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Antisymmetrized molecular dynamics with quantum branching processes
for collisions of heavy nuclei

Akira Ono
Department of Physics, Tohoku University, Sendai 980-8578, Japan

~Received 10 September 1998!

Antisymmetrized molecular dynamics~AMD ! with quantum branching processes is reformulated so that it
can be applicable to the collisions of heavy nuclei such as197Au1197Au multifragmentation reactions. The
quantum branching process due to the wave packet diffusion effect is treated as a random term in a Langevin-
type equation of motion, whose numerical treatment is much easier than the method of the previous papers.
Furthermore, a new approximation formula, called the triple-loop approximation, is introduced in order to
evaluate the Hamiltonian in the equation of motion with much less computation time than the exact calculation.
A calculation is performed for the197Au1197Au central collisions at 150 MeV/nucleon. The result shows that
AMD almost reproduces the copious fragment formation in this reaction.@S0556-2813~99!07202-7#

PACS number~s!: 24.10.Cn, 02.50.Ey, 02.70.Ns, 25.70.Pq
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I. INTRODUCTION

Various kinds of microscopic dynamical models ha
been developed in order to understand the various phen
ena in heavy ion collisions in the medium energy regio
Mean field models, such as time-dependent Hartree-F
~TDHF! theory and the Vlasov-Uehling-Uhlenbeck~VUU!
equation@1,2#, are good at a precise description of the sing
particle dynamics in the mean field. On the other hand,
advantage of molecular dynamics models@3–6# is, generally
speaking, that they can describe the many-body correla
which is essential in the fragment formation.

Nuclear multifragmentation has been a hot topic th
years. It can be regarded as a manifestation of the liquid
phase transition in nuclear matter, and we expect that
cious information on finite-temperature nuclear matter
high and low densities can be obtained by studying mu
fragmentation reactions. Although multifragmentati
should be related to the property of nuclear matter, ide
equilibrated nuclear matter is not formed in real reactio
and therefore studies using microscopic dynamical mod
are indispensable. Furthermore, multifragmentation is a g
touchstone for microscopic models because it include
nontrivial mechanism for fragment formation, namely, t
appearance of new cluster correlations with dynamical s
metry breaking from an almost uniform excited matter.

From the viewpoint of time-dependent quantum theor
which solve the time evolution of the system from the giv
initial state to the final state, multifragmentation is not ea
to treat, because the final state should be a superposition
huge number of channel wave functions. There is a h
number of possible ways to decompose the total system
fragments. The initial state of the reaction and the individ
channels of the intermediate and final states may be
described by using rather simple wave functions, but the
tal wave function of the intermediate or final state is,
course, much too complicated to handle~see Fig. 1!. How-
ever, since interference among channels is not so impor
in the usual cases, quantum branchings from a single cha
to the superposition of many channels can be treated as
PRC 590556-2813/99/59~2!/853~12!/$15.00
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chastic branching processes without taking account of
interference among channels. Namely, in a practical tim
dependent model where each channel is described by a r
simple wave function, the time evolution of the syste
should be determined by successive stochastic quan
branching processes in addition to the deterministic ti
evolution within each channel. The necessary quant
branching process varies according to the model becau
should depend on how the channel wave function is
stricted to the simple one. The physical observables are
culated as the ensemble average values of the expect
values all over the channels.

As is well known, TDHF theory is not suitable for reac
tions with many channels such as multifragmentation
cause it does not take account of the quantum branch
mentioned above. Although a single Slater determinant m
be sufficient for the initial two nuclei and the fragments
each final channel, it is far from sufficient for the superpo
tion of the final channel wave functions. In such cases, w
one can expect by solving the deterministic time evolution
at best, that one of the possible channels appears as the
state. In bad cases, however, the obtained final state lo
like none of the final channels. The latter may be the case
the TDHF application to the multifragmentation of an e

FIG. 1. A schematic picture of the quantum branching proces
for multichannel reactions.
853 ©1999 The American Physical Society
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854 PRC 59AKIRA ONO
panding system because the mean field gets weaker
weaker as the system expands widely and therefore the
fusing single-particle wave functions will never relocalize
form clusters. It is dangerous to apply the mean field conc
to a dilute system where the system may be branching
channels whose mean fields should be different from cha
to channel. The VUU equation can be regarded as one o
extensions of TDHF theory, where the two-body collisi
effect is introduced as a term in the equation of the one-b
phase space distribution. However, since this collision te
is a deterministic term to take account of the averaged ef
of the two-nucleon collisions, the quantum branching eff
is not included in the VUU equation. The Boltzman
Langevin approach@7,8#, on the other hand, introduced th
fluctuation as a random term associated with the two-nucl
collisions, and it may be applicable to multichannel reactio
such as multifragmentation. However, it is difficult to unde
stand that the real origin of cluster formation could be
fluctuation due to two-nucleon collisions, because tw
nucleon collisions are rare in expanding nuclear mat
while cluster formation should take place even in the id
situation where nuclear matter is uniformly expanding wi
out initial fluctuation.

On the contrary to the mean field models mention
above, molecular dynamics models restrict the channel w
function to a ~antisymmetrized! product of wave packets
The shape of the wave packets is usually kept fixed and
many-body wave function is parametrized only by the c
troids of the wave packets. The benefit of this restriction
that we can avoid encountering a situation where the sin
particle wave functions have been expanded and then
mean field concept does not work any longer. In other wo
the channel wave function in molecular dynamics model
restricted so that it cannot be a mixture of many chann
which should be treated independently rather than as a w
in a single wave function. In the quantum molecular dyna
ics ~QMD! @3,4# and the antisymmetrized molecular dynam
ics ~AMD ! @5,6#, the centroid motion in each channel is d
termined by the equation of motion derived from the tim
dependent variational principle. In addition to it, the effect
the two-body collisions is introduced as a stochastic bran
ing process, which brings the system from a single ini
state to many possible final channels randomly. Becaus
these reasons, QMD and AMD are suitable frameworks
the fragmentation phenomena.

Many physicists have tried to extend the molecular d
namics models by generalizing the wave packets@9–11,6#,
usually by treating the width parameters of the wave pack
as dynamical variables as well as the wave packet centro
Although this extension can be an improvement for so
phenomena@11#, it is rather a change for the worse in th
context of multifragmentation. Such an extension draws
molecular dynamics models close to a mean field mo
which falls into a pathological situation where many ind
pendent channels are mixed in a single Slater determinan
fact, Kiderlen and Danielewicz@9# and Chomazet al. @10#
reported that the diffused wave packets never shrink aga
form clusters in a hot expanding nuclear system.

In Ref. @12#, we took a different way to extend AMD by
taking account the precise one-body dynamics without los
the benefit of the molecular dynamics models that the ch
nd
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nel wave function cannot fall into a mixture of many cha
nels. It was achieved not by generalizing the channel w
function but by introducing the wave packet diffusion effe
as a new quantum branching process. This extended AM
called AMD-V, since the wave packet diffusion effect is ca
culated with the Vlasov equation@14#. When an expanding
system is calculated by AMD-V, one can imagine that n
only the centroids expand but also the successive quan
branchings take place due to the wave packet diffusion
fect, and that the multifragment channels appear stocha
cally. In fact, we showed in Refs.@12,13# that AMD-V works
very well for the multifragmentation in the40Ca140Ca reac-
tion at 35 MeV/nucleon, though the expansion in this cas
not spherical but mainly in the beam direction like the ne
fragmentation. The wave packet diffusion process is also
lated to the nucleon emission rate and the energy carried
by emitted nucleons, which was essential for the correct p
diction of the excitation energies of the produced fragmen
No other microscopic models have ever reproduced th
fragmentation data so nicely.

Ohnishi and Randrup take yet another approach to
prove the molecular dynamics models@15#. Based on the
idea that the essential part of the multifragmentation is g
erned by the statistical effect, they introduced a fluctuati
dissipation term to the equation of motion by hand so as
ensure the correct equilibrium property. Although the go
statistics is the advantage of their model, there is no mic
scopic and dynamical background for the added fluctuati
dissipation term. We would like to emphasize here that th
approach is not a unique way to get quantum statistics
molecular dynamics. Even though we start with a mic
scopic dynamical consideration, it is possible to get
quantum statistics as shown in Refs.@16,17#.

In spite of the fact that interesting high-quality multifrag
mentation data were published for heavy systems such
197Au1197Au collisions @18#, no satisfactory explanation b
microscopic dynamical models has been given. This di
culty is due to the essentially quantum mechanical featur
multifragmentation. Although AMD-V is one of few realisti
models that have the possibility to reproduce the data, it w
impossible so far to apply AMD to heavy systems because
the shortage of CPU time. The main purpose of this pape
therefore, to give a framework of AMD-V whose numeric
calculation is feasible even for197Au1197Au collisions, by
introducing an improvement and an approximation to
original AMD-V framework.

The necessary CPU time of the original AMD calculatio
is proportional to the fourth power of the mass number of
system. This means that the required CPU time for197Au
1197Au reactions is about 600 times as much as for40Ca
140Ca reactions. In order to overcome this problem, we
troduce in this paper a new approximation for the AM
Hamiltonian which can be evaluated with the CPU time p
portional to the third power of the mass number. This a
proximation is called the triple-loop approximation.

In the original AMD-V calculation of Ref.@12#, the most
time-consuming part was the procedure to ensure the en
conservation after the quantum branching process due to
wave packet diffusion effect. It was necessary to solve a k
of frictional cooling equation at least for several time steps
search the energy conserving point. This procedure beco
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PRC 59 855ANTISYMMETRIZED MOLECULAR DYNAMICS WIT H . . .
unnecessary and the framework becomes more transpare
this paper when the wave packet diffusion effect is reform
lated as a random term in a Langevin-type equation of m
tion, the formal structure of which is similar to the equati
by Ohnishi and Randrup@15#.

This paper is organized as follows. In Sec. II, the fram
work of the improved AMD-V is given. Especially the wav
packet diffusion process is formulated as a random term
the equation of motion. In Sec. III, the triple-loop approx
mation for the AMD Hamiltonian is formulated and som
tests for this approximation are given. A demonstrative c
culation for 197Au1197Au collisions at 150 MeV/nucleon is
given in Sec. IV in order to show that the AMD-V calcula
tion for a heavy system is really possible and it is likely
reproduce the multifragmentation data. Section V is devo
to a summary.

II. FRAMEWORK OF AMD WITH QUANTUM
BRANCHING PROCESSES

In constructing a time-dependent quantum model
medium-energy heavy ion collisions, one should keep
mind the fact that the initial state branches into a huge nu
ber of reaction channels in the intermediate states and
final state. It is too difficult to follow the time evolution o
the total many-body wave function in which the many-bo
correlations are not negligible. Therefore, we treat separa
the branching into channels and the time evolution wit
each channel. Approximations such as the mean field the
may be valid within each channel, while the interferen
among the branched channels may be unimportant. The
dependence of the time evolution of each channel should
respected.

A. Channel wave function and equation of motion

We describe each channel wave function by an AM
wave function which is a single Slater determinant of Gau
ian wave packets@5#,

F~Z!5detFexpH 2nS r j2
Z i

An
D 2

1
1

2
Z i

2J xa i
~ j !G , ~1!

where the complex variablesZ [ $Z i ; i 51, . . . ,A%
5$Zis ; i 51, . . . ,A, s5x,y,z% represent the centroids o
the wave packets. We take the width parametern
50.16 fm22 and the spin isospin statesxa i

5p↑,p↓,n↑, or

n↓.
The AMD wave function~1! seems to be very simple, bu

it is sufficient for the description of the ground states
nuclei. For example, the binding energies obtained by
frictional cooling method@19# coincide with the experimen
tal data within the precision of 1 MeV/nucleon even thou
the common values ofn and T0 ~mentioned later! are used
for all nuclei @20#. Therefore the initial state of the reactio
and the individual channel wave functions in the interme
ate and final states are well described by the AMD wa
functions.

The time evolution of the wave packet centroidsZ within
the same channel is determined by the time-dependent v
tional principle
t in
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dE dt

^F~Z!uS i\
d

dt
2H D uF~Z!&

^F~Z!uF~Z!&
50, ~2!

from which one can derive the equation of motion forZ,

i\(
j t

Cis, j t

dZj t

dt
5

]H
]Zis*

. ~3!

Cis, j t with s,t5x,y,z is a Hermitian matrix defined by

Cis, j t5
]2

]Zis* ]Zj t

log^F~Z!uF~Z!&, ~4!

andH is the expectation value of the Hamiltonian after su
traction of the spurious kinetic energy of the zero-point o
cillation of the center of masses of fragments@5#,

H~Z!5
^F~Z!uHuF~Z!&

^F~Z!uF~Z!&
2

3\2n

2M
A1T0@A2NF~Z!#.

~5!

The quantum Hamiltonian

H5(
i 51

A pi
2

2M
1(

i , j
v i j ~6!

includes an effective two-body interaction such as the Go
force @21# which can be density dependent, since the mo
wave function is limited to a single Slater determinant. T
spurious kinetic energies of the zero-point oscillation of t
center of mass of the isolated fragments and nucleons h
been subtracted in Eq.~5! by introducing a continuous num
ber of fragments,NF(Z) @5#. Without this subtraction, theQ
values for nucleon emissions and fragmentations would
be reproduced. The parameterT0 is 3\2n/2M in principle
but treated as a free parameter for the adjustment of
binding energies. Once the zero-point kinetic energies h
been subtracted, the center-of-mass wave function of an
lated fragment~or nucleon! should be regarded as a plan
wave. This method, however, only takes account of the
pectation value of the kinetic energy and ignores its quan
fluctuation. This point will be reconsidered in the next su
section.

For later formulation, it is convenient to introduce th
Poisson brackets$F,G% and the inner product of the canon
cal gradients (F,G),

$F,G%5
1

i\ (
is, j t

S ]F
]Zis

Cis, j t
21 ]G

]Zj t*
2

]G
]Zis

Cis, j t
21 ]F

]Zj t*
D ,

~7!

~F,G!5
1

\ (
is, j t

S ]F
]Zis

Cis, j t
21 ]G

]Zj t*
1

]G
]Zis

Cis, j t
21 ]F

]Zj t*
D . ~8!

Then the equation of motion~3! can be rewritten as

Ż5$Z,H%. ~9!
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On the other hand, the frictional cooling equation can
written as

Ż5l$Z,H%1m~Z,H!, ~10!

for which one can show that the energy expectation va
decreases as time,

Ḣ5m~H,H!<0, ~11!

for arbitraryl andm(,0).
The one-body Wigner function for the AMD wave func

tion ~1! is given by

f ~r ,p!58(
ik

e22~u* 2Zi* !•~u2Zk!BikBki
21 , ~12!

u5Anr1
i

2\An
p, ~13!

where

Bik5eZi* •Zkda iak
~14!

is the overlap matrix of the nonorthogonal single-parti
wave packets in Eq.~1!. In what follows, it is sometimes
convenient to introduce a QMD-like approximation

f ~r ,p!'8(
i

e22uu2Wi u
2

~15!

by using the physical coordinateW5$W i% @5# defined by

W i5(
j 51

A

~AQ! i j Z j , Qi j 5Bi j Bji
21 . ~16!

The coordinatesW can be regarded as physical ones beca
quantities such as the orbital angular momentum and
number of the harmonic-oscillator quanta are written in
usual way by usingW. Furthermore, the coordinatesW are
canonical coordinates when the antisymmetrization am
more than two packets is negligible. The physical coor
nates are very useful in various places of the formulation
AMD-V, while the QMD-like approximation of Eq.~15! is
too poor to be useful in the evaluation of the Hamiltonian
will be seen in Sec. III.

B. Wave packet diffusion process

The wave packet shape is not allowed to change in AM
Therefore the dynamics of the single-particle wave functio
is not so precisely described as in TDHF theory. Howev
we should not extend AMD to TDHF theory because TDH
theory has the pathological problem of the spurious coup
of channels. In Ref.@12#, instead of extending the chann
wave functions, we introduced the precise single-particle
namics into AMD as a new stochastic branching process
this subsection, this process is reformulated as a ran
term of a Langevin-type equation of motion which is mo
suitable for numerical calculations.
e
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1. Fluctuation due to the wave packet diffusion

Each nucleonk in an AMD wave functionF„Z(t)… of one
of the branches at the timet is represented approximately b
a Gaussian wave packet in phase space,

f k~x,t !58expF22(
a51

6

@xa2Xka~ t !#2G , ~17!

where we have introduced the six-dimensional phase sp
coordinate

$xa ; a51, . . . ,6%5$Anr , p/2\An%. ~18!

The centroid$Xka ; a51, . . . ,6% stands for the physical co
ordinateWk . In the usual AMD, the time evolution ofXka is
derived from the equation of motion while the shape of t
wave packet is fixed.

However, a more reliable time evolution of the one-bo
distribution function is given by the TDHF equation or th
Vlasov equation@14#

] f k

]t
1

]h

]p
•

] f k

]r
2

]h

]r
•

] f k

]p
50. ~19!

Writing the expectation value of the Hamiltonian asH@ f # for
a Slater determinant represented byf (r ,p), one can obtain
the single-particle Hamiltonianh by

h~r ,p,t !5
dH@ f #

d f ~r ,p!
u f 5 f ~r ,p,t ! ~20!

for the AMD wave functionF„Z(t)… whose Wigner function
is given by Eq.~12!. The time derivative of the width and
shape of the wave packet,

ṡkab
2 ~ t ![

d

dtE @xa2Xka~ t !#@xb2Xkb~ t !# f k~x,t !d6x,

~21!

can be evaluated based on the Vlasov equation~19! by using
the test particle method or by direct analytical calculation

It will be useful to note that the wave packet diffusio
ṡkab

2 is mainly determined by the curvature of the mean fie
in h(r ,p) in the region around the wave packetk. When the
potential is quadratic with curvature12 mv252\2n2/m, the
wave packet diffusion effect is exactly zero, which is a
proximately satisfied for the packets inside the nucleus.
the other hand, for the packets near the surface of
nucleus, the potential curvature is negative and then
wave packet diffusion effect becomes essential.

Instead of changing the shape of the wave packetf k , we
now give the fluctuationdXka(t) to the centroidXka(t) in
order to introduce the wave packet diffusion effectṡk

2 . If we
assume white noise for the fluctuation, it should satisfy

dXka~ t !50, ~22!

dXka~ t !dXkb~ t8!5@ṡk
2#ab~ t !d~ t2t8!. ~23!
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The negative eigenvalues ofṡk
2 have been replaced by zer

because the shrinking of the wave packet cannot be tre
unless we respect interference among channels.

Although higher moments of the fluctuation can also
calculated with the Vlasov equation, we expect that th
effect is not important. In our early work@12#, we took the
distribution function for the fluctuationja[dXka ,

P~j!5~12c!d~j!1c
Adet a

~p/2!3
expS 22(

ab
jaaabjbD ,

~24!

aab[
tr@ṡk

2#

3
@ṡk

2#ab
21 , ~25!

wherec is chosen to give the correct variance of the fluctu
tion @Eq. ~23!#. Sincea is of the order of 1, a big branchin
takes place with small probability, while no branching tak
place in most cases. However, we here take the Gaus
distribution

P~j!5
Adet a8

~p/2!3
expS 22(

ab
jaaab8 jbD , ~26!

aab8 [c8@ṡk
2#ab

21 , ~27!

where c8 is determined by Eq.~23!, because this is more
convenient for the numerical calculation. In this case, a sm
fluctuation is given to each centroid at every time step.

It should be noted that the fluctuationdXka(t) is spurious
for an isolated wave packetk because there are no oth
packets that can absorb the recoil from the fluctuation. F
thermore, mean field theory@Eq. ~19!# is not necessarily
valid for light nuclei withA&10. We should avoid a situa
tion where the unreliable fluctuation for the packets insid
light fragment has a drastic effect on the dynamics such
spuriously breaking the fragment. Therefore, by checking
packets in the neighborhood of the packetk, we put
dXka(t)50 when

(
i

u„1.752uRe~Z i2Zk!u…<10 ~28a!

and

U(
i

u„1.752uRe~Z i2Zk!u…Re~Z i2Zk!U<5. ~28b!

Although this prescription may make the cooling of lig
fragments too slow, it is not a problem practically becau
the decay of these fragments can be calculated later b
statistical decay code.

For numerical convenience, we now introduce a sm
delay timet of the response to the fluctuationdXka . The
delayed fluctuationJka is obtained by the equation

d

dt
Jka~ t !5

1

t
dXka~ t !2

1

t
Jka~ t !, ~29!

whose solution is
ed

e
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-
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Jka~ t !5
1

tE0

t

dXka~ t8!e2~ t2t8!/tdt8, ~30!

by assumingJka(0)50 for the initial state. Instead of the
original fluctuationdXka(t), this delayed fluctuationJka(t)
is to be added to the centroidXka(t). In numerical calcula-
tions we taket55 fm/c, which should be smaller than th
important time scales of the reaction. Since the fluctuatio
smoothened by the averaging over the timet, it can be
treated easily numerically.

Some readers may be interested in the difference betw
the fluctuation introduced by Ohnishi and Randrup@15# and
that of our present work. In our model, the fluctuations
different packets~labeled byk) are independent while the
correlations of the phase space components~labeled bya and
b) of each packet are properly incorporated by Eq.~23!. This
is a natural consequence of the fact that our fluctuation
introduced based on the mean field model. On the contr
Ohnishi and Randrup simply ignore the importance of ph
space correlations, while they introduce correlations am
different packets without any microscopic or dynamical ju
tification.

2. Equation of motion and conserved quantities

The above-determined fluctuationJka(t) or its complex
vector representationJk(t) is the fluctuation to the physica
coordinateWk . In order to put it in the equation of motion
it is now necessary to convert it to the fluctuation to t
original AMD coordinatesZ. For this purpose let us intro
duce a time-dependent one-body Hermitian operatorôk(t)
that generates the fluctuationJk(t). The form of ôk(t) is
taken as

ôk~ t !5 i (
j 51

A

{ @yk j~ t !•â†#uW j~ t !&^W j~ t !u

2uW j~ t !&^W j~ t !u@yk j* ~ t !•â#}, ~31!

where the stochastic complex parameters$yk j(t);
j 51, . . . ,A% are to be determined below, and

â5An r̂1
i

2\An
p̂, ~32!

^r uW&}expH 2nS r2
W

An
D 2J . ~33!

In a QMD-like approximation by the use of the physic
coordinates, the expectation value of this one-body oper
is calculated as

Ok8~W,t !5(
i 51

A

^W i uôkuW i& ~34!

5 i(
i j

@yk j~ t !•W i* 2yk j* ~ t !•W i #e
2uW j ~ t !2Wi u

2
.

~35!
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By identifying the physical coordinatesW with the canonical
coordinates, the stochastic parameters$yk j(t)% are deter-
mined by the requirement that the one-body operator ge
ate the fluctuationJk(t) at the momentt,

i\d ikJk~ t !5
]Ok8~ t !

]W i*
uW5W~ t ! . ~36!

Then the fluctuation forZ should be generated as$Z,Ok(t)%
by the exact expectation value of the same one-body op
tor,

Ok~Z,t !5
^F~Z!uÔk~ t !uF~Z!&

^F~Z!uF~Z!&
, ~37!

Ôk~ t !5(
i 51

A

ôki~ t !. ~38!

Before putting the fluctuation$Z,Ok(t)% in the equation
of motion, we should note the fact that the fluctuation v
lates the conservation laws for the total momentum and
total energy. Such conservation laws should be achie
through many-body correlations in reality. Since this kind
many-body correlation is beyond the scope of the one-b
dynamics of the Vlasov equation, it is inevitable to introdu
the conservation laws by hand. By correcting the fluctuat
for the conservation laws, the equation of motion of AMD-
is now written as

Ż5$Z,H%1 (
k51

A

gkF H Z, Ok1(
m

akmPmJ
Ck

1mkS Z, H1(
m

bkmQmD
Nk

G . ~39!

The first term in the square brackets is the fluctuation du
Jk corrected for the center-of-mass coordinate and mom
tum conservation, and the second term is the cooling~or
heating! term to ensure energy conservation. The param
gk can be regarded as 1 until its meaning is explained la

When the system has been decomposed into several
ters, the fluctuationJk to a packetk in one of the clusters
should not affect the packets in the other clusters through
conservation laws. In order to ensure this point, we de
the cluster Ck which includes the packetk, where the clusters
are identified by the condition that two packetsi andj belong
to the same cluster ifuZ i2Z j u,1.75. The subscript Ck of the
Poisson brackets in Eq.~39! indicates that the centroids o
the packets in the other clusters are treated as static pa
eters. Namely, the packets in the other clusters are omitte
the summation in Eq.~7!, andC21 is replaced by the invers
matrix of the submatrix ofC. In Eq. ~39!, by using the
Lagrange multipliersam , the constraints are introduced fo
the conserved quantities$Pm%, which are the three compo
nents of the center-of-mass coordinate and the three com
nents of the total momentum:

K 1

A (
i

r i L 5
1

A (
i

1

An
Re Z i , ~40!
r-

a-

-
e
d

f
y

n

to
n-

er
r.

us-

he
e

m-
in

o-

K (
i

pi L 5(
i

2\An Im Z i . ~41!

Then the Lagrange multipliers should be determined by

$Pl ,Ok%Ck
1(

m
$Pl ,Pm%Ck

akm50. ~42!

The method to ensure energy conservation should be
sidered carefully, because it has more drastic effects than
center-of-mass conservation. The set of the packets Nk which
can be adjusted in order to cancel the energy violation byJk
is restricted to the neighborhood of the packetk defined by

Nk5$ i ; uZ i2Zku,2.5 and i PCk and iÞk%. ~43!

The total energy is restored by the frictional cooling term
Eq. ~39! with mk adjusted for conservation. Since this coo
ing term should not violate the other conservation laws,
quantities

$Qm%5H K (
i

r i L , K (
i

pi L , K (
i

r i3pi L J ~44!

are kept constant by determining the Lagrange multipli
bkm by

~Ql ,H!Nk
1(

m
~Ql ,Qm!Nk

bkm50. ~45!

The parametermk is then determined by

mk52

HH, Ok1(
m

akmPmJ
Ck

SH, H1(
m

bkmQmD
Nk

~46!

in order to conserve the total energy.
It should be noted thatmk appear in Eq.~39! only through

their summationm[(kmk if the constrains are ignored fo
simplicity. Sincem is an intensive quantity~which is inde-
pendent of the size of the system! and it is averaged ove
many independent fluctuationsOk , one can replacem with
its averaged valuem̄ which is a function of the current stat
Z. Then the cooling term of Eq.~39! is formally similar to
the dissipation term of the Langevin equation that Ohni
and Randrup proposed to introduce together with the fluc
tion term @15#. However, we use Eq.~46! directly without
replacing mk with their averaged values, so that the to
energy is exactly conserved. Furthermore, in our method,
do not need to evaluate the second derivatives of the Ha
tonian H which would be necessary in order to direct
evaluate the averaged valuem̄.

The method of energy conservation is the most diffic
ambiguity of this model because it is an effect beyond me
field theories. The above prescription, therefore, intends
achieve energy conservation with the least modification
the other degrees of freedom by moving them in the dir
tion of the canonical gradient of the Hamiltonian. Howev
as discussed in Ref.@12#, it seems that the adjusted degre
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of freedom should be restricted to the thermal or sing
particle ones in order to avoid unphysical direct energy c
version from the collective energy~such as the incident en
ergy of the heavy ion collision! to the single-particle energ
of the fluctuation. For this purpose, the monopole and
quadrupole moments in the coordinate and momen
spaces,

K (
i

r ir i L , K (
i

pipi L , ~47!

are also included in$Qm% when Nk is composed of more tha
15 packets.

For an isolated packetk, we have putdXka50. However,
because of the delay timet, the delayed fluctuationJk may
not be zero and should be respected even for an isol
packet. Therefore, whenNk<4 with Nk being the number of
the element of Nk , we search the nonisolated wave packei
(Ni.4) that is the closest to the packetk, and then
NiøNkø$ i % and Ciø$k% are used instead of Nk and Ck ,
respectively, in the above formalism.

Finally we comment on the necessary correction when
system is near the ground state. As already discussed in
@12#, the fluctuation is small but not exactly zero even for t
ground state because of the semiclassical nature of the
sov equation and the restricted Slater determinant in AM
Since the fluctuation should be zero in the ground stat
reduction factorgk is introduced in Eq.~39! in order to can-
cel the fluctuation only near the ground state. By noting t
the cooling term becomes zero for the ground state, a m
sure of the difference from the ground state is introduced

Dk[
6

6Nk2Ncons
SH, H1(

m
bkmQmD

Nk

, ~48!

whereNconsdenotes the number of the constrained quanti
$Qm%, and therefore 6Nk2Ncons is the number of free de
grees of freedom for the energy adjustment. The reduc
factor gk is then taken as

gk5
1

A11~mk /m0k!
2

, ~49!

m0k5
1200

6Nk2Ncons
A5fm/c

t S Dk

0.1 MeV/~ fm/c! D
3

, ~50!

so that the coefficient for the cooling termgkumku does not
exceed the upper limitm0k . The purpose of the dependen
of m0k on (6Nk2Ncons) and t is to make this reduction
effect independent of the choice of the neighborhood Nk @Eq.
~43!# and the delay timet. With this parametrization, the
fluctuation is reduced to zero in the ground state, while th
is almost no reduction soon after the hard two-nucleon c
lisions in the example of197Au1197Au collisions shown in
Sec. IV.

3. Energy fluctuation of emitted packets

As already discussed, we have subtracted the zero-p
kinetic energies of isolated packets in Eq.~5!. Therefore the
emitted packetk should be regarded as a plane wave of
-
-

e
m

ed

e
ef.

la-
.
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re
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int

e

momentumPk52\An Im Zk . This is more convenient than
treating it as a Gaussian packet with a momentum spr
because the nucleons in the final channels are usually
served experimentally as momentum and energy eigens
and we should ensure momentum and energy conservatio
each channel.

Let us consider the case where a wave packetk would be
emitted as a whole with the momentum centroid valueP0k
when the zero-point kinetic energy was not subtracted fr
the Hamiltonian. The momentum of this nucleon is

pk5P0k1q, ~51!

where q is a random number of the Gaussian distributi
with ^q&50 and ^qsqt&5\2ndst for s,t5x,y,z. The ki-
netic energy of this wave packet is then

Ek5
P0k

2

2M
1

P0k•q

M
1

q2

2M
. ~52!

When the expectation value of the third term̂q2&/2M
53\2n/2M is subtracted from the Hamiltonian, the add
term in Eq.~5! acts as a repulsive force to this packet. Th
it will be emitted with momentumPk , which satisfies

^Ek&5
Pk

2

2M
5

P0k
2

2M
1

3\2n

2M
. ~53!

Namely, the momentumPk is larger than the true centroi
P0k while the energy expectation value does not change
cause of the absence of the momentum spread when the
point energy is subtracted.

This prescription, however, has a shortcoming in tha
takes account of only the expectation value of the kine
energy and ignores its fluctuation. For a preequilibriu
nucleon in high-energy collisions,P0k may be so large tha
the fluctuation of the second term of Eq.~52! may play some
role though its expectation value is zero. In order to ta
account of this kind of energy fluctuation, we now introdu
a random process when each packet is emitted. By neg
ing the difference of the direction ofP0k and Pk , the right
amount of energy fluctuation can be produced by chang
the momentum as

Pk→~Pk2dpk1xDpk!Pk /Pk , ~54!

wherex is a random number taken from the normal distrib
tion with ^x&50 and^x2&51, and

dpk5Pk2APk
22\2n, ~55!

Dpk5\An. ~56!

Not only is the fluctuation (Dpk) given, but also the averag
value ofPk is decreased bydpk so that the energy expecta
tion value does not change by this random process. It ca
introduced as a new term in the equation forJk , Eq. ~29!,
which is put at the moment when the packetk is isolated
(Nk50) for the first time. The momentum in the above d
cussion should be understood as the relative momentum
tween the emitted nucleon and the parent nucleus. Total
ergy conservation is achieved by adjusting other degree
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860 PRC 59AKIRA ONO
freedom of the parent nucleus just in the same way for
fluctuation due to the wave packet diffusion effect.

It should be emphasized here that the above prescrip
is taken when the wave packet is emitted as a whole w
considerably high momentumPk , such as in the early stag
of high-energy collisions. On the other hand, when a lo
energy nucleon evaporates from a nucleus, what comes
of the nucleus is only a high-momentum component of
packet as we discussed in Refs.@16,17,12#. Therefore, the
true momentum spread aroundPk should be small and the
above prescription should not be taken in this case. In o
to continuously connect these two extremes of high and
energies, Eqs.~55! and ~56! are replaced by

dpk5Pk2Amax~Pk
22\2n, Pk

2/4!, ~57!

Dpk5A2Pkdp2dp2, ~58!

and the momentumPk is stochastically changed by Eq.~54!.

C. Two-nucleon collision process

The combination of the deterministic equation of moti
and the quantum branching process due to the wave pa
diffusion effect is essentially equivalent to mean field theo
such as TDHF theory, for the short-time evolution of a cha
nel wave function. However, in medium- and high-ener
collisions, there should be the effect of the residual inter
tion which brings a Slater determinant to a superposition
many Slater determinants. This effect is introduced as
stochastic two-nucleon collision process.

In most molecular dynamics models@3,4#, the stochastic
two-nucleon collision process has been introduced as
process to cause such branchings. In AMD@5#, two-nucleon
collisions are introduced by the use of the physical coo
natesW defined by Eq.~16!. When the physical positions o
two nucleons get close, their physical momenta are chan
randomly according to the differential cross section in
similar way to QMD @3,4#. The energy-dependent collisio
cross section may be modified due to the medium ef
which can be taken into account as the density depend
of the cross section. Pauli blocking is automatically intr
duced because of the existence of the Pauli-forbidden re
in the physical coordinate space@5#.

III. TRIPLE-LOOP APPROXIMATION
OF AMD HAMILTONIAN

Until recently, the application of AMD and AMD-V was
limited to relatively light systems with the total mass numb
A,100, because CPU time proportional toA4 is necessary
for the evaluation of the interaction term in the AMD Ham
tonian,

V5
1

2 (
i jkl

^w iw j uvuwkw l2w lwk&Bki
21Bl j

21 , ~59!

where w i are the single-particle wave functions in Eq.~1!
and Bi j 5^w i uw j&. In order to apply AMD-V to heavy sys
tems such as197Au1197Au collisions, we now introduce an
approximation for the AMD Hamiltonian.
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First of all, by using the one-body Wigner function of E
~12!, the two-body interaction term~59! can be rewritten as a
bilinear form of f,

V5 f • v̂• f [E drdpdr 8dp8

~2p\!6
f ~r ,p!v̂~r ,p;r 8,p8! f ~r 8,p8!,

~60!

wherev̂ includes the direct term and the exchange term,

v̂~r ,p;r 8,p8!5
1

2
v~r2r 8!

2
1

2
d~r2r 8!E ds e2 i ~p2p8!•s/\v~s!.

~61!

The spin and isospin degrees of freedom should be implic
understood.

The Wigner function is now approximated by a sum
3A Gaussian functions,

f ~u!' f-~u!5 (
p51

3A

cpf p
G~u!, ~62!

f p
G~u![8e22uu2wpu2. ~63!

The centroids off p
G are chosen as

wp5H W i , p5 i ,

Z i1 i ~W i2Z i !, p5A1 i ,

Z i2 i ~W i2Z i !, p52A1 i ,
~64!

for i 51, . . . ,A andp51, . . . ,3A,

so that the packets cover the important phase space re
efficiently. In order to get a good approximation, the coe
cients$cp% are determined by the condition

f p
G
• v̂• f-5 f p

G
• v̂• f for p51, . . . ,3A, ~65!

which means that the mean fieldv̂• f averaged around the
phase space pointwp should not change when the exa
Wigner functionf is replaced by the approximated onef-.
This condition is just a linear equation system for$cp%,

(
q51

3A

Apqcq5bp , ~66!

with

Apq5 f p
G
• v̂• f q

G, ~67!

bp5 f p
G
• v̂• f . ~68!

The approximated value ofV is then obtained by

V'V-[ f-• v̂• f-5(
pq

cpApqcq . ~69!
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In rare cases, the matrixApq becomes close to a singula
matrix. Then the absolute values ofcp are large, andf-
oscillates violently in the phase space so as to satisfy
~65!. Since the intent of Eq.~65! is to reproducef by f- in
the important phase space region by requiringf- to be iden-
tical to f around the phase space points$wp%, the resultantf-
should be a smooth function for the consistency. Theref
the above equation~66! is slightly modified to

(
q

~A21e2!pqcq5(
q

Apqbq1e2cp
0 , ~70!

wheree is a small parameter, and

cp
05H 1 for p51, . . . ,A,

0 for p5A11, . . . ,3A.
~71!

This modified equation is the condition to minimize th
quantity

(
p

~ f p
G
• v̂• f-2 f p

G
• v̂• f !21e2(

p
~cp2cp

0!2 ~72!

with respect to the coefficients$cp%, so that we can avoid the
situation wherecp deviates from the normal valuecp

0 very
much.

It can be easily seen that the approximated interactionV -
can be evaluated with CPU time proportional toA3 which is
necessary for evaluating$bp% by Eq.~68! and for solving Eq.
~70!. We can also use a similar approach to approximate
derivatives ofV with respect to the coordinatesZ. The re-
quired CPU time is also proportional toA3.

The above formalism can be applied for the dens
dependent zero-range force with a little extension. For
like the Gogny force and the Skyrme force have the dens
dependent term

v̂~r ,p;r 8,p8!5v0@r~r !#sd~r2r 8!. ~73!

The coefficients$cp% are determined in the same way
above by using Eqs.~67!, ~68!, and~70! but by replacing the
densityr(r ) in Eq. ~73! by a constantr0 . The result$cp%
does not depend on the value ofr0 . Then the approximated
value ofV is obtained by

V'V-5(
pq

S r̃pr̃q

r0
2 D s/2

cpApqcq , ~74!

wherer̃p is a smoothed density around the point Rewp de-
fined by

r̃p5S mn

p D 3/2

(
q

cqe2mu Rewp2 Rewqu2. ~75!

The parameterm5 4
3 is chosen so as to give a good appro

mation.
This triple-loop approximation is tested under various c

cumstances. Figure 2 shows the test along the slow frictio
cooling path@Eq. ~10! with l51 and m520.25# for two
nuclei 12C and 197Au. The randomly excited initial nuclei a
t50 fm/c are cooled down to the ground states att
q.

re

e

-
s
-

-
al

;300 fm/c. The exact expectation valueV/A of the
density-independent two-body part of the Gogny force
shown by a solid line, while the approximated valueV-/A
with the triple-loop approximation is shown by a diamon
for eacht. The dotted line shows the result of the QMD-lik
approximation where the expectation value is evaluated
using the approximated Wigner function of Eq.~15!,

V 95 (
p51

A

(
q51

A

Apq . ~76!

Compared to the too bad result of the QMD-like approxim
tion, the triple-loop approximation always gives a good
sult within the error of about 1 MeV/nucleon. Figure 3 show
similar information for two events of40Ca140Ca collisions
at 35 MeV/nucleon. The event of the upper part is a peri
eral collision and the event of the lower part is a cent

FIG. 2. Tests of the triple-loop approximation~diamonds! along
the slow frictional cooling path for12C and197Au nuclei, compared
with the exact values~solid line!. The results of the QMD-like
approximation~dotted line! are also shown. The expectation valu
of the two-body part of the Gogny force is shown as a function
time.
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collision. The triple-loop approximation again gives a suf
ciently good result of the error within 1 MeV/nucleon. W
have also found that the triple-loop approximation for t
density-dependent force has a precision similar to
density-independent force.

IV. APPLICATION TO Au 1 Au COLLISIONS

The 197Au1197Au collisions are calculated by AMD-V
for an incident energy of 150 MeV/nucleon and impact p
rameter 0,b,1 fm. One of the interesting aspects in th
reaction is the copious formation of intermediate-mass fr
ments~IMF’s! with Z>3 from a strongly expanding system
as observed in the experiment of Ref.@18#. On the other
hand, only few IMF’s are produced in the dynamical QM
calculation @18#. Therefore it is an important theoretica
problem to find out how the copious fragment formation
understood in the dynamical framework.

In the AMD-V calculation presented here, the Gog
force @21# is adopted as the effective interaction. It corr
sponds to the soft equation of state with incompressibi
K5228 MeV and appropriate momentum dependence

FIG. 3. The same as Fig. 2, but for the tests along the dynam
of 40Ca140Ca collisions at 35 MeV/nucleon.
e

-

-

-
y
f

the mean field. The expectation value of the Hamiltonian
evaluated by using the triple-loop approximation describ
in the previous section. The ground state of the197Au
nucleus is obtained by the frictional cooling method, and
has a reasonable binding energyE/A57.4 MeV and root
mean square radiuŝr 2&1/255.5 fm, while the experimenta
data are 7.9 MeV and 5.3 fm, respectively. The two-nucle
collision cross section and angular distribution adopted
the same as those of Ref.@20#. Around the two-nucleon col-
lision energyENN;150 MeV, which is important in the
present reaction, thepp andnn cross section is the same a
the free cross section~25 mb!. The pn cross section is the
same as the free cross section~40 mb! at zero density, but it
is reduced to about 30 mb forr.r0 as the medium effect.

The produced fragments in the dynamical AMD-V calc
lation are generally excited and their decay is calculated b
statistical model. At every 15 fm/c in the dynamical
AMD-V calculation, the fragments are identified by linkin
the two-nucleon pairs withuZ i2Z j u/An,5 fm. With this
condition, the identified fragments are well separated s
tially in most cases. A fragment with mass number 5<A
,Acr is thrown to the statistical decay code directly if i
mass number before 15 fm/c was also 5<A,Acr . Namely,
the statistical decay of each primordial fragment is calcula
when the waiting timetwait has passed since its mass fir
became smaller thanAcr . The parameters aretwait
522.5 fm/c on the average, andAcr is chosen to be 25
However, the dependence of the results on these param
is found to be small. When we takeAcr520 or 30, ortwait
537.5 fm/c on the average, the change of the IMF mul
plicity is a few percent at most. The adopted statistical de
code @4# is based on the sequential binary decay model
Pühlhofer @22#, but it also takes account of the emission
composite particles not only in their ground states but also
their excited states with excitation energyE* <40 MeV.

Figure 4 shows the time evolution of the density projec
onto the reaction plane for two events. The total system
once compressed and then expands rather rapidly. From
expanding matter, a lot of IMF’s are produced. The mu
plicity of the primordial IMF’s is about 16, and about half o
them are to disappear by statistical decay. Although the s
ping seems to be strong and the expansion is almost iso
pic, the mixture of the projectile and the target is not co
plete. More wave packets of the projectile origin come out
the forward direction than to the backward direction.

In Fig. 5, the calculated charge distribution is compar
with the experimental data@18#. The calculated result, show
by the solid histogram, reproduces the data very well at le
in the logarithmic scale. The multiplicities of various pa
ticles are compared to the data in Table I. The large IM
multiplicity of the experimental dataM IMF510.4 is almost
reproduced by the calculated valueM IMF58.7, though it is
slightly smaller than the data. This underestimation is due
the underestimation of the Be and Li multiplicities. We al
notice in Table I that the calculated multiplicities of ligh
particles with 2<A<4 are too small and the nucleon mult
plicity is too large.

It is useful to consider the gas and liquid parts separat
Here the gas part is composed of freely moving nucleons
light particles which are usually emitted after hard tw
nucleon collisions, and the liquid part is composed of IMF

cs
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FIG. 4. Examples of the time evolution of the density projected onto the reaction plane fromt50 fm/c to t5120 fm/c for
central197Au1197Au collisions at 150 MeV/nucleon. The size of the shown area is 80 fm380 fm.
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which is still bound well by the mean field. In order to pro
erly describe the fragment formation, separation of the m
and energy to the gas and liquid parts is essential as we
the dynamics of the liquid part itself. The good reproducti
of the IMF multiplicity and the charge distribution forZ
*5 suggests that AMD-V describes these aspects very w
On the other hand, the failure of the light particle multiplic
ties can be regarded as a problem in the dynamics of the
part, namely, the coalescence of particles in the gas par

The light particle and IMF multiplicities are much bett
reproduced when AMD-V is augmented by the coalesce
of nucleons and light particles, as will be shown in anoth
paper. In this paper, we just mention why the coalescenc
not properly treated in AMD-V and should be added
AMD-V as an augmenting process. In medium- and hig
energy collisions like the present reaction, a lot of nucleo
are emitted. Even though these nucleons have almost no
relations among them after hard two-nucleon collisions
pair of a proton and a neutron can form a deuteron w
these two nucleons are accidentally close to each othe
phase space. In order to correctly predict the probability

FIG. 5. Calculated charge distribution~histogram! in central
197Au1197Au collisions at 150 MeV/nucleon, compared with th
experimental data~diamonds! of Ref. @18#. The error bars show the
estimated statistical error of the calculated results.
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the coalescence of uncorrelated nucleons, it is necessar
AMD-V to have the correct phase space volume for t
bound deuteron state. The phase space volume for the w
packet centroids is important because the dynamics is g
erned by the apparently classical equation of motion for
centroids. Since the deuteron is a loosely bound system
a single bound state, the phase space volume in AMD
much smaller than the correct quantum phase space (2p\)3.
The deuteron and nucleon yields should therefore be un
estimated and overestimated, respectively. A large par
tritons and 3He may also be produced by the coalescen
mechanism of three nucleons~or a nucleon and a deuteron!,
and therefore the present calculation naturally undere
mates their multiplicities. Furthermore, we should note t
the intrinsic bound states of Li and Be isotopes have
cluster structure of light composite particles such asa, t,
and 3He, with the small binding energies between them. T
bound phase space volume in AMD is likely to be smal
than the correct quantum phase space, and it is natural
AMD-V underestimates the coalescence of the light comp
ite particles to produce Li and Be isotopes directly.

V. SUMMARY

Quantum branching processes are essential in molec
dynamics models in order to properly describe multichan
reactions such as multifragmentation in heavy ion collisio
In addition to the two-nucleon collision process which h
been recognized as an important process, AMD-V takes
count of the wave packet diffusion as a stochastic branch
process rather than as a shape change of the single-pa

TABLE I. Multiplicities of various particles in central197Au
1197Au collisions at 150 MeV/nucleon.

Experiment@18# AMD-V

Neutron 92.6 120.6
Proton 26.1 56.8
Deuteron 18.6 14.7
Triton 17.2 8.8
3He 5.7 2.3
4He 21.0 16.3
IMF 10.4 8.7
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wave packet like in TDHF theory or the Vlasov equatio
AMD-V and the Vlasov equation are equivalent with resp
to the infinitesimal time evolution of a single Slater determ
nant without two-nucleon collisions, except that AMD-V ig
nores the interference among the channels and avoids s
ous channel correlations.

In this paper, we reformulated AMD-V in two points s
that it is applicable even to heavy systems such as197Au
1197Au collisions. First, the fluctuation due to the wav
packet diffusion was formulated as a stochastic term in
equation of motion for the wave packet centroids. A sm
Gaussian fluctuation is given to each packet at every t
step, instead of a big displacement once in a while in
previous framework. This reformulation decreases the
merical labor because it simplifies the energy conserva
procedure. Second, a new triple-loop approximation was
troduced for the expectation value of the Hamiltonian w
respect to the AMD wave function. With this triple-loop a
proximation, the expectation value can be evaluated with
numerical operations proportional toA3 instead ofA4 in the
exact calculation, whereA is the mass number of the tota
system. The error of this approximation is about 1 Me
nucleon at most, and therefore it is useful for the study
heavy ion collisions.

The reformulated AMD-V was applied to197Au1197Au
central collisions at 150 MeV/nucleon. We adopted t
Gogny force as the effective interaction. The calculation
produces the qualitative feature of the experimental data
i,

i,
.
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e
ll
e
e
-
n
-

e

/
f

e
-
at

a lot of fragments are produced from the radially expand
system. The large IMF multiplicity was almost reproduc
by AMD-V quantitatively. This result therefore suggests th
AMD-V works well for aspects related to fragment form
tion, such as the large energy carried out by light partic
the collective expansion, and the appearance of the clu
correlation in the expanding system. However, we found t
the nucleon multiplicity is strongly overestimated and t
other light particle multiplicities are underestimated. Th
should be due to the problem of AMD-V in the descriptio
of the coalescence of nucleons and light particles which
beyond the scope of the current version of AMD-V or oth
usual mean field theories. We will show in another pap
how we can incorporate the coalescence to AMD-V and t
the coalescence process improves the reproduction of
data, including reactions with higher energy. Furthermore
is also an interesting subject in progress to study fragm
formation in relation to the equation of state of nuclear m
ter at high and low densities, and also with isospin asymm
try.
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