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Nuclear liquid-gas phase transition
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The microscopic theory of the nuclear matter equation of state at finite temperature is developed within the
Bloch—De Dominicis diagrammatic expansion. The liquid gas phase transition of symmetric nuclear matter is
identified, with a critical temperaturé.~20 MeV, using the Argonne, as the bardNN interaction and a
phenomenological three-body force adjusted to give the correct saturation point. Pure neutron and asymmetric
matter, relevant to supernovae explosions, are also studied. It is found that the liquid-gas phase transition
disappears at asymmetrias0.9. At the bounce-off of the supernova collapse, temperatures of several tens of
MeV are reached and we find that the compressibility steeply increases at such temperatures. Finally, we find
that the equation of state gives a “limiting temperature” of finite nuclei consistent with the experimental
observation in compound nucleus reactions. A careful analysis of the diagrammatic expansion reveals that the
dominant terms are the ones that correspond to the zero-temperature Bethe-Brueckner-Goldstone diagrams,
where the temperature is introduced in the occupation numbers only, represented by Fermi distributions, thus
justifying this commonly used procedure of naively introducing the temperature effect.
[S0556-28189)04201-9

PACS numbe(s): 21.65+f, 26.50+X, 26.60+4c, 25.70-z

[. INTRODUCTION man and Pandharipand&] was one of the first few semi-
microscopic investigation of the finite temperature EOS. The

The equation of stat€éEOS of nuclear matter at finite results appear fairly close to the predictions based on Skyrme
temperature is of great interest in the physics both of heavjorce models: symmetric nuclear matter undergoes a liquid-
ion collisions and of supernova explosions. In recent experigas phase transition, with a critical temperatufg
ments on heavy ion collisions at intermediate enerffless] = =18-20 MeV. Different types of Skyrme forces give dif-
the so-called “caloric” curve was determined. After select- ferent critical temperatures, but they all lie close to this range
ing peripheral collisions, a quantity related to the tempera©of values. Later, Brueckner calculations at finite temperature
ture is defined through the yield of different light isotopes or[8] confirmed these findings with very similar valuesTgf.
the slopes of the light particle spectra. This quatity is thenThe most recent calculations were presented in Ref.
plotted as a function of the total excitation energy of thewhere, however, a smaller value df, was found, T,
projectilelike fragments. In some cadds this plot presents ~10 MeV. In Ref.[9] the full finite temperature formalism
a well-defined plateau, which is interpreted as evidence of &y Bloch and De Domici$10] was followed. This discrep-
first order phase transition. Since nuclear matter is expecte@ncy with previous calculations could be ascribed to the dif-
to undergo a liquid-gas phase transition, this can be taken derent nucleon-nucleonNN) force used, to the improved
evidence of such a theoretical prediction. However, finitemany-body formalism, and finally to the different definition
size effects and Coulomb corrections can drastically changadopted for the single particle potential, as we will discuss in
the expectations based on infinite nuclear matter calculadetail below.
tions. Indeed, the temperature at which the plateau is present, In view of the fundamental relevance of the theoretical
about 5-6 MeV, is much smaller than the critical temperasrediction of the nuclear EOS at finite temperature, up to the
ture for the nuclear matter liquid-gas phase transition deriveghossible critical point, we have performed a systematic cal-
from Skyrme force modelst]. The plateau could actually be culation of the EOS on the basis of the Bloch—De Dominicis
the evidence for a different type of instabilif$,6]. In any  formalism with a realistid\NN interaction. Three-body forces
case, the theoretical determination of the nuclear matte3BF’s) were also introduced, since, as is well established
equation of state on a firm basis could be of great help if11], the phenomenological saturation point cannot be cor-
interpreting this set of experiments. rectly reproduced with two-body forces only.

Concerning the astrophysical relevance, we can mention In Sec. Il the finite temperature formalism by Bloch and
the latest stage of the supernova collapse, where the EOS Bfe Dominicis is discussed in detail, in order to be used in the
asymmetric nuclear matter at finite temperature plays a maiumerical applications. Three-body forces are described in
jor role in determining the final evolution. The EOS is actu-Sec. Ill. The EOS at finite temperature is discussed in Sec.
ally one of the most uncertain elements which enters in thdéV for symmetric nuclear matter, neutron, and asymmetric
collapse simulations. matter. In Sec. V, the limiting temperature of finite nuclei is

Microscopic calculations of the nuclear EOS at finite tem-studied along the nuclear stability line. Final conclusions are
perature are quite few. The variational calculation by Fried-drawn in Sec. VI.
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Il. FINITE TEMPERATURE FORMALISM H:H(')—I— H,, with H6=H0+U andH;=v—U, wherev is

the nucleon-nucleon interaction. The potentialhas to be

o chosen in a way that use of the perturbation expansidtyin
The study of a many-body system at finite temperaturejg jystified. This means that in the perturbative expansion

according to perturbation theory, has been developed byiagrams involving potentidll insertions compensate higher

many authors along different lines. One can mention, folprger diagrams occurring in the original expansion of the

example, the finite temperature Green's function methodinteractiony. In this way the same expansion is rearranged

originally devised by Matsubarfl2], the thermofield ap- \jth a greatly improved rate of convergence. Since the un-

proach[13], and the Bloch—De Dominicis linked diagram perturbed Hamiltoniam is still a one-body Hamiltonian
expansion. The first one is more suited to the study of the

single-particle properties of a many-body system. In this for-
malism the grand-canonical potential is expanded in irreduc-
ible connected diagrams involving an increasing number of Hp=2 eajac=2> (mﬂLU(k)
finite temperature Green’s functions and interactions. The : .
expansion is therefore in the strength of the particle-particle
interaction. For a system of strongly interacting particles andhe perturbation expansion is the same as the one in terms of
in presence of a hard core, like in nuclear matter, the conw, provided the single-particle spectrum is redefinedegs
vergence of the expansion is at least doubtful and it is diffi-and the so-called potential insertion diagrams are introduced.
cult to select physically the relevant diagrams to be redn Eq. (1) the operatorsa anda' are the annihilation and
summed. creation operators for the single-nucleon statevhere the

The Bloch—De DominicigBD) expansion of the grand- |abelk indicates the wave vectdrand spin-isospin variables
canonical potential has the property to lead, in the zerog .
temperature limit, to the Bethe-Brueckner-Goldst¢BBG) The BD formalism is developed within the framework of
expansion of the ground state energy. The latter is the expafhe grand-canonical representation of statistical mechanics.

sion in the number of hole lines which univocally corre- The grand-canonical potentiéd is written as the sum of the
sponds to the order of correlations considered. At the tWOUnperturbed potential, and a correlation term Q

hole-line level the Brueckner approximation requires the
introduction of a self-consistent single-particle potential
[14,15. At the_ three-hole-line level one gets t_he Bethe_- Q=0,+AQ, 2
Fadeev equations for the three-particle reaction matrix,
which includes in the kernel the Brueckner two-body reac-
tion matrix G. The hole expansion is expected to converge incorresponding to the one-body grand-canonical potential and
nuclear matter, at variance with the expansion in thea power series expansion in the interactidn involving
nucleon-nucleon interaction, since ti@® matrix can be connected diagrams only, respectively. The unperturbed po-
viewed as a renormalized interaction in the medium, fortential is defined by
which the effect of the strong core repulsion is largely re-
duced. Studies of the convergence of the expansion confirm
this expectatiori16]. ,

The BD formalism nicely extends the BBG expansion to QO:QO_EK Uin(k), )
finite temperature, and therefore allows us to follow in a
clear way the different contributions and their evolution with
temperature. In this work we will adopt the BD formalism, With (o the grand-canonical potential of the independent
which will be described in some detail in the following.  particle HamiltoniarH,, and the summation ovet, repre-

As in the BBG expansion at zero temperature, let us insents the first potential insertion diagram, to be discussed
troduce an auxiliary single-particle potentialin such away below. Thereforef) includes all one-body correlations. The
that the full nuclear Hamiltoniatd =Hg+v is rewritten as  explicit form of the correlation termA () is

A. Bloch—De Dominicis approach
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spiral and insert a factor-in in each line. This process is

()
{ ; \ S equivalent to the substitution of the original two-body inter-
; // * actionv with a “damped” interactionV,
(kika|v|kska)— (kika|VIKgKa)
) =n_(ky) - (ko) YAk ko|v Kaks)

ky ko
ky
O____Q + ><n>(ks)l/2h>(k4)l/2- %)
ks

The trace expansion can therefore be rewritten in terms of
FIG. 1. The Hartree and Fock terms in the Bloch—De Dominicisthe damped interaction. Restricting the summation to con-
(BD) finite temperature perturbation theof@. The solid external pected diagrams without spirals one obtains
lines represent particle propagation, while the dashed lines, joining
two vertices(dots, represent the damped interaction of Es). The w @~ Bo
corresponding zero-temperature diagrams of the BBG expansion 9_96:J
are depicted inb).
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where the subscripgtl S means diagrams without spirals. It is
noticeable that the only nontrivial dependence on the tem-

2
whereg is the inverse temperatureTL/ u the chemical po- X—Im{Tr
tential, andN the total number of particle operator. The P
quantity o is the energy integration variable. The symbol
“Im” means imaginary part and the—0+ limit has to be
con3|der_ed; f|naIIy,_ Tr” indicates the trace operation. For- erature is contained now in the factors of the damped
mally this expression resembles closely the correspondin . . o . )
. . - teraction. Thew integration is equivalent to a contour in-
linked cluster expansion of the ground state energy in thef\ ; : :
. tegral in the complex plane which encloses the real axis
zero-temperature cagéd?]. The trace can be calculated in : . ; A
g : . counterclockwise. The use of this alternative representation
terms of the finite temperature diagrams introduced by BD, . . . .
in terms of a contour integral, instead of E§), is decided

These diagrams are also very similar to the zero-temperature : .
according to convenience.

Goldstone Ones, With two ma"? differences; namely, they €| et us now discuss the contribution of two-body correla-
drawn on a cylindrical surface instead of a plane and all Ime%. ) . )
ions to the grand-canonical potential. As in the zero-

appearing in a diagram are particle lines. The need for th'%emperature Brueckner theory, one has to sum up the “lad-
surface, instead Of. the usua_l plane, comes from the presen%%r,, series of diagrams. The first terms of the series is the
of the trace operation. Drawing a specific diagram on a plan Jartree term of Fig. 1, together with the exchange Fock

surface leads to open diagrams where the entry and the €X6rm. The series continues with the terms depicted in Fig. 2.

external lines are Iqbeled by .th'e same momenta. This U hese pictures are assumed to include also the corresponding
gests naturally the idea of joining the lines with the same

. 2 exchange diagrams. It turns out that the series can be for-
momentum, thus generating a cylindrical surface. The label mallv summed up exactly. and one gets
in Eg. (4) indicates that only connected diagrams must be y P Y 9
included in the expansion, which is a consequence of the 1 v o F (L
exponential formula for the partition functigrd0]. As an Q_Q(’):_ezﬁﬂf de
example, in Fig. (@) is depicted the first order diagrams, the 2
Hartree-Fock terms, which corresponds to the zero-
temperature diagrams of Fig(k). The distinctive feature of

XTr{[K(w)m8(Ho— »)]" "1,

the BD expansion is the appearance of the so-called *spi- 1 w g Bo

rals” in the diagrams, lines which undergo one or more turns =§ezﬁ“f o do

around the cylinder without being attached to any interac- -

tion. They correspond to a series of contractions between the X Trp{arctaf K(w) m8(Ho— w) 1}, 7

creation operators defining the particle states, on the left and

on the right of the interaction operator, whose trace is calcuwith the integem restricted to odd values. The trace in the
lated. The whole set of diagrams can be generated by comrevious equation, Fr is taken in the space of antisymme-
sidering the diagrams without any spirals and adding to thenrized two-body states and the two-body scattering matrix
the spirals in all possible combinations. The diagrams sgs defined by

obtained from a given original diagram without spirals can

be summed up explicitly and it amounts to the introduction(k1Ko|C(w)|ksKs)

of a statistical facton. =1—n(k), for each line labeled by _ 12

the momentunk, n(k) being the Fermi-Dirac distribution. It =In= (k= (ko)n- (k)N (k) 75 kako| K (@) [kska),
is therefore enough to consider only diagrams without any (8)

(00 Co00-Cain: -

FIG. 2. Two-body ladder series in the BD expansion with the same notation as in Fig. 1.
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(a)
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FIG. 3. The first potential insertion in the BD expansion. The g >--»--} ?

cross indicates the auxiliary potentidl

where the scattering matri satisfies the integral equation

<k1k2|K(w)|k3k4>
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Equation(9) coincides with the Brueckner equation for {Be

matrix at zero temperature, if the single-particle occupation

numbers are taken at=0. It has to be noticed that only the

principal part has to be considered in the integration, thus

makingK a real matrix. This expression is the most straight-

forward generalization of the Brueckn& matrix at finite FIG. 4. Generic potential insertion diagram with two particle
temperature, in the sense that the only modification is thédines (a), which reduces to the hole and particle potential insertion
temperature dependence in the Fermi functign In Eq.(7) diagrams of the BBG expansion at zero temperature depictg.in
the temperature dependence is more involved. However, fgeneric three-particle-line diagram in the BD expandignwhich

one considers the first term in the expansion of the arctaﬁeduces to the hole and particle bubble diagram in the BBG expan-

function, it reduces to sion (d).
1 trix appearing in the self-energy insertion in the hole line of
Q== > n(ky)N(K)(Kiko|K (€ + € )| Kika)a, Fig. 4(d) can be taken on shell. This choice is therefore
2 Kk, v 10 equivalent to the definition
10

which defines the grand-canonical potential in total analogy U(kl):; % (kiks|G(w)[kiko)a®r([ka]),  (12)

with the BBG binding potential. The explicit forms both of

the complete expression of EF) and of the first order term  where®(|k,|)=1 for k<kg and zero otherwise. This sug-

of Eq. (9) are given also in Appendix A. gests, at finitdl, an alternative definition dfl (k) in terms of
It is necessary to discuss now the choice of the singlek,

particle auxiliary potentiall. First of all, the use of the

“continuous” [18] choice is somehow mandatory, since at

finite temperature there is no longer a sharp distinction be- U(kl):; kEZ (kakz|K(@)[kiko)an(ky).

tween particle and hole states. In the original BD work, it

was suggested to introduce a single-particle potential, in sucfihis is also consistent with the natural interpretation ofkhe

a way that the first order potential insertion is just equal tomatrix, as the scattering matrix in the medium at finite tem-

minus twice the contribution of the ladder sum, in analogyperature. One can indeed see that the mentioned cancellation

with the Brueckner zero-temperature case. However, one casetween the bubble diagram and the potential insertion dia-

consider a general potentidland the first potential insertion gram of Fig. 4 is still valid at finite temperatures, once the

of Eq. (3), as depicted in Fig. 3. In the zero-temperature casgingle-particle potential of Eq12) is adopted.

this potential insertion contribution cancels out exactly the According to the general expansion of E§), a general

potential part of the single-particle contribution coming from diagram of orderp has the structure of a trace, with

Hg, irrespective of the particular choice &f, as will be  damped interactiond’ and energy denominators. Further-

discussed in Sec. Il C. more, the energy integration has to be taken along the real
In the zero-temperature case, the choice of the singleaxis. Of special interest are the diagrams which correspond

particle potential fok<<kg is such that the potential insertion to the ones appearing in the zero-temperature BBG expan-

diagram in the lower part of Fig.() cancels out exactly the sion, where the Fermi step function is replaced by the finite

three-hole “bubble diagram” in the lower part of Fig(d.  temperature Fermi distribution(k). This set of finite tem-

This is actually possible in virtue of the Bethe-Brandow- perature diagrams can be called the “naive” finite tempera-

PetschaKBBP) theorem[19], which ensures that th& ma-  ture BBG (NTBBG) expansion, in the sense that the tem-

(12
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perature enters only in a straightforward way through the 1
extension of the Fermi function to finite temperature. In gen- DEJZ):E 2
eral, these diagrams are expected to be the dominant ones, tk
since all the others contain at least one factfk)n- (k), (kikq |K|Kk"Yn(K)U(K")n(k )(KK'|K|kik; )
which is small, especially at temperatures not too high. This X
will be clearly seen below, in the case of the finite tempera-
ture Brueckner-Hartree-Fock approximation, which includes '
the two-body correlations. XN (ko> (kg ). (19

The same happens indeed, in the case of the diagrams éfcloser inspection of the analytical form of E({.3) shows
Fig. 4, which are the diagrams involved in the cancellationactually that other contributions can appear, originated by
between the single-particle insertion and the bubble diagranPossible double or higher poles coming from the possible

Figure 4a) indicates the lowest order diagram with one po-€Nergy degeneraci.e_s of the denominqtors. These_ correct_ions
tential insertion. The explicit expression reads give rise to other finite temperature diagrams, which vanish

at zero temperature since they contain factons , as dis-
cussed above. They are expected to be a minor correction at
not too high temperature and not too low densities. This is

2
(ext+ew—ex —e')

D :'_f eiﬁwdwz E (—1)P true for all diagrams belonging to this set, with the exception
U"2)c 27 w P of the ones describing the shift in the chemical potenfgal,

) , , , which do not vanish indeed, in the zero-temperature limit.
l (kiky [Vkoks ) (koky [V ksks ) The latter are included in our self-consistent procedadg.

The simplest three lines diagrams, withdutinsertion,
are depicted in Fig. @). They represent a set of three-
particle diagrams with an arbitrary number of ladder interac-

P ek2+ ekz'_(l) ek3+ ek3’_(1)

X - -(kmkm'|v|kk’>Lk) tions between the two pairs of particles. Proceeding along
(extep—w)? the same lines, one can show that they introduce the dia-

, , ) grams of Fig. 4d), which are the particle and hole bubble
><(kk’|V| Kt 1Kme1 ) (Kmt1Kme1 [V Kmt2Kmi2 ) diagrams of the BBG expansion, again with the temperature
e te —w e & '~ Fermi distributions replacing the step functions. The previ-
mrLoTmed m2.Tm+2 ous considerations about higher pole contributions also ap-

(K,_ 1K _1'|V| k1k1,> plies for the particle bubble diagram.

PP - , (13 As in the case of zero temperature, the lower diagrams of

€, ek~ Figs. 4b) and 4d) cancel each other, which justifies the

choice of Eq.(11) for the single-particle potential. We will
see, anyhow, that this choice will differ in practice only little
where C indicates the contour integration in the complexfrom the BD choice.
plane around the real axis. Apparently, this integral receives Equations(9) and(12) have to be solved self-consistently
contributions from the first order singularities of the energyfor the single-particle potentidl, and for a fixed chemical
denominators of the ladder series, as well as from the doublgotential and temperature. This can be achieved, in principle,
poles of the quadratic energy denominator. Using the residugith an iterative procedure as in the case of zero tempera-
theorem, one can check that the first set of poles gives rise t@re.
the following result: Three-body or higher order correlations could, in prin-
ciple, be treated along the same lines, even if the theory is
not yet formally developed. However, there is strong evi-
S dence that the “continuous” choice fdJ is able to incor-
{k}

N| =

(1 _
Dy'= porate most of the higher order contributions at zero tem-

peraturg22], at least up to densities a few times larger than
(kaky [K|KK Yo (K)U (K" )no (K)(kK'|K|kqky ') saturation. It can be expected that this holds true also at finite
X temperature, and therefore we will restrict all the calculations
up to two-body correlations only.
As shown in Appendix A, the grand-canonical potential
for symmetric nuclear matter can be written as

Q=0,+AQ, (16)

2
(extew—e—e’)

xn(kyn(ky ), (14)

where we have summed up the ladder series to get the scat-

tering matrix of Eqgs.(8) and (9), and used the identity where

e ACq~Mn_(k;)=n(k,). The contributionD{}’ coincides Y

with the zero-temperature diagram of the upper part of Fig. —Ozw(’)

4(b), except that each one of the Fermi step functions are

now replaced by the finite temperature distribution. 2 [+
Analogously, one finds that the contributi@{f) coming - ?j k2dK

from the double pole corresponds to the lower diagram of 0

Fig. 4(b), that is, to the hole potential insertion, (17

1
Eln(1+ e P+ U(k)n(k)
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and u the chemical potential. The interacting part of the Hugenholtz—Van Hove theoref@4]. Physical arguments, as

grand-canonical potential is given explicitly by shown in the same appendix, suggest that the correct proce-
dure is the one involving the free energy. In the practical
AQ 2 a0z £ calculations we then adopt the following procedure. For a
i — 252 2 —B(Epg—21) c > -
\Y, =4 (277)3%3 T f dqf PYdPe 7 Fpa=s given density and temperature we solve the self-consistent

. . equations along with the ER0) for the chemical potential,
w[qI|KSJT(qu)|qI]q2Q(q,P)} and obtain the grand-canonical potential Finally we ex-

xd(q,P)arctar{

d(q,P) tract the free energy per partiddrom the relation
(18) f=wp+p. (21)
where the density of statéis given by The pressure is calculated performing a numerical derivative
d(q.P)= aEqp :2ﬁ20| N quP _ (19) Of; derivatiqn is often_ found in the literature f(_)r bot_h the
aq m aq grand-canonical potential and the free energy, in which one

. . calculates directly the internal enerdy by extending the
The two-particle energyEqp, the Pauli operatoQqp, Brueckner expression to finite temperature within the “na-

and the potential felt by two particled,p, are all angle ive” TBBG expansion. Then, for the entropy=S(T, ),
averaged guantities, as explained in Appendix A. Thes¢he mean field approximation is used:

angle averages are common in BBG calculations and are
expected to be accurate, allowing us to make the contribution _ _ _
of different channels additive, since, then, only the diagonal S= ; {n(9n (k) +[1=n(k)JIn[1=n(k)]}-

part of K contributes. In practice, these angle averages are (22
not needed for the first term of E@L0), and they will be

used only in the evaluation of the higher order contribution.The total free energy is then given By=E—TS, and the
The quantum numbersSJT specify the two-body channel grand-canonical potentid=F — N, whereN is the total

andA=2A+1. number of particles. This procedure mainly neglects the ef-
fect of the two-body correlations on the entropy and the
B. Thermodynamical quantities higher order terms of the arctan expansion in the expression

) o . for the grand-canonical potential, E(.8). A comparison of
ODce the grand-canonical potential is obtained, the preshe two methods is discussed in the following.
surep is immediately extracted, in principle, from the rela-  Using instead the formalism developed in Sec. Il A, the
tion 5: —w=—Q/V. The latter gives the pressure as a€entropy can be extracted, once the free energy is obtained
function of the temperatur€ and the chemical potential, ~ from Eq.(21), by the standard relation
which can be considered the searched EOS. Then the density
p could be extracted from the relatign=—9Q/du. How- S(N,V T):<‘7F(N’V'T)) _
ever, it has been foun®3] that this procedure leads to nu- Y aT v
merical instability. To overcome this difficulty, one can start
from the density and fix the chemical potentialfrom the  In this way the effect of correlations on the entropy is in-
relation cluded, since the temperature derivative involves also the
finite temperature Brueckner contribution of Eg8).

(23

1
p=2> n(k)=2,

R X ebfle—m 1’ (20

C. Zero-temperature limit

It is instructive to look closely at the low temperature
which is an implicit equation for the chemical potential. This region of the present formalism. The independent particle
equation is mainly a mean field approximation for the den-part96 of the grand-canonical potential of E{.7) reduces,
sity, and therefore the corresponding chemical potential isor 3— + o, to
denoted by, in order to be distinguished from the exact )
one w. This equation is solved at each step of the iterative S ) N
procleLdure witﬂ Eqs9) and(12). In general, tFr)ns mean field @0~ WZJ Kedk[ (&= ) =U (k)]
relation is not fully consistent with the one derived directly
from the grand-canonical potential, which contains also the 2 )
contribution from two-body correlations. It is expected, “?J kedkty—u]=Eo—up, (24
therefore, that this inconsistency leads to a violation of some
of thermodynamical Squalities. Indeed, one finds in particuwheret, is the single-particle kinetic energy afg the free
lar that the pressur@ extracted directly from the grand- particle ground state energy. Therefore, in this limig
canonical potential, as mentioned above, does not coincidgives the free particle contribution. This result does not de-
with the pressure extracted from= p?df/dp, wheref isthe  pend on the particular choice of the auxiliary potential
free energy per particle. As discussed in Appendix B, thisThis cancellation occurs also in the zero-temperature BBG
discrepancy expresses a violation of the generalizefbrmalism.
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As mentioned above, the interacting pard reduces to 2.0 . . T .
the Brueckner potential energy part in the low temperature ... ke =1.2fml ,T-0
limit, and therefore one gets vsssose kp «16Ffml , T =0
15 ke =12fml , T -16]
w~Eg—up, (25 o
whereEg is the Brueckner ground state energy. Therefore, \g Lok
the free energyF coincides withEg, as expected at zero .
temperature. =
0.5 6 -
Ill. CORRECTIONS COMING FROM THREE-BODY
FORCES
As is well known, the Brueckner approximation is unable 09, N 5 3 ; 5

to reproduce the correct phenomenological saturation point.
Higher order terms in the hole-line expansion turn out to be r{Fm)

much smaller, which indicates the convergence of the BBG F|G. 5. Correlation function calculated at zero initial relative
expansion already at the two-hole-line level of approxima-momentum in the'S, channel for different densities and tempera-
tion, provided the *“continuous” choice for the single- tures. The rectangular curve indicates the approximation used in
particle potential is adopted. One has to assume that alselculating the three-body force of EG@C3) in Appendix C.
three-body forces must be included in the nuclear Hamil-

tonian. Unfortunately, such forces, derived from first prin- The strength#\ (<0) andU (>0) can be fitted in order to
ciples, are not yet available. The most complete study ofeproduce the binding energy of triton afHe and the em-
three-body forces based on meson exchange theory is the opgical nuclear matter parameters. It appears very difficult to
presented in Ref.25], where most of the contributing pro- fit simultaneously all these quantities, probably because
cesses were estimated, including phenomenological forrthree-body forces are in principle different for different sys-
factors, but still keeping consistency with two-body forces.tems. Therefore we prefer to adjustand U to the nuclear
Still large uncertainties are present, which lead many authomnatter saturation point only. Once these parameters are
to introduce schematic three-body forces, with a structurdixed, the whole nuclear matter EOS can be obtained. The
suggested also by meson theory. The few parameters appeaalues A=—0.0329 andU=0.00361 have been found to
ing in these forces are then adjusted in order to reproduce thgive an accurate saturation point.

correct saturation point and possibly the binding energy of The method of including this interaction in the many-
the three-body nuclear systems. In particular the Urljabh  body scheme follows Ref27], where the three-body inter-
interaction has such characteristics. It includes two termsaction is reduced to an effective two-body one, by an aver-

one attractive and the other repulsive, aging over the third particle coordinateZ3]. In this average
2r R the weight is given by the probabbility to have two particles
Vijk=Vijk + Vijk - (26) at a certain distance that is, the two-body correlation func-

tion, which is reported in Fig. 5 for different densities and
etemperatures. The temperature dependence is quite weak and
in the actual calculations it has been neglected. More details
are given in Appendix C. The final form for the attractive
part of Eq.(27) has the following structure:

The two-pion exchange contribution is a cyclic sum over th
nucleon indices, j, k of products of anticommutator and
commutator terms,

V%E:AE {Xijuxjk}{Ti’Tj1Tj'Tk} ff
e vy =vg(rij)) (o)) +o(ri)S;, (30

+ %[Xij Xl 77,7 7l | (270 where the spin and tensor form factergandv are simple
integrals involving the function¥ and T, as explained in
Appendix C. This effective force is added to the nuclear
HamiltonianH, and the calculations proceed along the same
Xij=Y(rj) oo+ T(rj)S; (29 ordinary Brue_c_kner scheme with only two-body forces, both
at zero and finite temperature.

where

is the one-pion exchange operatarand r are the Pauli spin
and isospin operators, aigf =3[ (a;-r;;) (0} 1)) —ojoy] is IV. THE EQUATION OF STATE AT FINITE
the tensor operatoi/(r) andT(r) are the Yukawa and ten- TEMPERATURE
sor functions, respectively, associated with the one-pion ex-
change interaction. The curled and square parentheses indi- According to the formalism developed in the previous
cate the anticommutator and commutator, respectively. Theections, to obtain the EOS at finite temperature one has to
summation is extended to the cyclic permutations of thestart solving Eqgs.(9) and (12) self-consistently for the
three interacting particles. The repulsive part is taken as ~ single-particle potentidl at a fixed density and temperature.
This implies that the chemical potenti}il must be extracted
VR =US T(r;)2T(r)% (290  at each step of the iterative procedure from Ez0). The
. cyc : ! procedure is quite analogous to the corresponding one at zero
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TABLE I. Contributions(MeV) to the grand-canonical potential
of the first term(), in the expansion of the arctan function of Eq.

20
(7), in comparison with the higher order contributi€)y, .
0 T=12 T=24
ke 0, Qp (0N Qp
1.0 -22.822 0.311 -19.197 0.158
14 -39.213 0.403 -36.556 0.559
1.9 -36.411 0.652 -35.709 1.178

_60 S
A. Symmetric nuclear matter

22 1. Critical temperature and critical density
Following this procedure, the results of the numerical
evaluation of the free energy in symmetric nuclear matter
with the Argonneuv ., potential[28] as the baréNN interac-
tion v are shown in Fig. 6, with and without the inclusion of
three-body forces. The calculations were performed includ-
ing all the channels up td=4 and with a cutoff in momen-
tum of the single-particle potential equal kg=6 fm™ 1.
The limitations inJ and momentum are quite appropriate to

-20

F/A (MeV)

—40

~60 the density region pertinent to the liquid-gas phase transition.
In Fig. 6 the dots represent the calculated values and the
-80 solid lines a polynomial fit, essential for the numerical de-
20 rivative needed to obtain the pressyre: p2df/dp and the
chemical potentia. of Eq. (B2). At T=0 the free energy
0 coincides with the total energy and the corresponding curve
—~ is just the usual nuclear matter saturation curve. The rel-
E 20 evance of three-body forces is immediately seen from the
< - shift of the saturation point to kp=1.4 fm %,
§ e~—16 MeV, close to the empirical one. The effect of
—40 these forces is also very small at low densities and becomes
larger at increasing densities, where a much stronger repul-
-60 sion is apparent. The steepness of the EOS at higher densities
can depend of course on the particular three-body force in-
—80 troduced in the calculations, but the region around saturation
1.0 1.5 2.0 is expected to be insensitive to the details of the force used,
k¢ (fm~1) since they are constrained to reproduce this region. The criti-

cal point of the EOS should also be insensitive to the force
FIG. 6. Free energy of symmetric nuclear matter as a function ogince it occurs at very low density, of order @f,/3

density and temperature. The dots represent the calculated valuesp /2.
and the solid lines the spline fitting. The upper, middle, and lower Itis interesting to Separate out the Contributiﬂm to the
figures report the results without 3BF'’s, with 3BF’s, and for the freefrge energy coming from the first term of the power expan-
gas model. The free energy is a decreasing function of temperatu§on of the arctan function of Eq7). This is done in Table I,
f‘”d in each figure the upperf C“?’; ClO”ZSp‘;'ldg;‘fA acd the  for few characteristic temperatures and densities. As ex-
ower ones to temperatures of 8, 12, 16, 20, 24, 28 MeV. plained in Appendix B, the higher power terms in the expan-

temperature_ Once theg potentia| and th& matrix are ob- sion become VaniShing small at |OW temperature. From Table
tained, both unperturbed and interacting compongtand | one can conclude anyhow that, in the temperature and den-
AQ of the grand-canonical potentiél of Eq. (16) can be  Sity range we are interested in, the contributiansof these
calculated, following Eqs(17) and (18). As discussed in higher order terms are at most a few percentwgf and
Appendix A, we prefer to separate the first term of the arctartherefore they can be neglected still maintaining a good ac-
expansion in Eq(7), which gives the contributiom,, de-  curacy in the final result. This is equivalent to restricting the
fined in Eq.(A11), to the grand-canonical potential. The con- calculation within the naive finite temperature BBG expan-
tribution coming from all the other terms in the power ex- sion, the NTBBG scheme introduced in Sec. Il. In this case
pansion will be denoted by,,. The first termw, is indeed the procedure we have followed to extract the free energy
the two-body correlation term, namely, the Brueckner apturns out to be strictly equivalent to the alternative procedure
proach, in the “naive” finite temperature BBG expansion which involves the entropy expression of H&2), as out-
introduced in Sec. Il. The free energy is then calculated fromined at the end of Sec. II. Furthermore, for the same reason,
Eq. (21), where . is the chemical potential extracted from the adopted definition of the single-particle potential of Eq.
the density, as mentioned above. (12) differs very little from the choice advocated in the origi-
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nal work of Bloch and De Dominicif10]. This finding jus- 6
tifies the procedure often followed in the literature for finite
temperature calculations in infinite nuclear maf@rand in
Hartree-Fock calculations for finite nuclei as wgR9],
where the temperature only enters through the finite tempera
ture single-particle Fermi distributions.

The full knowledge of the temperature dependence of the
free energy is only obtained after a complex numerical pro-
cedure. A hybrid free fermion gas model, often adop&,
provides a simplified procedure to estimate this temperature
dependence. In this schematic model one keeps fixed for al
temperatures the total internal enekggf nuclear matter and
equal to the one calculated at zero temperature for the full 6

interacting model. The free ener@dy=E—TSis then calcu-

lated by using for the entrop$ the free Fermi gas, namely,

the expression of Eq22) with the occupation number(k) 4

derived from the free particle spectrup=t, and the corre-

sponding chemical potential extracted from E2{). In other

words, the effect of correlations on the entropy is neglected 5

in the hybrid model. The results of this procedure are shown

in Fig. 6, including three-body forces . The free energy

appears to be systematically lower at all temperatures in 0

comparison with the full microscopic calculation. As we will :

p (MeV tm—3)

p (MeV fm~3)

see, this is due to lower values of the entropy when the
interaction is introduced, since then the effective nrassis 8
smaller than the bare one, and in the low temperature regior
the entropy is proportional to the effective mass/N
=m?T/EE, E,:=ﬁk§/2m*. The relevance of the compari-
son with the hybrid free fermion model, which keeps the
correlations as frozen at zero temperature, is to show how
significant is the temperature dependence of the correlations
From the polynomial fit of the free energy it is easy to
perform the numerical derivative that leads to the pressure
p=p(p,T). This is the most familiar form of the equation of
state and is reported in Fig. 7 and in Tables Il and Ill. For
both cases, with and without three-body forces, the EOS dis-
plays the van der Waals behavior typical of a liquid system
undergoing a liquid-gas phase transition. The trend of the 0.8 1.0 L2 1.4 1.6 1.8
chemical potential as a function of density and temperature k¢ (fm™1)
has also the signature of the liquid-gas phase transition. Ir.
fact, from the relation

p (MeV tm~3)

FIG. 7. The pressure as a function of density and temperature
for symmetric nuclear matter. The upper, middle, and lower figures
‘9_'“: a_p (31) report the results without 3BF's, with 3BF'’s, and for the free gas
P dp dp’ model. The pressure increases with temperature and in each figure
the isotherms correspond T0=0, 8, 12, 16, 20, 24, 28 MeV.

one can see that at the critical point the first and second, . N .

derivatives of the pressuge are zero and so are the corre- g.t d||ffererr1]t ten;}peraturgs,. as sno_wn in Fig. 9, éh'ﬁ plot ShO.UIhd
. L I g isplay the characteristic self-intersecting behavior, wit

sponding derivatives of.. This is apparent in Fig. 8, where ; M )

the chemical potentiak of Eq. (B2) is reported. The corre- three branches corresponding to the liquid, vapor, and un

. ) . __stable regions of the equation of state. The point of intersec-
sponding critical temperature can be traced from the iSOgjon ‘gpserved, for instance, in the lower part of Fig. 9 for the
therm which presents an inflection point at the critical denygsihermT =20 MeV, is the liquid-vapor coexistence point
sity, both for the chemical potential and the pressure curvegy that specific temperature, which disappears as the tempera-
as a function of density. Numerically this can be achieved byyre increases above the critical one. However, our calcula-
performing a further derivative of the interpOIated free €N-tions do not touch the vapor region, Occurring at very low
ergy of Fig. 6, identifying the isotherm which displays an densities; therefore the corresponding branch is absent, ex-
inflection point. This, however, might not be sufficiently ac- cept for temperatures above 20 MeV. A complete represen-
curate. Therefore, we prefer to use an alternative method ation would require quite lengthy numerical calculations in
looking at the phase transition, which requires only first or-the low density region, which slowly converge and require a
der numerical derivatives, which is the specific cases of theery fine grid in the momentum discretization of the equa-
chemical potential and pressure. It proceeds as follows. Ifions. Anyhow, from our results it is possible to identify the
one plots the chemical potential as a function of the pressureritical point.
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TABLE II. Pressure (MeV fm?) as a function of temperature
(MeV) and Fermi momentum (fim") without the inclusion of 20
three-body forces.

T 0
ke 0 8 12 16 20 24 28 =
v
0.8 -0.048 0.070 0.238 0.320 0.445 0.498 0.577 2 —20
09 -0.189 -0.036 0.186 0.314 0.496 0.585 0.712 2
1.0 -0.397 -0.212 0.063 0.251 0502 0.641 0.834
11 -0.650 -0.442 -0.122 0.143 0.473 0.679 0.959 —40
12 -0.88 -0.670 -0.319 0.042 0.455 0.750 1.136
1.3 -0.995 -0.787 -0.425 0.051 0.548 0.952 1.464 _60
14 -0.795 -0.614 -0.262 0.347 0.921 1458 2.110 20

15 -0.013 0.122 0.443 1.206 1.838 2532 3.331
16 1732 1814 2.088 3.023 3.682 4.554 5.496
1.7 4961 4.994 5222 6.342 6.982 8051 9.116 0
1.8 10.353 10.366 10.574 11.890 12.448 13.724 14.866

1.9 18.782 18.836 19.088 20.605 20.994 22.480 23.626 E
2.0 31.341 31.548 31.961 33.675 33.787 35.471 36.507 :,: —20
2.1 49.370 49.914 50.678 52.576 52.275 54.127 54.891
2.2 74540 75.659 77.057 79.115 78.232 80.203 80.472 —40
The critical temperaturd, can then be identified al, —-60
~21 MeV andT.~20 MeV in the calculation without and 08 10 12 b4 1618 20
with the inclusion of three-body forces, respectively. It looks k¢ (fm~1)
like the critical temperaturd is not strongly affected by FIG. 8. Chemical potential for symmetric nuclear matter, as a
these forces. function of density and temperature, calculated from Ej. of

The observation of the isotherms of Fig. 7 seems to sugAppendix B. The upper and lower figures correspond to calcula-
gest that the critical temperature, as defined by the occutions without and with 3BF'’s, respectively. decreases with tem-
rence of the inflection point in the pressure curve, is slightlyperature and in each figure is represented for the same temperatures
larger than the values just quoted. As already mentioned, wef Fig. 6.
prefer the criterion based on the self-intersection in the plot
of the chemical potential versus the pressure, since it inmated to be in the range between 0.068 and 0.09 *frboth
volves only first order derivatives. with and without three-body forces. These results confirm

It is more difficult to extract an accurate value for the the main trend reported in Ref8] on the basis of the
critical density, from Fig. 7 or from Fig. 8. It can be esti- NTBBG, with a smaller number of two-body channels and

TABLE lll. The same as in Table Il with the inclusion of three-body forces.

T
ke 0 8 12 16 20 24 28

0.8 0.028 0.149 0.259 0.396 0.536 0.567 0.630
0.9 -0.134 0.022 0.178 0.376 0.569 0.649 0.763
1.0 -0.373 -0.186 0.020 0.2901 0.542 0.699 0.886
11 -0.643 -0.435 -0.177 0.176 0.487 0.753 1.039
1.2 -0.835 -0.620 -0.315 0.125 0.495 0.904 1.311
1.3 -0.753 -0.547 -0.206 0.319 0.743 1.321 1.867
14 -8.411 0.098 0.452 1.052 1.528 2.286 2.976
15 1.633 1.781 2.115 2.770 3.294 4.220 5.037
1.6 5.044 5.160 5.428 6.104 6.681 7.718 8.614
1.7 11.021 11.129 11.266 11.916 12.559 13.593 14.475
1.8 20.700 20.858 20.783 21.342 22.084 22.918 23.630
1.9 35.538 35.847 35.459 35.943 36.743 37.070 37.378
2.0 57.356 57.980 57.158 57.260 58.412 57.786 57.354
2.1 88.395 89.583 88.179 87.869 89.417 87.216 85.577

2.2 131.378 133.481 131.324 130.446 132.597 127.979 124512
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. / FIG. 10. Free energy of symmetric nuclear matter as a function
> _30 of temperature at different densities with 3BF's. The dots represent
2 the calculated values and the solid lines a quadratic fit.
3

—40 2. Entropy and effective mass

The entropy is a thermodynamical quantity often dis-
~50 cussed in connection with particle production in heavy ion
collisions and in the determination of the isentropic evolu-
-1 0 1 2

tion of supernova collapse. The entropy release in multifrag-

P (MeV fm~3) mentation events is considered to be the crucial quantity to
o _ determine the fragment mass distributi@4]. In supernova

FIG. 9. The same as in Fig. 8 as a function of pressure. Aryo|japse it is commonly believed that the evolution is isen-

additional temperaturé=21 Me_V in the critical region is consid- tropic, and therefore knowledge of entropy allows us to ob-
ered and corresponds to the third curve from the bottom. tain the pressure as a function@&nds, that is, the relevant

EOS.

different cutoff parameters. The critical point is also close to As discussed at the end of Sec. Il B, the entropy can be
the one calculated in Ref7] from a variational approach extracted from Eq(23), once the free enerdyis found as a

and a different interaction. function of temperature and density. In practice, we have

However, our results are quite different from the onesfound thatF/A at a fixed density has a temperature depen-

presented in Ref[g], where a critical temperaturé'c dence that f0||OW_S C|Ose|y a quadl’a'[ic |aW, as shown in F|g
~9 MeV was found. The authors restrict their calculationslO in the calculation that includes 3BF’s. The calculated val-

to above the critical temperature, since they claim to find/€S, indicated by points, lie on parabolic lines with sufficient
numerical instabilities at lower temperatures. We did not fing?ccuracy. Itis then straightforward to extract analytically the
such a problem, and the iterative procedure turned out to bENTOPY: reported in Fig. 11, together with the entropy for a

stable and to converge quite smoothly, as Fig. 6 certifies'©€ Fermi gas. The comparison petween the two seems to
This discrepancy is perhaps due to the use of a differer} dicate a similar trend in the de_n5|ty depen_dence. Howe_v_er,
interaction the correlated system displays irregular regions for densities

— — —1
The van der Waals behavior was questioned in the finit@;oﬂndkf._ 11 andkf—éj rfm ' Wherr]e a sudden chagge
temperature relativistic Dirac-Brueckner calculation of Ref.0! SIOP€ IS apparent. Furthermore, the temperature depen-

[31]. No critical point is apparent in the trend of the iso- d€NCe Seems to be more regular, as a consequence of the

therms. These calculations were recently repe@pwith a quadratic behavior of the correlated free energy. B.Oth fea-
different interaction, the Bonn potentif3], and a liquid- tures can be traced back to the behavior of the effective mass

gas phase transition was clearly observed.at10 MeV. It as a function of temperature and density. The latter is calcu-

seems unlikely that such a lower critical temperature can b@ted fr(_)m t_he self-con3|s_tent smgle-par_tlcle potentlgk),

attributed to relativistic effects, since the critical density is aS"0Wn I Fig. 12, according to the relation

fraction of the saturation one, where relativistic effects are N

expected to play no role. The discrepancy surely deserves m* (k) _

further studies. m
The van der Waals behavior can be used to construct the

liguid-vapor coexistent line by the standard Maxwell con-The temperature dependencelbfs weak in general, except

struction. However, the vapor region occurs at very low denat low density, where the depth of the potentiakatO in-

sity, where the numerical solution of the self-consistentcreases with temperature, as a consequence of the enlarged

equations is difficult and requires a fine grid in momentum,phase space available for the interacting particles. This is

as already mentioned. apparent from Eq(9), where the Pauli operatar.. -n.. is

m du(k)] ™t

TR K

(32
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FIG. 11. Entropy of symmetric nuclear matter as a function of % 0 a2
density at different temperatures. The lower figure corresponds to r
the free gas model and the upper one to the BD calculations with 50 -

3BF’s.

_1OO'L,..I,...I....l.,..l..,,l..,,‘
smoothed with temperature, an effect which is stronger at

smaller density, wher&/Er can be larger than 1. The sharp x (fm™1)
increase olJ at large der35|t|es_anc_i high momenta is due to FIG. 12. The self-consistent single-particle potential of symmet-
the prese_nce O.f the 3.BF S, Wh.|Ch introduces a strong IFepmr'ic nuclear matter as a function of momenta at different densities
sion in this region. This behavior & produces the drop of __4 temperatures.

the effective mass in the same region, for examplekgat

=2 fm~1, shown in Fig. 13. The derivative in E(B2) was )

done with a five-point numerical differentiation. Similarly, B. Neutron matter and supernova explosions

the temperature dependence of the effective mass is quite Analogous calculations were performed for pure neutron
weak, except at low densities, as one can see from Fig. 13natter, with the inclusion of the same number of partial
The effective mass &t=0 andkg=1.4 has a value compat- waves and the same momentum cutoff. As it is well known,
ible with phenomenology related to the nuclear optical po-neutron matter is unbound, as one can see in Fig. 15, where
tential, which suggestsn*/m~0.7 [18]. The temperature the free energy does not display a minimum at any tempera-
and density dependence of* at the Fermi momentum is ture. As a consequence, the pressure, reported in Fig. 16, and
reported in Fig. 14 for the same type of calculations. Thein Table 1V, is always positive and increases steeply at
effect of temperature brings a decrease in the effective mashigher densities. This feature, together with the temperature
stronger at low densities. Consequently, the Fermi energgependence of the pressure, is important for the physics of
becomes substantially larger with respect to the free gasupernova collapse, where, in the final bounce-off of the star,
value. This can explain the already noticed smoother behawdensities a few times larger than saturation and temperatures
ior of the entropy as a function of temperature, since therof few tens of MeV can be reached. The stiffness of the
T/Eg is small enough for the linear dependence of the enequation of state and the temperature dependence of the pres-
tropy on temperature to be valid. On the other hand, the&ure are crucial elements in determining the final fate of the
density dependence af* at all temperatures shows a collapsing supernovas, which can finally end as a neutron
change in curvature, and can give an explanation of th&tar or a black hole or even fail to explode.

change in slope observed in Fig. 11 for the correlated sys- The EOS for neutron matter is much stiffer at high density
tem. In particular, the fast increase wf atk->1.8 is re- when 3BF'’s are introduced. The stiffness is then comparable
sponsible for the corresponding change of slope in the derto the one obtained within the Dirac-Brueckner approach
sity dependence of the entropy. [35]. This is not surprising, since it is well known that rela-
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FIG. 15. Free energy of pure neutron matter as a function of
density and temperature. The dots represent the calculated values
and the solid lines the spline fitting. The upper and lower figures
report the results without 3BF’s and with 3BF’s, respectively. The
free energy is a decreasing function of temperature and in each
figure the upper curve correspondsTe-0 and the lower ones to
temperatures of 8, 12, 16, 20, 24, 28 MeV.

tivistic effects can be interpreted as a 3BF in the nonrelativ-
istic reduction of the equatiorf86]. The EOS is also stiffer

as the temperature increases, and certainly at temperatures of
few tens of MeV this temperature effect cannot be neglected.

FIG. 13. Effective mass for symmetric nuclear matter as a func- 1 he collapse of a supernova involves actually asymmetric
tion of momentum at different densities and temperatures.
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nuclear matter, which is kept out ¢ equilibrium with a
large asymmetry, until the end of the neutrino trapping stage.
During this period the asymmetd= (p,—p,)/(pntpp) is
expected to be between 0.2 and 0.4. Hefeandp,, are the
neutron and proton densities, respectively. It is therefore in-
teresting to know the EOS of nuclear matter at different
asymmetries. In previous studies of the EOS at zero tempera-
ture it has been founfB7] that the energy per particlea)

has a simple quadratic dependence on the asymmetry,

e(a)~e(0)+[e(1)—e(0)]a. (33

Therefore, the EOS at zero temperature for any asymmetry is
known from pure neutron mattem=1, and symmetric
nuclear mattera=0. This is related to the validity of the
so-called Lane equatiori88], which establish the linear de-
pendence of the depth of the single-particle potential on the

FIG. 14. Effective mass for symmetric nuclear matter at theasymmetry parameter at=0. In fact, since the variation of
Fermi surface as a function of density at different temperatures. Fermi momentum is approximately linear in asymmetry, the
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40 ; ' : is most easily found by observing the behavior of the chemi-
cal potential as a function of pressure. Following this proce-
dure the phase transition turns out to disappear at an asym-
metry of approximately 0.9, as shown in Fig. 18. This result
30} . is in agreement with the Dirac-Brueckner calculation of Ref.
[32]. It has to be noticed thak, remains pretty constant up

to an asymmetry as large as 0.4, which encompasses
~0.33, the range of asymmetry typical of supernova explo-
20t 1 sion[39].

The EOS at finite temperature can be characterized by the
value of the incompressibiliti. In a thermodynamical con-
text K is usually defined byK=p dp/dp, which explicitly
101 1 identifies the spinodal region of the EOS as the one charac-
terized byK<0. The standard nuclear physics definition at
saturation is instea =kZ d’F/dkZ. In order to reconcile
these two definitions we adopt here the thermodynamical one
0 ] normalized in order to agree with the nuclear physics defini-
tion at saturation, namely,

p (MeV fm™93)

dp
K=9—. (34)
dp
It has been claimef40] that, in order to have a successful
supernova explosion in model simulations, the value of the
incompressibility for symmetric nuclear matter at saturation
must be not larger than approximately 100 MeV, a value
much smaller than the one extracted from the frequency of
the monopole excitation in nuclei. More recenfil] this
conclusion was questioned on the basis of the “neutrino re-
vival” model [42]. One has to stress, anyhow, that it is es-
sential to take into account the dependence of the incom-
pressibility on density, asymmetry, and temperature before
drawing any conclusions. The incompressibility reported in
Fig. 19 shows a very weak dependence on temperature at
, . l . . high densitiesp>p,, typical of the bounce-off stage in the
1.00 1.25 1.50 1.75 2.00 2.25 2.50 supernova collapse. For symmetric nuclear matter, at satura-
-1 tion and zero temperatuke~200 MeV. It has to be noticed
kf (fm ) that in the bounce-off stage of the collapse temperatures of
several tens of MeV are expected to be reached, and there-
FIG. 16. The pressure as a function of density and temperaturore the proper temperature dependence of the incompress-
for pure neutron matter. The upper and lower figures report thébility should be included. A steep increaselofs observed
results without 3BF’s and with 3BF’s, respectively. The pressuregs the density becomes higher, and the change of slope for
increases with temperature and in each figure the isotherms corrg~0.25 was found to be related to the presence of 3BF's.
spond toT=0, 8, 12, 16, 20, 24, 28 MeV. The range of variation oK is quite similar to the one ob-
tained in the Dirac-Brueckner approa¢B5]. The depen-
energy of the proton and neutron components is approxielence on asymmetry also appears to be strong.
mately quadratic ire. This dependence turns out to be ful-  Figure 19 also shows thdit=24 is aboveT ., the value of
filled to a large extent. K is always positive, and the liquid phase does not exist any
The single-particle potential is not strongly dependent ormore. From this figure it is also possible to identify the criti-
the temperature, at least for not too low densities, and theal temperature for a certain asymmetric matter. For ex-
previous assumption should hold o4 0. If we assume that ample, ata=0.75 the critical temperature is approximately
this approximate quadratic behavior is valid also for the free12 MeV andp.~0.07 fm 3, the point where the incom-
energy at finite temperature, then from the neutron and sympressibility has a minimum and equals zero. &0 it
metric nuclear matter EOS, discussed above, one can calcgeems possible to produce stable matter with an asymmetry
late the EOS at finite temperature for a generic asymmetryery close to 1, that is, a neutron superrich matter, where a
according to an equation equivalent to E83) for the free  sort of neutron “drip line” for an infinite system is located.
energy. The resulting isotherms are shown in Fig. 17 for
various asymmetries. The value=0.33 is expected to be V. LIMITING TEMPERATURE OF FINITE NUCLEI
typical of supernova collapse. The liquid-gas phase transition
disappears for some critical value of the asymmetry. The The liquid-gas phase transition of nuclear matter, if it ex-
trend of the critical temperature as a function of asymmetnyists, does not possess a direct correspondence in finite nuclei,

p (MeV fm_B)
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TABLE IV. The same as in Table Il for pure neutron matter.

T
Ke 0 8 12 16 20 24 28

1.0 0.544 0.836 1.028 1.237 1.419 1.603 1.745
11 0.559 0.917 1172 1.452 1.705 1.959 2.165
1.2 0.574 0.990 1.315 1.675 2.012 2.350 2.637
1.3 0.653 1.109 1.508 1.955 2.388 2.811 3.211
14 0.911 1.381 1.854 2.391 2.930 3.467 3.979
15 1534 1.980 2.521 3.144 3.793 4.438 5.095
1.6 2.790 3.165 3.762 4.461 5.217 5.967 6.791
1.7 5.058 5.305 5.937 6.693 7.543 8.384 9.398
1.8 8.844 8.898 9.534 10.318 11.238 12.144 13.368
1.9 14.809 14.600 15.200 15.970 16.917 17.848 19.297
2.0 23.795 23.253 23.763 24.461 25.375 26.269 27.956
2.1 36.857 35.913 36.265 36.821 37.614 38.386 40.315
2.2 55.288 53.884 53.995 54.315 54.873 55.409 57.575
2.3 80.654 78.749 78.519 78.494 78.665 78.819 81.203
2.4 114.833 112.414 111.723 111.218 110.811 110.396 112.968

due to the presence of Coulomb and finite size effects. Imucleus can sustain before reaching mechanical instability.
particular, the Coulomb interaction is of long range andThis “limiting temperature”T, is mainly the maximal tem-
strong enough to modify the nature of the phase transition. Iperature at which a compound nucleus can be observed. The
has been recognized by several auth@¥3,44], however, difficulty in observing a temperature up 19 in such a sys-
that the nuclear EOS is related to the maximal temperature #m can be due not only to mechanical instability but also to

\/a()B:J,

J%
J@l = 0.7

Q.05 0.10 0.15 0.20 0.258 0.30 0.05 0.10 0.1% 0.20 0.25 0.30
p (tm™3) p (fm~3)

10

8

p (MeV.fm 43)
IS

p (MeV fm #3)

p (MeV fm—3)

FIG. 17. The pressure as a function of density and temperature at different asyramfgdtrghe calculations include 3BF's. The pressure
increases with temperature and in each figure the isotherms correspdrddto8, 12, 16, 20, 24, 28 MeV.
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FIG. 18. Critical temperature of the nuclear liquid-gas phase
transition as a function of asymmetay The squares correspond to }: £00
the calculated points. =
dynamical limitations in the reaction leading to compound 200
nucleus formation. Anyhow, the limiting temperature is
surely an upper limit for the maximal temperature observed 0
experimentally. Fusion reactions between heavy ions at in- =12
termediate energies are an ideal tool for studying hot nuclei
[46]. From the fit, by means of the statistical model, of the 800
gamma ray and particle spectra, the presence of the com-
pound nucleus and the value of its temperature was inferred 600
in several fusion reactions.
Within this framework it is therefore interesting to extract o
from our microscopic EOS the corresponding limiting tem- & 400
perature. The connection between nuclear matter and finite ; |
nuclei requires the inclusion of Coulomb and surface tension 200 |
corrections. Following Ref[43] both corrections can be
evaluated within the liquid drop model, which should be ac-
curate enough for medium-heavy nuclei. The nucleus is de- 0
scribed in terms of a droplet surrounded by a vapor, in ther-
mal and mechanical equilibrium. This is equivalent to adding
to the droplet pressure and chemical potential the contribu- 0-10 0.15 0-20 0.25 030
tions due to the Coulomb force and surface tension, which p (fm™3)
are evaluated assuming a spherical droplet. These additional . . .
terms read _ FIG. 19. Incompressibility parameter_as a function of density for
different values of the asymmeteyand different temperatures.
2e2
oP=Pc+ Ps:(S—AP—Za(T)) / R, introduced by these terms is to consider the plot of the

chemical potential as a function of pressure of Fig. 9 for
6722 nuclear maitter. As previously explained, the_intersection b_e-
Su=——, (35) tween the liquid and the vapor branches defines the coexist-
SAR ence point in nuclear matter. The additional terms will only

, o 3 shift the liquid branch, since the vapor is assumed to be
whereRis the droplet radiu®= (3A/4mp)™", p is the drop- nitorm and uncharged, leading to a new coexistence point.
let density, and fora(T)=ag(1+ 3 T/T)(1-T/T)*3  Unfortunately, as already mentioned, it is very difficult to
with T.=20 MeV, the nuclear matter critical temperature, extend our microscopic calculations in the vapor region at
and the surface tension at zero temperature, the low temperatures needed for this estimation. In order to
=1.14 MeV fm 2, obtained from the semiempirical mass overcome this difficulty we have assumed that the single-
formula. The Coulomb interaction introduces an additionalparticle self-consistent potentibl(k) tends to zero linearly
positive pressur®: and a repulsive contribution to the bulk with density. This assumption can be justified by noticing
chemical potentiak, while the surface tension provides an that the expression for the single-particle potential involves
additional negative pressure term which tends to stabilize than integration over one hole line, according to EtR). If
system. At increasing temperature the surface tension dene neglects the momentum dependence oKtheatrix, one
creases and the system becomes unstable against Couloindeed obtains a density factor. We have therefore taken the
dissociation. The simplest way to observe the modificationself-consistent potential, calculated with 3BF'’s at the lowest
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FIG. 21. Limiting temperature of finite nuclei, as a function of
__10 the mass numbek, along the stability line. The squares correspond
> to the present BD finite temperature calculation with 3BF's. The
=2 curves SKIll and SKM refer to the Skyrme force calculations of
3 -15 Ref. [43], F—P to the variational approach of Ref7], and
BHF+RC to the Brueckner-Hartree-Fock with relativistic correc-
tions of Ref.[45].
-20
for the case of the Ag nucleus, the new liquid branch, indi-
—-25 cated by the dashed lines, shows a shift with respect to
nuclear matter. At low enough temperature an intersection
_5 between the liquid and vapor branches still occurs, which
corresponds to the coexistence point between the liquid
droplet and the nuclear matter vapor and assures that the
o 10 droplet is stable. Increasing the temperature, the curve for
= nuclear matter shrinks and should collapse to a poifit.at
: -15 Before T, it is possible to find a limiting temperature for
which the intersection between the liquid droplet and the
vapor branches is still possible. This determifigs which,
—R0 in the case of Ag, is equal to 7.25 MeV.
The presence of the vapor phase is obviously a necessary
-25 ingredient of the model to assure thermodynamical equilib-
-1.0 -08 0.0 0.5 1.0 rium, and it is absent in reality. The effect of the vapor is
P (MeV fm™3) essentially an additional stabilizing pressure, and theréfpre
can be again considered an upper limit for the reachable

FIG. 20. Chemical potential for symmetric nuclear matter, with

3BF’s as a function of pressure at different temperatysadid Th . .
i ) . e droplet-vapor coexistent point and, consequerdtly,
line), calculated from Eq(B2) of Appendix B, with the extrapola- depend on the mass and charge of the system. This depen-

tion to low densities of the single-particle potential, discussed mdence is studied in Fig. 21, whefi is reported along the

Sec. V. The dashed line corresponds to a liquid droplet of the N .
nucleus Ag. The intersection between the two line3 at7.25 de- nuclear stability line, and Compared with other EOS, taken
fines the limiting temperature. from Ref.[45]. The results coming from the present calcula-
tions show a close agreement with the ones obtained from
Fermi momenturrk-=0.8 fm 1, U,, and assumed that at the phenomenological Skyrme force model SKIII of Ref.
lower density it has the forr) (k) =U,(k)(k:/0.8)>. Since  [44]. A strong dependence on EOS is anyhow observed. In
the temperature dependence Wbfk) is very weak, as one particular, the Brueckner-Hartree-Fock calculations with
sees in Fig. 12, at least for the low temperature relevant hergglativistic correction$45], which gives an EOS close to the
we kept fixed the potential with temperature. Once theDirac-Brueckner one, display a very loW;. This is not
single-particle potential is known, the EOS at low densitiessurprising, since also the critical temperatiligeis very low,
can be readily extracted from Egd.6) and(18), which de- approximately 9 MeV, as previously mentioned.
pends only orJ(k), if one neglectswy, in the arctan expan- Although the connection betwedn and the nuclear EOS
sion. These higher order contributions are indeed negligibles not straightforward, the observation of a compound
as discussed in Sec. IV. The vapor, which occurs at very lowucleus with a temperature larger thgnwould rule out the
densities, is then naturally included, as shown in thé& corresponding EOS. Compound nuclei with mass 115
plots of Fig. 20, corresponding to the almost vertical branchwith a temperature up td=6-7 MeV have recently been
which intersects the liquid branch at the nuclear matter coebserved46]. This seems to put strong constraints on the
existence point. Including the corrections of E(B5), possible nuclear matter EOS, as can be seen from Fig. 21.

temperature.
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VI. CONCLUSIONS is due to the difficulty in identifing precisely the inflection
goint along an isotherm. This value of the critical density

In the present work we have applied the finite temperatur .
. . . . appears, anyhow, to be substantially larger than the one com-
linked diagrammatic expansion developed by Bloch and De . .
only found with Skyrme forces, around one-third the satu-

Dominicis to the study of the equation of state of nuclear andr];tion density, that is~0.05 fr >,

neutron matter. The reason for the choice of this formalism : .
The entropy, as a function of density and temperature, has

comes from the possible comparison one can make with thg range of values similar to the ones calculated from the free
Bethe-Brueckner-Goldstone expansion in the zero-

¢ wre limit. At the two-bod lation level the BD gas model. However, the trend for the correlated system is
emperature fimit. € two-body correlation level the strongly affected by the variation of the effective mass with

formalism contains terms which correspond to the Bruecknefjgngity and temperature. This is a consequence of the behav-
approximation, where the single-particle occupation numberg,, of the single-particle potential, which depends strongly
n are replaced by the finite temperature Fermi distributionsg, density and very litle on temperature, but with a
This selection of diagrams is also possible for three or highegmoother momentum dependence at higher temperatures. At
order correlation diagrams. In the text we named these termgw temperaturem*/m~0.7 at saturation, compatible with
the “naive” temperature-dependent BBG expansion. The rephenomenology.
maining finite temperature diagrams vanish in the zero- For neutron matter no phase transition is present, since the
temperature limit and originate from the fact that at finite system is unbound. From symmetric nuclear matter and neu-
temperature any momentum state can be interpretated botfon matter we have extracted the equation of state for a
as a particle and as a hole, and therefore they contain factogeneric value of the asymmetgyby assuming a quadratic
of the formn(1—n). We found that at the two-body corre- dependence of the free energy anconsistent with Ref.
lation level these additional diagrams are very small, at lead37]. The phase transitions seem to disappear only at a very
in the range of temperatures relevant for the liquid-gas phagarge value of the asymmetry~0.9, in agreement with
transitions, that is, below 30 MeV, and can be neglected irsimilar relativistic Dirac-Brueckner calculatioi82]. How-
first approximation. At zero temperature the Brueckner two-ever, the value of the critical temperature in recent DB cal-
hole-line approximation within the “continuous” choice in- culations is much smalleff.;~10 MeV. At zero tempera-
cludes most of the higher order correlations. The conclusioture asymmetric matter becomes a bound system by a slight
about the dominance of the diagrams contained in thelecrease of the asymmetry froe=1, and therefore the
NTBBG expansion suggested that the accuracy of the two=drip line” for nuclear matter occurs at very large asymme-
body approximation is still valid at finite temperature, usingtry.
the “continuous” choice for the single-particle potential. The incompressibilty at saturation is abouK
According to the previous statement, our calculations include=200 MeV, a value strongly increasing with asymmetry
only two-body correlations and are dominated by theand with temperature, at least at the high densities and tem-
NTBBG terms. The self-consistent equations involve bothperatures relevant for supernova explosions.
the single-particle potential and the chemical potential, and For finite nuclei it is not possible to define a critical tem-
are solved numerically by means of an iterative procedure, iperature. The concept of “limiting temperature” has been
order to obtain the grand-canonical potential and conseintroduced instead, as the maximum temperature a nucleus
guently the free energy. can sustain before decayif43]. The value of this tempera-
The calculation of the different thermodynamical quanti-ture can be considered as an upper limit of the maximum
ties can introduce some inconsistencies, related to th&#emperature observed experimentally for a compound
scheme of approximation, which can be summarized by thaucleus. This theoretically defined limiting temperatie
violation of the Hughenholtz—Van Hove theorem. We havecan be extracted from the EOS of nuclear matter by includ-
suggested a procedure to extract the pressure and the cherimg Coulomb and finite size effects. We have studigd
cal potential, both from the calculated free energy, whichalong the nuclear stability line, assuming that Coulomb
automatically fulfill the theorem. forces and surface tension are the ones of a spherical droplet
For the nucleon-nucleon interaction we choose the Ar{43], and compared with other EOS. The values obtained for
gonnev 14 potential. Since three-body forces are required taT, follow the trend obtained with the EOS extracted from the
have an EOS consistent with the semiempirical saturatiotskyrme force SKIlI[44], and are larger than the ones pre-
point, we have included a phenomenological three-bodylicted by all the available calculations. It has to be noticed
force, which has been reduced to an effective two-body onéhat the experimental observation of a compound nucleus
and adjusted to reproduce the correct saturation point. with a temperature larger than the valueTgfwould neces-
The finite temperature equation of state for symmetricsarily rule out the corresponding EOS. There is experimental
nuclear matter displays a clear van der Waals pattern of beevidence that compound nuclei in tie=115 mass region
havior in the pressure-density plane, indicating the presenaean be produced up to 6—7 MeM6] of temperature. Our
of a liquid-gas phase transition. With the three-body forceequation of state is consistent with such findings, a fact not
included, the critical temperature turns out to B&  guaranteed by other EOS.
~20 MeV and T,~21 MeV with two-body force only. In conclusion, we have calculated within an accurate the-
This value is consistent with Reff7], but is quite different oretical model the microsopic EOS with a realig¥itN inter-
from the one of Ref[9] of T.~9 MeV, probably due to the action and with inclusion of three-body forces. The EOS has
use of a different interaction. The critical densityis found  the correct saturation point, predicts the critical temperature
to be in the range between 0.068 and 0.09 frboth with  for the liquid-gas phase transitions, not yet so well estab-
and without three-body force. The uncertainity in this resultlished in the literature, and allows one to extract a limiting



700 M. BALDO AND L. S. FERREIRA PRC 59

temperature for finite nuclei consistent with the availablefinite temperature calculations, especially in finite nuclei, of

phenomenology on compound nucleus formation in heavyntroducing the temperature only through the smearing of the

ion reactions. Fermi surface by means of a Fermi distribution, was found to
Finally, we would like to stress that the usual approach tdoe justified.

APPENDIX A

In this appendix we develop the explicit analytical form of the grand-canonical potential used in the numerical calculations.
Let us start from Eq(7) and define the operat@¥(w)=B(w) 5(Hj— w), with B(w)=7K(w). The matrix element of this
operator in the two-particle state basis can be written then as

(27T)3/2 4
<k1k2|A(w)|k3k4>:( W ) 8(ky+ka—ks—Ky) 8(€y, €, — )[Kika|B(w)|Ksks]
2 312\ 4
=<qP|A(w)|q’P’>=(( j/T\l/ ) 8(P—P")8(Eqp —w)[q|B(w,P)[q'], (A1)

where we have changed from the discrete momenta representation to the continuous one, denoted by the parentheses. Thi
factors correspond to the conservation of total momentum and to the exphaitction appearing in the operatér In the

second step we have introduced the relative momenunik,—k,)/2 and the total momenturR=k;+k, of the two

particles, and the statq) is specified by the momentumas well as by the corresponding spin-isospin quantum numbers

The quantityE,p corresponds to the two-particle energy in terms of the relative and total momenta,

E _ﬁ2q2 i U 1P U 1P A2
®="m T am TY[ 9% 3P| FY AP (A2)
If we now expand the arctan function,
(—pnt
arctafA)=>, a,A", a,=—_—, n=odd, (A3)
n
the expression of E(7) for the grand-canonical potential can be written explicitly as
1 [+=e P \VARE \VARE
—0l== aq3 q43
Q-0 ZJ,OC p ; an (277)3) Jd d°P (277)3) fdld P.[qP|A(w)|g,P4]
\Vj 2
X W) Jdgdspz[%PﬂA(w”%Pz]
VOV w a
: W J'dnfld Pnf1[qnf2Pnf2|A(w)|anlpn71][Qn71Pnfl|A(w)|qP]- (A4)

Using the conservation of total momentustP—P;) in each matrix element oA, all the total momenta integrations can be
performed, with exception of the one pertaining to the trace. Similarlytiegration can be trivially done using one of the
energy conservation function¥E,— w) as defined in Eq(8); one gets

efﬁEqP

_ '—E 2 3003 3 _
0-0;-550)3 a, [ 9P | CaalB(E.P)0,]AEpEqp)

X f d%d2[01|B(Eqp,P)|02]8(Eqp—Eq,p) - - - [Gn-1|B(Ege,P)[q]. (A5)

The previous equations are exact at the two-body correlatioin this way theK matrix is diagonal in the two-body channel
level. As in standard Brueckner calculations, one approxirepresentationSJT. This approximation turns out to be
mates the Pauli operatoQ(q,P)=n-(|g+ 3 P|)n-(|q quite accurat¢47]. Similarly, the matrix/C, and thereforés,
1 ; ; ; can become diagonal if we also average the Pauli operator
2 FI) in Eq. (9) for the matrixK by its angular average, appearing in the%efining equatiéd). In qu. (A5) the chapn-
_ 1 nels are still coupled, due to the angle dependence of the
Q(q,P)= Ej dQqpQ(q,P). (AB)  two-particle energie&p, according to Eq(A2). We there-
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fore introduce a similar angle average approximafiga for ~ Where =k, —k;|/2, P=|k,+k,|, o=ey +e, and 6 is
these energies. Within these approximations difenctions  the angle between the single-particle moméatandk,.
appearing in Eq(A5) can be written as

_ APPENDIX B

5E _E/r:5_l/d ,P, A7 . . . .

(Eqp=Eqrpr)=0(q—0")/d(a.P) (A7) In this appendix we discuss the problem of the fulfillment
where the quantityl(q,P) is defined in Eq(19). Equation  ©f the Hughenholtz—Van HovéVH) theorem in the calcu-
(A7) holds true if the energie§ are monotonic functions lation of the pressure and other thermodynamical quantities.
of g for a given value ofP, whigﬁ is usually the case in all The the_.\orem indicates which _diagrams in the pertur_bation
practical applications. The expansion in partial waves offXpansion should be selected in order to satisfy consistently

eachB factor in Eq.(A5) is now straightforward. After inte- the thermodynamical relation

gration over the angle_ of eac_h momertg all the matrix w="f+plp, (B1)
elements §|B|q) are diagonal in the channel quantum num-
bers and all equal to each other. This leads to wheref is the free energy per particle apdhe pressure. In
_ a general microscopic treatment one has to check if this re-
1V rpas 5 & PEPaT 2 lation is violated. In the present context the constraint re-
AQ= 2 (2m)3 ngJ T f qu AP quired by the theorem is equivalent to demanding that the
pressure calculated directly from the grand-canonical poten-
7[ql|KS T (Epy)lal1a?Q(q,P)|" tial, p=— o, be equal to the pressure calculated from the
Xd(q,P)zn: an d(q.P) - free energyp=p2df/dp. At the level of the finite tempera-

ture Brueckner approximation, the two procedures of extract-
(A8) ing the pressure give different results. This difference can be
. ) ascribed directly to a well-defined self-energy diagram, the
We can now sum up the power expansion again, and get E¢q_cajled “rearrangement tern{18], which is absent in the
(18) for the grand-canonical potential. , standard Brueckner approximation adopted here. This can be
In standard zero-temperature Brueckner calculations thggen easily by noticing that the fulfillment of the theorem be
angular average over the entry enefgP,q) is not neces- g ivalent also to demand that the chemical potential ex-

sary, since the angular integration can be done explicitly. FOf,acted from the free energy = aF/oN, is equal to the

ke of comparison with the zero-temperature limit, we hav . .~ . .
sake of comparison with the zero-temperature limit, we ha %hemlcal potential. extracted from the density according to

separated out the first term in the power expansion of th q. (19), which in the present scheme is used to derive the

inverse tangent, which has the same form as the zer p th d cal potenti@l. In fact
temperature Brueckner expression for the potential energyfee energyF from the grand-canonical potentidll. In fact,

with the occupation numbers given by the temperature- 9F ~ ~
dependent Fermi functions. Taking the term with 1 in Eq. p=-g= f +p(a— =f+p[—f+ullp=n. (B2
(A5), one gets p
1 It can be shown that it is possible to reconcile the Brueckner
Q_Qézzg(o)f d3qd®P e*BEqP[q|K(Eqp,P)|q] theory with the HVH theorem if one adopts as a_definition of
the pressure the one calculated from the derivative of the free
1 1 energy and the chemical potential is taken equal td.et us
Xns| g+ EP )n>( q— EP’ ) ) (A9) in fact modify the singl~e-particle potentidl(k) by adding a
constant shifd u=u— x. Then Eq.(19) is unaffected, pro-
Taking into account the identity vided we redefine the chemical pote,ntial /s and the up-
perturbed grand-canonical potent@l, is changed td},
e‘ﬁEan>( o+ ;P )n>( - %P) =0g +AuN. The,refcire, frorr: Eq(16) one gets
1 1 Qo +uN=Qq +uN=F, (B3)
=nj|a+ EP )n( a- EP ) (AL0)  and the unperturbed Free enerfgy remains unaffected. Of

course, the shifA u in the single-particle potential will in
Eqg. (A9) reduces to the finite temperature Brueckner expresgeneral modify the Brueckne® matrix and therefore the
sion of Eq.(10) in the text. In the calculations we adopt the interacting partAQ of the grand-canonical potential. How-
angular average approximation for the entry energy only foever, it has been shown that, at zero temperature, the Brueck-
the higher order terms, since for the first term the integratiomer energy is actually stable, since one has to include con-
can be easily done numerically. This term, which corre-sistently in the calculation also the modification of the lower
sponds to Eq(10) of Sec. Il, has the explicit form diagram in Fig. 4b). In fact, once the single-particle poten-
tial has been shifted, this diagram is not any more exactly
(% 1 Y e, canceled out by the corresponding lower diagram of Fig.
17V T 872 lgTT J fo kldklfo k2dk2f d(cosf)  4(d). It has been shown that indeed the correction compen-
sates quite accurately the modification of the Brueckner en-
X[ql|K¥5T(w,P)|glIn(k,)n(ky), (A11)  ergy[47]. Indeed, one can verify analytically that the correc-
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tion of the U insertion diagram is just equal to the opposite

of the first order correction to the Brueckner energy. g(r)=-— < r
We have seen that the main modification introduced by

the temperature is described by the NTBBG prescription.

Therefore, the above consideration about the stability of the

Brueckner energy can be extended safely to finite temperély_hereq’ Is the two-bod_y relative wave function m_the me-
tures. dium, ¢ the corresponding unperturbed wave function, and

In conclusion, the procedure we are proposing is to adoptlhe proper energy denominatqr. Unfortunately this is in prac-
for the pressure the definitiqm=p23f/dp, with f calculated tice a very lengthy task to achieve. However, it turns out that
as described in Sec. Il, for the chemical potential POth the density and temperature dependence in the relevant

= 9FoN, without modifying the Brueckner energy. The region are very small, as illustrated in Fig. 5, where the cor-
HVH theorem is then automatically fulfilled. A similar pro- relation function is plotted fok; =k,~0 in the 'S, channel.
cedure was suggested by Hewtral.[48] in the case of the As one can see, the correlation functions are characterized by
finite temperature EOS extracted from phenomenologica® sharp decrease to 0 at small distances and a rapid increase
forces. to 1 at larger distances. This trend is almost independent of
the density and initial momenta, certainly due to the influ-
APPENDIX C ence of the strong repulsion of tteN core, which is of the

i i ) ) order of 1 GeV and therefore much larger than the relevant
In this appendix we give some details about the procedurgqrmj energies. Since the only contribution to the wave func-

used to reduce thfa origin_al three—b_ody for.ces to an effectivgyn at short distances comes froBwaves, it is enough to
two-body one. This effective force is obtaingZB] by aver-  congiryct the correlation function from these channels only.
aging the interaction of EqC1) over the spin and isospin of g re 5 also suggests a simplified form for the correlation
th.e particlej and folding over the coordlnatg of part|.clej functions to be used in EGC1), namely, a step function at a
with thezproduct of the gwo-b_ody correlation functiof$  gjitable radius. This is the approximation we used in the
—9g(rij)]”and[1—g(r )], which expresses the probability 4ctyal applications. We have checked that the results are in-
of finding particlej at the distances;; from particlei and at  sensitive to the detailed form of the correlation and to small
the distance . from particlek in the medium, variations of the radius of the step function. This insensitiv-

ity is due to the three-dimensional integrationﬁjlg in Eq.

(3) which smooths out the details of the correlation function
vi(r=p > | d*rVipll—g(rip11-g(r) 1% at small distances. Notice, anyhow, that still a strong density
)7 dependence remains, due to ihéactor in Eq.(C1).

€1 For nuclear matter and neutron matter only the anticom-

wherep is the density. The correlation functions should be inMutator term contributes to the averaging of ¥, be-
principle calculated self-consistently from the Brueck@er Cause of symmetry arguments. After averaging over spin and

2s
e

I<1k2> , (C2

matrix at each density and temperature, isospin of the third particle and using the relatipp=rj
+rij, the explicit form of the two form factorss andv of
W(r)=[1-g(r)] &(r), Eq. (30) reads

US(rik):ZWAPf rjzkdrjkf d(cos®)[1—g(r;i) 11 —-g(rj)]?

3ra+ri—ra Fic(Tii - Tik)
Y(riY(rjo+| 5 ——5———1| T(rj)T(rji) = 3T(r ) T(rj)——5"—Py(cos)
2 I Fiklji

X

vr(ri)=27mp [ rhdny [ dcom1-g(r) T~ gl TPT(ry0

(3ri - Tjk)
e

2
ril i

l ( ) rik(rji'rjk)H
X1 2P (cos9) Y(rji)+T(rji)| Po(cosd) 2| —3P(co))————| ¢, (Cc3

where thez axis was taken along the vectgg, andP,(cosd) are the Legendre polynomials of ordeifhese two-dimensional
integrations can be easily done numerically. The repulsive scalar part §28agives obviously a scalar repulsive effective
two-body force when the integration over the third particle coordinates is performed.
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