line represents the zero-range interaction, and the thibecome very similar to those given by the phase-space
solid line is the Yukawa interaction with the range of 1 fm.

given by Eqg. (17), and one obtains the value 0¥,
=12.0 MeV when the zero-range interaction in K@) is
assumed. In the microscopic calculation, the particle and
hole states which obey angular momentum and energy con-
servation are included. This restricts the possible final states,
and results in small cross sections for latge

There is a pioneering work of microscopic calculations of
the entrance strength by Bonetti, Colli Milazzo, and Melan-
otte [7]. Comparisons of the calculated entrance strength
functions for the “°Ca+n,**Co+p,8% +p, and ®Rh+p
reactions are shown in Fig. 4, where the entrance strength is
divided byV(z). One can see the large difference between the
present results and those obtained in IRef. The difference
is obvious for#%Ca and®°Co at small spins, and it tends to
decrease as the target mass number increases. Both calcula-
tions are based on the shell model, however, Bonetti, Colli
Milazzo, and Melanotte included a large number of orbits
which are not expected from strict adoption of the shell
model. This assumption allows a number of transitions of
various angular momentum transfer, and it results in a large
probability of the 2-1h doorway state formation. On the
other hand, our approach follows the shell model which re-
stricts the possible transitions; then the doorway state forma-
tion probability becomes smaller, especially for the compos-
ite states with small spin. The obtained spin distributions

model, as seen in Fig. 3.
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FIG. 6. Comparisons of the MSC emission spectra of neutron-induced reactiohisliuip to five steps. The drawings on the left side
are the results of the microscopic calculation, and those on the right side are calculated with the constant wave approximation.

C. Strength of the residual interaction inclusion of the finite-range correction is very large, but it

The 2p-1h doorway state formation cross section is pro-can be compensated for if one adjustsappropriately. The
portional toV2 when Eq.(16) is employed, and it is possible Valueé of Vo=23.3 MeV yields approximately the same
to estimateV, roughly if one compares the cross sectionsCross section as the zero-range calculation wif
given by Eq.(16) and those given by Eq17). Figure 5 =12.0 MeV, and this value agre&4=23.9 MeV derived
shows the P-1h state formation cross sections for neutron-by Koning and ChadwicK4] from the FKK analysis of
induced ®Nb reactions as functions of the incident energy. °Zr(n,xn) reaction data at 14 MeV.

The thick solid line is calculated from Ed16) with V, Watanabeet al.[21] discussed an effect of the nonlocality
=12.0 MeV, and the dashed line is EQ.7). The value of correction[22] to the MSD cross sections, and they found
V, was chosen to give the same cross section at 14 MeV. that the correction reduces the MSD emission considerably.

As shown in Fig. 5, the value &f;=12.0 MeV gives the When the nonlocality correction is incorporated into the en-
2p-1h state formation cross sections those are reasonably ittiance strength calculation, it results in smallgr-2h state
agreement with the phase space calculation of(Ed. This  formation cross sections. The correction with the nonlocality
V, value is larger than the value of 5 MeV obtained by 8=0.85[19] reduces the cross sections to 40—60 %. This
Bonetti, Colli Milazzo, and Melanott¢7] in their MSC  reduction can be compensated for by the larggr The V
analysis, but it is still smaller than values used in the recenvalue of 30.0 MeV gives roughly the same cross section as
MSD analyseg4,8,21]. Bonetti and Colomb¢18] showed the result without the nonlocality correction; however, this
that theV, value increases when a Yukawa interaction withvalue is still smaller than the published valu88.3 MeV in
the range of 1 fm is adopted to calculate the matrix elementRef. [8] and 42.8 MeV in Ref[21], for example in which
This is shown in Fig. 5 by the thin solid line. The effect of the nonlocality correction was incorporated.
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1 H H T T T T T T
D. Particle emission spectra CONStant Wave «eieeess

As demonstrated by Fig. 3, the phase-space model in Eq. ' F modified °°"§‘;,gt,gﬁge """" 3
(17) is a good approximation of the microscopic calculation i o op=t fr_n'? e
of the entrance strength. We adopt ELj7) here to calculate i non-locality correction -~~~
the initial 2p-1h state formation cross section, then we can
compare energy spectra of emitted particles regardless of the
value of V, for both the microscopic calculation and the
traditional constant wave-function approximation.

Figure 6 shows comparisons of the MSC particle emission
spectra for 14-MeV neutron induced reactions®dNb up to
five steps. Parameters adopted for those calculations were
Walter and Guss'’s global optical potentfdl5], the single-
particle state density parametgs A/13, and no pairing en-
ergy. The shape of the energy spectra, not only the total
MSC emission spectra but also the emissions from various 0 2 4 6 8
stages, is almost the same for both cases, and the difference En [MeV]
mainly appears in the absolute values of the cross section. : :

The microscopic calculation gives a smaller MSC emission modified gggg}gm wave
probability than the constant wave approximation. This dif- 10 b zero range ——
ference will be masked by the larger MSD emission and the F o non-localit cgr=|'t1ecft'i1:)-n -
Hauser-Feshbach statistical decay components in practical [ Nb(n,p) y

applications of the FKK theory to the experimental data.

The doorway state formation cross section in Fig. 6 is 436
mb, which is given by Eq(17), and its 8% is emitted during
the MSC process up to five steps when the process is calcu-
lated microscopically. In the case of the constant wave ap-
proximation, this fraction increases to 32%. As discussed in
Sec. lll A, if one introduces the factor of 3&into the con-
stant wave calculations, this fraction decreases to 9%, which
agrees with the microscopically calculated result. The calcu-
lated spectra with the constant wave approximation multi- 0.01
plied by 3/R are shown in Fig. 7 by the thin dotted lines. 0 2
The neutron emission spectra with the modified constant
wave approximation is consistent with the microscopic cal-
culation. The proton emission is still slightly larger, but the
discrepancy between them becomes smaller.

The microscopic calculations with the Yukawa interaction
of 1-fm range are shown in Fig. 7 by the thin solid lines. It

was found that the differences between the zero-range and . 3 : .
finite-range calculations are small for this case, although ipeutron-induced”Nb reactions[23]. At these energies the

has great influence on the entrance strength calculations, #>0 emission competes with the MSC, but only the one-
shown in Fig. 5. The dot-dashed lines in Fig. 7 are calculate@€P_cOmponent is important. The one-step MSD cross sec-
with the nonlocality correction as well as the finite-rangeiOn is given by a weighted sum over squared DWBA matrix
interaction. The adopted nonlocality parameter is (B%. elements which excite apt1h state. We adopt a traditional _
The effect of this correction for emission process is alsg®N€-component theory to evaluate the one-step MSD emis-
small. sion. The DWBA matrix elements for various transitions are
Finally, we can conclude that the constant wave approxi&veraged to give an appropriate one-component matrix ele-
mation for the MSC process gives almost the same cros§'€nt, and the one-component state density formula of Will-
sections as the microscopic calculation, if it is corrected by@Ms[24] is employed. This approach is a simplified tech-
the factor of 3/R. The approximation has a great advantageidue rather than the microscopic two-component theory of
for computation, because it reduces the radial overlap inte<0ning and Chadwick4]. _
grals which contain bound and unbound wave functions into 1h€ parameters used were the Walter and Guss’ optical
the simple analytical expressions in E(®). and(9). Conse- potential [15], fche single-particle state density parameger
quently, the computational time-requirement becomes very- A/13, the spin cutoff parameter of Gruppelgé®], and no
small. For example, almbg h were needed to calculate the Pairing energy. The nonlocality correction wigh=0.85 was
MSC spectra with the Yukawa interaction in Fig. 7 with a @dopted for both MSC and MSD. The level density param-
modern workstation, while the constant wave calculatior€ter a=13.0 MeV™* [25] was adopted to calculate the

........
.
v

%Nb(n,n’) 5

10F -
E S T .. E,=14Mev

Energy Spectra [mb/MeV]

10 12 14 16

Energy Spectra [mb/MeV]

01|

6 8 10
E, [MeV]

FIG. 7. Comparisons of the total MSC emission spectra of
neutron-induced reactions dfNb. The solid lines are the results of
the microscopic calculation, and the dotted lines are calculated with
the constant wave approximation.

took only 5 s. Hauser-Feshbach particle emission spectra, and the Hauser-
Feshbach component was renormalized so as to conserve the
IV. COMPARISON WITH EXPERIMENTAL DATA total reaction cross section. The direct reaction and the mul-

tiple particle emission such as an,2n) reaction were not
Comparisons of the microscopic MSC calculations withtaken into account.
the experimental data are made for 14.1- and 18.0-MeV At first, we tried to fit the calculated cross sections to the
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FIG. 8. Comparisons of the calculated double-differential cross sections-8fNb reaction aE,,=14.1 MeV with the experimental
data. The MSC process on the left side is calculated microscopically, and the right side shows the results with the constant wave approxi-

mation.

2p-1h MSC doorway state formation cross section with this

with the sameV, value for both MSC and MSD. The ob- V, is 986 mb, which is twice as large as the cross section
tainedV, value atE,,=14.1 MeV was 45.0 MeV, and it was given by Eq.(17). If one equates the doorway state cross

in accordance with the previous wofR1]. However, the

sections calculated from the phase-space model and the mi-
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FIG. 9. Same as Fig. 8, but fé&,=18 MeV.

croscopic model, the estimate &f, is 30.0 MeV; thus Further work is needed to obtain the consistéptvalue for
V§SP=1.5V§'C. The problem of the difference between the both MSC and MSD. At this moment, we allow thg val-

V, values for MSC and MSD has not yet been solved. Thaies to be different for MSC and MSD.

two-component theory of Koning and Chadwigk] has an Comparisons of the calculated DDX spectra with the ex-
impact on theV, value for the one-step MSD cross section. perimental data aE,=14.1 MeV are shown in Fig. 8, on
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the left side. The value ov(';"SC: 30.0 MeV, which was Wward angles was difficult when the constant wave approxi-

derived from the phase-space model, was adopted for th@ation Was.employed. T_his difficulty is due.to the Iarge
calculation of the MSC spectra. This value was fixed, and/SC €mission there. Since the microscopic calculation
VS was adjusted to the experimental data. The obtained'
VMSP is 47.3 MeV. The calculated DDX spectra are in good
agreement with the experimental data from the forward V. CONCLUSION
(30°) to the backward angles (150°).

The calculations of the MSC and MSD spectra in Fig. 8 The microscopic calculations of the MSC process were

include the nonlocality correction. If this correction is ex- compared with the simple MSC model which has been
cluded, V¥S€=23.2 MeV andV}¥SP=35.6 MeV give al- adopted in the data analysis with the FKK theory. Particle

most the same fitting to the experimental data. emission spectra with the microscopic model resulted in con-

So far the constant wave approximation have been app||ea|derab|y Sma”er_CI’OSS SECti_OnS -in Comparison with the con-
to analyze experimental DDX data. The right side in Fig. 8stant wave function approximation, although the shape of

shows the calculated DDX spectra with the constant wav&€nergy spectra is almost the same. If the cross sections with
approximation. The obtaineW™sP is 41.4 MeV, which is the constant wave function approximation are corrected by

consistent with the published value, 42.8.1 MeV of Wa- the factor of 3/R, whereR is the nuclear radius, the differ-

tanabeet al. [21]. They employed thekk-GNASH code[8],  €Nce between them becomes very small.
and fitted to the different experimental data [28]. An energy dependence of theph doorway state for-
The MSC components calculated with the constant apmatlon cross section calculated Wlt_h the microscopic model
proximation are much larger than those calculated microWas almost the same as that obtained with the phase-space
scopically. The total MSC emission cross section with theMdel- A comparison of the microscopic calculation with the
constant wave approximation is 138 mb, while the micro_phase—space_ model_calculatlon yielded a rough estimation of
scopic calculation is 30.5 mb. The ratio of those cross secln€ residual interaction strengthy. In the case of the zero-
tions is 0.22, which is consistent with the correction factorf@nge interactionVo was about 12.0 MeV for neutron-
3/2R=0.276 proposed in Sec. lIA. The increase in thelnduc_ed reactions _or? Nb. _The _strength increased to 23.3
MSC emission can be compensated for by the reduction d¥!eV if & Yukawa interaction with the range of 1 fm was
the MSD emission. Thus it is possible to obtain a good fit to@ssumed. When the nonlocality correction witk:0.85 was
the experimental DDX spectra even if the MSC cross sectioff’corporated, the strength became 30.0 MeV.
is four times larger. However, the difference appears at the The microscopically calculated MSC spectra were com-
backward angles. At 150°, the calculated spectrum exceedrared with the experimental data of double-differential cross

the experimental data in the energy range of 7—10 MeV. Thi§ections aE,=14.1 and 18.0 MeV. The one-step MSD and
overestimation does not occur for the microscopic calculaliauser-Feshbach statistical emissions were added to the

tion. MSC spectra, and fitting of the calculated spectra to the ex-

Figure 9 shows the comparisons of the calculated DDXP€rimental data yielded the strength of residual interaction
spectra with the experimental data Bf=18 MeV. The Vo for MSD. It was found that the obtaine‘do valge for
drawings on the left side show the results of the microscopidSD differs fromV, value of MSC. The microscopic MSC
calculation, and those on the right side are the case of thgalculations gave smaller emission spectra than those with
constant wave approximation. TWSO value of 29.3 Mey  the constant wave appr_OX|mat|on, and a fitting to the data at
was obtained from the phase-space model. The obtaindtfickward angles were improved.
viSP's are 39.7 MeV for the microscopic calculation, and
35.0 MeV for the constant wave approximation. The latter is
consistent with the value of 36:03.6 MeV in Ref.[21] The author wishes to thank Y. Watanabe, M. Kawai, S.
within the uncertainty. The fitting to the DDX data at back- Yoshida, and H. Nakashima for valuable discussions.

e experimental data at backward angles.
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