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Nuclear liquid-gas phase transition
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The microscopic theory of the nuclear matter equation of state at finite temperature is developed within the
Bloch–De Dominicis diagrammatic expansion. The liquid gas phase transition of symmetric nuclear matter is
identified, with a critical temperatureTc'20 MeV, using the Argonnev14 as the bareNN interaction and a
phenomenological three-body force adjusted to give the correct saturation point. Pure neutron and asymmetric
matter, relevant to supernovae explosions, are also studied. It is found that the liquid-gas phase transition
disappears at asymmetriesa.0.9. At the bounce-off of the supernova collapse, temperatures of several tens of
MeV are reached and we find that the compressibility steeply increases at such temperatures. Finally, we find
that the equation of state gives a ‘‘limiting temperature’’ of finite nuclei consistent with the experimental
observation in compound nucleus reactions. A careful analysis of the diagrammatic expansion reveals that the
dominant terms are the ones that correspond to the zero-temperature Bethe-Brueckner-Goldstone diagrams,
where the temperature is introduced in the occupation numbers only, represented by Fermi distributions, thus
justifying this commonly used procedure of naively introducing the temperature effect.
@S0556-2813~99!04201-6#

PACS number~s!: 21.65.1f, 26.50.1x, 26.60.1c, 25.70.2z
av
er

t-
ra
o
e
he

of
ct
n
it
ng
ul
e

ra
ve
e

tt
i

tio
S
m
u
th

m
d

-
he
rme
id-

f-
ge
ure

dif-

n
in

al
the
al-

cis
s
ed
or-

d
the

in
ec.

tric
is
are
I. INTRODUCTION

The equation of state~EOS! of nuclear matter at finite
temperature is of great interest in the physics both of he
ion collisions and of supernova explosions. In recent exp
ments on heavy ion collisions at intermediate energies@1–3#
the so-called ‘‘caloric’’ curve was determined. After selec
ing peripheral collisions, a quantity related to the tempe
ture is defined through the yield of different light isotopes
the slopes of the light particle spectra. This quatity is th
plotted as a function of the total excitation energy of t
projectilelike fragments. In some cases@1# this plot presents
a well-defined plateau, which is interpreted as evidence
first order phase transition. Since nuclear matter is expe
to undergo a liquid-gas phase transition, this can be take
evidence of such a theoretical prediction. However, fin
size effects and Coulomb corrections can drastically cha
the expectations based on infinite nuclear matter calc
tions. Indeed, the temperature at which the plateau is pres
about 5–6 MeV, is much smaller than the critical tempe
ture for the nuclear matter liquid-gas phase transition deri
from Skyrme force models@4#. The plateau could actually b
the evidence for a different type of instability@5,6#. In any
case, the theoretical determination of the nuclear ma
equation of state on a firm basis could be of great help
interpreting this set of experiments.

Concerning the astrophysical relevance, we can men
the latest stage of the supernova collapse, where the EO
asymmetric nuclear matter at finite temperature plays a
jor role in determining the final evolution. The EOS is act
ally one of the most uncertain elements which enters in
collapse simulations.

Microscopic calculations of the nuclear EOS at finite te
perature are quite few. The variational calculation by Frie
PRC 590556-2813/99/59~2!/682~22!/$15.00
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man and Pandharipande@7# was one of the first few semi
microscopic investigation of the finite temperature EOS. T
results appear fairly close to the predictions based on Sky
force models: symmetric nuclear matter undergoes a liqu
gas phase transition, with a critical temperatureTc
518–20 MeV. Different types of Skyrme forces give di
ferent critical temperatures, but they all lie close to this ran
of values. Later, Brueckner calculations at finite temperat
@8# confirmed these findings with very similar values ofTc .
The most recent calculations were presented in Ref.@9#,
where, however, a smaller value ofTc was found, Tc
'10 MeV. In Ref.@9# the full finite temperature formalism
by Bloch and De Domicis@10# was followed. This discrep-
ancy with previous calculations could be ascribed to the
ferent nucleon-nucleon (NN) force used, to the improved
many-body formalism, and finally to the different definitio
adopted for the single particle potential, as we will discuss
detail below.

In view of the fundamental relevance of the theoretic
prediction of the nuclear EOS at finite temperature, up to
possible critical point, we have performed a systematic c
culation of the EOS on the basis of the Bloch–De Domini
formalism with a realisticNN interaction. Three-body force
~3BF’s! were also introduced, since, as is well establish
@11#, the phenomenological saturation point cannot be c
rectly reproduced with two-body forces only.

In Sec. II the finite temperature formalism by Bloch an
De Dominicis is discussed in detail, in order to be used in
numerical applications. Three-body forces are described
Sec. III. The EOS at finite temperature is discussed in S
IV for symmetric nuclear matter, neutron, and asymme
matter. In Sec. V, the limiting temperature of finite nuclei
studied along the nuclear stability line. Final conclusions
drawn in Sec. VI.
682 ©1999 The American Physical Society
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PRC 59 683NUCLEAR LIQUID-GAS PHASE TRANSITION
II. FINITE TEMPERATURE FORMALISM

A. Bloch–De Dominicis approach

The study of a many-body system at finite temperatu
according to perturbation theory, has been developed
many authors along different lines. One can mention,
example, the finite temperature Green’s function meth
originally devised by Matsubara@12#, the thermofield ap-
proach @13#, and the Bloch–De Dominicis linked diagram
expansion. The first one is more suited to the study of
single-particle properties of a many-body system. In this f
malism the grand-canonical potential is expanded in irred
ible connected diagrams involving an increasing numbe
finite temperature Green’s functions and interactions. T
expansion is therefore in the strength of the particle-part
interaction. For a system of strongly interacting particles a
in presence of a hard core, like in nuclear matter, the c
vergence of the expansion is at least doubtful and it is d
cult to select physically the relevant diagrams to be
summed.

The Bloch–De Dominicis~BD! expansion of the grand
canonical potential has the property to lead, in the ze
temperature limit, to the Bethe-Brueckner-Goldstone~BBG!
expansion of the ground state energy. The latter is the ex
sion in the number of hole lines which univocally corr
sponds to the order of correlations considered. At the tw
hole-line level the Brueckner approximation requires
introduction of a self-consistent single-particle potent
@14,15#. At the three-hole-line level one gets the Beth
Fadeev equations for the three-particle reaction mat
which includes in the kernel the Brueckner two-body re
tion matrixG. The hole expansion is expected to converge
nuclear matter, at variance with the expansion in
nucleon-nucleon interaction, since theG matrix can be
viewed as a renormalized interaction in the medium,
which the effect of the strong core repulsion is largely
duced. Studies of the convergence of the expansion con
this expectation@16#.

The BD formalism nicely extends the BBG expansion
finite temperature, and therefore allows us to follow in
clear way the different contributions and their evolution w
temperature. In this work we will adopt the BD formalism
which will be described in some detail in the following.

As in the BBG expansion at zero temperature, let us
troduce an auxiliary single-particle potentialU in such a way
that the full nuclear HamiltonianH5H01v is rewritten as
,
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H5H081H1 , with H085H01U andH15v2U, wherev is
the nucleon-nucleon interaction. The potentialU has to be
chosen in a way that use of the perturbation expansion inH1
is justified. This means that in the perturbative expans
diagrams involving potentialU insertions compensate highe
order diagrams occurring in the original expansion of t
interactionv. In this way the same expansion is rearrang
with a greatly improved rate of convergence. Since the
perturbed HamiltonianH08 is still a one-body Hamiltonian

H085(
k

ekak
†ak5(

k
S \2k2

2m
1U~k! Dak

†ak , ~1!

the perturbation expansion is the same as the one in term
v, provided the single-particle spectrum is redefined asek
and the so-called potential insertion diagrams are introduc
In Eq. ~1! the operatorsa and a† are the annihilation and
creation operators for the single-nucleon statek, where the
labelk indicates the wave vectorkW and spin-isospin variable
s,t.

The BD formalism is developed within the framework
the grand-canonical representation of statistical mechan
The grand-canonical potentialV is written as the sum of the
unperturbed potentialV08 and a correlation termDV,

V5V081DV, ~2!

corresponding to the one-body grand-canonical potential
a power series expansion in the interactionH1 involving
connected diagrams only, respectively. The unperturbed
tential is defined by

V085V02(
k

Ukn~k!, ~3!

with V0 the grand-canonical potential of the independe
particle HamiltonianH08 , and the summation overUk repre-
sents the first potential insertion diagram, to be discus
below. Therefore,V08 includes all one-body correlations. Th
explicit form of the correlation termDV is
V2V085E
2`

` e2bv

2p
dv (

p51

`

~21!p
i

p
TrFebmNS H1

1

H02v2 i e D pG
c

2E
2`

` e2bv

2p
dv (

p51

`

~21!p
i

p
TrFebmNS H1

1

H02v1 i e D pG
c

5E
2`

` e2bv

2p
dv (

p51

`

~21!p
2

p
ImH TrFebmNS H1

1

H02v1 i e D pG
c
J , ~4!
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whereb is the inverse temperature 1/T, m the chemical po-
tential, andN the total number of particle operator. Th
quantity v is the energy integration variable. The symb
‘‘Im’’ means imaginary part and thee→01 limit has to be
considered; finally, ‘‘Tr’’ indicates the trace operation. Fo
mally this expression resembles closely the correspond
linked cluster expansion of the ground state energy in
zero-temperature case@17#. The trace can be calculated
terms of the finite temperature diagrams introduced by B
These diagrams are also very similar to the zero-tempera
Goldstone ones, with two main differences; namely, they
drawn on a cylindrical surface instead of a plane and all li
appearing in a diagram are particle lines. The need for
surface, instead of the usual plane, comes from the pres
of the trace operation. Drawing a specific diagram on a pl
surface leads to open diagrams where the entry and the
external lines are labeled by the same momenta. This
gests naturally the idea of joining the lines with the sa
momentum, thus generating a cylindrical surface. The labc
in Eq. ~4! indicates that only connected diagrams must
included in the expansion, which is a consequence of
exponential formula for the partition function@10#. As an
example, in Fig. 1~a! is depicted the first order diagrams, th
Hartree-Fock terms, which corresponds to the ze
temperature diagrams of Fig. 1~b!. The distinctive feature of
the BD expansion is the appearance of the so-called ‘‘
rals’’ in the diagrams, lines which undergo one or more tu
around the cylinder without being attached to any inter
tion. They correspond to a series of contractions between
creation operators defining the particle states, on the left
on the right of the interaction operator, whose trace is ca
lated. The whole set of diagrams can be generated by
sidering the diagrams without any spirals and adding to th
the spirals in all possible combinations. The diagrams
obtained from a given original diagram without spirals c
be summed up explicitly and it amounts to the introduct
of a statistical factorn.512n(k), for each line labeled by
the momentumk, n(k) being the Fermi-Dirac distribution. I
is therefore enough to consider only diagrams without a

FIG. 1. The Hartree and Fock terms in the Bloch–De Domini
~BD! finite temperature perturbation theory~a!. The solid external
lines represent particle propagation, while the dashed lines, joi
two vertices~dots!, represent the damped interaction of Eq.~5!. The
corresponding zero-temperature diagrams of the BBG expan
are depicted in~b!.
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spiral and insert a factor 12n in each line. This process i
equivalent to the substitution of the original two-body inte
actionv with a ‘‘damped’’ interactionV,

^k1k2uvuk3k4&→^k1k2uVuk3k4&

[n.~k1!1/2n.~k2!1/2^k1k2uvuk3k4&

3n.~k3!1/2n.~k4!1/2. ~5!

The trace expansion can therefore be rewritten in terms
the damped interaction. Restricting the summation to c
nected diagrams without spirals one obtains

V2V085E
2`

` e2bv

2p
dv (

p51

`

~21!p

3
2

p
ImH TrFebmNS V 1

H02v1 i e D pG
c,NS

J , ~6!

where the subscriptNS means diagrams without spirals. It
noticeable that the only nontrivial dependence on the te
perature is contained now in the factorsn. of the damped
interaction. Thev integration is equivalent to a contour in
tegral in the complex plane which encloses the real a
counterclockwise. The use of this alternative representa
in terms of a contour integral, instead of Eq.~6!, is decided
according to convenience.

Let us now discuss the contribution of two-body corre
tions to the grand-canonical potential. As in the ze
temperature Brueckner theory, one has to sum up the ‘‘l
der’’ series of diagrams. The first terms of the series is
Hartree term of Fig. 1, together with the exchange Fo
term. The series continues with the terms depicted in Fig
These pictures are assumed to include also the correspon
exchange diagrams. It turns out that the series can be
mally summed up exactly, and one gets

V2V085
1

2
e2bmE

2`

` e2bv

2p
dv (

n51

`
~2 !n

n

3Tr2$@K~v!pd~H02v!#n21%,

5
1

2
e2bmE

2`

` e2bv

2p
dv

3Tr2$arctan@K~v!pd~H02v!#%, ~7!

with the integern restricted to odd values. The trace in th
previous equation, Tr2 , is taken in the space of antisymme
trized two-body states and the two-body scattering matrixK
is defined by

^k1k2uK~v!uk3k4&

5@n.~k1!n.~k2!n.~k3!n.~k4!#1/2^k1k2uK~v!uk3k4&,

~8!

s

g

on
FIG. 2. Two-body ladder series in the BD expansion with the same notation as in Fig. 1.
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where the scattering matrixK satisfies the integral equation

^k1k2uK~v!uk3k4&

5^k1k2uvuk3k4&1 (
k38k48

^k1k2uvuk38k48&

3
n.~k38!n.~k48!

v2e
^k38k48uK~v!uk3k4&. ~9!

Equation~9! coincides with the Brueckner equation for theG
matrix at zero temperature, if the single-particle occupat
numbers are taken atT50. It has to be noticed that only th
principal part has to be considered in the integration, t
makingK a real matrix. This expression is the most straig
forward generalization of the BruecknerG matrix at finite
temperature, in the sense that the only modification is
temperature dependence in the Fermi functionn. . In Eq.~7!
the temperature dependence is more involved. Howeve
one considers the first term in the expansion of the arc
function, it reduces to

V15
1

2 (
k1k2

n~k1!n~k2!^k1k2uK~ek1
1ek2

!uk1k2&A ,

~10!

which defines the grand-canonical potential in total analo
with the BBG binding potential. The explicit forms both o
the complete expression of Eq.~7! and of the first order term
of Eq. ~9! are given also in Appendix A.

It is necessary to discuss now the choice of the sing
particle auxiliary potentialU. First of all, the use of the
‘‘continuous’’ @18# choice is somehow mandatory, since
finite temperature there is no longer a sharp distinction
tween particle and hole states. In the original BD work,
was suggested to introduce a single-particle potential, in s
a way that the first order potential insertion is just equal
minus twice the contribution of the ladder sum, in analo
with the Brueckner zero-temperature case. However, one
consider a general potentialU and the first potential insertion
of Eq. ~3!, as depicted in Fig. 3. In the zero-temperature c
this potential insertion contribution cancels out exactly
potential part of the single-particle contribution coming fro
H08 , irrespective of the particular choice ofU, as will be
discussed in Sec. II C.

In the zero-temperature case, the choice of the sin
particle potential fork,kF is such that the potential insertio
diagram in the lower part of Fig. 4~b! cancels out exactly the
three-hole ‘‘bubble diagram’’ in the lower part of Fig. 4~d!.
This is actually possible in virtue of the Bethe-Brando
Petschak~BBP! theorem@19#, which ensures that theG ma-

FIG. 3. The first potential insertion in the BD expansion. T
cross indicates the auxiliary potentialU.
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trix appearing in the self-energy insertion in the hole line
Fig. 4~d! can be taken on shell. This choice is therefo
equivalent to the definition

U~k1!5(
st

(
k2

^k1k2uG~v!uk1k2&AQF~ uk2u!, ~11!

whereQF(uk2u)51 for k,kF and zero otherwise. This sug
gests, at finiteT, an alternative definition ofU(k) in terms of
K,

U~k1!5(
st

(
k2

^k1k2uK~v!uk1k2&An~k2!. ~12!

This is also consistent with the natural interpretation of theK
matrix, as the scattering matrix in the medium at finite te
perature. One can indeed see that the mentioned cancell
between the bubble diagram and the potential insertion
gram of Fig. 4 is still valid at finite temperatures, once t
single-particle potential of Eq.~12! is adopted.

According to the general expansion of Eq.~6!, a general
diagram of orderp has the structure of a trace, withp
damped interactionsV and energy denominators. Furthe
more, the energy integration has to be taken along the
axis. Of special interest are the diagrams which corresp
to the ones appearing in the zero-temperature BBG exp
sion, where the Fermi step function is replaced by the fin
temperature Fermi distributionn(k). This set of finite tem-
perature diagrams can be called the ‘‘naive’’ finite tempe
ture BBG ~NTBBG! expansion, in the sense that the tem

FIG. 4. Generic potential insertion diagram with two partic
lines ~a!, which reduces to the hole and particle potential insert
diagrams of the BBG expansion at zero temperature depicted in~b!.
Generic three-particle-line diagram in the BD expansion~c! which
reduces to the hole and particle bubble diagram in the BBG exp
sion ~d!.
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686 PRC 59M. BALDO AND L. S. FERREIRA
perature enters only in a straightforward way through
extension of the Fermi function to finite temperature. In ge
eral, these diagrams are expected to be the dominant o
since all the others contain at least one factorn(k)n.(k),
which is small, especially at temperatures not too high. T
will be clearly seen below, in the case of the finite tempe
ture Brueckner-Hartree-Fock approximation, which includ
the two-body correlations.

The same happens indeed, in the case of the diagram
Fig. 4, which are the diagrams involved in the cancellat
between the single-particle insertion and the bubble diagr
Figure 4~a! indicates the lowest order diagram with one p
tential insertion. The explicit expression reads

DU5
i

2EC

e2bv

2p
dv(

$k%
(

p
~21!p

3
1

p

^k1k1
8uVuk2k2

8&
ek2

1ek2
82v

^k2k2
8uVuk3k3

8&
ek3

1ek3
82v

3•••^kmkm
8uVukk8&

U~k8!

~ek1ek82v!2

3
^kk8uVukm11km11

8&
ekm11

1ekm11
82v

^km11km11
8uVukm12km12

8&
ekm12

1ekm12
82v

3•••

^kp21kp21
8uVuk1k1

8&
ek1

1ek1
82v

, ~13!

where C indicates the contour integration in the compl
plane around the real axis. Apparently, this integral recei
contributions from the first order singularities of the ener
denominators of the ladder series, as well as from the do
poles of the quadratic energy denominator. Using the res
theorem, one can check that the first set of poles gives ris
the following result:

DU
~1!5

1

2 (
$k%

3
^k1k1

8uKukk8&n.~k!U~k8!n.~k8!^kk8uKuk1k1
8&

~ek1ek82ek1
2ek1

8!2

3n~k1!n~k1
8!, ~14!

where we have summed up the ladder series to get the
tering matrix of Eqs.~8! and ~9!, and used the identity
e2b(ek1

2m)n.(k1)5n(k1). The contributionDU
(1) coincides

with the zero-temperature diagram of the upper part of F
4~b!, except that each one of the Fermi step functions
now replaced by the finite temperature distribution.

Analogously, one finds that the contributionDU
(2) coming

from the double pole corresponds to the lower diagram
Fig. 4~b!, that is, to the hole potential insertion,
e
-
es,
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DU
~2!5

1

2 (
$k%

3
^k1k1

8uKukk8&n~k!U~k8!n~k8!^kk8uKuk1k1
8&

~ek1ek82ek1
2ek1

8!2

3n.~k1!n.~k1
8!. ~15!

A closer inspection of the analytical form of Eq.~13! shows
actually that other contributions can appear, originated
possible double or higher poles coming from the possi
energy degeneracies of the denominators. These correc
give rise to other finite temperature diagrams, which van
at zero temperature since they contain factorsnn. , as dis-
cussed above. They are expected to be a minor correctio
not too high temperature and not too low densities. This
true for all diagrams belonging to this set, with the except
of the ones describing the shift in the chemical potential@20#,
which do not vanish indeed, in the zero-temperature lim
The latter are included in our self-consistent procedure@21#.

The simplest three lines diagrams, withoutU insertion,
are depicted in Fig. 4~c!. They represent a set of three
particle diagrams with an arbitrary number of ladder inter
tions between the two pairs of particles. Proceeding alo
the same lines, one can show that they introduce the
grams of Fig. 4~d!, which are the particle and hole bubb
diagrams of the BBG expansion, again with the temperat
Fermi distributions replacing the step functions. The pre
ous considerations about higher pole contributions also
plies for the particle bubble diagram.

As in the case of zero temperature, the lower diagram
Figs. 4~b! and 4~d! cancel each other, which justifies th
choice of Eq.~11! for the single-particle potential. We wil
see, anyhow, that this choice will differ in practice only litt
from the BD choice.

Equations~9! and~12! have to be solved self-consistent
for the single-particle potentialU, and for a fixed chemica
potential and temperature. This can be achieved, in princi
with an iterative procedure as in the case of zero temp
ture.

Three-body or higher order correlations could, in pri
ciple, be treated along the same lines, even if the theor
not yet formally developed. However, there is strong e
dence that the ‘‘continuous’’ choice forU is able to incor-
porate most of the higher order contributions at zero te
perature@22#, at least up to densities a few times larger th
saturation. It can be expected that this holds true also at fi
temperature, and therefore we will restrict all the calculatio
up to two-body correlations only.

As shown in Appendix A, the grand-canonical potent
for symmetric nuclear matter can be written as

V5V081DV, ~16!

where

V08

V
[v08

52
2

p2E
0

1`

k2dkF 1

b
ln~11e2b~ekm!!1U~k!n~k!G

~17!
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and m the chemical potential. The interacting part of t
grand-canonical potential is given explicitly by

DV

V
[Dv5

2

~2p!3(
lSJT

Ĵ2T̂2E dqE P2dPe2b~ĒPq22m!

3d~q,P!arctanFp@qluKSJT~ĒPq!uql#q2Q̄~q,P!

d~q,P!
G ,

~18!

where the density of stated is given by

d~q,P!5U]ĒqP

]q
U5U2\2q

m
1

]

]q
ŪqPU. ~19!

The two-particle energyĒqP , the Pauli operatorQ̄qP ,
and the potential felt by two particlesŪqP , are all angle
averaged quantities, as explained in Appendix A. Th
angle averages are common in BBG calculations and
expected to be accurate, allowing us to make the contribu
of different channels additive, since, then, only the diago
part of K contributes. In practice, these angle averages
not needed for the first term of Eq.~10!, and they will be
used only in the evaluation of the higher order contributio
The quantum numberslSJT specify the two-body channe
and Â5A2A11.

B. Thermodynamical quantities

Once the grand-canonical potential is obtained, the p
sure p̃ is immediately extracted, in principle, from the rel
tion p̃52v[2V/V. The latter gives the pressure as
function of the temperatureT and the chemical potentialm,
which can be considered the searched EOS. Then the de
r could be extracted from the relationr52]V/]m. How-
ever, it has been found@23# that this procedure leads to nu
merical instability. To overcome this difficulty, one can sta
from the density and fix the chemical potentialm̃ from the
relation

r5(
k

n~k!5(
k

1

eb~ek2m̃ !11
, ~20!

which is an implicit equation for the chemical potential. Th
equation is mainly a mean field approximation for the de
sity, and therefore the corresponding chemical potentia
denoted bym̃, in order to be distinguished from the exa
one m. This equation is solved at each step of the iterat
procedure with Eqs.~9! and~12!. In general, this mean field
relation is not fully consistent with the one derived direc
from the grand-canonical potential, which contains also
contribution from two-body correlations. It is expecte
therefore, that this inconsistency leads to a violation of so
of thermodynamical equalities. Indeed, one finds in parti
lar that the pressurep̃ extracted directly from the grand
canonical potential, as mentioned above, does not coin
with the pressure extracted fromp5r2] f /]r, wheref is the
free energy per particle. As discussed in Appendix B, t
discrepancy expresses a violation of the generali
e
re
n
l

re

.

s-

ity

t

-
is

e

e

e
-

de

s
d

Hugenholtz–Van Hove theorem@24#. Physical arguments, a
shown in the same appendix, suggest that the correct pr
dure is the one involving the free energy. In the practi
calculations we then adopt the following procedure. Fo
given density and temperature we solve the self-consis
equations along with the Eq.~20! for the chemical potential,
and obtain the grand-canonical potentialv. Finally we ex-
tract the free energy per particlef from the relation

f 5vr1m̃. ~21!

The pressure is calculated performing a numerical deriva
of f.

A derivation is often found in the literature for both th
grand-canonical potential and the free energy, in which o
calculates directly the internal energyE by extending the
Brueckner expression to finite temperature within the ‘‘n
ive’’ TBBG expansion. Then, for the entropyS5S(T,m̃),
the mean field approximation is used:

S52(
k

$n~k!ln n~k!1@12n~k!# ln@12n~k!#%.

~22!

The total free energy is then given byF5E2TS, and the
grand-canonical potentialV5F2m̃N, whereN is the total
number of particles. This procedure mainly neglects the
fect of the two-body correlations on the entropy and t
higher order terms of the arctan expansion in the expres
for the grand-canonical potential, Eq.~18!. A comparison of
the two methods is discussed in the following.

Using instead the formalism developed in Sec. II A, t
entropy can be extracted, once the free energy is obta
from Eq. ~21!, by the standard relation

S~N,V,T!5S ]F~N,V,T!

]T D
V

. ~23!

In this way the effect of correlations on the entropy is i
cluded, since the temperature derivative involves also
finite temperature Brueckner contribution of Eq.~18!.

C. Zero-temperature limit

It is instructive to look closely at the low temperatu
region of the present formalism. The independent part
partV08 of the grand-canonical potential of Eq.~17! reduces,
for b→1`, to

v08'
2

p2E k2dk@~ek2m!2U~k!n~k!#

'
2

p2E k2dk@ tk2m#5E02mr, ~24!

wheretk is the single-particle kinetic energy andE0 the free
particle ground state energy. Therefore, in this limit,v08
gives the free particle contribution. This result does not
pend on the particular choice of the auxiliary potentialU.
This cancellation occurs also in the zero-temperature B
formalism.
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688 PRC 59M. BALDO AND L. S. FERREIRA
As mentioned above, the interacting partDv reduces to
the Brueckner potential energy part in the low temperat
limit, and therefore one gets

v'EB2mr, ~25!

whereEB is the Brueckner ground state energy. Therefo
the free energyF coincides withEB , as expected at zer
temperature.

III. CORRECTIONS COMING FROM THREE-BODY
FORCES

As is well known, the Brueckner approximation is unab
to reproduce the correct phenomenological saturation po
Higher order terms in the hole-line expansion turn out to
much smaller, which indicates the convergence of the B
expansion already at the two-hole-line level of approxim
tion, provided the ‘‘continuous’’ choice for the single
particle potential is adopted. One has to assume that
three-body forces must be included in the nuclear Ham
tonian. Unfortunately, such forces, derived from first pr
ciples, are not yet available. The most complete study
three-body forces based on meson exchange theory is the
presented in Ref.@25#, where most of the contributing pro
cesses were estimated, including phenomenological f
factors, but still keeping consistency with two-body force
Still large uncertainties are present, which lead many auth
to introduce schematic three-body forces, with a struct
suggested also by meson theory. The few parameters ap
ing in these forces are then adjusted in order to reproduce
correct saturation point and possibly the binding energy
the three-body nuclear systems. In particular the Urbana@26#
interaction has such characteristics. It includes two ter
one attractive and the other repulsive,

Vi jk5Vi jk
2p1Vi jk

R . ~26!

The two-pion exchange contribution is a cyclic sum over
nucleon indicesi, j, k of products of anticommutator an
commutator terms,

Vi jk
2p5A(

cyc
S $Xi j ,Xjk%$t i•t j ,t j•tk%

1
1

4
@Xi j ,Xjk#@t i•t j ,t j•tk# D , ~27!

where

Xi j 5Y~r i j !s i•s j1T~r i j !Si j ~28!

is the one-pion exchange operator,s andt are the Pauli spin
and isospin operators, andSi j 53@(s i•r i j )(s j•r i j )2s is j # is
the tensor operator.Y(r ) andT(r ) are the Yukawa and ten
sor functions, respectively, associated with the one-pion
change interaction. The curled and square parentheses
cate the anticommutator and commutator, respectively.
summation is extended to the cyclic permutations of
three interacting particles. The repulsive part is taken as

Vi jk
R 5U(

cyc
T~r i j !

2T~r jk!2. ~29!
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The strengthsA (,0) andU (.0) can be fitted in order to
reproduce the binding energy of triton and3He and the em-
pirical nuclear matter parameters. It appears very difficul
fit simultaneously all these quantities, probably beca
three-body forces are in principle different for different sy
tems. Therefore we prefer to adjustA and U to the nuclear
matter saturation point only. Once these parameters
fixed, the whole nuclear matter EOS can be obtained.
values A520.0329 andU50.00361 have been found t
give an accurate saturation point.

The method of including this interaction in the man
body scheme follows Ref.@27#, where the three-body inter
action is reduced to an effective two-body one, by an av
aging over the third particle coordinates@23#. In this average
the weight is given by the probabbility to have two particl
at a certain distancer, that is, the two-body correlation func
tion, which is reported in Fig. 5 for different densities an
temperatures. The temperature dependence is quite weak
in the actual calculations it has been neglected. More de
are given in Appendix C. The final form for the attractiv
part of Eq.~27! has the following structure:

v3
e f f5vS~r i j !~s i•s j !1vT~r i j !Si j , ~30!

where the spin and tensor form factorsvS andvT are simple
integrals involving the functionsY and T, as explained in
Appendix C. This effective force is added to the nucle
HamiltonianH, and the calculations proceed along the sa
ordinary Brueckner scheme with only two-body forces, bo
at zero and finite temperature.

IV. THE EQUATION OF STATE AT FINITE
TEMPERATURE

According to the formalism developed in the previo
sections, to obtain the EOS at finite temperature one ha
start solving Eqs.~9! and ~12! self-consistently for the
single-particle potentialU at a fixed density and temperatur
This implies that the chemical potentialm̃ must be extracted
at each step of the iterative procedure from Eq.~20!. The
procedure is quite analogous to the corresponding one at

FIG. 5. Correlation function calculated at zero initial relativ
momentum in the1S0 channel for different densities and temper
tures. The rectangular curve indicates the approximation use
calculating the three-body force of Eq.~C3! in Appendix C.
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PRC 59 689NUCLEAR LIQUID-GAS PHASE TRANSITION
temperature. Once theU potential and theK matrix are ob-
tained, both unperturbed and interacting componentsV08 and
DV of the grand-canonical potentialV of Eq. ~16! can be
calculated, following Eqs.~17! and ~18!. As discussed in
Appendix A, we prefer to separate the first term of the arc
expansion in Eq.~7!, which gives the contributionv1 , de-
fined in Eq.~A11!, to the grand-canonical potential. The co
tribution coming from all the other terms in the power e
pansion will be denoted byvh . The first termv1 is indeed
the two-body correlation term, namely, the Brueckner
proach, in the ‘‘naive’’ finite temperature BBG expansio
introduced in Sec. II. The free energy is then calculated fr
Eq. ~21!, wherem̃ is the chemical potential extracted fro
the density, as mentioned above.

FIG. 6. Free energy of symmetric nuclear matter as a functio
density and temperature. The dots represent the calculated v
and the solid lines the spline fitting. The upper, middle, and low
figures report the results without 3BF’s, with 3BF’s, and for the fr
gas model. The free energy is a decreasing function of tempera
and in each figure the upper curve corresponds toT50 and the
lower ones to temperatures of 8, 12, 16, 20, 24, 28 MeV.
n

-

A. Symmetric nuclear matter

1. Critical temperature and critical density

Following this procedure, the results of the numeric
evaluation of the free energy in symmetric nuclear ma
with the Argonnev14 potential@28# as the bareNN interac-
tion v are shown in Fig. 6, with and without the inclusion
three-body forces. The calculations were performed incl
ing all the channels up toJ54 and with a cutoff in momen-
tum of the single-particle potential equal tokc56 fm21.
The limitations inJ and momentum are quite appropriate
the density region pertinent to the liquid-gas phase transit
In Fig. 6 the dots represent the calculated values and
solid lines a polynomial fit, essential for the numerical d
rivative needed to obtain the pressurep5r2] f /]r and the
chemical potentialm of Eq. ~B2!. At T50 the free energy
coincides with the total energy and the corresponding cu
is just the usual nuclear matter saturation curve. The
evance of three-body forces is immediately seen from
shift of the saturation point to kF'1.4 fm21,
e'216 MeV, close to the empirical one. The effect
these forces is also very small at low densities and beco
larger at increasing densities, where a much stronger re
sion is apparent. The steepness of the EOS at higher den
can depend of course on the particular three-body force
troduced in the calculations, but the region around satura
is expected to be insensitive to the details of the force us
since they are constrained to reproduce this region. The c
cal point of the EOS should also be insensitive to the fo
since it occurs at very low density, of order ofr0 /3
2r0 /2.

It is interesting to separate out the contributionv1 to the
free energy coming from the first term of the power expa
sion of the arctan function of Eq.~7!. This is done in Table I,
for few characteristic temperatures and densities. As
plained in Appendix B, the higher power terms in the expa
sion become vanishing small at low temperature. From Ta
I one can conclude anyhow that, in the temperature and d
sity range we are interested in, the contributionsvh of these
higher order terms are at most a few percent ofv1 , and
therefore they can be neglected still maintaining a good
curacy in the final result. This is equivalent to restricting t
calculation within the naive finite temperature BBG expa
sion, the NTBBG scheme introduced in Sec. II. In this ca
the procedure we have followed to extract the free ene
turns out to be strictly equivalent to the alternative proced
which involves the entropy expression of Eq.~22!, as out-
lined at the end of Sec. II. Furthermore, for the same reas
the adopted definition of the single-particle potential of E
~12! differs very little from the choice advocated in the orig

TABLE I. Contributions~MeV! to the grand-canonical potentia
of the first termV1 in the expansion of the arctan function of E
~7!, in comparison with the higher order contributionVh .

T512 T524
kF V1 Vh V1 Vh

1.0 -22.822 0.311 -19.197 0.158
1.4 -39.213 0.403 -36.556 0.559
1.9 -36.411 0.652 -35.709 1.178
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690 PRC 59M. BALDO AND L. S. FERREIRA
nal work of Bloch and De Dominicis@10#. This finding jus-
tifies the procedure often followed in the literature for fin
temperature calculations in infinite nuclear matter@9# and in
Hartree-Fock calculations for finite nuclei as well@29#,
where the temperature only enters through the finite temp
ture single-particle Fermi distributions.

The full knowledge of the temperature dependence of
free energy is only obtained after a complex numerical p
cedure. A hybrid free fermion gas model, often adopted@30#,
provides a simplified procedure to estimate this tempera
dependence. In this schematic model one keeps fixed fo
temperatures the total internal energyE of nuclear matter and
equal to the one calculated at zero temperature for the
interacting model. The free energyF5E2TS is then calcu-
lated by using for the entropyS the free Fermi gas, namely
the expression of Eq.~22! with the occupation numbern(k)
derived from the free particle spectrumek5tk and the corre-
sponding chemical potential extracted from Eq.~20!. In other
words, the effect of correlations on the entropy is neglec
in the hybrid model. The results of this procedure are sho
in Fig. 6, including three-body forces inE. The free energy
appears to be systematically lower at all temperatures
comparison with the full microscopic calculation. As we w
see, this is due to lower values of the entropy when
interaction is introduced, since then the effective massm* is
smaller than the bare one, and in the low temperature re
the entropy is proportional to the effective mass,S/N
5p2T/EF , EF5\kF

2/2m* . The relevance of the compar
son with the hybrid free fermion model, which keeps t
correlations as frozen at zero temperature, is to show h
significant is the temperature dependence of the correlati

From the polynomial fit of the free energy it is easy
perform the numerical derivative that leads to the press
p5p(r,T). This is the most familiar form of the equation o
state and is reported in Fig. 7 and in Tables II and III. F
both cases, with and without three-body forces, the EOS
plays the van der Waals behavior typical of a liquid syst
undergoing a liquid-gas phase transition. The trend of
chemical potential as a function of density and tempera
has also the signature of the liquid-gas phase transition
fact, from the relation

r
]m

]r
5

]p

]r
, ~31!

one can see that at the critical point the first and sec
derivatives of the pressurep are zero and so are the corr
sponding derivatives ofm. This is apparent in Fig. 8, wher
the chemical potentialm of Eq. ~B2! is reported. The corre
sponding critical temperature can be traced from the
therm which presents an inflection point at the critical de
sity, both for the chemical potential and the pressure cur
as a function of density. Numerically this can be achieved
performing a further derivative of the interpolated free e
ergy of Fig. 6, identifying the isotherm which displays a
inflection point. This, however, might not be sufficiently a
curate. Therefore, we prefer to use an alternative metho
looking at the phase transition, which requires only first
der numerical derivatives, which is the specific cases of
chemical potential and pressure. It proceeds as follows
one plots the chemical potential as a function of the press
a-
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at different temperatures, as shown in Fig. 9, this plot sho
display the characteristic self-intersecting behavior, w
three branches corresponding to the liquid, vapor, and
stable regions of the equation of state. The point of inters
tion, observed, for instance, in the lower part of Fig. 9 for t
isothermT520 MeV, is the liquid-vapor coexistence poin
at that specific temperature, which disappears as the temp
ture increases above the critical one. However, our calc
tions do not touch the vapor region, occurring at very lo
densities; therefore the corresponding branch is absent,
cept for temperatures above 20 MeV. A complete repres
tation would require quite lengthy numerical calculations
the low density region, which slowly converge and require
very fine grid in the momentum discretization of the equ
tions. Anyhow, from our results it is possible to identify th
critical point.

FIG. 7. The pressure as a function of density and tempera
for symmetric nuclear matter. The upper, middle, and lower figu
report the results without 3BF’s, with 3BF’s, and for the free g
model. The pressure increases with temperature and in each fi
the isotherms correspond toT50, 8, 12, 16, 20, 24, 28 MeV.
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PRC 59 691NUCLEAR LIQUID-GAS PHASE TRANSITION
The critical temperatureTc can then be identified atTc
'21 MeV andTc'20 MeV in the calculation without and
with the inclusion of three-body forces, respectively. It loo
like the critical temperatureTc is not strongly affected by
these forces.

The observation of the isotherms of Fig. 7 seems to s
gest that the critical temperature, as defined by the oc
rence of the inflection point in the pressure curve, is sligh
larger than the values just quoted. As already mentioned
prefer the criterion based on the self-intersection in the p
of the chemical potential versus the pressure, since it
volves only first order derivatives.

It is more difficult to extract an accurate value for th
critical density, from Fig. 7 or from Fig. 8. It can be es

TABLE II. Pressure (MeV fm23) as a function of temperatur
~MeV! and Fermi momentum (fm21) without the inclusion of
three-body forces.

T
kF 0 8 12 16 20 24 28

0.8 -0.048 0.070 0.238 0.320 0.445 0.498 0.5
0.9 -0.189 -0.036 0.186 0.314 0.496 0.585 0.7
1.0 -0.397 -0.212 0.063 0.251 0.502 0.641 0.8
1.1 -0.650 -0.442 -0.122 0.143 0.473 0.679 0.9
1.2 -0.886 -0.670 -0.319 0.042 0.455 0.750 1.1
1.3 -0.995 -0.787 -0.425 0.051 0.548 0.952 1.4
1.4 -0.795 -0.614 -0.262 0.347 0.921 1.458 2.1
1.5 -0.013 0.122 0.443 1.206 1.838 2.532 3.3
1.6 1.732 1.814 2.088 3.023 3.682 4.554 5.4
1.7 4.961 4.994 5.222 6.342 6.982 8.051 9.1
1.8 10.353 10.366 10.574 11.890 12.448 13.724 14.8
1.9 18.782 18.836 19.088 20.605 20.994 22.480 23.6
2.0 31.341 31.548 31.961 33.675 33.787 35.471 36.5
2.1 49.370 49.914 50.678 52.576 52.275 54.127 54.8
2.2 74.540 75.659 77.057 79.115 78.232 80.203 80.4
g-
r-

y
e
t
-mated to be in the range between 0.068 and 0.09 fm23, both
with and without three-body forces. These results confi
the main trend reported in Ref.@8# on the basis of the
NTBBG, with a smaller number of two-body channels a

6
6
7
1
2

FIG. 8. Chemical potential for symmetric nuclear matter, a
function of density and temperature, calculated from Eq.~2! of
Appendix B. The upper and lower figures correspond to calcu
tions without and with 3BF’s, respectively.m decreases with tem
perature and in each figure is represented for the same tempera
of Fig. 6.
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TABLE III. The same as in Table II with the inclusion of three-body forces.

T
kF 0 8 12 16 20 24 28

0.8 0.028 0.149 0.259 0.396 0.536 0.567 0.63
0.9 -0.134 0.022 0.178 0.376 0.569 0.649 0.76
1.0 -0.373 -0.186 0.020 0.291 0.542 0.699 0.88
1.1 -0.643 -0.435 -0.177 0.176 0.487 0.753 1.03
1.2 -0.835 -0.620 -0.315 0.125 0.495 0.904 1.31
1.3 -0.753 -0.547 -0.206 0.319 0.743 1.321 1.86
1.4 -8.411 0.098 0.452 1.052 1.528 2.286 2.97
1.5 1.633 1.781 2.115 2.770 3.294 4.220 5.03
1.6 5.044 5.160 5.428 6.104 6.681 7.718 8.61
1.7 11.021 11.129 11.266 11.916 12.559 13.593 14.4
1.8 20.700 20.858 20.783 21.342 22.084 22.918 23.6
1.9 35.538 35.847 35.459 35.943 36.743 37.070 37.3
2.0 57.356 57.980 57.158 57.260 58.412 57.786 57.3
2.1 88.395 89.583 88.179 87.869 89.417 87.216 85.5
2.2 131.378 133.481 131.324 130.446 132.597 127.979 124.
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692 PRC 59M. BALDO AND L. S. FERREIRA
different cutoff parameters. The critical point is also close
the one calculated in Ref.@7# from a variational approach
and a different interaction.

However, our results are quite different from the on
presented in Ref.@9#, where a critical temperatureTc

'9 MeV was found. The authors restrict their calculatio
to above the critical temperature, since they claim to fi
numerical instabilities at lower temperatures. We did not fi
such a problem, and the iterative procedure turned out to
stable and to converge quite smoothly, as Fig. 6 certifi
This discrepancy is perhaps due to the use of a diffe
interaction.

The van der Waals behavior was questioned in the fi
temperature relativistic Dirac-Brueckner calculation of R
@31#. No critical point is apparent in the trend of the is
therms. These calculations were recently repeated@32# with a
different interaction, the Bonn potential@33#, and a liquid-
gas phase transition was clearly observed atTc'10 MeV. It
seems unlikely that such a lower critical temperature can
attributed to relativistic effects, since the critical density is
fraction of the saturation one, where relativistic effects
expected to play no role. The discrepancy surely dese
further studies.

The van der Waals behavior can be used to construct
liquid-vapor coexistent line by the standard Maxwell co
struction. However, the vapor region occurs at very low d
sity, where the numerical solution of the self-consiste
equations is difficult and requires a fine grid in momentu
as already mentioned.

FIG. 9. The same as in Fig. 8 as a function of pressure.
additional temperatureT521 MeV in the critical region is consid
ered and corresponds to the third curve from the bottom.
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2. Entropy and effective mass

The entropy is a thermodynamical quantity often d
cussed in connection with particle production in heavy i
collisions and in the determination of the isentropic evo
tion of supernova collapse. The entropy release in multifr
mentation events is considered to be the crucial quantity
determine the fragment mass distribution@34#. In supernova
collapse it is commonly believed that the evolution is ise
tropic, and therefore knowledge of entropy allows us to o
tain the pressure as a function ofr andS, that is, the relevant
EOS.

As discussed at the end of Sec. II B, the entropy can
extracted from Eq.~23!, once the free energyf is found as a
function of temperature and density. In practice, we ha
found thatF/A at a fixed density has a temperature dep
dence that follows closely a quadratic law, as shown in F
10 in the calculation that includes 3BF’s. The calculated v
ues, indicated by points, lie on parabolic lines with sufficie
accuracy. It is then straightforward to extract analytically t
entropy, reported in Fig. 11, together with the entropy fo
free Fermi gas. The comparison between the two seem
indicate a similar trend in the density dependence. Howe
the correlated system displays irregular regions for dens
aroundkf51.1 andkf51.7 fm21, where a sudden chang
of slope is apparent. Furthermore, the temperature de
dence seems to be more regular, as a consequence o
quadratic behavior of the correlated free energy. Both f
tures can be traced back to the behavior of the effective m
as a function of temperature and density. The latter is ca
lated from the self-consistent single-particle potentialU(k),
shown in Fig. 12, according to the relation

m* ~k!

m
5F11

m

\2k

dU~k!

k G21

. ~32!

The temperature dependence ofU is weak in general, excep
at low density, where the depth of the potential atk50 in-
creases with temperature, as a consequence of the enla
phase space available for the interacting particles. Thi
apparent from Eq.~9!, where the Pauli operatorn.•n. is

n

FIG. 10. Free energy of symmetric nuclear matter as a func
of temperature at different densities with 3BF’s. The dots repres
the calculated values and the solid lines a quadratic fit.
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PRC 59 693NUCLEAR LIQUID-GAS PHASE TRANSITION
smoothed with temperature, an effect which is stronge
smaller density, whereT/EF can be larger than 1. The sha
increase ofU at large densities and high momenta is due
the presence of the 3BF’s, which introduces a strong re
sion in this region. This behavior ofU produces the drop o
the effective mass in the same region, for example, atkF
52 fm21, shown in Fig. 13. The derivative in Eq.~32! was
done with a five-point numerical differentiation. Similarl
the temperature dependence of the effective mass is q
weak, except at low densities, as one can see from Fig.
The effective mass atT50 andkF51.4 has a value compat
ible with phenomenology related to the nuclear optical p
tential, which suggestsm* /m'0.7 @18#. The temperature
and density dependence ofm* at the Fermi momentum is
reported in Fig. 14 for the same type of calculations. T
effect of temperature brings a decrease in the effective m
stronger at low densities. Consequently, the Fermi ene
becomes substantially larger with respect to the free
value. This can explain the already noticed smoother beh
ior of the entropy as a function of temperature, since th
T/EF is small enough for the linear dependence of the
tropy on temperature to be valid. On the other hand,
density dependence ofm* at all temperatures shows
change in curvature, and can give an explanation of
change in slope observed in Fig. 11 for the correlated s
tem. In particular, the fast increase ofm* at kF.1.8 is re-
sponsible for the corresponding change of slope in the d
sity dependence of the entropy.

FIG. 11. Entropy of symmetric nuclear matter as a function
density at different temperatures. The lower figure correspond
the free gas model and the upper one to the BD calculations
3BF’s.
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B. Neutron matter and supernova explosions

Analogous calculations were performed for pure neut
matter, with the inclusion of the same number of part
waves and the same momentum cutoff. As it is well know
neutron matter is unbound, as one can see in Fig. 15, w
the free energy does not display a minimum at any temp
ture. As a consequence, the pressure, reported in Fig. 16
in Table IV, is always positive and increases steeply
higher densities. This feature, together with the tempera
dependence of the pressure, is important for the physic
supernova collapse, where, in the final bounce-off of the s
densities a few times larger than saturation and temperat
of few tens of MeV can be reached. The stiffness of t
equation of state and the temperature dependence of the
sure are crucial elements in determining the final fate of
collapsing supernovas, which can finally end as a neut
star or a black hole or even fail to explode.

The EOS for neutron matter is much stiffer at high dens
when 3BF’s are introduced. The stiffness is then compara
to the one obtained within the Dirac-Brueckner approa
@35#. This is not surprising, since it is well known that rel

f
to
th

FIG. 12. The self-consistent single-particle potential of symm
ric nuclear matter as a function of momenta at different densi
and temperatures.
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694 PRC 59M. BALDO AND L. S. FERREIRA
FIG. 13. Effective mass for symmetric nuclear matter as a fu
tion of momentum at different densities and temperatures.

FIG. 14. Effective mass for symmetric nuclear matter at
Fermi surface as a function of density at different temperatures
tivistic effects can be interpreted as a 3BF in the nonrela
istic reduction of the equations@36#. The EOS is also stiffer
as the temperature increases, and certainly at temperatur
few tens of MeV this temperature effect cannot be neglec

The collapse of a supernova involves actually asymme
nuclear matter, which is kept out ofb equilibrium with a
large asymmetry, until the end of the neutrino trapping sta
During this period the asymmetrya5(rn2rp)/(rn1rp) is
expected to be between 0.2 and 0.4. Herern andrp are the
neutron and proton densities, respectively. It is therefore
teresting to know the EOS of nuclear matter at differe
asymmetries. In previous studies of the EOS at zero temp
ture it has been found@37# that the energy per particlee(a)
has a simple quadratic dependence on the asymmetry,

e~a!'e~0!1@e~1!2e~0!#a2. ~33!

Therefore, the EOS at zero temperature for any asymmet
known from pure neutron matter,a51, and symmetric
nuclear matter,a50. This is related to the validity of the
so-called Lane equations@38#, which establish the linear de
pendence of the depth of the single-particle potential on
asymmetry parameter atT50. In fact, since the variation o
Fermi momentum is approximately linear in asymmetry, t

-

e

FIG. 15. Free energy of pure neutron matter as a function
density and temperature. The dots represent the calculated v
and the solid lines the spline fitting. The upper and lower figu
report the results without 3BF’s and with 3BF’s, respectively. T
free energy is a decreasing function of temperature and in e
figure the upper curve corresponds toT50 and the lower ones to
temperatures of 8, 12, 16, 20, 24, 28 MeV.
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PRC 59 695NUCLEAR LIQUID-GAS PHASE TRANSITION
energy of the proton and neutron components is appr
mately quadratic ina. This dependence turns out to be fu
filled to a large extent.

The single-particle potential is not strongly dependent
the temperature, at least for not too low densities, and
previous assumption should hold forTÞ0. If we assume tha
this approximate quadratic behavior is valid also for the f
energy at finite temperature, then from the neutron and s
metric nuclear matter EOS, discussed above, one can c
late the EOS at finite temperature for a generic asymme
according to an equation equivalent to Eq.~33! for the free
energy. The resulting isotherms are shown in Fig. 17
various asymmetries. The valuea50.33 is expected to be
typical of supernova collapse. The liquid-gas phase transi
disappears for some critical value of the asymmetry. T
trend of the critical temperature as a function of asymme

FIG. 16. The pressure as a function of density and tempera
for pure neutron matter. The upper and lower figures report
results without 3BF’s and with 3BF’s, respectively. The press
increases with temperature and in each figure the isotherms c
spond toT50, 8, 12, 16, 20, 24, 28 MeV.
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is most easily found by observing the behavior of the che
cal potential as a function of pressure. Following this pro
dure the phase transition turns out to disappear at an as
metry of approximately 0.9, as shown in Fig. 18. This res
is in agreement with the Dirac-Brueckner calculation of R
@32#. It has to be noticed thatTc remains pretty constant u
to an asymmetry as large as 0.4, which encompassea
'0.33, the range of asymmetry typical of supernova exp
sion @39#.

The EOS at finite temperature can be characterized by
value of the incompressibilityK. In a thermodynamical con
text K is usually defined byK5r dp/dr, which explicitly
identifies the spinodal region of the EOS as the one cha
terized byK,0. The standard nuclear physics definition
saturation is insteadK5kF

2 d2F/dkF
2 . In order to reconcile

these two definitions we adopt here the thermodynamical
normalized in order to agree with the nuclear physics defi
tion at saturation, namely,

K59
dp

dr
. ~34!

It has been claimed@40# that, in order to have a successf
supernova explosion in model simulations, the value of
incompressibility for symmetric nuclear matter at saturat
must be not larger than approximately 100 MeV, a va
much smaller than the one extracted from the frequency
the monopole excitation in nuclei. More recently@41# this
conclusion was questioned on the basis of the ‘‘neutrino
vival’’ model @42#. One has to stress, anyhow, that it is e
sential to take into account the dependence of the inc
pressibility on density, asymmetry, and temperature bef
drawing any conclusions. The incompressibility reported
Fig. 19 shows a very weak dependence on temperatur
high densities,r.r0 , typical of the bounce-off stage in th
supernova collapse. For symmetric nuclear matter, at sat
tion and zero temperatureK'200 MeV. It has to be noticed
that in the bounce-off stage of the collapse temperature
several tens of MeV are expected to be reached, and th
fore the proper temperature dependence of the incompr
ibility should be included. A steep increase ofK is observed
as the density becomes higher, and the change of slope
r.0.25 was found to be related to the presence of 3BF
The range of variation ofK is quite similar to the one ob
tained in the Dirac-Brueckner approach@35#. The depen-
dence on asymmetry also appears to be strong.

Figure 19 also shows thatT524 is aboveTc , the value of
K is always positive, and the liquid phase does not exist
more. From this figure it is also possible to identify the cri
cal temperature for a certain asymmetric matter. For
ample, ata50.75 the critical temperature is approximate
12 MeV andrc'0.07 fm23, the point where the incom
pressibility has a minimum and equals zero. AtT50 it
seems possible to produce stable matter with an asymm
very close to 1, that is, a neutron superrich matter, wher
sort of neutron ‘‘drip line’’ for an infinite system is located

V. LIMITING TEMPERATURE OF FINITE NUCLEI

The liquid-gas phase transition of nuclear matter, if it e
ists, does not possess a direct correspondence in finite nu

re
e
e
re-



45
65
37
11
79
95
91
98
68

297
956
315
575
203
.968
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TABLE IV. The same as in Table III for pure neutron matter.

T
kF 0 8 12 16 20 24 28

1.0 0.544 0.836 1.028 1.237 1.419 1.603 1.7
1.1 0.559 0.917 1.172 1.452 1.705 1.959 2.1
1.2 0.574 0.990 1.315 1.675 2.012 2.350 2.6
1.3 0.653 1.109 1.508 1.955 2.388 2.811 3.2
1.4 0.911 1.381 1.854 2.391 2.930 3.467 3.9
1.5 1.534 1.980 2.521 3.144 3.793 4.438 5.0
1.6 2.790 3.165 3.762 4.461 5.217 5.967 6.7
1.7 5.058 5.305 5.937 6.693 7.543 8.384 9.3
1.8 8.844 8.898 9.534 10.318 11.238 12.144 13.3
1.9 14.809 14.600 15.200 15.970 16.917 17.848 19.
2.0 23.795 23.253 23.763 24.461 25.375 26.269 27.
2.1 36.857 35.913 36.265 36.821 37.614 38.386 40.
2.2 55.288 53.884 53.995 54.315 54.873 55.409 57.
2.3 80.654 78.749 78.519 78.494 78.665 78.819 81.
2.4 114.833 112.414 111.723 111.218 110.811 110.396 112
.
nd
.

re

ility.

The

to
due to the presence of Coulomb and finite size effects
particular, the Coulomb interaction is of long range a
strong enough to modify the nature of the phase transition
has been recognized by several authors@43,44#, however,
that the nuclear EOS is related to the maximal temperatu
In

It

a

nucleus can sustain before reaching mechanical instab
This ‘‘limiting temperature’’Tl is mainly the maximal tem-
perature at which a compound nucleus can be observed.
difficulty in observing a temperature up toTl in such a sys-
tem can be due not only to mechanical instability but also
re
FIG. 17. The pressure as a function of density and temperature at different asymmetrya. All the calculations include 3BF’s. The pressu
increases with temperature and in each figure the isotherms correspond toT50, 8, 12, 16, 20, 24, 28 MeV.
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PRC 59 697NUCLEAR LIQUID-GAS PHASE TRANSITION
dynamical limitations in the reaction leading to compou
nucleus formation. Anyhow, the limiting temperature
surely an upper limit for the maximal temperature observ
experimentally. Fusion reactions between heavy ions at
termediate energies are an ideal tool for studying hot nu
@46#. From the fit, by means of the statistical model, of t
gamma ray and particle spectra, the presence of the c
pound nucleus and the value of its temperature was infe
in several fusion reactions.

Within this framework it is therefore interesting to extra
from our microscopic EOS the corresponding limiting te
perature. The connection between nuclear matter and fi
nuclei requires the inclusion of Coulomb and surface tens
corrections. Following Ref.@43# both corrections can be
evaluated within the liquid drop model, which should be a
curate enough for medium-heavy nuclei. The nucleus is
scribed in terms of a droplet surrounded by a vapor, in th
mal and mechanical equilibrium. This is equivalent to add
to the droplet pressure and chemical potential the contr
tions due to the Coulomb force and surface tension, wh
are evaluated assuming a spherical droplet. These addit
terms read

dP5PC1PS5S Z2e2

5A
r22a~T! D Y R,

dm5
6Z2e2

5AR
, ~35!

whereR is the droplet radiusR5(3A/4pr)1/3, r is the drop-

let density, and for a(T)5a0(11 3
2 T/Tc)(12T/Tc)

3/2,
with Tc520 MeV, the nuclear matter critical temperatur
and the surface tension at zero temperature,a0
51.14 MeV fm22, obtained from the semiempirical mas
formula. The Coulomb interaction introduces an additio
positive pressurePC and a repulsive contribution to the bu
chemical potentialm, while the surface tension provides a
additional negative pressure term which tends to stabilize
system. At increasing temperature the surface tension
creases and the system becomes unstable against Cou
dissociation. The simplest way to observe the modificati

FIG. 18. Critical temperature of the nuclear liquid-gas pha
transition as a function of asymmetrya. The squares correspond t
the calculated points.
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introduced by these terms is to consider the plot of
chemical potential as a function of pressure of Fig. 9
nuclear matter. As previously explained, the intersection
tween the liquid and the vapor branches defines the coe
ence point in nuclear matter. The additional terms will on
shift the liquid branch, since the vapor is assumed to
uniform and uncharged, leading to a new coexistence po
Unfortunately, as already mentioned, it is very difficult
extend our microscopic calculations in the vapor region
the low temperatures needed for this estimation. In orde
overcome this difficulty we have assumed that the sing
particle self-consistent potentialU(k) tends to zero linearly
with density. This assumption can be justified by notici
that the expression for the single-particle potential involv
an integration over one hole line, according to Eq.~12!. If
one neglects the momentum dependence of theK matrix, one
indeed obtains a density factor. We have therefore taken
self-consistent potential, calculated with 3BF’s at the low

e

FIG. 19. Incompressibility parameter as a function of density
different values of the asymmetrya and different temperatures.
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698 PRC 59M. BALDO AND L. S. FERREIRA
Fermi momentumkF50.8 fm21, U0 , and assumed that a
lower density it has the formU(k)5U0(k)(kF/0.8)3. Since
the temperature dependence ofU(k) is very weak, as one
sees in Fig. 12, at least for the low temperature relevant h
we kept fixed the potential with temperature. Once
single-particle potential is known, the EOS at low densit
can be readily extracted from Eqs.~16! and ~18!, which de-
pends only onU(k), if one neglectsvh in the arctan expan
sion. These higher order contributions are indeed negligi
as discussed in Sec. IV. The vapor, which occurs at very
densities, is then naturally included, as shown in them-P
plots of Fig. 20, corresponding to the almost vertical bran
which intersects the liquid branch at the nuclear matter
existence point. Including the corrections of Eq.~35!,

FIG. 20. Chemical potential for symmetric nuclear matter, w
3BF’s as a function of pressure at different temperatures~solid
line!, calculated from Eq.~B2! of Appendix B, with the extrapola-
tion to low densities of the single-particle potential, discussed
Sec. V. The dashed line corresponds to a liquid droplet of
nucleus Ag. The intersection between the two lines atT57.25 de-
fines the limiting temperature.
re,
e
s

e,
w

,
-

for the case of the Ag nucleus, the new liquid branch, in
cated by the dashed lines, shows a shift with respec
nuclear matter. At low enough temperature an intersec
between the liquid and vapor branches still occurs, wh
corresponds to the coexistence point between the liq
droplet and the nuclear matter vapor and assures that
droplet is stable. Increasing the temperature, the curve
nuclear matter shrinks and should collapse to a point atTc .
Before Tc it is possible to find a limiting temperature fo
which the intersection between the liquid droplet and
vapor branches is still possible. This determinesTl , which,
in the case of Ag, is equal to 7.25 MeV.

The presence of the vapor phase is obviously a neces
ingredient of the model to assure thermodynamical equi
rium, and it is absent in reality. The effect of the vapor
essentially an additional stabilizing pressure, and thereforTl
can be again considered an upper limit for the reacha
temperature.

The droplet-vapor coexistent point and, consequently,Tl
depend on the mass and charge of the system. This de
dence is studied in Fig. 21, whereTl is reported along the
nuclear stability line, and compared with other EOS, tak
from Ref.@45#. The results coming from the present calcu
tions show a close agreement with the ones obtained f
the phenomenological Skyrme force model SKIII of Re
@44#. A strong dependence on EOS is anyhow observed
particular, the Brueckner-Hartree-Fock calculations w
relativistic corrections@45#, which gives an EOS close to th
Dirac-Brueckner one, display a very lowTl . This is not
surprising, since also the critical temperatureTc is very low,
approximately 9 MeV, as previously mentioned.

Although the connection betweenTl and the nuclear EOS
is not straightforward, the observation of a compou
nucleus with a temperature larger thanTl would rule out the
corresponding EOS. Compound nuclei with massA'115
with a temperature up toT56 –7 MeV have recently been
observed@46#. This seems to put strong constraints on t
possible nuclear matter EOS, as can be seen from Fig. 2

n
e

FIG. 21. Limiting temperature of finite nuclei, as a function
the mass numberA, along the stability line. The squares correspo
to the present BD finite temperature calculation with 3BF’s. T
curves SKIII and SKM* refer to the Skyrme force calculations o
Ref. @43#, F2P to the variational approach of Ref.@7#, and
BHF1RC to the Brueckner-Hartree-Fock with relativistic corre
tions of Ref.@45#.
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VI. CONCLUSIONS

In the present work we have applied the finite temperat
linked diagrammatic expansion developed by Bloch and
Dominicis to the study of the equation of state of nuclear a
neutron matter. The reason for the choice of this formali
comes from the possible comparison one can make with
Bethe-Brueckner-Goldstone expansion in the ze
temperature limit. At the two-body correlation level the B
formalism contains terms which correspond to the Brueck
approximation, where the single-particle occupation numb
n are replaced by the finite temperature Fermi distributio
This selection of diagrams is also possible for three or hig
order correlation diagrams. In the text we named these te
the ‘‘naive’’ temperature-dependent BBG expansion. The
maining finite temperature diagrams vanish in the ze
temperature limit and originate from the fact that at fin
temperature any momentum state can be interpretated
as a particle and as a hole, and therefore they contain fac
of the formn(12n). We found that at the two-body corre
lation level these additional diagrams are very small, at le
in the range of temperatures relevant for the liquid-gas ph
transitions, that is, below 30 MeV, and can be neglected
first approximation. At zero temperature the Brueckner tw
hole-line approximation within the ‘‘continuous’’ choice in
cludes most of the higher order correlations. The conclus
about the dominance of the diagrams contained in
NTBBG expansion suggested that the accuracy of the t
body approximation is still valid at finite temperature, usi
the ‘‘continuous’’ choice for the single-particle potentia
According to the previous statement, our calculations inclu
only two-body correlations and are dominated by t
NTBBG terms. The self-consistent equations involve b
the single-particle potential and the chemical potential, a
are solved numerically by means of an iterative procedure
order to obtain the grand-canonical potential and con
quently the free energy.

The calculation of the different thermodynamical quan
ties can introduce some inconsistencies, related to
scheme of approximation, which can be summarized by
violation of the Hughenholtz–Van Hove theorem. We ha
suggested a procedure to extract the pressure and the ch
cal potential, both from the calculated free energy, wh
automatically fulfill the theorem.

For the nucleon-nucleon interaction we choose the
gonnev14 potential. Since three-body forces are required
have an EOS consistent with the semiempirical satura
point, we have included a phenomenological three-bo
force, which has been reduced to an effective two-body
and adjusted to reproduce the correct saturation point.

The finite temperature equation of state for symme
nuclear matter displays a clear van der Waals pattern of
havior in the pressure-density plane, indicating the prese
of a liquid-gas phase transition. With the three-body fo
included, the critical temperature turns out to beTc
'20 MeV and Tc'21 MeV with two-body force only.
This value is consistent with Ref.@7#, but is quite different
from the one of Ref.@9# of Tc'9 MeV, probably due to the
use of a different interaction. The critical densityrc is found
to be in the range between 0.068 and 0.09 fm23 both with
and without three-body force. The uncertainity in this res
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is due to the difficulty in identifing precisely the inflectio
point along an isotherm. This value of the critical dens
appears, anyhow, to be substantially larger than the one c
monly found with Skyrme forces, around one-third the sa
ration density, that is,;0.05 fm23.

The entropy, as a function of density and temperature,
a range of values similar to the ones calculated from the
gas model. However, the trend for the correlated system
strongly affected by the variation of the effective mass w
density and temperature. This is a consequence of the be
ior of the single-particle potential, which depends strong
on density and very little on temperature, but with
smoother momentum dependence at higher temperature
low temperaturem* /m'0.7 at saturation, compatible wit
phenomenology.

For neutron matter no phase transition is present, since
system is unbound. From symmetric nuclear matter and n
tron matter we have extracted the equation of state fo
generic value of the asymmetrya by assuming a quadrati
dependence of the free energy ona, consistent with Ref.
@37#. The phase transitions seem to disappear only at a v
large value of the asymmetry,a'0.9, in agreement with
similar relativistic Dirac-Brueckner calculations@32#. How-
ever, the value of the critical temperature in recent DB c
culations is much smaller,Tc'10 MeV. At zero tempera-
ture asymmetric matter becomes a bound system by a s
decrease of the asymmetry froma51, and therefore the
‘‘drip line’’ for nuclear matter occurs at very large asymm
try.

The incompressibilty at saturation is aboutK
'200 MeV, a value strongly increasing with asymmet
and with temperature, at least at the high densities and t
peratures relevant for supernova explosions.

For finite nuclei it is not possible to define a critical tem
perature. The concept of ‘‘limiting temperature’’ has be
introduced instead, as the maximum temperature a nuc
can sustain before decaying@43#. The value of this tempera
ture can be considered as an upper limit of the maxim
temperature observed experimentally for a compou
nucleus. This theoretically defined limiting temperatureTl
can be extracted from the EOS of nuclear matter by incl
ing Coulomb and finite size effects. We have studiedTl
along the nuclear stability line, assuming that Coulom
forces and surface tension are the ones of a spherical dro
@43#, and compared with other EOS. The values obtained
Tl follow the trend obtained with the EOS extracted from t
Skyrme force SKIII@44#, and are larger than the ones pr
dicted by all the available calculations. It has to be notic
that the experimental observation of a compound nucl
with a temperature larger than the value ofTl would neces-
sarily rule out the corresponding EOS. There is experime
evidence that compound nuclei in theA5115 mass region
can be produced up to 6–7 MeV@46# of temperature. Our
equation of state is consistent with such findings, a fact
guaranteed by other EOS.

In conclusion, we have calculated within an accurate t
oretical model the microsopic EOS with a realisticNN inter-
action and with inclusion of three-body forces. The EOS h
the correct saturation point, predicts the critical temperat
for the liquid-gas phase transitions, not yet so well est
lished in the literature, and allows one to extract a limiti
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temperature for finite nuclei consistent with the availa
phenomenology on compound nucleus formation in he
ion reactions.

Finally, we would like to stress that the usual approach
tio
x

y

o

finite temperature calculations, especially in finite nuclei,
introducing the temperature only through the smearing of
Fermi surface by means of a Fermi distribution, was found
be justified.
lations.

eses. The
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APPENDIX A

In this appendix we develop the explicit analytical form of the grand-canonical potential used in the numerical calcu
Let us start from Eq.~7! and define the operatorA(v)5B(v)d(H082v), with B(v)5pK(v). The matrix element of this
operator in the two-particle state basis can be written then as

^k1k2uA~v!uk3k4&5S ~2p!3/2

AV
D 4

d~k11k22k32k4!d~ek3
1ek4

2v!@k1k2uB~v!uk3k4#

5^qPuA~v!uq8P8&5S ~2p!3/2

AV
D 4

d~P2P8!d~Eq8P82v!@quB~v,P!uq8#, ~A1!

where we have changed from the discrete momenta representation to the continuous one, denoted by the parenth
factors correspond to the conservation of total momentum and to the explicitd function appearing in the operatorA. In the
second step we have introduced the relative momentumq5(k12k2)/2 and the total momentumP5k11k2 of the two
particles, and the stateuq) is specified by the momentumq as well as by the corresponding spin-isospin quantum numberss t.
The quantityEqP corresponds to the two-particle energy in terms of the relative and total momenta,

EqP5
\2q2

m
1

\2P2

4m
1US Uq1

1

2
PU D1US Uq2

1

2
PU D . ~A2!

If we now expand the arctan function,

arctan~A!5(
n

anAn, an5
~21!n21

n
, n5odd, ~A3!

the expression of Eq.~7! for the grand-canonical potential can be written explicitly as

V2V0
85

1

2E2`

1`e2bv

p (
n

anS V

~2p!3D 2E dqd3PS V

~2p!3D 2E d1
qd3P1@qPuA~v!uq1P1#

3S V

~2p!3D 2E d2
qd3P2@q1P1uA~v!uq2P2#

3•••S V

~2p!3D 2E dn21
q d3Pn21@qn22Pn22uA~v!uqn21Pn21#@qn21Pn21uA~v!uqP#. ~A4!

Using the conservation of total momentumd(P2Pj ) in each matrix element ofA, all the total momenta integrations can b
performed, with exception of the one pertaining to the trace. Similarly thev integration can be trivially done using one of th
energy conservation functionsd(EqP2v) as defined in Eq.~8!; one gets

V2V0
85

1

2
d~0!(

n
anE d3qd3P

e2bEqP

p E d3q1@quB~EqP ,P!uq1#d~EqP2Eq1P!

3E d3q2@q1uB~EqP ,P!uq2#d~EqP2Eq2P!•••@qn21uB~EqP ,P!uq#. ~A5!
l
e

ator

the
The previous equations are exact at the two-body correla
level. As in standard Brueckner calculations, one appro

mates the Pauli operatorQ(q,P)5n.(uq1 1
2 Pu)n.(uq

2 1
2 Pu) in Eq. ~9! for the matrixK by its angular average,

Q̄~q,P!5
1

4pE dVqPQ~q,P!. ~A6!
n
i-
In this way theK matrix is diagonal in the two-body channe
representationlSJT. This approximation turns out to b
quite accurate@47#. Similarly, the matrixK, and thereforeB,
can become diagonal if we also average the Pauli oper
appearing in the defining equation~8!. In Eq. ~A5! the chan-
nels are still coupled, due to the angle dependence of
two-particle energiesEqP , according to Eq.~A2!. We there-
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fore introduce a similar angle average approximationĒqP for
these energies. Within these approximations thed functions
appearing in Eq.~A5! can be written as

d~ĒqP2Ēq8P8!5d~q2q8!/d~q,P!, ~A7!

where the quantityd(q,P) is defined in Eq.~19!. Equation
~A7! holds true if the energiesĒqP are monotonic functions
of q for a given value ofP, which is usually the case in a
practical applications. The expansion in partial waves
eachB factor in Eq.~A5! is now straightforward. After inte-
gration over the angle of each momentaqi , all the matrix
elements (quBuq) are diagonal in the channel quantum nu
bers and all equal to each other. This leads to

DV5
1

2

V

~2p!3 (
lSJT

Ĵ2T̂2E dqE d3P
e2b~ĒPq22m!

p

3d~q,P!(
n

anFp@qluKSJT~ĒPq!uql#q2Q̄~q,P!

d~q,P!
Gn

.

~A8!

We can now sum up the power expansion again, and get
~18! for the grand-canonical potential.

In standard zero-temperature Brueckner calculations
angular average over the entry energyE(P,q) is not neces-
sary, since the angular integration can be done explicitly.
sake of comparison with the zero-temperature limit, we h
separated out the first term in the power expansion of
inverse tangent, which has the same form as the z
temperature Brueckner expression for the potential ene
with the occupation numbers given by the temperatu
dependent Fermi functions. Taking the term withn51 in Eq.
~A5!, one gets

V2V0
85

1

2
d~0!E d3qd3Pe2bEqP@quK~EqP ,P!uq#

3n.S Uq1
1

2
PU Dn.S Uq2

1

2
PU D . ~A9!

Taking into account the identity

e2bEqPn.S Uq1
1

2
PU Dn.S Uq2

1

2
PU D

5nS Uq1
1

2
PU DnS Uq2

1

2
PU D , ~A10!

Eq. ~A9! reduces to the finite temperature Brueckner expr
sion of Eq.~10! in the text. In the calculations we adopt th
angular average approximation for the entry energy only
the higher order terms, since for the first term the integrat
can be easily done numerically. This term, which cor
sponds to Eq.~10! of Sec. II, has the explicit form

v15
V1

V
5

1

8p2r (
lSJT

T̂2Ĵ2E
0

1`

k1
2dk1E

0

1`

k2
2dk2E d~cosu!

3@qluKJST~v,P!uql#n~k1!n~k2!, ~A11!
f

-

q.

e

r
e
e
o-
y,
-

s-

r
n
-

where q5uk22k1u/2, P5uk21k1u, v5ek1
1ek2

, and u is

the angle between the single-particle momentak1 andk2 .

APPENDIX B

In this appendix we discuss the problem of the fulfillme
of the Hughenholtz–Van Hove~HVH! theorem in the calcu-
lation of the pressure and other thermodynamical quantit
The theorem indicates which diagrams in the perturbat
expansion should be selected in order to satisfy consiste
the thermodynamical relation

m5 f 1p/r, ~B1!

wheref is the free energy per particle andp the pressure. In
a general microscopic treatment one has to check if this
lation is violated. In the present context the constraint
quired by the theorem is equivalent to demanding that
pressure calculated directly from the grand-canonical po
tial, p̃52v, be equal to the pressure calculated from t
free energy,p5r2] f /]r. At the level of the finite tempera
ture Brueckner approximation, the two procedures of extra
ing the pressure give different results. This difference can
ascribed directly to a well-defined self-energy diagram,
so-called ‘‘rearrangement term’’@18#, which is absent in the
standard Brueckner approximation adopted here. This ca
seen easily by noticing that the fulfillment of the theorem
equivalent also to demand that the chemical potential
tracted from the free energy,m5]F/]N, is equal to the
chemical potentialm̃ extracted from the density according
Eq. ~19!, which in the present scheme is used to derive
free energyF from the grand-canonical potentialV. In fact,

m5
]F

]N
5 f 1rS ] f

]r D5 f 1r@2 f 1m̃#/r[m̃. ~B2!

It can be shown that it is possible to reconcile the Brueck
theory with the HVH theorem if one adopts as a definition
the pressure the one calculated from the derivative of the
energy and the chemical potential is taken equal tom. Let us
in fact modify the single-particle potentialU(k) by adding a
constant shiftDm5m2m̃. Then Eq.~19! is unaffected, pro-
vided we redefine the chemical potential asm, and the un-
perturbed grand-canonical potentialV0

8 is changed toV0
9

5V0
81DmN. Therefore, from Eq.~16! one gets

V0
81m̃N5V0

91mN[F0 ~B3!

and the unperturbed Free energyF0 remains unaffected. O
course, the shiftDm in the single-particle potential will in
general modify the BruecknerG matrix and therefore the
interacting partDV of the grand-canonical potential. How
ever, it has been shown that, at zero temperature, the Bru
ner energy is actually stable, since one has to include c
sistently in the calculation also the modification of the low
diagram in Fig. 4~b!. In fact, once the single-particle poten
tial has been shifted, this diagram is not any more exa
canceled out by the corresponding lower diagram of F
4~d!. It has been shown that indeed the correction comp
sates quite accurately the modification of the Brueckner
ergy @47#. Indeed, one can verify analytically that the corre



ite

b
on
th
er

o

e
-

ic

u
tiv

f

y

in

-
d
ac-
hat
vant
or-

d by
rease
t of
u-

ant
nc-

ly.
ion
a
the

in-
all
iv-

on
sity

m-

and

702 PRC 59M. BALDO AND L. S. FERREIRA
tion of theU insertion diagram is just equal to the oppos
of the first order correction to the Brueckner energy.

We have seen that the main modification introduced
the temperature is described by the NTBBG prescripti
Therefore, the above consideration about the stability of
Brueckner energy can be extended safely to finite temp
tures.

In conclusion, the procedure we are proposing is to ad
for the pressure the definitionp5r2] f /]r, with f calculated
as described in Sec. II, for the chemical potentialm
5]F]N, without modifying the Brueckner energy. Th
HVH theorem is then automatically fulfilled. A similar pro
cedure was suggested by Heyeret al. @48# in the case of the
finite temperature EOS extracted from phenomenolog
forces.

APPENDIX C

In this appendix we give some details about the proced
used to reduce the original three-body forces to an effec
two-body one. This effective force is obtained@23# by aver-
aging the interaction of Eq.~C1! over the spin and isospin o
the particlej and folding over the coordinater j of particle j
with the product of the two-body correlation functions@1
2g(r i j )#2 and@12g(r jk)#2, which expresses the probabilit
of finding particlej at the distancesr i j from particlei and at
the distancer jk from particlek in the medium,

v3
eff~r ik!5r (

s j ,t j

E d3r jVi jk@12g~r i j !#
2@12g~r jk!#2,

~C1!

wherer is the density. The correlation functions should be
principle calculated self-consistently from the BruecknerG
matrix at each density and temperature,

C~r !5@12g~r !#•f~r !,
y
.
e
a-

pt

al

re
e

g~r !52 K rU Q

e
GUk1k2L , ~C2!

whereC is the two-body relative wave function in the me
dium,f the corresponding unperturbed wave function, ane
the proper energy denominator. Unfortunately this is in pr
tice a very lengthy task to achieve. However, it turns out t
both the density and temperature dependence in the rele
region are very small, as illustrated in Fig. 5, where the c
relation function is plotted fork15k2'0 in the 1S0 channel.
As one can see, the correlation functions are characterize
a sharp decrease to 0 at small distances and a rapid inc
to 1 at larger distances. This trend is almost independen
the density and initial momenta, certainly due to the infl
ence of the strong repulsion of theNN core, which is of the
order of 1 GeV and therefore much larger than the relev
Fermi energies. Since the only contribution to the wave fu
tion at short distances comes fromS waves, it is enough to
construct the correlation function from these channels on
Figure 5 also suggests a simplified form for the correlat
functions to be used in Eq.~C1!, namely, a step function at
suitable radius. This is the approximation we used in
actual applications. We have checked that the results are
sensitive to the detailed form of the correlation and to sm
variations of the radius of the step function. This insensit
ity is due to the three-dimensional integration inrW jk in Eq.
~3! which smooths out the details of the correlation functi
at small distances. Notice, anyhow, that still a strong den
dependence remains, due to ther factor in Eq.~C1!.

For nuclear matter and neutron matter only the antico
mutator term contributes to the averaging of theV2p, be-
cause of symmetry arguments. After averaging over spin
isospin of the third particle and using the relationr jk5r ik
1r i j , the explicit form of the two form factorsvS andvT of
Eq. ~30! reads
l
e

vS~r ik!52pArE r jk
2 dr jkE d~cosu!@12g~r j i !#

2@12g~r jk!#2

3FY~r j i !Y~r jk!1S 3

2

r i j
2 1r jk

2 2r ik
2

r j i
2

21D T~r j i !T~r jk!23T~r jk!T~r j i !
r ik~r j i •r jk!

r jkr j i
2

P1~cosu!G ,

vT~r ik!52pArE r jk
2 dr jkE d~cosu!@12g~r j i !#

2@12g~r jk!#2T~r jk!

3H 2P2~cosu!Y~r j i !1T~r j i !FP2~cosu!S ~3r j i •r jk!

r j i
2

22D 23P1~cosu!
r ik~r j i •r jk!

r jkr j i
2 G J , ~C3!

where thez axis was taken along the vectorr ik , andPl(cosu) are the Legendre polynomials of orderl. These two-dimensiona
integrations can be easily done numerically. The repulsive scalar part of Eq.~29! gives obviously a scalar repulsive effectiv
two-body force when the integration over the third particle coordinates is performed.
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