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Perturbative calculation of the electromagnetic form factors of the deuteron
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Making use of the effective field theory expansion recently developed by the authors, we compute the
electromagnetic form factors of the deuteron analytically to next-to-leading order. The computation is rather
simple, and involves calculating several Feynman diagrams, using dimensional regularization. The results
agree well with data and indicate that the expansion is converging. They do not suffer from any ambiguities
arising from off-shell versus on-shell amplitud¢S0556-28189)00502-9

PACS numbdss): 13.40.Gp, 13.75.Cs, 12.39.Fe

[. INTRODUCTION the perturbative calculation of the deuteron electromagnetic
form factors at next-to-leading ordédLO). This subject has
The techniques introduced by the authors in REffput  been addressed previously in the context of effective field
the study of low-energy two-nucleon interactions on thetheory in Refs[3,4], although using a somewhat different
same footing as chiral perturbation theory in the mesonic anébrmalism and involving numerical, as opposed to analytical,
single nucleon sectofg]. In particular, there is a systematic calculations. We preface the calculation with a brief review
low momentum expansion, such that at any given order, onef our expansion, and a discussion of the deuteron. After
need only calculate a finite number of Feynman diagrams tidentifying the graphs contributing the electromagnetic form
arrive at an analytic result. The procedure is superior in sevfactors, we show explicitly that there is no ambiguity arising
eral ways to the conventional technique of solving the Schrofrom the fact that the nucleons in a deuteron are not on their
dinger equation with a potential constructed to fit the scattermass shell, even though the couplings in the effective theory
ing data:(i) There is a well-defined expansion parameter, andare fit toNN scattering data. We conclude with a discussion
one can estimate errors at any given order in the expansionf features that will appear in the NNLQhext-to-next-to
(ii) it is straightforward to incorporate relativistic and inelas- leading order calculation of the form factors.
tic effects within the expansior(jii) analytic results allow It is not unreasonable to ask why it is worth pursuing an
one to see quite simply the relative importance of short- an@ffective field theory description of the deuteron since effec-
long-distance physics to a given proce§s; there is no tive range theon|5,6] can be used to predict many of its
ambiguity concerning off-shell matrix elements when calcu-properties[7,8]. For some quantities, like the deuteron
lating physical processegy) at low orders in the expansion, charge radius, effective range theory is remarkably precise.
the number of free parameters to be fit to the data is few, antthe primary motivation is to make a clear connection to
the same parameters are used in all processes. The resultSaD and therefore enable systematic calculations to be per-
lower orders in the expansion are therefore very constrainedormed, even for processes where effective range theory is
Until now, the techniques of Ref1] have only been ap- not applicable. Furthermore we expect that, even in cases
plied to reproducing scattering phase shifts. While a neceswvhere effective range theory is very accurate, the effective
sary first step, fitting the phase shifts does not seriously tedield theory approach will surpass this level of precision if
the method, as the low-energy phase shifts can be well fit bpursued to higher orders.
rather simple functions of few parameters. What is needed In this paper the application of the effective field theory
are calculations of dynamical processes that involve thexpansion of Ref[1] to processes involving the deuteron is
same interactions as are fit to theN phase shifts. The ob- developed. For definiteness we focus on the electromagnetic
vious ones to consider aMN—NNvy, np—dy, parity and form factors of the deuteron. However, it is straightforward
isospin violation inNN processespp—de” v, and the deu- to use the methods developed here for other quantities, like
teron electromagnetic form factors. In this paper we preserthe cross sections farp—dy and yd— vd.
At NLO the predictions of the effective field theory ex-
pansion for the electromagnetic form factors of the deuteron

*Electronic address: dbkaplan@phys.washington.edu are not as accurate as those of effective range theory. How-
TElectronic address: savage@phys.washington.edu ever, at NNLO they should reach the precision of effective
*Electronic address: wise@theory.caltech.edu range theory. Furthermore, the effective field theory ap-
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proach is a systematic one at some order it will include When describing pion-nucleon interactions it is conve-
physical effects beyond those that are encorporated into efiient to introduce the fieldé=expill/f=>. Under
fective range theory. SU(2) X SU(2)R transformations

Il. EFFECTIVE FIELD THEORY FOR NN INTERACTIONS E—LEUT=UERT, 2.7

In order to compute the electromagnetic form factors of,

the deut { ider th ible int ¢ bwhereU is a complicated nonlinear function bf R and the
€ deuteron, we must consider the possible Interactions B&;q, fie|ds themselves. Sint¢ depends on the pion fields it
tween nucleons, pions, and photons. In an effective fiel

. . as spacetime dependence. The nucleon fields are introduced
theory, these interactions take the form of local operators

constrained only by the symmetries of QCD and QED. Inas a doublet of spin-1/2 fields
this section we discuss the form of the operators that occur to

the order that we will be working, and then turn to the issue N=
of power counting, which allows a consistent expansion of

the form factors.

p
n)’ (2.9

that transforms under chiral SU(2¥% SU(2)zx symmetry as

N—UN and under U(1) gauge transformations bk

—e'“QemN, Acting on nucleon fields the covariant derivative
Terms in the effective Lagrangian describing the interacis

tions between nucleons, pions, and photons can be classified

by the _number o_f nucleon fields that appear in them. It is D,N=(3,+V,+ieQeAN, (2.9

convenient to write

A. Interactions

L= Lot Lyt Lot -+, (2. Where
where £, containsn-body nucleon operators. vV :E D &+ &£D 21
Lo is constructed from the photon fielt*= (A% A) and ” 2(§ pE TEDL. (210

the pion fieldd; it does not contain any nucleon fields. The
pion fields are incorporated in a special unitary matrix, The covariant derivative dfl transforms in the same way as
N under SU(2)XSU(2)g transformations (i.e., D,N
2ill1 72 C —UD,N) and under U(1) gauge transformatiofse.,
srees Ml ) #? pNodtn,N).
The one-body terms in the Lagrange density are
where f=132 MeV is the pion decay constar¥. trans-

2 .
forms under the global SU(2X SU(2)g and U(1),,, gauge ot D_ 19a ¢ toet
symmetries as L1=N Dot 57 N+ 5" Nlo (£D&7 = £ DN
N t _el2Qems @~ iaQeny e K
ToLER, Ioeemneithen @3 + o N[ kot e Pet£r¢T |- BN+ - -
wherel e SU(2)., Re SU(2)z, andQgnis the charge ma-
trix, (211
1 0 To the order to which we are working,= %(Kp+ x,) and
Qem= ( 0 0) . (2.9 K1= %(Kp—_ k,) are isoscalar and isqvector nucleon magnetic
moments in nuclear magnetons, with
The part of the Lagrange density with no nucleon fields is
Kkp=2.79285, Kk,=—1.91304, (2.12
1 2
£o=§(EZ—BZ)+ g D, 3D#3" at tree level. At higher orders there will be contributions to
Eq. (2.12 from pion loop graph§9]. The isoscalar magnetic
f2 N moment ko receives leading corrections of the form
tgeTrmg(Z+E0)+- .. (2.9 mZ In(mZ/A%), suppressed by two powers of the pion mass.

In contrast, the isovector magnetic momentreceives lead-
The ellipsis denotes operators with more covariant derivaig corrections of the forrm_, suppressed by only one
tives D,, insertions of the quark mass matrixn, power of the pion mass. The ellipsis in E®.11) denotes
=diag(m,,my), or factors of the electric and magnetic higher-order terms that do not contribute at the order we are

fields. Acting on3 the covariant derivative is working.
Finally it remains to consider the two-body operators.
D,2=0,2+ie[Qem2]A,. (2.6) Some of these were discussed in R¢fd; however, since

we will be computing electromagnetic form factors of the
The parametew has dimensions of mass ammlff:w(mu deuteron there are additional considerations that did not arise
+my). in the NLO calculation of nucleon phase shifts.
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First we will consider the two-body operators involving where thes matrices act on the nucleon spin indices, while
nucleons alone, then we will look at those containing a phothe 7 matrices act on isospin indices. Then the two-body
ton; to the order we will be working, we need not consider|_agrangian may be written as
two-body operators involving pion fields. In the spin triplet
channel, there is ondN contact interaction with no deriva-
tives or insertions of the quark mass matrix, corresponding to
a diagonal transitioriS; —°S, ; the coefficient of this opera-  1,— —(Cy+ D, Tr mg) (NTP,N){(NTP.N)
tor is taken to beC,. There is an additional contact interac-
tion involving no derivatives and one insertion of the quark
mass matrix, with coefficienD,; it can be distinguished
from the C, interaction by its chiral properties. There are
five contact interactions involving two gradients, correspond-  +€L[(NTPN)(NTP;o-BN)+H.c]+---,  (2.19
ing to diagonal transitions in thés,, 3P, ®P,, and 3P,
partial waves, as well as an off-diagon#$, — 3D, transi-
tion. Only the first and the last of these are relevant for thevhere the ellipsis refers to contact interactions irrelevant for
deuteron; furthermore, at NLO we can ignore ti8, the deuteron channel, or of higher order than we will be
—3D, transition interaction. Thus the onW? two-body con-  considering. The new couplirlg, corresponds to an interac-
tact interaction we will consider i8S, —3S,, and has cou- tion that did not enter the calculation &N scattering, but
pling C,. Therefore, for a®S,—3S,; scattering process, which affects the deuteron magnetic form factor. As written,
where the incoming nucleons have momepia p,, and  Eq.(2.15 is not chirally invariant, which can be remedied by

C . .
+ L NTPN) (N[ P, B2+ 7P, —2DP, BIN) + H.c

polarizationi, and scatter into states with momemia p,,  an appropriate insertion of thg fields; however, since the
and polarizatiorj, the Born amplitude arising from the con- two-body operators with pions do not contribute at NLO, we
tact interactions is omit them.

B. Power counting
C

iA=—i8;| Co+Dme+ 3

[(p1—P2)2+(p1— P52 We begin by summarizing the results of Reff$]. The
starting point is the effective Lagrangian for nucleons, pions,
(213 and photons introduced in the previous section. The part of
the Lagrangian describing purely mesonic interactions, as
The form of theC, amplitude is fixed by Lorentz invariance well as interactions between mesons and a single baryon, is
(which is equivalent to Galilean invariance to the order wethe conventional chiral Lagrangian. In addition there are lo-
work), and by the normalization we used in REf], where  cal interactions corresponding to short distance interactions
in the center-of-mass frame, where we defined the amplitudeetween two nucleons. These contact interactions are ex-
to be—iC,p?, p=|p;|=|p/|.* As discussed in Appendix B, Ppanded in powers of derivatives and insertions of the quark
while one can construct a two-body contact interaction withmass matrixm, . (Isospin violation from the difference be-
one factor ofd, instead of two gradients, for argmatrix ~ tween the up and down quark masses is neglected. Conse-
elementincluding those involving the deuterpane can use quently insertions ofn, are equivalent to factors af? .)
the equations of motion to eliminate time derivatives for gra-The lowest dimension operator is a four fermion contact in-
dients. Thus no independesg contact interaction needs to teraction; there are two independent operators of this form,
be introduced. corresponding to théS, and S, channels. The next lowest
Including gauge fields introduces several two-body con-dimension two-body operators involve a factorpsf where
tributions to the electromagnetic current. First, @ginter-  p is the momentum of one of the nucleons in the center-of-
action described above becomes gauged. Second, there anass frame, or a factor oh? . There are seven independent
two new two-body magnetic moment type interactions. Inp? operators corresponding to diagonal matrix elements in
order to write£, compactly we define the matri®; which  the {1S,,'P;,%S;,%P,,%P;,3P,} channels, as well as %5,
projects onto the’S, state, —3D, mixing term; there are two independemf, operators
corresponding to théS, and ®S; channels. At higher pow-
ers of derivatives, the number of contact interactions quickly

grows.
1 t faT Central to effective field theory is a power counting
PiEﬁUZUi 72, TTPPj=—TrPiPy=34;, scheme which allows one to calculate consistently to any

2.14 given order in the low energy expansion. A main point in
' Refs.[1] was to develop th® DS subtraction scheme which
allows one to readily identify the order of any particular
Feynman graph. The scheme involves computing loop dia-
'The COUIaIO'ingSCgY D», and3(:2 are the same couplings that ap- grams using dimensional regularization, and then subtracting
pear asC{®?, DL, andC{™ in Refs.[1]; we drop the®s;  off the poles in dimension® =4, which correspond to loga-
designation here as there can be no confusion with analogous cotithmic or power-law divergences. A typical integral in this
plings in the!S, channel. scheme is
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— 4-D qu 2n 2 H -1 2 H -1
[,=i(ul2) Wq (E2+qo—q“/2M +ie) *(E/2—qp—q/2M +ig)
a
4-D d(D_l)q 2 2 1
_ - n _ PN
=(ul2) f(ZW)(D_l)q (E—=q/M+ieg)
3-D\ (u/2)* P
- ne_ i) (D=3)12
M(ME)"(—ME—ig) F( > )(477)“"”’2
PDS M
— —(ME)n<E)(M—\/—ME—i8). (216)
D—4

The last step includes the finite subtraction mandated in theoefficient scales ak,~ 2. The rapid scaling of the op-
PDS scheme. The parametgris the renormalization scale erators contributing t&wave processes is what makes our
and physical observables are independent of it. In fact, onexpansion different than the one proposed by Weinp&dj
may setu to zero and recover the usual minimal subtraction Armed with the above results, we are able to arrive at a
scheme (MS) withu=0 if one wishe<. However, a change particularly simple set of rules for determining the order of a
in u must be compensated by the renormalization-grougraph. Choosing the scale~p~m_~Q we perform an
flow of the couplings in the theory. Therefore, what is aexpansion inQ, where
weak coupling at one value qf can be strong at another, (1) Each nucleon or pion propagator scalesas’;
which effects how one defines the power counting scheme. (2) Each loop integratiorf d*q scales a®Q®;

Rapid scaling withu is only an issue for two-body op- (3) A gradient at a vertex contribut€, while each time
erators, and then only for those affected by the large scattederivative scales a®?;
ing lengths in the!S, and 3S, channels. Consider a four (4) An insertion of the quark mass matni®, at a vertex
nucleon contact interaction connecting angular momentuncounts asQ?;
statesL andL’, where conservation of angular momentum (5) The coefficient of the contact interactions scale ac-
and parity requirelL —L'| to equal zero or two. We assume cording to Eq.(2.17).
that the operator involvem insertions of the quark mass The first three rules follow simply from the scaling of four
matrix, and 2I=(L+L’+2n) spatial gradients, and momentaq, appropriate to the nonrelativistic regime. Ex-

has a coefficientCsl'. By examining the coupled
renormalization-group equations in tR®Sscheme, one can
determine that these couplings scale as

Mf(m+n+l) L,L’e{lSo,3$1,3Dl};

L,L’

' ~ 2.1
Crin (1) u®,  otherwise, .19
in the region 1A<< u<<AyyN, Where

=2 300 Mev 2.1
NN= giM = ev. (2.18

Here M is the nucleon masg,=1.25 is the axial current

coupling, andf =132 MeV is the pion decay constant. Thus

in the deuteron channel,,~ x~, while C, andD, scale as
w1~ 2. Extending the analysis to include photons, we find
~ =2 as well.

plicitly, Mo~ g2~ Q2. The fourth rule is familiar from con-
ventional chiral perturbation theormq~mi~Q2. The pro-
cedure for calculating physical quantities of interest is to
write down the most general effective field theory consistent
with gauge invariance, chiral symmetry, and Lorentz
invariance® and then compute the desired matrix element to
a given order in th& expansion, following the above rules.
Note that according to the power counting rules, a loop with
two propagators entails a factor @f while the coefficient of
the lowest ordeNN contact interaction @4, with L=L’
=d=m=0, defined to be&C) scales as {; thus any graph
may be dressed by an infinite bubble chain witpinterac-
tions without changing the order of the graph.

Ill. THE DEUTERON FORM FACTORS

A deuteron with four momenturp* and polarization vec-
tor € is described by the statp, e), where the polarization

The coefficients of the four-nucleon contact terms thatsector satisfiep € =0. An orthonormal basis of polariza-

have explicit factors of the electric field or the magnetic
field B scale similarly to those in Eq2.17), counting gauge
fields as derivatives. For example, thg operator in Eqg.
(2.15 counts as a two-derivative,= L' =0 operator, and its

tion vectorse!* satisfies

3Relativistic corrections are accounted for as perturbations accord-
ing to the above power counting rules, and at the order we work the
theory only appears Galilean invariant. The procedure for dealing

2In the MS scheme witlu =0 one must first integrate out the pion with relativistic corrections perturbatively requires distinguishing

to avoid factors that diverge as if/u?).

between potential and radiation pions at NNLO, as discussgd.in
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p“p”
M3

3
p.e=0, —&ij 2’1 € el=

where Mg is the deuteron mass. It is convenient to choose
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the basis polarization vectors so that in the deuteron rest £ 1 The perturbative expansion Bf The first row has the
frame €f*= 6. Deuteron states with these polarizations ar€eadingO(Q) result; ® represents an insertion of the interpolating

denoted byip,i) (i.e.,
ization condition

p,i)=|p,€e)) and satisfy the normal-

0
<p',j|p,i>={,’,—d(zm%ﬂp—p')aj. (32

field defined in Eq.3.7). The second row has the complete sub-
leadingO(Q?) contribution, wherdll and ¢ denote theC, andD,
interactions, respectively. The third row shows a coupl©9?)
NNLO contributions, which we do not calculate here: the exchange
of two potential pions, and the dressing ©f (the pointlike NN
verteX by a radiation pion.

In terms of these states and to leading order in the non-

relativistic expansion, the matrix element of the electromag-

netic current is

(p",jl3%Ip.iy=e

2 1 2
Fc(g9) 6 +2_M§|:Q(q )

X

1 2
Qiql'—gq Sij | |
AR P\ — e 2 ryk 2
(P, i enp.i)= 51| Fe(@) 8 (p+p")*+ Fu(a®)
d
Kk Kk 1 2
X(‘qui_éin)"_ZM(ZjFQ(Q)

X

1
Qin_§q25ij)(p+P')k}, 3.3

whereq=p’ —p andg=|qg|. These dimensionless form fac-
tors are normalized such thiit1]

Fc(0)=1,

e
Z_MdFM(O):MMa (3.9

1
WFQ(O):MQ'

d
where u),,=0.857 41€/2M) is the deuteron magnetic mo-
ment, andu o=0.2859 fnt is the deuteron quadrupole mo-
ment.

As shown in Appendix A, the form factors are readily

calculated by computing in perturbation theory the irreduc

ible two-point function, and the irreducible three-point
functionI'#. In the present context, “irreducible” means the
sum of graphs which do not fall apart when cut at aty

2
L

E=E- M ’

E=(p°-2M), (3.6

where the ellipsis refers to relativistic corrections to the

energy-momentum relatiole’ is the analogous quantity for
the outgoing nucleon pair. By Lorentz invarian&eandI™*

can only depend on the energy and momentum in this com-
bination.

We can now expand the relation E&.5) in perturbation
theory and determine the form factors by comparing the re-
sult with Eq.(3.3). The two-point function has the graphical
expansion shown in Fig. 1, where tkee vertices represent
the insertion of an interpolating fiel®; with the quantum
numbers of a deuteron with polarizatianWe takeD; to be

D;=N"P;N, (3.7

where P; is the projection defined in Eq2.14). The form
factor one calculates does not depend on the particular
choice forD;, so long as it is used consistently.

By examining the graphs and using the power counting
outlined in the previous section, one sees thabegins at
order Q'—the leading graph has two nucleon propagators
and one loop. At subleading orde®(Q?), there are three
two-loop graphs, one involving the exchange of a potential
pion (which has a derivative couplingone with an insertion
of the 02(5)2 two-body operator, and one with an insertion
of the Dsz, two-body operator. Recall that with renormal-
ization scaleu~Q the coefficientsC, andD, areO(Q " ?).

At O(Q?®) there are a host of diagrams, including the ex-

change of two potential pions, or one radiative pion, as well

asp* relativistic corrections to the nucleon propagator, etc.
We have calculate® to O(Q?), and the results are pre-
sented in Appendix A.

vertex. The matrix element of the electromagnetic current is

then given by the exact relation
T'4(E,E",q)

. 3.
d3 (E)/dE - 39

E,E’*?*B

(", J13&np.) =i

whereB is the deuteron binding energy afdis the energy

A. The NLO computation of the electric form factors

To compute the electric form factoFs. andF 5 we need
to calculate the three-point functid?]o- , which is expanded
graphically in Fig. 2. The results for both the leading
0O(Q™ 1) and subleading(Q°) contributions are presented
in Appendix A. Oncd° is computed in th& expansion, the

of the incoming two nucleon state in the center-of-masslectric form factors can be determined by expanding Eq.

frame,

(3.5 as
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FIG. 2. The expansion df°. In all of these graphs, the photon Q(i Q‘%/\
corresponds t@\, with the minimal coupling to the proton propa- A S 2+ perm.

gator, arising from the gauged nucleon kinetic energy term. The _

graph in the first row is the leading(Q 1) contribution,F?_l)- FIG. 3. The expansion df', where the photon corresponds to
The second row is the subleading graphs<O40Q°), summing to  the vector potentiah'. The coupling of the photon to the nucleon
give 'Yy . In the third row are several graphs contributing at thelines represents the entire one-body current fiom Eq. (2.11),
O(QY): a dressing of the photon-nucleon vertex, a relativistic cor-including the magnetic moment contribution. The first graph is the
rection to the nucleon propagator, and an exchange current contd-O contribution at0(Q°), while the remaining graphs are the NLO
bution. contributions aD(Q?Y). The photon couplings arise through any of
the operators inly, L4, or £L,. We specifically distinguish the
C,, D,, andL, vertices by the symbol#l, ¢, and @, respec-

0
(P, il3eup.iy =i F(—_l)_ tively.
remt ds ) 1dE
_ B S a
N [0%)(d3 (1) /dE) =T} (d3 5 /dE) FQ)(QZF—Cz(my(;—W”[l——ytanl 4%”
(d31,/dE)?
2 2
+0(Q%), (3.9 _gAMmﬂy[ 2 - i)
2mf2q [(My+27) 4y

wherel“?n), 2 (n) denote theD(Q") contribution toI'® and 11

>, respectively. We have suppressed thelependence of —f dx—tanlﬁ}, (3.12
I'°, and its polarization indices. Furthermore everything is o XA

evaluated on-shelE=E’=—B. Sinced/dE~0O(Q?), the
first bracket in Eq.(3.8) is O(QY), the second bracket is
O(QY), etc. Therefore, taking into account the explicit fac-
tors of g in the definition of the form factors, E@3.3), we
see the electric form factors haveQaexpansion of the form

where we have defined the functions

gx
AX)=Vy +x(1=-x)9%4, B(X)= 5~

Fo=FO 1 FD 4 0(0?), 2(y+m;+4)
c=Fc'+Fc'+0(Q%) (313
Fo=F32+FyP+0(QY), (3.9
The operator with coefficierid, does not contribute to these
whereF(™M~0(Q"). observables. Because of the running@f, the above ex-
Using Eqs.(3.8),(A6),(A17) gives our leading result for Pression is independent pfto the order we are workinid.].
the electric form factors, From Egs.(3.10—(3.12 we determine the charge radius of

the deuteron to NLO,

4y q
FO(g?)=—tan! —)
c (g9 q 4y L
<I’2>LO=
_ 872’
FG?(@%=0, (3.10
where we have defined
NG M(u—7)? gaMmZ(3m,+10y)
(roMP=Cy(w) 16 7 3
Ty 967 fy(m, +27y)
y=VMB. (3.11 (3.19

The subleading form factors are extracted from Egs.
(3.8),(A6),(A18), and presented in terms of a Feynman pa-A comparison with the experimental value is given in Sec.
rameter integral. The electric monopole form factor is givenlV.
by At NLO, the electric quadrupole form factor is given by
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FoPag?») 3gaMy (1 1
QM(2q ):1§:f2(:;’jo X, gag (30™(L+ B9)7—24qm, Bx(1+ B%) + 16m. %3+ g9 Jtan™* B
d

+ B[ — 48m2 B2+ 8m,qxB(3+28%) — q°x*(3+587)]). (3.19

From this expression one can extract the quadrupole momeetator in Eqg.(2.15. With the exception of the two-body

to first nonvanishing order: contribution involving an explicit factor ofB [see Eg.
5 ) 5 (2.19], all the graphs contributing are all proportional to
o no 9aM(6y°+9ym, +4m?) those giving rise to the electric form factors in Fig. 2. There-
pno =0, ug-= 30mf2(m_+27y)° ) fore to this order we can express the magnetic form factor in

(3.16  terms of the electric form factors and a single new coupling

. . . o ) constant. We find
A comparison with the experimental value is given in Sec.

V. eFfv,l)(qz) qz
PR (D2 _ 1V (=12

B. The NLO computation of the magnetic form factor d

In order to calculate the magnetic form factor of the deu-
teron, we need the matrix element of the spatial current
(p'.K|J,,Jp.}). This entails computind™, using the cou- , o
pling of the spatial component of the gauge fiéld, dis- and the deuteron magnetic moment is given by
cussed in Sec. Il A. The expansionBfin Feynman graphs
is shown to subleading order in Fig. 3. Following our power
counting rules,I"" begins atO(Q%), and so an expansion
analogous to Eq.3.8) for the matrix element o.ﬂ'em implies MMLO:GLZZ(M— 32, (3.21)
that the magnetic form factor has the expansion ™

relyl(u-v)?, (3.20

(o]
Bin = sp b,

Fy= Ff\fl)ﬂ— ngll)Jro(Qz). (3.17) whereL, depends on the renormalization scalén such a
way thatu(l’ is u independent. A comparison with the ex-
Our task in computingF,, is greatly simplified by recogniz- perimental value is given in the next section.
ing from Eq.(3.3) that we need only pick out contributions
with spin structure antisymmetric in the deuteron polariza- C. Effective range theory
tion vectors. It is straightforward to check that none of the
graphs shown in Fig. 3 contribute t,, when the photon
coupling arises from any of the operatols'D?N,
9aNTo- (¢DET-¢'DEN,T{D,,SD#2'] in Eq. (2.1D), or
the four-nucleon operator with coefficie@, in Eq. (2.15. [ y e
At LO, only the photon coupling via the isosinglet nucleon Y ER(r)= An(l—yrg) T (3.22
0

magnetic moment one-body operator contributes,

In effective range theory the electromagnetic form factors
are assumed to be dominated by the asymp®ti@ave deu-
teron wave function,

Assuming the smalf part of the deuteron wave function is

iKONT(,., BNZMNTU- BN, (3.19  only important for establishing the normalization condition,
2M 2 Fc(0)=1, the prediction of effective range theory for the
) form factor Fc(g?) follows from the Fourier transform of
and we find (ER)( ¢\ [2
[ =17,
eFn(d>) e 4y q
— = O g2y = T ia | - 4y q
=—KkoFc’(q°)=(upt+un)—tan ) (ER) [ 42y — e 1
2Mg M P M)y 4y Fo(g9)=1+ =1, 1+ q tan 4|
(3.19 (3.23

For the deuteron magnetic moment this gively’=(4,  This yields the charge radius
+up), simply the sum of the neutron and proton magnetic

moments. ner. 1 1 1 2.2
At next orderQ? there are contributions t&), arising (r9) T8 21—y W[1+7r0+7 rot---1.
from coupling the photon via Eq3.18, along with inser- (3.24

tions of theC, operator or one-pion exchange; there is also a

contribution from the two-body current arising from the op- It is instructive to compare the effective range theory predic-
erator in Eg.(2.15 whose coefficient id.,. We find that tion for the charge radius with that from effective field

there are no pion exchange current contributions at this ortheory. In effective field theory at NLO the effective range is
der, nor any two-body current contribution from tg op-  (ro=0 at LO),
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TABLE |. Electromagnetic properties of the deuteron.

LO NLO (LO+NLO) Experiment{12,13
rms charge radiugm) 1.53 0.36 1.89 2.13@86)
Magnetic momen{N.M.) 0.88 —0.02 (fit) 0.86 (fit) 0.85741
Quadrupole moment (ff) 0.40 0.40 0.285@®)
M(u— )2 Q/ZAM/ 8 vy V2 derived from a fit to theNN scattering phase shifts in the
ro=Colp) ——5— an2 173 -tz spin-triplet channel. The values @, andD, do not enter
H & (3.25 our expressions explicitly, but they do enter indirectly

Using this it is straightforward to show that theexpansion
of the NLO effective field theory charge radius,

My(p—7y)?

1+ Col(p) —— -

1
rz = —
< > 8’)/2

giM ymZ(3m,_+10y)
127f2(m_+27y)3

My(n—1y)?

1+ Colp) —5—

1
=57

8y
1— = — 44—+
3m, :

2
gaM 7( . (320

477f?

and they expansion of effective range theory agree to orde

¥? at linear order irr.
Effective range theory predicts the matter radiyswith

through the constraint on the two-point function that the deu-
teron pole occurs at the correct binding energy, &§g).
GivenC, from theNN phase-shift analysis, we have no new
parameters at NLO for fitting the electric form factors. As we
have seen, for the magnetic form factor, a single new param-
eterL, enters at NLO.

We first consider that static moments of the deuteron, at
g?=0. We have analytic formulas for the charge radius, the
qguadrupole moment, and the magnetic moment in Egs.
(3.14), (3.16, and (3.21), respectively. A comparison of
these values to experiment is given in Table I. The charge
radius shows a rapid convergence to the measured value,
which is encouraging. The LO calculation is expected to be
within ~30% of the experimental value, while the NLO cal-
culation is expected to be withir-10%. It is clear from
r'I'able | that this expectation is fulfilled. When the NNLO
calculation is performed we expect that the result is within
~3% of the experimental value. The magnetic moment

remarkable precision. Using,=1.75 fm effective range 2drees well with experiment at LO, and then is fit to the
theory yieldsr ER'=1.98 fm. The most recent measurement€XPerimental value at NLO by choosing the strengghof

of the deuteron charge radius ig,=2.13030.0066 fm
from which the matter radius is found to brg,=1.9685

the two-body magnetic operator appropriately. The LO pre-
diction for the magnetic moment is much closer to the ex-

+0.0049 fm[12]. (In effective field theory the effects that Perimental valudwithin ~3%) than naively expected from
distinguish between the matter and charge radius do not arigge power counting. The quadrupole moment vanishes at LO,
until NNLO.) The numerical success of the prediction of and the NLO value of 0.40 ffnis off by ~40%, as ex-
effective range theory for the matter radius suggests that theected from the power counting. It would be useful to com-
most important higher-order terms in effective field theorypute the NNLO contribution tquo to see if it exhibits the

are those that arise from iterating the NLO potential frém

same convergence as the charge radius. The idea of including

and one-pion exchange. However, from the effective fieldpions perturbatively has been used previously to estimate the
theory perspective this cannot be justified since there are nedeuteron quadrupole momef14], obtaining a value of

local operators that will contribute at the same order.

0.40 fnf. More interesting is that iterated potential pion ex-

Effective range theory can also be used to predict thehange reproduces the deuteron quadrupole mofBénea-

magnetic form factor and it gives
eFy (%)

M, (3.27

= (ppt ) FER(0?).

In the following sectionFE¥(g?) and F(§P(q?) are com-
pared with experimental data.

IV. COMPARISON WITH DATA

sonably well. This suggests that contributions to the quadru-
pole moment from higher-order counterterms are small
compared to additional insertions of potential pion exchange.
This smallness is not something that arises naturally in the
effective field theory. It is also interesting that state-of-the-
art nuclear calculations of the quadrupole momgt]
(~0.270 fn?) are systematically lower than the experimen-
tal value by ~7%. This strongly suggests that dynamics
beyond potential interactions are required, something that ef-

We now compare the analytic results of our effective fieldfective field theory provides a systematic way to include.
theory perturbative expansion for the deuteron form factors Of greater interest is the comparison of the form factors
with experimental data. We have evaluated these expressiof¥er a range oy, as we should be able to see at what

at the same renormalization poipt=m,, used in Refs[1]
and have used the same value

C,(m,)=9.91 fnf (4.1

momentum the expansion begins to fail; our naive estimate is
that the expansion is in powers ofg/2AyN
~@/(600 MeV). The differential cross section for elastic
electron-deuteron scattering is given by
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FIG. 5. A plot of B(g?) vs g in MeV for elastic electron-

FIG. 4. A plot of A(g®) vs q in MeV for elastic electron-  deuteron scattering. The dotted curve shows the result of the LO
deuteron scattering. The dotted curve shows the result of the LQalculation, while the solid curve is the NLO prediction. There is
calculation, while the solid curve is the NLO prediction. There areone free parameter at this ordep, which is fixed to correctly
no free parameters at this order. The dashed curve shows the restdbroduce the deuteron magnetic moment. The dashed curve shows
of effective range theory. the result of effective range theory.

V. CONCLUSIONS
do do

—=—1 [A(g?®)+B(g?tarf 6/2], (4.2)
dQ  da Mot We have demonstrated that one can compute properties of
the two-nucleon system to surprising accuracy simply by cal-
whereA andB are related to the form factof41]: culating several Feynman diagrams. The technique for doing
this was introduced in Ref§l] where it had been shown
how to work at NLO forNN phase shifts in both spin singlet
and triplet channels. While encouraging, those results were
not definitive as the NLO calculation required three free pa-
4 rameters in both spin channels. The true test of the theory
B==n(1+5)F3, (4.3 has been presented in this paper with the computation of the
3 electromagnetic form factors of the deuteron — by using the
parameters fit to scattering data, we are able to reproduce

. — "2 2\ N2 2 N .
with 7=—(p—p')"/(4Mg)=q°/4Mg. In order to compare yery well at NLO both the electric and magnetic form factors
with data, we take our analytic results for the form factors;, gjastic e—d scattering up to momentum transfegg

and expand the expression H4.3) in powers ofQ, where  _ 400 MeVP=4.1 fm 2. Since our results are analytic,

7~0(Q?) it is straightforward to analyze what features in the data are

due to short versus long distance physics. A central feature

A:[(FEEO))Z]+[2F(CO)F531)]+O(Q2)’ of our expansion — that pion exchange is perturbative — is
supported by the success of our fit to the form factors.

One feature of our results which is especially encouraging
is the evidence that the expansion is converging rapidly. This
is apparent in the improvement of the fitsde-d scattering
We see that to the order we are workidgis sensitive only data in going from LO to NLO, improvements in the static
to the electric form factoF ., while B depends only on the moments of the deuteron. The rms charge radius presented in
magnetic form factofFy, . A comparison ofA andB with  Table | deviates from the experimental value §y80% at
experimental data in Figs. 4 and 5 shows that our expansioleading order, but only-10% at next-to-leading order. The
is quite successful, and converging rapidly, in the kinematianagnetic moment was off by-3% at leading order, and
regime where it is expected to work. The data for Fig. 4 wasexact at next-to-leading order, due to the contribution of a
taken from Ref[16], and the error bars are smaller than thenew operator. At NLO the results of effective field theory for
size of the points; the data for Fig. 5 comes from REf6—  the electric and magnetic form factors of the deuteron,
19]. It is evident from Figs. 4 and 5 that the NLO effective F(q?) andFy(q?), are not as accurate as those from effec-
field theory calculation of the deuteron form factors is not agive range theory. However at NNLO the effective field
accurate as what effective range theory gives. The validity ofheory approach should reatbr even surpagshe precision
effective range theory over such a wide range of momentunof effective range theory. Furthermore, the methods devel-
occurs because of the smallness of the shape parameter oped in this paper can be used to make predictions for other
In the effective field theory expansion, the coefficients in theproperties of the deuteron, including those for which effec-
effective range expansion themselves have perturbative exive range theory is not applicable.
pansions. However, ultimately when carried out to higher Since the NLO result for the quadrupole form factor is the
orders the effective field theory calculations will be morefirst nonvanishing term in its expansion, it is expected to
precise than the effective range calculations. This is becausgork less well. At the level we are working, the quadrupole
the effective field theory correctly describes the strong interform factor does not contribute ®—d scattering, however,
actions, which effective range theory only approximates. we can compare the quadrupole moment with experiment,

2 8
A=FZ+ §77F§,|+ 5772F2,

+ +0(Q%. (4.9

8
gﬂFRﬁ))Ffvll)

4
B=[§ 7(Fip)?
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and it is ~40% too large. We expect this error to be sub- PNy

stantially reduced in the NNLO calculation, which includes @ = \E/ + @@ o
among other things the exchange of two potential pions, and

short distance’S; — 3D, transitions. In general, it would be ~ FIG. 6. The expansion of of the full two-point functid@ in
interesting to compare NNLO results for all of the form fac- terms of the irreducible two-point functiap.

tors. Other effects that enter at this order are relativistic cor-

rections, radiation pions, and nucleon form factors. 2
There remain a number of NLO calculations to be done in G= 1+iCoY” (AS)
the two-nucleon system, and we are optimistic about their
success. Extending this procedure to the three-body systemfollows that
and beyond remains a fascinating challef2@.
- i 1 d3 i
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netic current between two deuteron states, we first define the
APPENDIX A: THE GRAPHICAL EXPANSION three-point function
OF THE MATRIX ELEMENT OF ng
, , HEE q)= | d* dty e i(EX-pxgi(E'Y—p"y)
1. Irreducible Green’s functions Gi(E,E",q)= xaye €

In this appendix we derive Eq3.5 which is central to
our calculation of the deuteron electromagnetic form factors.
We begin with the interpolating field defined in the text

X(O|T[D{(x)I4(0)D;(y)1|0), (A7)

whereq*=(E’' —E,p’—p) is the photon momentunG* is
=NTP. related to the desired form factor via the LSZ formula
D,=N"P;N, (AL)

where P; is the projection defined in ed2.14. The full  (p’,j|J% p.i)=Z[G YE)G XE")GHE.E .9)Jee -8
propagatoG is defined as the time ordered product of two of (A8)
theseD fields:

whereG(E) is defined in Eq(A2). It is convenient to reex-
G(E) 8 :f d4xe*i<E‘*p'x)(0|T[DiT(x)DJ-(O)]|0> press this formula in term& and the irreducible three-point
function, which we call’“. It is easy to see graphicallfFig.
= 7) that the relation betweeG* andI'# is

i Z(E)
=0j=———, (A2) _
E+B+ie S — Fﬁ(EaE,!Q)
. o o Gfi(EE".q)= : = , =
whereB is the deuteron binding energy. By Lorentz invari- [1+iCo2(E)J[1+iCo2(E")]
ance, the propagator only depends on the energy in the N -
center-of-mass frame, namely _ TH(E,E",q)G(E)G(E") (A9)
_ S(E)3(E)
E=E——+-.--, E=(p°—2M), (A3)
4aM Making use of this relation and Eq6A5),(A6),(A8) allows
o S : ._Us to reexpress the matrix element of the current in terms of
where the ellipsis refers to relativistic corrections to the dls—lw ands.:
persion relation. The numeratétin Eq. (A2) is assumed to ’
be smooth near the deuteron pole, and when evaluated at the P
pole gives the wave-function renormalizatign (p',j13% Jp,iy=2 1ﬂij(_E'E_'Q)
RG] » HEE e
—-B)=Z=—i|—F| H(E E'
dE |z, _ I‘”(E;E .q) (AL0)
It is convenient to define “irreducible” Green'’s functions d2(E)/dE EE’'—~-B

as the sum of graphs which do not fall apart when the graph

is cut between incoming and outgoing nucleons at the four- &

fermion vertices proportional t€,. The irreducible two- @ - @ + @@ + @@ .
point function is denoted bY,, and has the expansion shown

in Fig. 1. One can see graphicallifig. 6) that the relation FIG. 7. The expansion of full three-point functi@ in terms
betweenG and?, is of the irreducible two- and three-point functiols I'“.
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It is this relation that has a simple perturbative description irthe first relativistic correction enters at NNLO, @(Q3).

terms of Feynman graphs. Other NNLO contributions are shown in the third row of Fig.
1, and include the exchange of two potential pions, or one
2. Computing X radiative pion(see[1] for discussionas well as several other
graphs.

We can now comput&, in our perturbative expansion, . . —
P P P From Eg. (3.5 we see that what is needed d&/dE

writing X as
evaluated aE=—B. From Eqgs.(A12) and(A13) we find
3(B)= 2 I(n(E), (AL1) ds ) M?
= (1 S
_ dE [z . 8wy
where % )(E)~O(Q"). The leading contribution t& is
shown in the first row of Fig. 1, and ®(Q) according to d3 ) M3 [ g2 m?

X o, . (2 Sal L
the rules of the previous section. These graphs are readily IE 2f2( y— U m_+2y

=~116-2,/
evaluated using the formula E.16), with the result Y

_ M —
2(1)(E)=—i4—(,u—\/—ME—is). (A12) +D2m§7(7_ﬂ~)_027(li_Y)(M_ZY)}.
o
. - . (A15)
The subleading contribution 8(Q<) and one must compute
the three graphs shown in the second row of Fig. 1. Thevhere we have defined
result is[1]
y=+MB. (A16)
. & gaM?m2 . 2VME
E)=—i——=itan i 0
2(E) 32212 m_ 3. Computing T

The leading contribution to the matrix element of tifg,

1 (m2+4ME current between deuteron states arises from the three-point
5 In T +1 function F?,l), the first graph in Fig. 2,
2 2 q
[ 9a — — ., =—es;—tan? —), (A17)
~i| 52 TCMES Dzmi)[zm(E)]z. -1 2mq 4y

(A13) where q=|g| is the magnitude of the photon three-
momentum, andy was defined above in EGA16).
To the order we are working we truncate the expansion in At subleading order we need to sum the diagrams in the
Eq. (3.6) to the nonrelativistic result second row of Fig. 2. In each case, there is a minimally
coupledA, photon coupled to the proton propagator, with

E~E— L (A14) either an insertion of th€, or D, contact interactions, or a
AM’ single pion exchangéWe find
|
M3 4mz(p—y) g 42 g
0 _ ™ —1 —1
F<o>—e5i,-W{Dz<u ——tan (4—7 +Colp) (=) w=y=—~tan E)
+| 2 i Aw=y) tan | —- —jldx - tan ! xd
f q 4y]  Jo Xx0A(X) 2[A(X) +y+m,]
ggiMS 1 - e—[A(x)+y+mw]r
+e(0:d — 025 —f dxf dr—— 3+3mwr+m2r2
(a9~ a ”)16772f2q3 o Jo Xr3A(x) ( ")

: (A18)

« 2 xqr 1 4 [ xqgr
xar 727 T3 ez SN 2

“One might worry that in fact there are four-nucleon contact interactions involving the combination a covariant time deDiyatvel
hence a direct photon coupling to tNENTNN vertex. In fact, such an operator may be eliminated by using the equations of motion. We
demonstrate this by explicit calculation in Appendix B.
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& One might naively think that the equations of motion imply
o Ei <><f\ — ~ that the operato© will not enter a calculation oNN phase
\)O/\/ S shifts (as the nucleons are on-shell in that progegst that
@ ® © O will affect deuteron matrix elements, since the nucleons
FIG. 8. Feynman diagrams contributing to the matrix elementV'© not on-shell in a bound state. Thlsiwould'mean that a new
(denoted by the gray cirdef the operato© in Eq. (B1). constant enters the deqteron calculation which cannot be de-
termined viaNN scattering.
However, this is reasoning is incorrect, and we now show
whereA(x) is defined in Eq(3.13. by explicit calculation that operataP does indeed vanish
As discussed in the text, the calculation of the part§lof When considering deuteron matrix elements. This result is
which are antisymmetric in the deuteron polarizations isconsistent with general theorems of field theory that state

completely analogous to the complete calculation®fpre-  that off-shell matrix elements are arbitrafshey can be
sented here. changed by making a field redefinitipand that theS-matrix

elements never depend on théaven when the matrix ele-
ment is between bound states
As an example, consider the contribution to the deuteron
three-point function'® of the operator® in the graphs of
When working with potential models foMN interactions  Fig. 8, corresponding to the matrix element
one often faces ambiguities about how to continue matrix
elements off-shell. In an effective field theory approach, I'°=(0|T[D(E,0)D;(E',q)A°%(q°,q)1|0),  (B4)
there is no such ambiguity. All uncertainties arising in a ) 0 ) ) .
consistent calculation are due to higher-order operators ndvhere E'=E+q". The first graph, Fig. @), includes tf(\)e
glected at the order one is workifigil]. To illustrate this, we ~Photon-independent part @ and a minimally coupled

APPENDIX B: NO OFF-SHELL AMBIGUITY — AN
EXPLICIT COMPUTATION

consider the effect of the operator photon on a nucleon leg. It is proportional to
D? d® "k dP7Y
_(NTP.NY T Tp. — NTIDP. i
O=(NTP;N) [IDO(N PiN)+ (ZMN )P.N (8 IJ(ZW)Dl(ZW)Dl
D? 2
+NTP, mN) ] (BD) y E-k/M
(E—K2IM)(E—12IM)(E' —[I1?+ (I+)?]/2M)
whereD , is the gauge covariant derivatire -0, (B5)

D,=d,tieQenA,, (B2) whereD—4 at the end of the calculation. To evaluate this
Qenm being the electric charge matrix. The operatdis not integral, we gsed the fact that the first' term in the numerator
Galilean invariant but nonetheless we can, in principle, conS&NCels the first propagator, and that in dimensional regular-
sider how it enters the NLO calculation of the deuteron form'Zation
factors via the graphs in Fig. 8. However, to the order we are

working, it vanishes by the equations of motion, f d®k -0 (B6)
D2 (27T)D_1
('DO+ am | N D=0. (B3) The second graph in Fig. 8 is similar, and proportional to

. __f d°~lk  dP-Y E'—[K*+(k+0g)*]/2M
( ' 2m)Pt 2m)P L (E-K2M)(E'—[K?+ (k+q)2]/2M)(E' —[ 12+ (I+q)?]/2M)

d® 1k d° Y 1
:_if (B7)

(2m)P~1 (2m)P L (E-KHUM)(E' —[12+(I+q)2]/2M)

5To be chirally invariant, the covariant derivative should include pion fields, but as the pion couplings do not enter to the order we are
working, we have set them to zero.
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Finally, the third graph, Fig. ®), arises from theA\® pho- It follows that the sum of the three graphs in Fig. 8 vanishes,
ton coupling inO, and gives and there is no off-shell ambiguity arising from this new
operatorQ. Similar remarks hold for other operators with a

single time derivative. Therefore, we can choose to only in-

clude the two spatial derivative operators in the Lagrangian

(c)o<+if Pk dPTH (our interaction proportional t€C,) and to eliminate the
(2m)P~1 (2m)P 1 analogous operators with a time derivative by the equations
of motion — even though we are considering nucleons

1 bound in a deuteronThis result is not peculiar to the par-

X(E—kle)(E’—[I2+(I+q)2]/2M) - (B9 ticular regularization scheme we used.
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