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Inverse-scattering theory at a fixed energy for the Klein-Gordon equation
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The inverse-scattering theory at a fixed energy for the scattering of a particle by a potential in the Schro
dinger equation formulated by Alam and Malik, which is based on the earlier work of Hooshyar and Razavy,
is extended, in this paper, to the scattering of spinless particles at relativistic energies governed by the
Klein-Gordon equation. The differential equation is replaced by a set of difference equations. This reduces the
inverse-scattering problem to solving a continued fraction equation. The solution provides the values of the
potential at a number of points which are equaldoe plus the number of partial waye¥he theory is tested
for three widely different complex potentials, one of which is relevant to pion-nucleus scattering. The points of
the potentials determined from the inverse-scattering formalism are in accord with the actual ones in all three
cases. Since the Klein-Gordon equation is effectively a Stihger equation with an energy-dependent po-
tential, the method may, in the appropriate cases, be suitable for the lattef 22586-281®9)05502-§

PACS numbe(s): 25.80.Dj, 11.80-m, 24.10=i

[. INTRODUCTION this work to develop an inverse-scattering theory pertinent to
the Klein-Gordon equation. However, all these approaches
In this paper, we present an inverse-scattering theory atarenot at a fixed energgnd require a knowledge of phase

fixed energy for the scattering problems governed by theéhifts as a function of energy, thereby severely restricting
Klein-Gordon equation. The method presented here is suitheir applicability to determine the potential because phase
able for the scattering of spinless particles such as pions bghifts in a large domain of energy is not easily available. On
spinless targets such as even-even nuclei at relativistic enéf1® other hand, the inverse-scattering theory presented in
gies. The method developed here is based on the HooshyapeC- Il Of this paper requires the knowledge of phase shifts
Razavy method formulated in connection with the inversefor all partial waves only at a fixed energy which is usually
scattering problem in geophysiks and applied to problems €asier to obtain. In Sec. Ill, we present applications of the
of neutron scattering by nuclg2,3] described by the Schwo  theory to three different complex potentials which may be
dinger equation. The Hooshyar-Razavy method has been fuRertinent for charge Ie_ss pion sc_atterl_ng by spinless _nucle|.
ther developed by Alam and Malik] to incorporate Cou- Thg theor_y dgveloped in Sec.lll is vallq for Coulo_mb_mter—
lomb interaction for scattering processes described by th@ction which is, however, not included in the application.
Schralinger equation. They have successfully applied it to
determine the potential between two alpha parti¢lesat Il. THE THEORY
low energies and betwedAC andC nuclei at energies just ! . .
above the Coulomb barrig6]. It is established as an impor-  ON€é may derive the Klein-Gordon equation for the scat-

tant method to determine the general nature of the potentidfing Of & spinless particle starting from the following rela-

between two particles in case information on the phase shiftdViStic energy-momentum relation:

for a large number of partial waves is available. In view of .

this success, it is important to extend the method to scatter- E?-P2c?=mc*, 1)

ing problems governed by the Klein-Gordon equation which

describes the motion of Spinless particles at relativistic enelyhereE, m andlS are the total energy, rest mass, and mo-

gies. mentum of the particle, respectively. One may incorporate
The investiga’[ion on the inverse Scattering problem dEthe e|ectr0magnetic scalar, and vector, potenws) and

scribed by the Klein-Gordon equation is not new in physics.; . -
: A(r), respectively, as external potential in the treatment by
In 1954 Corinaldesj7] developed a theory to construct the noting the following relation:

scattering potential frors-wave phase shift and binding en-
ergy of two-particle-system using the Klein-Gordon equa-
tion. In a different approach, DesgaspdB$ has carried out (E—e¢)?—
a study to derive relationships among functions characteriz-

ing the relativistic scattering process and the parameters gov- .
erning the interaction. Weis and Schd#f] have extended For a purely electrostatic potenti#i,=0, one obtains

- e-)\?
P_EA) c?=m?c*. 2
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(E—ed))z— 5202=m204. ) Defining
ed(r) being a scalar potential, plays the role of an external K2— E?—m?c* (12)
spherical symmetric time independent potent&lr). Thus, £2¢2
e¢:V(r) (4) and
To obtain the Klein-Gordon equatiorﬁ;, may be repre- VA(r) 2E
sented by the familiar differential operator, U(r)= PEN V(r)— E |- hz—CZVeﬁ(f), 13
P=—itV ®)  where
and Eq.(3) is then an operator equation acting on the wave V2(r)
function®(r). Thus, the Klein-Gordon equation in the pres- Veir(R)=V(r)— 5E (14
ence of an external spherical symmetric potential is the fol-
lowing: one obtains from Eq(12) the following:
(—#2e2V2+m2ch) (1) =[E—-V(N]2B(F). () o2 I(1+1)
_ - . _ ) — +K2=U(r)— —5—|(r)=0. (15)
Since the potential is spherically symmetric, the radial part dr r

of (1), R,y (r), satisfies the following equation:

{ 1 d( 2d)+l(l+1)

—_—— — r— ———
rzdr dr r2

This equation has the same mathematical form as the one
obtained by Alam and Malik4] for the nonrelativistic case.
Rpi(r) As a result, we proceed to solve the inverse problem in a
similar fashion. For potentials less singular than? it the

) (E—V(r)}2— m?c? origin, ¢, (r) satisfies the following boundary condition:
T e P “ im (1) =(kn)' 2. 16
r—0
which includes the centrifugal potential terd(l+1)/r2. Introducin
Writing R, = #,,(r)/r, one may obtain the equation for the 9
times the radial wave functiony,(r), @1 (1) =(Kr)~ Dy (1), (17)
d_z_ [(1+1) ()= — {E-V(r)}?—m?c* () which satisfies the boundary conditigr{0)=1, one gets
drz 2 |V f2c? e )
(8) d 2(1+1) d 5 _
a+K —=U(r)|¢(r)=0. (19

—+
2 r
where we have dropped the subscrigr convenience. dr
The scalar potentialV/(r), may consist of an external ~ The differential operators may now be replaced by the
potential falllng off faster than Coulomb potentie\l’N(r) f0||owing central differences:
and a Coulomb potential.(r)

d Pn+r1— Pn-1

V(r)=Vn(r)+Ve(r), 9 TRy — (19
where the Coulomb party.(r), is taken to be that of a 5
uniformly charged spheres and is given by d_ @n+1t @n—1—2¢y (20)
dr2 L= A2 )

(Z,Z,€%12R,)(3—r?IR%) for r<R,

VC(r):[lezezlr for r>R.. (10

where the dependence o¢f’s on | is suppressed. By divid-
ing the non-Coulomb potential rang® to N equal parts,

In Egs.(10) and(11), Z; andZ, are the atomic numbers of each of length, i.e., R=NA, and writingr=nA, with n

the two colliding nuclei andR; is the Coulomb radius. Equa- being an integer, one may get the following difference equa-

tion (8) may be rewritten as tion:
d® 1(1+1) [E—V(r)]?—m?c* enr1=An()Br(Den+Cr(hen-1, n=12,...N,
—— 5 |(r)=— > 2 (1) (21)
dr r fcc
where
_|E?—m?c? 2E
i arryeanl LIRS wye: An(1)=2— A2K2+ A2U,,, (22)

V2(r) n

X V(r)—f}%(f)- (11 Bn(')zm, (23
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d _
an ZNU):(;) (M) 26

I+1-n PN
=11 24

It is clear thatA,(l) is the most important term since it 10 €valuate Eq(26) for a given potential, one needs the

contains all the information we are looking for, i.&l,. wave functions apy, ¢n-1 and¢y.1. They may be ob-
For the calculation of scattering amplitude or phase shiftd@ined by noting that fon=N, Eq. (21) reduces to

for a given potential, directly, one may choose a p#&stuch

thatVy(R)=0 and calculate at that point logarithmic deriva-

i i ¢
tive for each partial wavé ;‘;l =AnDBN(D+Cn(D/(en/ en-1)- (27)
(de)/dr

P

Zy(h=r (29)

=R One may replacedy/¢n—1) by the corresponding equation

Replacing the derivative in Eq25) by central difference and repeat the process to obtain the following expansion of

atR=NA, one obtains (en/on+1):
|
ono1 () Cua) Gyl C(l)
o BNt B DT Ay a(0Br 2D+ Ax(NBo(D) ADIB(N+ Cali(galeg) | 2O

SinceC,,(1)=0, for m=1+1, the last ternC,(1)/(¢1/¢q), wherel=0,1,2 ... ,L andN=L+1, L being the largest of
in the continued fraction expression fop(,.1/¢y), does the partial waves.

not enter in actual calculations. One may calculate One may define a particuldy, which makes the corre-
(en—1/¢n) similarly, and finally the logarithmic derivative spondingC,, zero. Thus, for

Z\(1) at the point wherd/y(r)=0.

One may connecZ,(l) to phase shifts by matching it to [h=N-1+n, n=12,...N-1 (32)
the logarithmic derivative of the external solutigh. For
example, in the absence of a Coulomb potentiak-0 and
the solution forr >R is given by Co(In_n) =0, (33)

One has

b =Kr{j (Kr)+T,[ 7 (Kr)+ij(Kr)]}, (290  which follows from Eq.(24). With this and fom=N—1, the
difference equatioii22) reads

wherej,(Kr) and %,(Kr) are the spherical Bessel and Neu-

mann functions, respectively.In case V. #0 for r>R, Ay_(ly)= : ently) _ (34)
ji(Kr) and 5, (Rr) are replaced by Coulomb functions that By_1(l1) en-1(l1)
are regular and singular at= 0, respectively. The matrixT,
is related to the phase shiff and theS-matrix S; by This inward iteration process can be continued to find all
Ay at the points foj=2,3,..N—1,
2i6 _ _
T|=e - 1=S|—.1. (30 An_i(l)= Cnaj(ly)
2i 2i P B () [ —Anse (1) Brra—j(1) +
. . Cn-2(l})

In caseVy(R) is complex, s, is complex.

The inverse problem in the absence of a Coulomb poten- ~An-2(1j)Bn-2(lj) +
tial may be stated as follows: From given logarithmic deriva- Cn-a(l)

tives for all partial waves at a fixed energy, i3 at a point
whereVy(r) =0, one is to determine the potential. To exam-
ine this point, one notes that at=N, whereVy(R) =0, the
value of Ay=2—A2K? and hence, is known. Combining

Egs.(26) and(27), one obtains The functionU, at the poinin, whereAy_; is known, can
be evaluated by using the relation

X An2()Bu_ 1)+ on( ) en_a(1) |

ji=2,3,...N=-1. (35)

N [Cn(1)—1]
Nt S Zu(h=Ay(hBy(D) Un=P[An—2+A2K2]- (36)




PRC 59 INVERSE-SCATTERING THEORY AT A FIXED ENERG . . . 829

-800

Thus, givenZy(l), one can determine the values of the po-
tential at points (1,2 ..N—1). The number of points is
limited by the relation32) to (1+1), i.e., by the number of
partial waves that contributes to the cross section at a given
energy.

~Despite the similarity between Eq15) and the Schro FIG. 1. The real and imaginary parts of the effective potential
dinger equation, there are three important distinctions thay., (r) given by Eq.(41) are shown as solid lines. The open circles

merit investigation of the inverse problem for potentials rel-are the calculated points of the potential obtained from the solution
evant to pion-nucleus scattering. First, the real and imaginaryf the inverse problem.

part of the actual potential is very different from the effective
potential given by Eqs(39) and (40). Both the real and the Vv W
imaginary part of the effective potential are determined by Vy(r)= +i '
the magnitude of the real and imaginary part of the actual 1+exd(r—Rg)/ag] ~ 1+exd(r—Ry)/a]
potential. For example, a strong imaginary part of the actual (41)
potential could make the real part of the effective potential
repulsive, even though the real part of the actual potential igjth
attractive. Secondly, the relatiqB7) implies, that near the
surface, the effective and actual potentials are the same, but
not in the interior. Thirdly, the effective potentigB7) is V=-45 MeV, Ry=4.271 fm, a,=0.305 fm,
actually energy-dependent and hence, the inverse problem is
that of an energy-dependent potential, which has not been
examined before.

With these considerations in mind, we apply the method
to three cases having some relevance to pion-nucleus and The real and imaginary part of the corresponding effective

-1000

This leads to the determination of the effective potential at 1400 1 T
point n (Veg)n > 1200 ]
2 I
ﬁZCZ Vlz\l(r) .T_l; 1000 [ 4
(Vehn=Zg Un=Vn()— S (37 S 00 ]
) ) ) € 600 i
For a complexVy it can be expressed as the sum of imagi- g -
nary (V,) and real {/g) parts, « 400 T -
= 200 .
VN:iV|+VR. (38) § [
o O
Then the effective imaginary part of potential/ ) imag, IS -200 P é P 0
given by
—~ 200 ——————
ViVgr >
(Veff)lmag: Vi— E (39 2 o =
3 ]
= -200 i
and the effective real part of potential §)g, iS given by 2 »
o -400 4
=
(Va—V) S o0 ]
(Ver)r=Vr— —5=— CIVREE -
2E &
=
2
3
2
i

_1200.{.I.I.L.I.I.I‘I‘I

W=—-1000 MeV, R;=1.688 fm, a;=0.763 fm.

relativistic spin-zero nucleus-nucleus scattering. potential are calculated from Eq€0) and(39), respectively,
and shown by solid lines in Fig. 1. It is interesting to note
Ill. APPLICATION AND DISCUSSION that the effective real part of the potential is repulsive at

short distances, although the potential itself is attractive.

We test the theory for three types of complex potentialsOnly ten partial waves contribute to the scattering process
for a shallow and a deep monotic potential and a nonand one can calculate ten valuesZyf(l). For the inverse
monotomic one. All calculations have been performed forproblem, these ten values @f(1) are given as inputs. From
163.3 MeV incident uncharged pion dfCa target. For this these, the effective potential at 11 points has been deter-
purposeZ (N) is calculated from a given potential by solv- mined and are shown in Fig. 1 as open circles. These follow
ing Eq. (15). These are, then, used as inputs for the inverselosely the input potential. Thus, one can determine the
problem to determine the potential &t{(1) points. The first  points of this type of potentials rather accurately by this in-
potential chosen is relevant to pion scattering8@a and  verse scattering method.
used by Satchlef10] to fit the data at angles other than  The second potential considered has a deep real part and
backward ones. It is given by moderate imaginary part and is taken to be
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FIG. 2. The real and imaginary parts of the effective potential FIG._3. The real and imaginary part§ Of. the effective pot_ential
V,(r) given by Eq.(42) are shown as solid lines. The open circles Vy(r) given by Eq.(43) are shown as S.‘O"d Ilnc_as. The open cwcle_s
are the calculated points of the potential obtained from the solutio®', (€ calculated points of the potential obtained from the solution

of the inverse problem. of the inverse problem.
v W Vo=—9 MeV, Ry=4.271 fm, a3=0.305 fm,
Vyo(r)= +i ,
2( 1+exd(r—Rp)/ap]  1+exfd(r—R;)/A{] V,=50 MeV,
(42)

with R,=1.50 fm, W=-20 MeV, R;=1.688 fm,

V=-500 MeV, Ry=2.271 fm, a;=0.305 fm, a;=0.763 fm.

W=-50 MeV, R;=1.688 fm, a;=0.763 fm. The real and imaginary part of the effective potential for

V3(r) are shown in Fig. 3 as solid lines. It is interesting to
The real and imaginary parts of the effective potential fornote that the real and imaginary parts are of moderate
V,(r) are plotted in Fig. 2 as solid lines. The effective realstrengthsz,(N) is then calculated for each partial wave and
part is strongly attractiveZ)(N) calculated from this poten- used as an input for the inverse problem. The potential de-
tial is used as inputs for the inverse problem. The calculate¢ermined from the inverse problem are shown as open circles
values of the potential determined at eleven points are showin Fig. 3. Once again the points of the potential determined
as open circles in Fig. 2 and once again the agreement fsom the inverse problem are very close to the actual ones.

satisfactory. At this point, it is appropriate to discuss the strength and
The third potential)V/3(r) is chosen to be a nonmonotonic the limitation of the method. The number of points of a po-
one with moderate absorption and given by tential function determined by the method is equal to one
plus the number of partial waves contributing to the cross
\% section. If the number of partial wave is small compared to

Vy(r) = 0 +Vy exp — 1/R,) P P

1+exd (r—Rg)/ag]

_ W
T exd(r—Ry/ag]’

the range of the potential, the step size, i.e., the interval
between two adjacent points of the potential is large and the
43) replacement of differential equation by difference equation is
not a good approximatiof3—6]. On the other hand, if the
number of partial waves are large resulting into very small
with but a large number of step sizes, the error at each point, even
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though small, accumulates. As noted in the analysis of Leelar potential for that systerf6]. The information about the
[11] and in[3-6], this propagation of error may, in some interior part of the potential is to be treated with caution.
cases, make the determination of the points in the interior

region uncertain. For a large number of partial waves each IV. CONCLUSION

having very small phase shift, the error propagation may also  The jnverse scattering method at a fixed energy applied to
lead to the loss of information in the interior region as notedine Klein-Gordon equation can determine reasonable infor-
by Leeb. mation about spherical symmetric potentials at least in the

The method is best suited for the incident energy rang@nergy range considered here. The success of the method
that provides information on 10 to 20 partial waves for po-depends on the number of partial waves involved and accu-
tentials having 6 to 10 F range. In general, the method igate determination of the logarithmic derivativi&,(N), at
useful in determining the surface and overall shapes of pothe boundary. Since the Klein-Gordon equation is effectively
tentials. For example, the application of the method to thea Schralinger equation with an energy-dependent potential,
a-1%C system has ruled out the potential to be a deef{6he the method may, in some cases, be suitable for en@mgy
and to the'?C-1%C system points towards a complex molecu- momentunrdependent potentials.
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