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Antisymmetrized molecular dynamics with quantum branching processes
for collisions of heavy nuclei
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Antisymmetrized molecular dynami¢&MD) with quantum branching processes is reformulated so that it
can be applicable to the collisions of heavy nuclei such®&u+ *’Au multifragmentation reactions. The
guantum branching process due to the wave packet diffusion effect is treated as a random term in a Langevin-
type equation of motion, whose numerical treatment is much easier than the method of the previous papers.
Furthermore, a new approximation formula, called the triple-loop approximation, is introduced in order to
evaluate the Hamiltonian in the equation of motion with much less computation time than the exact calculation.
A calculation is performed for th&®’Au+ *7Au central collisions at 150 MeV/nucleon. The result shows that
AMD almost reproduces the copious fragment formation in this readt®0556-28139)07202-7

PACS numbgs): 24.10.Cn, 02.50.Ey, 02.70.Ns, 25.70.Pq

[. INTRODUCTION chastic branching processes without taking account of the
interference among channels. Namely, in a practical time-
Various kinds of microscopic dynamical models havedependent model where each channel is described by a rather
been developed in order to understand the various phenorgimple wave function, the time evolution of the system
ena in heavy ion collisions in the medium energy region.should be determined by successive stochastic quantum
Mean field models, such as time-dependent Hartree-FocRranching processes in addition to the deterministic time
(TDHF) theory and the Vlasov-Uehling-Uhlenbe¢kUU)  €volution within each channel. The necessary quantum
equatior{1,2], are good at a precise description of the Sing|e_branch|ng process varies according to the model .becguse it
particle dynamics in the mean field. On the other hand, théhould depend on how the channel wave function is re-
advantage of molecular dynamics modis 6] is, generally stricted to the simple one. The physical observables are cz_;ll—
speaking, that they can describe the many-body correlatioﬁg:ﬁzesdaﬁso\tlger tigsgr:gl;lﬁeﬁsverage values of the expectation
which is essential in the fragment formation. . : . .
Nuclear multifragmentation has been a hot topic these. As IS well known, TDHF theory is not §U|table for.reac—
. . IC teSGions with many channels such as multifragmentation be-
years. It can be regarded as a manifestation of the I|qU|d—gaga

h e | d h use it does not take account of the quantum branchings
phase _transmo.n In nuclear matter, and we expect that preqentioned above. Although a single Slater determinant may
cious information on finite-temperature nuclear matter ag,

) - ! ' “be sufficient for the initial two nuclei and the fragments in
high and low densities can be obtained by studying multi-gach final channel, it is far from sufficient for the superposi-
fragmentation reactions. ~Although — multifragmentation tion of the final channel wave functions. In such cases, what
should be related to the property of nuclear matter, ideallyone can expect by solving the deterministic time evolution is,
equilibrated nuclear matter is not formed in real reactionsat best, that one of the possib|e channels appears as the final
and therefore studies using microscopic dynamical modelstate. In bad cases, however, the obtained final state looks
are indispensable. Furthermore, multifragmentation is a gootike none of the final channels. The latter may be the case for
touchstone for microscopic models because it includes éhe TDHF application to the multifragmentation of an ex-
nontrivial mechanism for fragment formation, namely, the
appearance of new cluster correlations with dynamical sym-
metry breaking from an almost uniform excited matter. “_) (_‘ Initial State
From the viewpoint of time-dependent quantum theories
which solve the time evolution of the system from the given
initial state to the final state, multifragmentation is not easy U, )
to treat, because the final state should be a superpositionofa W\g
huge number of channel wave functions. There is a huge /
number of possible ways to decompose the total system into A\ 7 ¥ = /¢\
fragments. The initial state of the reaction and the individual z\ \ P\ /\
channels of the intermediate and final states may be well

described by using rather simple wave functions, but the to- y ‘ . o
tal wave function of the intermediate or final state is, of () ®) .. +C3 . + e
° . ... L] o L]

course, much too complicated to handéee Fig. 1L How-
ever, since interference among channels is not so important

in the usual cases, quantum branchings from a single channel FIG. 1. A schematic picture of the quantum branching processes
to the superposition of many channels can be treated as stfpr multichannel reactions.
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panding system because the mean field gets weaker am&l wave function cannot fall into a mixture of many chan-
weaker as the system expands widely and therefore the difiels. It was achieved not by generalizing the channel wave
fusing single-particle wave functions will never relocalize to function but by introducing the wave packet diffusion effect
form clusters. It is dangerous to apply the mean field concepais a new quantum branching process. This extended AMD is
to a dilute system where the system may be branching intcalled AMD-V, since the wave packet diffusion effect is cal-
channels whose mean fields should be different from channe&lulated with the Vlasov equatigri4]. When an expanding
to channel. The VUU equation can be regarded as one of thgystem is calculated by AMD-V, one can imagine that not
extensions of TDHF theory, where the two-body collisiononly the centroids expand but also the successive quantum
effect is introduced as a term in the equation of the one-bod¥ranchings take place due to the wave packet diffusion ef-
phase space distribution. However, since this collision ternfect, and that the multifragment channels appear stochasti-
is a deterministic term to take account of the averaged effeatally. In fact, we showed in Reff12,13 that AMD-V works
of the two-nucleon collisions, the quantum branching effectvery well for the multifragmentation in th&Ca+ °Ca reac-
is not included in the VUU equation. The Boltzmann- tion at 35 MeV/nucleon, though the expansion in this case is
Langevin approach7,8], on the other hand, introduced the not spherical but mainly in the beam direction like the neck
fluctuation as a random term associated with the two-nucleoffagmentation. The wave packet diffusion process is also re-
collisions, and it may be applicable to multichannel reactiondated to the nucleon emission rate and the energy carried out
such as multifragmentation. However, it is difficult to under- by emitted nucleons, which was essential for the correct pre-
stand that the real origin of cluster formation could be thediction of the excitation energies of the produced fragments.
fluctuation due to two-nucleon collisions, because two-No other microscopic models have ever reproduced these
nucleon collisions are rare in expanding nuclear matterfragmentation data so nicely.
while cluster formation should take place even in the ideal Ohnishi and Randrup take yet another approach to im-
situation where nuclear matter is uniformly expanding with-prove the molecular dynamics moddls5]. Based on the
out initial fluctuation. idea that the essential part of the multifragmentation is gov-
On the contrary to the mean field models mentionederned by the statistical effect, they introduced a fluctuation-
above, molecular dynamics models restrict the channel waveissipation term to the equation of motion by hand so as to
function to a(antisymmetrizef product of wave packets. ensure the correct equilibrium property. Although the good
The shape of the wave packets is usually kept fixed and thetatistics is the advantage of their model, there is no micro-
many-body wave function is parametrized only by the cen-scopic and dynamical background for the added fluctuation-
troids of the wave packets. The benefit of this restriction isdissipation term. We would like to emphasize here that their
that we can avoid encountering a situation where the singleapproach is not a unique way to get quantum statistics in
particle wave functions have been expanded and then thaolecular dynamics. Even though we start with a micro-
mean field concept does not work any longer. In other wordsscopic dynamical consideration, it is possible to get the
the channel wave function in molecular dynamics models igjuantum statistics as shown in Ref$6,17.
restricted so that it cannot be a mixture of many channels In spite of the fact that interesting high-quality multifrag-
which should be treated independently rather than as a whol@entation data were published for heavy systems such as
in a single wave function. In the quantum molecular dynam-*Au+**/Au collisions[18], no satisfactory explanation by
ics (QMD) [3,4] and the antisymmetrized molecular dynam- microscopic dynamical models has been given. This diffi-
ics (AMD) [5,6], the centroid motion in each channel is de- culty is due to the essentially quantum mechanical feature of
termined by the equation of motion derived from the time-multifragmentation. Although AMD-V is one of few realistic
dependent variational principle. In addition to it, the effect ofmodels that have the possibility to reproduce the data, it was
the two-body collisions is introduced as a stochastic branchimpossible so far to apply AMD to heavy systems because of
ing process, which brings the system from a single initialthe shortage of CPU time. The main purpose of this paper is,
state to many possible final channels randomly. Because dherefore, to give a framework of AMD-V whose numerical
these reasons, QMD and AMD are suitable frameworks forcalculation is feasible even fot’Au+°’Au collisions, by

the fragmentation phenomena. introducing an improvement and an approximation to the
Many physicists have tried to extend the molecular dy-original AMD-V framework.
namics models by generalizing the wave packéts11,d, The necessary CPU time of the original AMD calculation

usually by treating the width parameters of the wave packetis proportional to the fourth power of the mass number of the
as dynamical variables as well as the wave packet centroidsystem. This means that the required CPU time ¥Au
Although this extension can be an improvement for somet °’Au reactions is about 600 times as much as ftta
phenomend11], it is rather a change for the worse in the +“°Ca reactions. In order to overcome this problem, we in-
context of multifragmentation. Such an extension draws théroduce in this paper a new approximation for the AMD
molecular dynamics models close to a mean field modeHamiltonian which can be evaluated with the CPU time pro-
which falls into a pathological situation where many inde-portional to the third power of the mass number. This ap-
pendent channels are mixed in a single Slater determinant. fproximation is called the triple-loop approximation.

fact, Kiderlen and Danielewic®] and Chomazt al. [10] In the original AMD-V calculation of Ref[12], the most
reported that the diffused wave packets never shrink again tme-consuming part was the procedure to ensure the energy
form clusters in a hot expanding nuclear system. conservation after the quantum branching process due to the

In Ref.[12], we took a different way to extend AMD by wave packet diffusion effect. It was necessary to solve a kind
taking account the precise one-body dynamics without losingf frictional cooling equation at least for several time steps to
the benefit of the molecular dynamics models that the chansearch the energy conserving point. This procedure becomes
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unnecessary and the framework becomes more transparent in d
this paper when the wave packet diffusion effect is reformu- (‘D(Z)|( ih g —H ) |D(Z))
lated as a random term in a Langevin-type equation of mo- 5] dt
tion, the formal structure of which is similar to the equation (@(2)|®(2))
by Ohnishi and Randrufl5]. . . . .

This paper is organized as follows. In Sec. I, the frame—from which one can derive the equation of motion Zor
work of the improved AMD-V is given. Especially the wave
packet diffusion process is formulated as a random term in inr> c. . dZJr: IH &)
the equation of motion. In Sec. lIl, the triple-loop approxi- 7T dt gz
mation for the AMD Hamiltonian is formulated and some
tests for this approximation are given. A demonstrative calC;, ;, with o,7=x,y,z is a Hermitian matrix defined by
culation for **’Au+’Au collisions at 150 MeV/nucleon is

=0, ()

given in Sec. IV in order to show that the AMD-V calcula- 92
tion for a heavy system is really possible and it is likely to Cia,jfﬁbg(‘b(z)@(z)), 4
reproduce the multifragmentation data. Section V is devoted ILi0Zj

to a summary. . . I
y and’H is the expectation value of the Hamiltonian after sub-

traction of the spurious kinetic energy of the zero-point o0s-

Il. FRAMEWORK OF AMD WITH QUANTUM cillation of the center of masses of fragmef#s,
BRANCHING PROCESSES

In constructing a time-dependent quantum model for (2)= (©(2)[H[®(2)) _ 3h%v
medium-energy heavy ion collisions, one should keep in (®(2)|®(2)) 2™
mind the fact that the initial state branches into a huge num- 5
ber of reaction channels in the intermediate states and the o
final state. It is too difficult to follow the time evolution of 'N€ quantum Hamiltonian
the total many-body wave function in which the many-body A o
correlations are not negligible. Therefore, we treat separately H= p_i+ S ©6)
the branching into channels and the time evolution within =) 2M 4
each channel. Approximations such as the mean field theory
may be valid within each channel, while the interferenceincludes an effective two-body interaction such as the Gogny
among the branched channels may be unimportant. The irierce [21] which can be density dependent, since the model
dependence of the time evolution of each channel should bgave function is limited to a single Slater determinant. The

A+ T A—NK2)].

i<j

respected. spurious kinetic energies of the zero-point oscillation of the
center of mass of the isolated fragments and nucleons have
A. Channel wave function and equation of motion been subtracted in E¢5) by introducing a continuous num-

ber of fragmentsNg(Z) [5]. Without this subtraction, th@
values for nucleon emissions and fragmentations would not
She reproduced. The paramefBs is 342v/2M in principle
but treated as a free parameter for the adjustment of the
72\2 1 binding energies. Once the zero-point kinetic energies have
d)(Z)zde{ expl — ,,( r— _') +=Z%y (j)], (1)  been subtracted, the center-of-mass wave function of an iso-
. Vv 277 lated fragmentor nucleon should be regarded as a plane
wave. This method, however, only takes account of the ex-

We describe each channel wave function by an AMD
wave function which is a single Slater determinant of Gaus
ian wave packetfs],

where the complex variablesz={Z;;i=1,... A} pectation value of the kinetic energy and ignores its quantum
={Z,; i=1,... A, o=Xx,y,z} represent the centroids of fluctuation. This point will be reconsidered in the next sub-
the wave packets. We take the width parameter section.

=0.16 fm 2 and the spin isospin statgs, =pT,p/,nT, or For later formulation, it is convenient to introduce the
nl. ' Poisson bracketsF,G} and the inner product of the canoni-

The AMD wave function(1) seems to be very simple, but €@l gradients ,6),
it is sufficient for the description of the ground states of
nuclei. For example, the binding energies obtained by the 1 oF ., 99 9G __, OF
frictional cooling method19] coincide with the experimen- {f’g}_ﬁ iUZjT Zi, C‘”'iTaZ* Zi, C“”'T(gz*
tal data within the precision of 1 MeV/nucleon even though I

; )

the common values of and T, (mentioned laterare used
for all nuclei[20]. Therefore the initial state of the reaction
and the individual channel wave functions in the intermedi- ( r,g)=
ate and final states are well described by the AMD wave hicis
functions.

The time evolution of the wave packet centroflwithin ~ Then the equation of motio(8) can be rewritten as
the same channel is determined by the time-dependent varia- _
tional principle Z={Z,Hj}. 9

ct +—Ct
iy azy. iy Va7,

1 oF d 1% oF
_2< 1 9 . ®
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On the other hand, the frictional cooling equation can be 1. Fluctuation due to the wave packet diffusion
written as Each nucleork in an AMD wave functiond® (Z(t)) of one

. of the branches at the tintds represented approximately by

Z=MZH}+ u(Z,H), (10 a Gaussian wave packet in phase space,
for which one can show that the energy expectation value 6
decreases as time, fk<x,t>=8ex{ -2 [Xa= XD, (1D

a=1
H=u(H,H)<0, (11)
where we have introduced the six-dimensional phase space
for arbitrary\ and u(<0). coordinate
The one-body Wigner function for the AMD wave func-

tion (1) is given by {Xa; a=1,....6={Jur, pi2a\v}. (18

(12) The centroid{X,,; a=1,...,8 stands for the physical co-
ordinateW, . In the usual AMD, the time evolution of,, is
derived from the equation of motion while the shape of the

i wave packet is fixed.

f(rp)=82 e *W =2 (2B By,

u=Jor+ p, (13 However, a more reliable time evolution of the one-body
2h\v distribution function is given by the TDHF equation or the
Vlasov equatiorf14]
where
N of, oh of, oh ofy
Bik:ezi ‘Zk5 (14) —+ = ——-——-—=0. (19)

ajay

ot dp ar ar Ip

is the overlap matrix of the nonorthogonal single-particle\,\/rmng the expectation value of the Hamiltoniangf ] for

wave packets in Eq(l). In what follows, it is sometimes 5 gjater determinant represented ffy,p), one can obtain
convenient to introduce a QMD-like approximation the single-particle Hamiltoniah by

- —2lu-w;|? SHLT
f(r,p) sEi e (19 h(r,p,t):rr[,p])h—f(r,p‘t) (20)

by using the physical coordinal'={W;} [5] defined by for the AMD wave function® (Z(t)) whose Wigner function

is given by Eq.(12). The time derivative of the width and

A
Wi:jzl (\/6)”21_ . Q= Biij_il- (16) shape of the wave packet,

. d
The coordinatesV can be regarded as physical ones because Tkan(t)= af [Xa— Xka(H) 11X — Xieo() (X, ) X,
guantities such as the orbital angular momentum and the (21)
number of the harmonic-oscillator quanta are written in the

usual way by usingV. Furthermore, the coordinaté§i are .4 pe evaluated based on the Viasov equati®nby using
canonical coordinates when the antisymmetrization amonghe test particle method or by direct analytical calculation.
more than two packets is negligible. The physical coordi- ¢ \ill be useful to note that the wave packet diffusion

nates are very useful in various places of the formulation of , . . . .
AMD-V, while the QMD-like approximation of Eq(15) is  Zkab is mainly determined by the curvature of the mean field

too poor to be useful in the evaluation of the Hamiltonian ag" h(r,p) in the region around the Wa"ezpac'*‘g“’;’he” the
will be seen in Sec. IIL. potential is quadratic with curvatueme?=2%21%/m, the

wave packet diffusion effect is exactly zero, which is ap-
o proximately satisfied for the packets inside the nucleus. On
B. Wave packet diffusion process the other hand, for the packets near the surface of the
The wave packet shape is not allowed to change in AMDNucleus, the potential curvature is negative and then the
Therefore the dynamics of the single-particle wave functiongvave packet diffusion effect becomes essential.
is not so precisely described as in TDHF theory. However, Instead of changing the shape of the wave patketve
we should not extend AMD to TDHF theory because TDHFnow give the fluctuationsXy,(t) to the centroidXy,(t) in
theory has the pathological problem of the spurious couplingrder to introduce the wave packet diffusion effe¢t If we
of channels. In Ref[12], instead of extending the channel assume white noise for the fluctuation, it should satisfy
wave functions, we introduced the precise single-particle dy-
namics into AMD as a new stochastic branching process. In X)) =0 (22)
this subsection, this process is reformulated as a random a ’
term of a Langevin-type equation of motion which is more _— .,
suitable for numerical calculations. OXalt) OXp(t') =[oiJan(t) S(t—1"). 23
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The negative eigenvalues oﬁ have been replaced by zero - t e (=t )7y
because the shrinking of the wave packet cannot be treated :ka(t):;fo oXyalt')e dt’, (30)
unless we respect interference among channels.

Although higher moments of the fluctuation can also bepy assuming=,,(0)=0 for the initial state. Instead of the
calculated with the Vlasov equation, we expect that theifyriginal fluctuationsX,4(t), this delayed fluctuatiof® 4(t)
effect is not important. In our early wok.2], we took the s {5 he added to the centroki,(t). In numerical calcula-

distribution function for the fluctuatiod,= 6Xya, tions we taker=5 fm/c, which should be smaller than the
Jdeta important time scales of the reaction. Sincg thg fluctuation is
P(&)=(1—c)8(&)+c eXp< -2> gaaab§b>v smoothened by the averaging over the timeit can be
(ml2)3 ab treated easily numerically.
(29 Some readers may be interested in the difference between

the fluctuation introduced by Ohnishi and Randfdp] and
tr[&ﬁ] oy that of our present work. In our model, the fluctuations of
@ap="73"[%lav » (25 different packetglabeled byk) are independent while the
correlations of the phase space componéatsled bya and

wherec is chosen to give the correct variance of the fluctuab) of each packet are properly incorporated by &§). This

tion [Eq. (23)]. Sincea is of the order of 1, a big branching IS @ natural consequence of the fact that our fluctuation is
takes place with small probability, while no branching takesintroduced based on the mean field model. On the contrary,
place in most cases. However, we here take the Gaussighnishi and Randrup simply ignore the importance of phase

distribution space correlations, while they introduce correlations among
different packets without any microscopic or dynamical jus-
ydeta' tification.

P(£) ex —2% §aa;b§b>y (26)

- 3
(7/2) 2. Equation of motion and conserved quantities
27) The above-determined fluctuatic®, ,(t) or its complex

vector representatioE,(t) is the fluctuation to the physical

wherec’ is determined by Eq(23), because this is more _co.ordinateWk. In order to put it in the equation of motion,

convenient for the numerical calculation. In this case, a smallt IS NOW necessary to convert it to the fluctuation to the

fluctuation is given to each centroid at every time step. ~ °rginal AMD coordinatesZ. For this purpose let us intro-
It should be noted that the fluctuatidiX,,(t) is spurious ~duce a time-dependent one-body Hermitian operaigt)

for an isolated wave packet because there are no other that generates the fluctuatic®,(t). The form of 6k(t) is

packets that can absorb the recoil from the fluctuation. Furtaken as

thermore, mean field theorfEq. (19)] is not necessarily

valid for light nuclei withA<10. We should avoid a situa- . A .

tion where the unreliable fluctuation for the packets inside a  0k(t)=i >, {[yi;(t)-a'][W;(H))}(W;(t)|

light fragment has a drastic effect on the dynamics such as =1

spuriously breaking the fragment. Therefore, by checking the .

packets in the neighborhood of the packet we put = W (D)WW, (D [y (D) - al}, (39

6Xa(t)=0 when

—r21-1
@=C'[0]ap »

where the stochastic complex parametedg;(t);
j=1,... A} are to be determined below, and

> 6(1.75-|Re(Z;—Z)|)<10 (2839
T T
and a=ur+ Zh\/;p’ (32
> 6(1.75-|Re(Z;— Z,)|)Re(Z;— Z,)| <5. (28b) w2
i (r|Wyecexp, —v r—T . (33
14

Although this prescription may make the cooling of light
fragments too slow, it is not a problem practically becausdn a QMD-like approximation by the use of the physical
the decay of these fragments can be calculated later by eoordinates, the expectation value of this one-body operator
statistical decay code. is calculated as

For numerical convenience, we now introduce a small

delay time = of the response to the fluctuatia¥X,,. The A .

delayed fluctuatiorE ,, is obtained by the equation @L(W,t)=21 (Wilo|W;) (34)
9z (t) 15X (t) s (t) (29
Tt Fkall) = — oXall) = — Exall), . ZIW () — W
dt™— 2 T T K :,%} [ykj(t) - W _y:j(t)'wi]e GRS

whose solution is (39
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By identifying the physical coordinat&¥ with the canonical
coordinates, the stochastic parametéyg;(t)} are deter-
mined by the requirement that the one-body operator gene
ate the fluctuatiorg,(t) at the moment,

!

Ok(t)

k

iﬁ&ikEk(t) = (QWi*

lw=wit) - (36)

AKIRA ONO

PRC 59

<2 pi>=2 2h\v Im Z;. (41)
I I

r-
Then the Lagrange multipliers should be determined by

{P1,Otc + % {P1, Pm}c, akm=0. (42)

Then the fluctuation foZ should be generated &&,O,(t)} The method to ensure energy conservation should be con-

by the exact expectation value of the same one_body Operéjdered Carefully, because it has more drastic effects than the
tor, center-of-mass conservation. The set of the packgisich

can be adjusted in order to cancel the energy violatioEpy

(D(2)|0u(1)| P (2)) is restricted to the neighborhood of the packetefined by

Ok(zat): ’ (37)
(©(2)[®(2)) Ne={i; |Z;-Z<2.5 andieC, and i#k}. (43
A A The total energy is restored by the frictional cooling term in
Ok(t):izzl Oki(1). (38) Eq. (39) with w, adjusted for conservation. Since this cool-

ing term should not violate the other conservation laws, the

Before putting the fluctuatiofiZ, O,(t)} in the equation —quantities
of motion, we should note the fact that the fluctuation vio-
lates the conservation laws for the total momentum and the {Qm}:{<2 fi>, <E Pi>, <2 rixpi>
total energy. Such conservation laws should be achieved i i i
through many-body correlations in reality. Since this kind of

many-body correlation is beyond the scope of the one-bod@'® kept constant by determining the Lagrange multipliers

dynamics of the Vlasov equation, it is inevitable to introduceBkm by
the conservation laws by hand. By correcting the fluctuation

(44)

for the conservation laws, the equation of motion of AMD-V (91, H)n, + > (9 , QmIn, Bm=0. (45)
is now written as m
. A The parametep, is then determined by
Z:{Z’H}J’_kgl Yk [Zv Ok—"—% a’kmpm}
& (H, Ok+z akmpm]
- - )
+ uk Z, H+2 Bkam) . 39 U
m N, (39 (H, H"'% ﬁkam)
Ni

The first term in the square brackets is the fluctuation due to
B, corrected for the center-of-mass coordinate and momerin order to conserve the total energy.
tum conservation, and the second term is the cooliog It should be noted that, appear in Eq(39) only through
heating term to ensure energy conservation. The parametetheir summationu=3,u, if the constrains are ignored for
vk can be regarded as 1 until its meaning is explained latesimplicity. Sinceu is an intensive quantitywhich is inde-
When the system has been decomposed into several clusendent of the size of the systemnd it is averaged over
ters, the fluctuatiorEy to a packetk in one of the clusters many independent fluctuatior3,, one can replacg with
should not affect the packets in the other clusters through thgs ayeraged valug which is a function of the current state
conservation laws. In order to ensure this point, we defingz Then the cooling term of E¢39) is formally similar to
the cluster ¢ which includes the packé where the clusters  the dissipation term of the Langevin equation that Ohnishi
are identified by the condition that two packendj belong  and Randrup proposed to introduce together with the fluctua-
to the same cluster |; —Z;| <1.75. The subscriptiofthe  tion term[15]. However, we use Eq46) directly without
Poisson brackets in E¢39) indicates that the centroids of yaplacing «, with their averaged values, so that the total
the packets in the other clusters are treated as static paranergy is exactly conserved. Furthermore, in our method, we
eters. Namely, the packets in the other clusters are omitted i not need to evaluate the second derivatives of the Hamil-
the summation in Eq(7), andC™* is replaced by the inverse (onjan 7/ which would be necessary in order to directly
matrix of the submatrix ofC. In Eq. (39), by using the evaluate the averaged valw_e
Lagrange muItipIierSJ{m, the congtraints are introduced for The method of energy conservation is the most difficult
the conserved quantitig$}, which are the three compo- ambiguity of this model because it is an effect beyond mean

nents of the center-of-mass coordinate and the three COMPRe| 4 heories. The above prescription, therefore, intends to

nents of the total momentum: achieve energy conservation with the least modification of
1 the other degrees of freedom by moving them in the direc-

Vv

tion of the canonical gradient of the Hamiltonian. However,
as discussed in Ref12], it seems that the adjusted degrees

1
x Z r Re Z;, (40
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of freedom should be restricted to the thermal or singlemomentumP,=2%+/v ImZ,. This is more convenient than

particle ones in order to avoid unphysical direct energy contreating it as a Gaussian packet with a momentum spread
version from the collective energguch as the incident en- pecause the nucleons in the final channels are usually ob-
ergy of the heavy ion collisionto the single-particle energy served experimentally as momentum and energy eigenstates

of the fluctuation. For this purpose, the monopole and theind we should ensure momentum and energy conservation in
quadrupole moments in the coordinate and momentunggch channel.

spaces, Let us consider the case where a wave pakkebuld be
emitted as a whole with the momentum centroid vaRye
<2 firi>, <2 pipi>' (47)  When the zero-point kinetic energy was not subtracted from
i i the Hamiltonian. The momentum of this nucleon is
are also included ifQ,,} when N, is composed of more than Px=Pox+ . (51)
15 packets.

For an isolated packdét we have putsX,,=0. However, whereq is a random number of the Gaussian distribution
because of the delay time the delayed fluctuatio, may  with (q)=0 and{(q,q,)=#2v4,, for o,7=x,y,z. The ki-
not be zero and should be respected even for an isolatetktic energy of this wave packet is then
packet. Therefore, wheN, <4 with N, being the number of

the element of I\, we search the nonisolated wave padket E _P_(21k Pok-a n CI_2 (52
(N;>4) that is the closest to the pack& and then kKT 2Mm M 2M°

N;UNU{i} and GU{k} are used instead of Nand G,

respectively, in the above formalism. When the expectation value of the third ter(g?)/2M

Finally we comment on the necessary correction when the=3%v/2M is subtracted from the Hamiltonian, the added
system is near the ground state. As already discussed in Réerm in Eq.(5) acts as a repulsive force to this packet. Then
[12], the fluctuation is small but not exactly zero even for theit will be emitted with momentun®, , which satisfies
ground state because of the semiclassical nature of the Vla- ) ) 5
sov equation and the restricted Slater determinant in AMD. (E— P _ Poc 3h7v
Since the fluctuation should be zero in the ground state, a KT2M 2M ' 2M
reduction factory, is introduced in Eq(39) in order to can-
cel the fluctuation only near the ground state. By noting thalNamely, the momentur®, is larger than the true centroid
the cooling term becomes zero for the ground state, a medok While the energy expectation value does not change be-
sure of the difference from the ground state is introduced bgause of the absence of the momentum spread when the zero-

point energy is subtracted.
This prescription, however, has a shortcoming in that it
6N, — Ncon;(H' H+% Bkm@m| (48) takes account of only the expectation value of the kinetic
N energy and ignores its fluctuation. For a preequilibrium
whereN,,,sdenotes the number of the constrained quantitie%‘hueCL?§CQJ2ti2'r?gﬁﬂirggczc::gsggrrﬁ%‘f Eag) Efaso :ngseotmhgt
{Qm}, and therefore B—Ncons is the number of free de- le thouah it ati ue | g Iypdy 1o tak
grees of freedom for the energy adjustment. The reductiof.©_1oudh 1S expectation value 1S z€ero. I order to take
factor y, is then taken as account of this kind of energy fluctuatl(_)n, we now introduce
a random process when each packet is emitted. By neglect-
ing the difference of the direction &y, and P, the right

(53

Dy

Vk:;, (49) amount of energy fluctuation can be produced by changing
VI+ (! por)? the momentum as
1200 /5fm/c/ Dy )3 50 Py— (Px— 6pi+xApy) P /Py, (54)
Mok= '
6N, —Ncons 7 10.1 MeV/(fm/c) wherex is a random number taken from the normal distribu-

; i — 2\ _
so that the coefficient for the cooling term|u,| does not tion with (x)=0 and(x")=1, and

exceed the upper limikq, . The purpose of the dependence —p _ [p2_77.

of uoe on (BN—N¢o9 and 7 is to make this reduction OPw=Pi= P, (9
effect independent of the choice of the neighborhodiEd). Ap=fiv (56)
(43)] and the delay timer. With this parametrization, the Pk '

fluctuation is reduced to zero in the ground state, while therg ot only is the fluctuation & p,) given, but also the average

is almost no reduction soon after the hard two-nucleon C°|Value of P, is decreased byp, so that the energy expecta-

lisions in the example of“’Au+*"Au collisions shown in {5 value does not change by this random process. It can be
Sec. V. introduced as a new term in the equation By, Eq. (29),
which is put at the moment when the packeis isolated
(N=0) for the first time. The momentum in the above dis-
As already discussed, we have subtracted the zero-poirussion should be understood as the relative momentum be-
kinetic energies of isolated packets in Ef). Therefore the tween the emitted nucleon and the parent nucleus. Total en-
emitted packek should be regarded as a plane wave of theergy conservation is achieved by adjusting other degrees of

3. Energy fluctuation of emitted packets
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freedom of the parent nucleus just in the same way for the First of all, by using the one-body Wigner function of Eq.

fluctuation due to the wave packet diffusion effect. (12), the two-body interaction terrfb9) can be rewritten as a
It should be emphasized here that the above prescriptiohilinear form off,

is taken when the wave packet is emitted as a whole with

considerably high momentu®, , such as in the early stage ~ ._ [ drdpdr’dp’ - L, o
of high-energy collisions. On the other hand, when a low- V:f'v'fzf (215 f(r.p)o(r,p;r’,p")f(r',p),
energy nucleon evaporates from a nucleus, what comes out (60)

of the nucleus is only a high-momentum component of the

packet as we discussed in Ref$6,17,13. Therefore, the \here; includes the direct term and the exchange term,
true momentum spread arout®y should be small and the

above prescription should not be taken in this case. In order 1

to continuously connect these two extremes of high and low ~ v(r,pir’,p")=zv(r=r’)

energies, Eqg55) and (56) are replaced by

1 .
_ ! —i(p—p) gt
Spu=Pi— \max(PI—7v, PE4), (57 01 [ dserteos s,
61
Ap= 2P 3p— 0P (58) ey

The spin and isospin degrees of freedom should be implicitly
and the momentur®, is stochastically changed by E¢4). understood.

The Wigner function is now approximated by a sum of

C. Two-nucleon collision process 3A Gaussian functions,
The combination of the deterministic equation of motion 3A
and the quantum branching process due to the wave packet f(u)~f"(u)= 2 Cpfg(u)’ (62
diffusion effect is essentially equivalent to mean field theory, p=1

such as TDHF theory, for the short-time evolution of a chan- 5

nel wave function. However, in medium- and high-energy fS(U)ES(?*z‘”*Wp' : (63
collisions, there should be the effect of the residual interac-

tion which brings a Slater determinant to a superposition off he centroids of 5 are chosen as

many Slater determinants. This effect is introduced as the )
stochastic two-nucleon collision process. Wi, pP=1,

In most molecular dynamics moddl3,4], the stochastic _J Zi+i(W;=Z;), p=A+i,
two-nucleon collision process has been introduced as the . _ _ :
process to cause such branchings. In AJMD two-nucleon Zimi(Wi=2Zy), p=2A+i,
collisions are introduced by the use of the physical coordi-
natesW defined by Eq(16). When the physical positions of fori=1,... Aandp=1,... 3,
two nucleons get close, their physical momenta are changed
randomly according to the differential cross section in asoO that the packets cover the important phase space region
similar way to QMD[3,4]. The energy-dependent collision €fficiently. In order to get a good approximation, the coeffi-
cross section may be modified due to the medium effecgients{c,} are determined by the condition
which can be taken into account as the density dependence . .
of the cross section. Pauli blocking is automatically intro- fov-f"=f5-v-f forp=1,... 3, (65
duced because of the existence of the Pauli-forbidden region R
in the physical coordinate spafg]. which means that the mean field f averaged around the

phase space poink, should not change when the exact
. TRIPLE-LOOP APPROXIMATION Wigner functionf is replaced by the approximated offé.
OF AMD HAMILTONIAN This condition is just a linear equation system fop},

(64)

Until recently, the application of AMD and AMD-V was A
limited to relatively light systems with the total mass number > ApCa=Dp, (66)
A<100, because CPU time proportional A is necessary a=t
for .the evaluation of the interaction term in the AMD Hamil- | ..
tonian,

_¢G © (G
Apg=Tfp-v-1g, (67)

V=52 (eiejlv]ewe—oie0Bg Byt (59

I b,=fS-v-f. (68)

N =

where ¢; are the single-particle wave functions in E4)  The approximated value df is then obtained by
and Bj; =<<pi|god->. In order to apply AMD-V to heavy sys-
7 197 Y i -
tems sych gé Au+“"'Au colhsmps, we now introduce an VY=t =S CpAncCq - (69)
approximation for the AMD Hamiltonian. g
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In rare cases, the matrik,, becomes close to a singular 0 T T Exact —
matrix. Then the absolute values of are large, and"” 2-loop -
oscillates violently in the phase space so as to satisfy Eg. 410 b 12C 3-loop ¢
(65). Since the intent of Eq(65) is to reproducd by f” in
the important phase space region by requififigo be iden- 20 |
tical tof around the phase space poifig}, the resultant” —
should be a smooth function for the consistency. Therefore >
the above equatiof66) is slightly modified to =3

<
2 2 2.0 S
2 (A% €%)poCq= 2 Apghy+ech, (70)
q q 50 |
wheree is a small parameter, and o0 } i
1 forp=1,... A
o= 0 forp=A+1,...,3A. (71 70 0 50 100 150 200 250 300
This modified equation is the condition to minimize the t [fm/cl
guantity 30 [ T : T T
%0 Exact —
R R 2-loop -
m 197
Ep‘, (f5-v-f —fg-v-f)2+ez§p) (cp—cp)? (72 -40 | AU 3-oop <
with respect to the coefficien{g,}, so that we can avoid the -0
situation wherec, deviates from the normal valu% very S
© -60
much. =

It can be easily seen that the approximated interadfitin : |
can be evaluated with CPU time proportional&d which is = 70
necessary for evaluatir,} by Eq.(68) and for solving Eq.

(70). We can also use a similar approach to approximate the -80
derivatives of) with respect to the coordinat&s The re-
quired CPU time is also proportional #&°. -%0

The above formalism can be applied for the density-
dependent zero-range force with a little extension. Forces -100 55 50 100 150 200 250 300
like the Gogny force and the Skyrme force have the density-
dependent term t [fm/c]

{)(r,p; rp ) =volp(1)]78(r—r"). (73 FIG. 2. Tests of the triple-loop approximati¢diamond$ along

the slow frictional cooling path fot?C and**”Au nuclei, compared
The coefficients{c,} are determined in the same way as With thg exact values{.solid ling). The results of the QMD-Iike
above by using Eq$67), (68), and(70) but by replacing the ~apPproximation(dotted ling are also shown. The expectation value
density p(r) in Eq. (73) by a constanp,. The result{cp} c_)f the two-body part of the Gogny force is shown as a function of
does not depend on the valuef. Then the approximated M€

value ofV is obtained by
~300 fm/c. The exact expectation valu®/A of the

}‘,p}}q ol2 density-independent two-body part of the Gogny force is
V=V=3 | CpApeCq: (74 shown by a solid line, while the approximated vaM&/A
Pa -\ Po with the triple-loop approximation is shown by a diamond

~ . ) . for eacht. The dotted line shows the result of the QMD-like
wherep,, is & smoothed density around the pointvgele-  555roximation where the expectation value is evaluated by

fined by using the approximated Wigner function of H45),
~ (MV)S/ZE | 2 A A
pp=|— cqe Ml Rewp— Rewgl® (75
p T ] q V”:pzl qzl qu. (76)

The parametep = 3 is chosen so as to give a good approxi-

mation. Compared to the too bad result of the QMD-like approxima-
This triple-loop approximation is tested under various cir-tion, the triple-loop approximation always gives a good re-

cumstances. Figure 2 shows the test along the slow frictionault within the error of about 1 MeV/nucleon. Figure 3 shows

cooling path[Eq. (10) with A=1 and u=—0.25] for two  similar information for two events of°Ca+ “°Ca collisions

nuclei 2C and **’Au. The randomly excited initial nuclei at at 35 MeV/nucleon. The event of the upper part is a periph-

t=0 fm/c are cooled down to the ground states tat eral collision and the event of the lower part is a central
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the mean field. The expectation value of the Hamiltonian is
evaluated by using the triple-loop approximation described
in the previous section. The ground state of th&Au
nucleus is obtained by the frictional cooling method, and it
has a reasonable binding enerByA=7.4 MeV and root
mean square radiys?)¥?=5.5 fm, while the experimental
data are 7.9 MeV and 5.3 fm, respectively. The two-nucleon
collision cross section and angular distribution adopted are
the same as those of R¢20]. Around the two-nucleon col-
lision energyEynn~150 MeV, which is important in the
present reaction, thep andnn cross section is the same as
the free cross sectiof25 mb. The pn cross section is the
same as the free cross sectid® mb at zero density, but it
is reduced to about 30 mb fer>p, as the medium effect.
N . . . ) 2 . The produced fragments in the dynamical AMD-V calcu-
0 50 100 150 200 250 300 lation are generally excited and their decay is calculated by a
t [fm/c] statistical model. At every 15 fro/ ir_1 the_,-_ dynamica_\l
AMD-V calculation, the fragments are identified by linking
Eat —— the two-nucleon pairs withZ; — Z;|/\/v<5 fm. With this
2-loop - condition, the identified fragments are well separated spa-
-0 | “0ca+4%ca 3Hoop ¢ tially in most cases. A fragment with mass numbet/A
<A, is thrown to the statistical decay code directly if its
20 | . mass number before 15 fmivas also 5<A<A.. Namely,
the statistical decay of each primordial fragment is calculated
when the waiting time,,,; has passed since its mass first
became smaller thanA;. The parameters are,.
=22.5 fmlc on the average, ané is chosen to be 25.
However, the dependence of the results on these parameters
is found to be small. When we taki&.,=20 or 30, ort,
=37.5 fmlc on the average, the change of the IMF multi-
plicity is a few percent at most. The adopted statistical decay
code[4] is based on the sequential binary decay model by
; \ ; . . Pthlhofer [22], but it also takes account of the emission of
50 100 150 200 250 300 composite particles not only in their ground states but also in
t [fm/c] their_ excited states With excitation energy <40 _MeV. _
Figure 4 shows the time evolution of the density projected
gnto the reaction plane for two events. The total system is
once compressed and then expands rather rapidly. From the
expanding matter, a lot of IMF's are produced. The multi-
collision. The triple-loop approximation again gives a suffi- Plicity of the primordial IMF's is about 16, and about half of
ciently good result of the error within 1 MeV/nucleon. We them are to disappear by statistical decay. Although the stop-
have also found that the triple-loop approximation for thePiNg Séeéms to be strong and the expansion is almost isotro-

density-dependent force has a precision similar to thdiC, the mixture of the projectile and the target is not com-
density-independent force. plete. More wave packets of the projectile origin come out to

the forward direction than to the backward direction.

In Fig. 5, the calculated charge distribution is compared
with the experimental dafd 8]. The calculated result, shown

The *7Au+1%"Au collisions are calculated by AMD-V by the solid histogram, reproduces the data very well at least
for an incident energy of 150 MeV/nucleon and impact pa-in the logarithmic scale. The multiplicities of various par-
rameter 6<b<<1 fm. One of the interesting aspects in this ticles are compared to the data in Table I. The large IMF
reaction is the copious formation of intermediate-mass fragmultiplicity of the experimental dat#,-=10.4 is almost
ments(IMF’s) with Z=3 from a strongly expanding system reproduced by the calculated valiyy==8.7, though it is
as observed in the experiment of RgL8]. On the other slightly smaller than the data. This underestimation is due to
hand, only few IMF’s are produced in the dynamical QMD the underestimation of the Be and Li multiplicities. We also
calculation [18]. Therefore it is an important theoretical notice in Table | that the calculated multiplicities of light
problem to find out how the copious fragment formation isparticles with 2<A=<4 are too small and the nucleon multi-
understood in the dynamical framework. plicity is too large.

In the AMD-V calculation presented here, the Gogny It is useful to consider the gas and liquid parts separately.
force [21] is adopted as the effective interaction. It corre- Here the gas part is composed of freely moving nucleons and
sponds to the soft equation of state with incompressibilitylight particles which are usually emitted after hard two-
K=228 MeV and appropriate momentum dependence ofiucleon collisions, and the liquid part is composed of IMF’s

V/A [MeV]

V/A [MeV]

FIG. 3. The same as Fig. 2, but for the tests along the dynamic
of “°Cat*°Ca collisions at 35 MeV/nucleon.

IV. APPLICATION TO Au + Au COLLISIONS



PRC 59 ANTISYMMETRIZED MOLECULAR DYNAMICS WITH . .. 863

0 fve 30 fm/c. 60 frve

0fm/c 30 Imfc 60 /e,

FIG. 4. Examples of the time evolution of the density projected onto the reaction planetfrdmfm/c to t=120 fm/c for
central®’Au+ °"Au collisions at 150 MeV/nucleon. The size of the shown area is 8X 8t fm.

which is still bound well by the mean field. In order to prop- the coalescence of uncorrelated nucleons, it is necessary for
erly describe the fragment formation, separation of the mas8MD-V to have the correct phase space volume for the
and energy to the gas and liquid parts is essential as well dsound deuteron state. The phase space volume for the wave
the dynamics of the liquid part itself. The good reproductionpacket centroids is important because the dynamics is gov-
of the IMF multiplicity and the charge distribution fof erned by the apparently classical equation of motion for the
=5 suggests that AMD-V describes these aspects very weltentroids. Since the deuteron is a loosely bound system with
On the other hand, the failure of the light particle multiplici- a single bound state, the phase space volume in AMD is
ties can be regarded as a problem in the dynamics of the gasuch smaller than the correct quantum phase spagé Y2
part, namely, the coalescence of particles in the gas part. The deuteron and nucleon yields should therefore be under-
The light particle and IMF multiplicities are much better estimated and overestimated, respectively. A large part of
reproduced when AMD-V is augmented by the coalescencéitons and ®He may also be produced by the coalescence
of nucleons and light particles, as will be shown in anothemmechanism of three nucleofisr a nucleon and a deutenn
paper. In this paper, we just mention why the coalescence iand therefore the present calculation naturally underesti-
not properly treated in AMD-V and should be added tomates their multiplicities. Furthermore, we should note that
AMD-V as an augmenting process. In medium- and high-the intrinsic bound states of Li and Be isotopes have the
energy collisions like the present reaction, a lot of nucleongluster structure of light composite particles suchagst,
are emitted. Even though these nucleons have almost no caaind *He, with the small binding energies between them. The
relations among them after hard two-nucleon collisions, &ound phase space volume in AMD is likely to be smaller
pair of a proton and a neutron can form a deuteron whemhan the correct quantum phase space, and it is natural that
these two nucleons are accidentally close to each other IAMD-V underestimates the coalescence of the light compos-
phase space. In order to correctly predict the probability ofte particles to produce Li and Be isotopes directly.

10° T T T r r r V. SUMMARY
Au + Au E/A = 150 MeV Quantum branching processes are essential in molecular
10% ¢ b<1fm dynamics models in order to properly describe multichannel
Gogny reactio_n_s such as muItifragmentatio.n. in heavy ion cqllisions.
10! In addition to the two-nucleon collision process which has
2 been recognized as an important process, AMD-V takes ac-
% 0 count of the wave packet diffusion as a stochastic branching
= 10 process rather than as a shape change of the single-particle
p
=
107" } TABLE I. Multiplicities of various particles in central®’Au
+197Au collisions at 150 MeV/nucleon.
&
-2 | .
10 Experiment 18] AMD-V
109 I Neutron 92.6 120.6
0 2 4 6 8 10 12 Proton 26.1 56.8
7 Deuteron 18.6 14.7
Triton 17.2 8.8
FIG. 5. Calculated charge distributiofmistogram in central *He 5.7 2.3
197au+197Au collisions at 150 MeV/nucleon, compared with the  *He 21.0 16.3
experimental datédiamonds of Ref.[18]. The error bars show the IME 10.4 8.7

estimated statistical error of the calculated results.
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wave packet like in TDHF theory or the Vlasov equation. a lot of fragments are produced from the radially expanding
AMD-V and the Vlasov equation are equivalent with respectsystem. The large IMF multiplicity was almost reproduced
to the infinitesimal time evolution of a single Slater determi-by AMD-V quantitatively. This result therefore suggests that
nant without two-nucleon collisions, except that AMD-V ig- AMD-V works well for aspects related to fragment forma-
nores the interference among the channels and avoids spution, such as the large energy carried out by light particles,
ous channel correlations. _ _ the collective expansion, and the appearance of the cluster
In this paper, we reformulated AMD-V in two points so correlation in the expanding system. However, we found that
that it is applicable even to heavy systems such'@8u  the nucleon multiplicity is strongly overestimated and the
+197Au collisions. First, the fluctuation due to the wave gther light particle multiplicities are underestimated. This
packet diffusion was formulated as a stochastic term in thenhould be due to the problem of AMD-V in the description
equation of motion for the wave packet centroids. A smallof the coalescence of nucleons and light particles which is
Gaussian fluctuation is given to each packet at every tim@eyond the scope of the current version of AMD-V or other
step, instead of a big displacement once in a while in thgsyal mean field theories. We will show in another paper
previous framework. This reformulation decreases the nungw we can incorporate the coalescence to AMD-V and that
merical labor because it simplifies the energy conservatiofhe coalescence process improves the reproduction of the
procedure. Second, a new triple-loop approximation was ingata, including reactions with higher energy. Furthermore, it
troduced for the expectation value of the Hamiltonian withjs 5150 an interesting subject in progress to study fragment
respect to the AMD wave function. With this triple-loop ap- formation in relation to the equation of state of nuclear mat-

prOXimation, the eXpeCtation Value can be eVaIUated W|th thﬁer at h|gh and low densitiesy and also with isospin asymme_
numerical operations proportional £ instead ofA* in the try.

exact calculation, wherd is the mass number of the total
system. The error of this approximation is about 1 MeV/

nucleo_n at most, and therefore it is useful for the study of ACKNOWLEDGMENTS
heavy ion collisions.
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