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Inverse-scattering theory at a fixed energy for the Klein-Gordon equation
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The inverse-scattering theory at a fixed energy for the scattering of a particle by a potential in the Schro¨-
dinger equation formulated by Alam and Malik, which is based on the earlier work of Hooshyar and Razavy,
is extended, in this paper, to the scattering of spinless particles at relativistic energies governed by the
Klein-Gordon equation. The differential equation is replaced by a set of difference equations. This reduces the
inverse-scattering problem to solving a continued fraction equation. The solution provides the values of the
potential at a number of points which are equal to~one plus the number of partial waves!. The theory is tested
for three widely different complex potentials, one of which is relevant to pion-nucleus scattering. The points of
the potentials determined from the inverse-scattering formalism are in accord with the actual ones in all three
cases. Since the Klein-Gordon equation is effectively a Schro¨dinger equation with an energy-dependent po-
tential, the method may, in the appropriate cases, be suitable for the latter case.@S0556-2813~99!05502-8#

PACS number~s!: 25.80.Dj, 11.80.2m, 24.10.2i
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I. INTRODUCTION

In this paper, we present an inverse-scattering theory
fixed energy for the scattering problems governed by
Klein-Gordon equation. The method presented here is s
able for the scattering of spinless particles such as pion
spinless targets such as even-even nuclei at relativistic e
gies. The method developed here is based on the Hoosh
Razavy method formulated in connection with the inver
scattering problem in geophysics@1# and applied to problems
of neutron scattering by nuclei@2,3# described by the Schro¨-
dinger equation. The Hooshyar-Razavy method has been
ther developed by Alam and Malik@4# to incorporate Cou-
lomb interaction for scattering processes described by
Schrödinger equation. They have successfully applied it
determine the potential between two alpha particles@5# at
low energies and between12C and12C nuclei at energies jus
above the Coulomb barrier@6#. It is established as an impor
tant method to determine the general nature of the pote
between two particles in case information on the phase s
for a large number of partial waves is available. In view
this success, it is important to extend the method to sca
ing problems governed by the Klein-Gordon equation wh
describes the motion of spinless particles at relativistic en
gies.

The investigation on the inverse scattering problem
scribed by the Klein-Gordon equation is not new in physi
In 1954 Corinaldesi@7# developed a theory to construct th
scattering potential froms-wave phase shift and binding en
ergy of two-particle-system using the Klein-Gordon equ
tion. In a different approach, Desgasperis@8# has carried out
a study to derive relationships among functions characte
ing the relativistic scattering process and the parameters
erning the interaction. Weis and Scharf@9# have extended
PRC 590556-2813/99/59~2!/826~6!/$15.00
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this work to develop an inverse-scattering theory pertinen
the Klein-Gordon equation. However, all these approac
arenot at a fixed energyand require a knowledge of phas
shifts as a function of energy, thereby severely restrict
their applicability to determine the potential because ph
shifts in a large domain of energy is not easily available.
the other hand, the inverse-scattering theory presente
Sec. II of this paper requires the knowledge of phase sh
for all partial waves only at a fixed energy which is usua
easier to obtain. In Sec. III, we present applications of
theory to three different complex potentials which may
pertinent for charge less pion scattering by spinless nuc
The theory developed in Sec. II is valid for Coulomb inte
action which is, however, not included in the application.

II. THE THEORY

One may derive the Klein-Gordon equation for the sc
tering of a spinless particle starting from the following rel
tivistic energy-momentum relation:

E22PW 2c25m2c4, ~1!

whereE, m, andPW are the total energy, rest mass, and m
mentum of the particle, respectively. One may incorpor
the electromagnetic scalar, and vector, potentialsf(r ) and

AW (r ), respectively, as external potential in the treatment
noting the following relation:

~E2ef!22S PW 2
e

c
AW D 2

c25m2c4. ~2!

For a purely electrostatic potential,AW 50, one obtains
826 ©1999 The American Physical Society
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~E2ef!22PW 2c25m2c4. ~3!

ef(r ) being a scalar potential, plays the role of an exter
spherical symmetric time independent potential,V(r ). Thus,

ef5V~r !. ~4!

To obtain the Klein-Gordon equation,PW may be repre-
sented by the familiar differential operator,

PW 52 i\¹ ~5!

and Eq.~3! is then an operator equation acting on the wa
functionF(rW). Thus, the Klein-Gordon equation in the pre
ence of an external spherical symmetric potential is the
lowing:

~2\2c2¹21m2c4!F~rW !5@E2V~r !#2F~rW !. ~6!

Since the potential is spherically symmetric, the radial p
of F(rW), Rnl(r ), satisfies the following equation:

F2
1

r 2

d

dr S r 2
d

dr D1
l ~ l 11!

r 2 GRnl~r !

5F $E2V~r !%22m2c4

\2c2 GRnl~r !, ~7!

which includes the centrifugal potential term,l ( l 11)/r 2.
Writing Rnl5cnl(r )/r , one may obtain the equation for ther
times the radial wave function,cnl(r ),

F d2

dr2
2

l ~ l 11!

r 2 Gc l~r !52F $E2V~r !%22m2c4

\2c2 Gc l~r !,

~8!

where we have dropped the subscriptn for convenience.
The scalar potential,V(r ), may consist of an externa

potential falling off faster than Coulomb potential,VN(r )
and a Coulomb potentialVc(r )

V~r !5VN~r !1Vc~r !, ~9!

where the Coulomb part,Vc(r ), is taken to be that of a
uniformly charged spheres and is given by

Vc~r !5 H ~Z1Z2e2/2Rc!~32r 2/Rc
2!

Z1Z2e2/r
for r<Rc

for r .Rc . ~10!

In Eqs.~10! and ~11!, Z1 andZ2 are the atomic numbers o
the two colliding nuclei andRc is the Coulomb radius. Equa
tion ~8! may be rewritten as

F d2

dr2
2

l ~ l 11!

r 2 Gc l~r !52F @E2V~r !#22m2c4

\2c4 Gc l~r !

52FE22m2c2

\2c2 Gc l~r !1
2E

\2c2

3FV~r !2
V2~r !

2E Gc l~r !. ~11!
l

e

l-

rt

Defining

K25
E22m2c4

\2c2
~12!

and

U~r !5
2E

\2c2 FV~r !2
V2~r !

2E
G5

2E

\2c2
Veff~r !, ~13!

where

Veff~R!5V~r !2
V2~r !

2E
~14!

one obtains from Eq.~12! the following:

F d2

dr2
1K22U~r !2

l ~ l 11!

r 2 Gc l~r !50. ~15!

This equation has the same mathematical form as the
obtained by Alam and Malik@4# for the nonrelativistic case
As a result, we proceed to solve the inverse problem i
similar fashion. For potentials less singular than 1/r 2 at the
origin, c l(r ) satisfies the following boundary condition:

lim
r→0

c l~r !>~kr ! l 11. ~16!

Introducing

w l~r !5~Kr !2~ l 11!c l~r !, ~17!

which satisfies the boundary conditionw(0)51, one gets

F d2

dr2
1

2~ l 11!

r

d

dr
1K22U~r !Gw l~r !50. ~18!

The differential operators may now be replaced by
following central differences:

d

dr
w l→

wn112wn21

2D
, ~19!

d2

dr2
w l→

wn111wn2122wn

D2
, ~20!

where the dependence ofwn’s on l is suppressed. By divid-
ing the non-Coulomb potential range,R to N equal parts,
each of lengthD, i.e., R5ND, and writing r 5nD, with n
being an integer, one may get the following difference eq
tion:

wn115An~ l !Bn~ l !wn1Cn~ l !wn21 , n51,2, . . . ,N,
~21!

where

An~ l !522D2K21D2Un , ~22!

Bn~ l !5
n

l 111n
, ~23!
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and

Cn~ l !5
l 112n

l 111n
. ~24!

It is clear thatAn( l ) is the most important term since
contains all the information we are looking for, i.e.,Un .

For the calculation of scattering amplitude or phase sh
for a given potential, directly, one may choose a pointR such
thatVN(R)50 and calculate at that point logarithmic deriv
tive for each partial wavel:

ZN~ l !5r
~dw l !/dr

w l
U

r 5R

. ~25!

Replacing the derivative in Eq.~25! by central difference
at R5ND, one obtains
at

o

u-

at

te
a

m

g

s

ZN~ l !5S N

2 D S wN112wN21

wN
D . ~26!

To evaluate Eq.~26! for a given potential, one needs th
wave functions atwN , wN21 and wN11 . They may be ob-
tained by noting that forn5N, Eq. ~21! reduces to

wN11

wN
5AN~ l !BN~ l !1CN~ l !/~wN /wN21!. ~27!

One may replace (wN /wN21) by the corresponding equatio
and repeat the process to obtain the following expansion
(wN /wN11):
wN21

wN
5AN~ l !BN~ l !1F CN~ l !

AN21~ l !BN21~ l !1

CN21~ l !

AN22~ l !BN22~ l !1
¯

C3~ l !

A2~ l !B2~ l !

C2~ l !

A1~ l !B1~ l !1C1~ l !/~w1 /w0!G . ~28!
-

all
SinceCm( l )50, for m5 l 11, the last termC1( l )/(w1 /w0),
in the continued fraction expression for (wN11 /wN), does
not enter in actual calculations. One may calcul
(wN21 /wN) similarly, and finally the logarithmic derivative
ZN( l ) at the point whereVN(r )50.

One may connectZN( l ) to phase shifts by matching it t
the logarithmic derivative of the external solutionc l . For
example, in the absence of a Coulomb potential,Vc50 and
the solution forr .R is given by

c l5Kr $ j l~Kr !1Tl@h l~Kr !1 i j l~Kr !#%, ~29!

where j l(Kr ) andh l(Kr ) are the spherical Bessel and Ne
mann functions, respectively.@In case VcÞ0 for r .R,
j l(Kr ) and h l(Rr) are replaced by Coulomb functions th
are regular and singular atr 50, respectively.# The matrixTl
is related to the phase shiftd l and theS-matrix Sl by

Tl5
e2id l21

2i
5

Sl21

2i
. ~30!

In caseVN(R) is complex,d l is complex.
The inverse problem in the absence of a Coulomb po

tial may be stated as follows: From given logarithmic deriv
tives for all partial waves at a fixed energy, i.e.,K2 at a point
whereVN(r )50, one is to determine the potential. To exa
ine this point, one notes that atr 5N, whereVN(R)50, the
value of AN522D2K2 and hence, is known. Combinin
Eqs.~26! and ~27!, one obtains

wN

wN21
5

@CN~ l !21#

F 2

N
ZN~ l !2AN~ l !BN~ l !G , ~31!
e

n-
-

-

wherel 50,1,2, . . . ,L andN5L11, L being the largest of
the partial waves.

One may define a particularl n which makes the corre
spondingCn zero. Thus, for

l n5N211n, n51,2, . . . ,N21. ~32!

One has

Cn~ l N2n!50, ~33!

which follows from Eq.~24!. With this and forn5N21, the
difference equation~22! reads

AN21~ l 1!5
1

BN21~ l 1!

wN~ l 1!

wN21~ l 1!
. ~34!

This inward iteration process can be continued to find
AN2 j at the points forj 52,3,...,N21,

AN2 j~ l j !5
1

BN2 j~ l j !
F CN112 j~ l j !

2AN112 j~ l j !BN112 j~ l j !1
¯

3
CN22~ l j !

2AN22~ l j !BN22~ l j !1

3
CN21~ l j !

2AN21~ l j !BN21~ l j !1wN~ l j !/wN21~ l j !
G ,

j 52,3, . . . ,N21. ~35!

The functionUn at the pointn, whereAN2 j is known, can
be evaluated by using the relation

Un5
1

D2
@An221D2K2#. ~36!
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This leads to the determination of the effective potentia
point n (Veff)n

~Veff!n5
\2c2

2E
Un5VN~r !2

VN
2 ~r !

2E
. ~37!

For a complexVN it can be expressed as the sum of ima
nary (VI) and real (VR) parts,

VN5 iVI1VR . ~38!

Then the effective imaginary part of potential, (Veff)Imag, is
given by

~Veff! Imag5V12
V1VR

E
~39!

and the effective real part of potential, (Veff)R, is given by

~Veff!R5VR2
~VR

22V1
2!

2E
. ~40!

Thus, givenZN( l ), one can determine the values of the p
tential at points (1,2, . . .N21). The number of points is
limited by the relation~32! to (l 11), i.e., by the number o
partial waves that contributes to the cross section at a g
energy.

Despite the similarity between Eq.~15! and the Schro¨-
dinger equation, there are three important distinctions
merit investigation of the inverse problem for potentials r
evant to pion-nucleus scattering. First, the real and imagin
part of the actual potential is very different from the effecti
potential given by Eqs.~39! and ~40!. Both the real and the
imaginary part of the effective potential are determined
the magnitude of the real and imaginary part of the act
potential. For example, a strong imaginary part of the ac
potential could make the real part of the effective poten
repulsive, even though the real part of the actual potentia
attractive. Secondly, the relation~37! implies, that near the
surface, the effective and actual potentials are the same
not in the interior. Thirdly, the effective potential~37! is
actually energy-dependent and hence, the inverse proble
that of an energy-dependent potential, which has not b
examined before.

With these considerations in mind, we apply the meth
to three cases having some relevance to pion-nucleus
relativistic spin-zero nucleus-nucleus scattering.

III. APPLICATION AND DISCUSSION

We test the theory for three types of complex potentia
for a shallow and a deep monotic potential and a n
monotomic one. All calculations have been performed
163.3 MeV incident uncharged pion on40Ca target. For this
purpose,Zl(N) is calculated from a given potential by solv
ing Eq. ~15!. These are, then, used as inputs for the inve
problem to determine the potential at (l 11) points. The first
potential chosen is relevant to pion scattering by40Ca and
used by Satchler@10# to fit the data at angles other tha
backward ones. It is given by
t

-

-

n

at
-
ry

y
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l
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ut
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d
nd

:
-
r

e

V1~r !5
V

11exp@~r 2R0!/a0#
1 i

W

11exp@~r 2R1!/a1#
,

~41!

with

V5245 MeV, R054.271 fm, a050.305 fm,

W521000 MeV, R151.688 fm, a150.763 fm.

The real and imaginary part of the corresponding effect
potential are calculated from Eqs.~40! and~39!, respectively,
and shown by solid lines in Fig. 1. It is interesting to no
that the effective real part of the potential is repulsive
short distances, although the potential itself is attracti
Only ten partial waves contribute to the scattering proc
and one can calculate ten values ofZN( l ). For the inverse
problem, these ten values ofZN( l ) are given as inputs. From
these, the effective potential at 11 points has been de
mined and are shown in Fig. 1 as open circles. These fol
closely the input potential. Thus, one can determine
points of this type of potentials rather accurately by this
verse scattering method.

The second potential considered has a deep real part
moderate imaginary part and is taken to be

FIG. 1. The real and imaginary parts of the effective poten
V1(r ) given by Eq.~41! are shown as solid lines. The open circl
are the calculated points of the potential obtained from the solu
of the inverse problem.
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830 PRC 59Z. F. SHEHADEH, M. M. ALAM, AND F. B. MALIK
V2~r !5
V

11exp@~r 2R0!/a0#
1 i

W

11exp@~r 2R1!/A1#
,

~42!

with

V52500 MeV, R052.271 fm, a050.305 fm,

W5250 MeV, R151.688 fm, a150.763 fm.

The real and imaginary parts of the effective potential
V2(r ) are plotted in Fig. 2 as solid lines. The effective re
part is strongly attractive.Zl(N) calculated from this poten
tial is used as inputs for the inverse problem. The calcula
values of the potential determined at eleven points are sh
as open circles in Fig. 2 and once again the agreemen
satisfactory.

The third potential,V3(r ) is chosen to be a nonmonoton
one with moderate absorption and given by

V3~r !5
V0

11exp@~r 2R0!/a0#
1V1 exp~2r /R2!

1 i
W

11exp@~r 2R1!/a1#
, ~43!

with

FIG. 2. The real and imaginary parts of the effective poten
V2(r ) given by Eq.~42! are shown as solid lines. The open circl
are the calculated points of the potential obtained from the solu
of the inverse problem.
r
l

d
n
is

V0529 MeV, R054.271 fm, a050.305 fm,

V1550 MeV,

R251.50 fm, W5220 MeV, R151.688 fm,

a150.763 fm.

The real and imaginary part of the effective potential f
V3(r ) are shown in Fig. 3 as solid lines. It is interesting
note that the real and imaginary parts are of moder
strengths.Zl(N) is then calculated for each partial wave a
used as an input for the inverse problem. The potential
termined from the inverse problem are shown as open cir
in Fig. 3. Once again the points of the potential determin
from the inverse problem are very close to the actual on

At this point, it is appropriate to discuss the strength a
the limitation of the method. The number of points of a p
tential function determined by the method is equal to o
plus the number of partial waves contributing to the cro
section. If the number of partial wave is small compared
the range of the potential, the step size, i.e., the inter
between two adjacent points of the potential is large and
replacement of differential equation by difference equation
not a good approximation@3–6#. On the other hand, if the
number of partial waves are large resulting into very sm
but a large number of step sizes, the error at each point, e

l

n

FIG. 3. The real and imaginary parts of the effective poten
V3(r ) given by Eq.~43! are shown as solid lines. The open circl
are the calculated points of the potential obtained from the solu
of the inverse problem.
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PRC 59 831INVERSE-SCATTERING THEORY AT A FIXED ENERGY . . .
though small, accumulates. As noted in the analysis of L
@11# and in @3–6#, this propagation of error may, in som
cases, make the determination of the points in the inte
region uncertain. For a large number of partial waves e
having very small phase shift, the error propagation may a
lead to the loss of information in the interior region as no
by Leeb.

The method is best suited for the incident energy ra
that provides information on 10 to 20 partial waves for p
tentials having 6 to 10 F range. In general, the method
useful in determining the surface and overall shapes of
tentials. For example, the application of the method to
a-12C system has ruled out the potential to be a deep one@5#
and to the12C-12C system points towards a complex molec
s

b

r
h
o

d

e
-
is
o-
e

-

lar potential for that system@6#. The information about the
interior part of the potential is to be treated with caution.

IV. CONCLUSION

The inverse scattering method at a fixed energy applie
the Klein-Gordon equation can determine reasonable in
mation about spherical symmetric potentials at least in
energy range considered here. The success of the me
depends on the number of partial waves involved and ac
rate determination of the logarithmic derivative,Zl(N), at
the boundary. Since the Klein-Gordon equation is effectiv
a Schro¨dinger equation with an energy-dependent potent
the method may, in some cases, be suitable for energy~or
momentum!-dependent potentials.
@1# M. A. Hooshyar and M. Razavy, Can. J. Phys.59, 1627
~1981!.

@2# M. A. Hooshyar and M. Razavy, Phys. Rev. C29, 20 ~1984!.
@3# M. A. Hooshyar, R. Nadeau, and M. Razavy, Phys. Rev. C25,

1187 ~1982!.
@4# M. M. Alam and F. B. Malik, Nucl. Phys.A524, 88 ~1991!.
@5# M. M. Alam and F. B. Malik, Phys. Lett. B237, 14 ~1990!.
@6# M. M. Alam and F. B. Malik, inClusters Phenomena in Atom
and Nuclei, edited by M. Brenner, T. Lo¨enroth, and F. B.
Malik ~Springer-Verlag, Heidelberg, Germany, 1992!,
p. 144.

@7# E. Corinaldesi, Nuovo Cimento11, 468 ~1954!.
@8# A. Degasperis, J. Math. Phys.11, 551 ~1970!.
@9# R. Weiss and G. Scharf, Helv. Phys. Acta44, 910 ~1971!.

@10# G. R. Satchler, Nucl. Phys.A540, 533 ~1992!.
@11# H. Leeb, Nucl. Phys.A529, 253 ~1991!.


