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Perturbative calculation of the electromagnetic form factors of the deuteron
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Making use of the effective field theory expansion recently developed by the authors, we compute the
electromagnetic form factors of the deuteron analytically to next-to-leading order. The computation is rather
simple, and involves calculating several Feynman diagrams, using dimensional regularization. The results
agree well with data and indicate that the expansion is converging. They do not suffer from any ambiguities
arising from off-shell versus on-shell amplitudes.@S0556-2813~99!00502-6#
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I. INTRODUCTION

The techniques introduced by the authors in Refs.@1# put
the study of low-energy two-nucleon interactions on t
same footing as chiral perturbation theory in the mesonic
single nucleon sectors@2#. In particular, there is a systemat
low momentum expansion, such that at any given order,
need only calculate a finite number of Feynman diagram
arrive at an analytic result. The procedure is superior in s
eral ways to the conventional technique of solving the Sch¨-
dinger equation with a potential constructed to fit the scat
ing data:~i! There is a well-defined expansion parameter, a
one can estimate errors at any given order in the expans
~ii ! it is straightforward to incorporate relativistic and inela
tic effects within the expansion;~iii ! analytic results allow
one to see quite simply the relative importance of short-
long-distance physics to a given process;~iv! there is no
ambiguity concerning off-shell matrix elements when calc
lating physical processes;~v! at low orders in the expansion
the number of free parameters to be fit to the data is few,
the same parameters are used in all processes. The resu
lower orders in the expansion are therefore very constrain

Until now, the techniques of Ref.@1# have only been ap
plied to reproducing scattering phase shifts. While a nec
sary first step, fitting the phase shifts does not seriously
the method, as the low-energy phase shifts can be well fi
rather simple functions of few parameters. What is nee
are calculations of dynamical processes that involve
same interactions as are fit to theNN phase shifts. The ob
vious ones to consider areNN→NNg, np→dg, parity and
isospin violation inNN processes,pp→de1n, and the deu-
teron electromagnetic form factors. In this paper we pres
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the perturbative calculation of the deuteron electromagn
form factors at next-to-leading order~NLO!. This subject has
been addressed previously in the context of effective fi
theory in Refs.@3,4#, although using a somewhat differen
formalism and involving numerical, as opposed to analytic
calculations. We preface the calculation with a brief revie
of our expansion, and a discussion of the deuteron. A
identifying the graphs contributing the electromagnetic fo
factors, we show explicitly that there is no ambiguity arisi
from the fact that the nucleons in a deuteron are not on t
mass shell, even though the couplings in the effective the
are fit toNN scattering data. We conclude with a discussi
of features that will appear in the NNLO~next-to-next-to
leading order! calculation of the form factors.

It is not unreasonable to ask why it is worth pursuing
effective field theory description of the deuteron since eff
tive range theory@5,6# can be used to predict many of it
properties @7,8#. For some quantities, like the deutero
charge radius, effective range theory is remarkably prec
The primary motivation is to make a clear connection
QCD and therefore enable systematic calculations to be
formed, even for processes where effective range theor
not applicable. Furthermore we expect that, even in ca
where effective range theory is very accurate, the effec
field theory approach will surpass this level of precision
pursued to higher orders.

In this paper the application of the effective field theo
expansion of Ref.@1# to processes involving the deuteron
developed. For definiteness we focus on the electromagn
form factors of the deuteron. However, it is straightforwa
to use the methods developed here for other quantities,
the cross sections fornp→dg andgd→gd.

At NLO the predictions of the effective field theory ex
pansion for the electromagnetic form factors of the deute
are not as accurate as those of effective range theory. H
ever, at NNLO they should reach the precision of effect
range theory. Furthermore, the effective field theory a
617 ©1999 The American Physical Society
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proach is a systematic one at some order it will inclu
physical effects beyond those that are encorporated into
fective range theory.

II. EFFECTIVE FIELD THEORY FOR NN INTERACTIONS

In order to compute the electromagnetic form factors
the deuteron, we must consider the possible interactions
tween nucleons, pions, and photons. In an effective fi
theory, these interactions take the form of local operat
constrained only by the symmetries of QCD and QED.
this section we discuss the form of the operators that occu
the order that we will be working, and then turn to the iss
of power counting, which allows a consistent expansion
the form factors.

A. Interactions

Terms in the effective Lagrangian describing the inter
tions between nucleons, pions, and photons can be class
by the number of nucleon fields that appear in them. I
convenient to write

L5L01L11L21•••, ~2.1!

whereLn containsn-body nucleon operators.
L0 is constructed from the photon fieldAm5(A0,A) and

the pion fieldsP; it does not contain any nucleon fields. Th
pion fields are incorporated in a special unitary matrix,

S5exp
2iP

f
, P5S p0/A2 p1

p2 2p0/A2
D , ~2.2!

where f 5132 MeV is the pion decay constant.S trans-
forms under the global SU(2)L3SU(2)R and U(1)em gauge
symmetries as

S→LSR†, S→eiaQemSe2 iaQem, ~2.3!

whereLPSU(2)L , RPSU(2)R , andQem is the charge ma-
trix,

Qem5S 1 0

0 0D . ~2.4!

The part of the Lagrange density with no nucleon fields

L05
1

2
~E22B2!1

f 2

8
Tr DmSDmS†

1
f 2

4
v Tr mq~S1S†!1•••. ~2.5!

The ellipsis denotes operators with more covariant der
tives Dm , insertions of the quark mass matrix,mq
5diag(mu ,md), or factors of the electric and magnet
fields. Acting onS the covariant derivative is

DmS5]mS1 ie@Qem,S#Am . ~2.6!

The parameterv has dimensions of mass andmp
2 5v(mu

1md).
e
f-

f
e-

ld
s,

to
e
f

-
ed
s

s

-

When describing pion-nucleon interactions it is conv
nient to introduce the fieldj5expiP/f5AS. Under
SU(2)L3SU(2)R transformations

j→LjU†5UjR†, ~2.7!

whereU is a complicated nonlinear function ofL, R and the
pion fields themselves. SinceU depends on the pion fields
has spacetime dependence. The nucleon fields are introd
as a doublet of spin-1/2 fields

N5S p
nD , ~2.8!

that transforms under chiral SU(2)L3SU(2)R symmetry as
N→UN and under U(1) gauge transformations asN
→eiaQemN. Acting on nucleon fields the covariant derivativ
is

DmN5~]m1Vm1 ieQemAm!N, ~2.9!

where

Vm5
1

2
~jDmj†1j†Dmj!. ~2.10!

The covariant derivative ofN transforms in the same way a
N under SU(2)L3SU(2)R transformations ~i.e., DmN
→UDmN) and under U(1) gauge transformations~i.e.,
DmN→eiaQemDmN).

The one-body terms in the Lagrange density are

L15N†S iD 01
D2

2M DN1
igA

2
N†s•~jDj†2j†Dj!N

1
e

2M
N†S k01

k1

2
@j†t3j1jt3j†# Ds•BN1•••.

~2.11!

To the order to which we are workingk05 1
2 (kp1kn) and

k15 1
2 (kp2kn) are isoscalar and isovector nucleon magne

moments in nuclear magnetons, with

kp52.792 85, kn521.913 04, ~2.12!

at tree level. At higher orders there will be contributions
Eq. ~2.12! from pion loop graphs@9#. The isoscalar magnetic
moment k0 receives leading corrections of the for
mp

2 ln(mp
2/Lx

2), suppressed by two powers of the pion ma
In contrast, the isovector magnetic momentk1 receives lead-
ing corrections of the formmp , suppressed by only on
power of the pion mass. The ellipsis in Eq.~2.11! denotes
higher-order terms that do not contribute at the order we
working.

Finally it remains to consider the two-body operato
Some of these were discussed in Refs.@1#; however, since
we will be computing electromagnetic form factors of th
deuteron there are additional considerations that did not a
in the NLO calculation of nucleon phase shifts.
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First we will consider the two-body operators involvin
nucleons alone, then we will look at those containing a p
ton; to the order we will be working, we need not consid
two-body operators involving pion fields. In the spin tripl
channel, there is oneNN contact interaction with no deriva
tives or insertions of the quark mass matrix, correspondin
a diagonal transition3S1→3S1 ; the coefficient of this opera
tor is taken to beC0 . There is an additional contact intera
tion involving no derivatives and one insertion of the qua
mass matrix, with coefficientD2 ; it can be distinguished
from the C0 interaction by its chiral properties. There a
five contact interactions involving two gradients, correspo
ing to diagonal transitions in the3S1 , 3P0 , 3P1 , and 3P2
partial waves, as well as an off-diagonal3S123D1 transi-
tion. Only the first and the last of these are relevant for
deuteron; furthermore, at NLO we can ignore the3S1
23D1 transition interaction. Thus the only¹2 two-body con-
tact interaction we will consider is3S1→3S1 , and has cou-
pling C2 . Therefore, for a 3S1→3S1 scattering process
where the incoming nucleons have momentap1 , p2 , and
polarizationi, and scatter into states with momentap18 , p28 ,
and polarizationj, the Born amplitude arising from the con
tact interactions is

iA52 id i j FC01D2mp
2 1

C2

8
@~p12p2!21~p182p28!2#G .

~2.13!

The form of theC2 amplitude is fixed by Lorentz invarianc
~which is equivalent to Galilean invariance to the order
work!, and by the normalization we used in Ref.@1#, where
in the center-of-mass frame, where we defined the amplit
to be2 iC2p2, p[upi u5upi8u.

1 As discussed in Appendix B
while one can construct a two-body contact interaction w
one factor of]0 instead of two gradients, for anyS-matrix
element~including those involving the deuteron! one can use
the equations of motion to eliminate time derivatives for g
dients. Thus no independent]0 contact interaction needs t
be introduced.

Including gauge fields introduces several two-body c
tributions to the electromagnetic current. First, theC2 inter-
action described above becomes gauged. Second, ther
two new two-body magnetic moment type interactions.
order to writeL2 compactly we define the matrixPi which
projects onto the3S1 state,

Pi[
1

A8
s2s it2 , Tr Pi

†Pj52Tr Pi
†Pj

T5
1

2
d i j ,

~2.14!

1The couplingsC0 , D2 , andC2 are the same couplings that a

pear asC0
(3S1) , D2

(3S1) , and C2
(3S1) in Refs. @1#; we drop the3S1

designation here as there can be no confusion with analogous
plings in the1S0 channel.
-
r

to

-

e

e

h

-

-

are

where thes matrices act on the nucleon spin indices, wh
the t matrices act on isospin indices. Then the two-bo
Lagrangian may be written as

L252~C01D2v Tr mq!~NTPiN!†~NTPiN!

1
C2

8
@~NTPiN!†~NT@PiD¢

21Dª 2Pi22Dª PiD¢ #N!1H.c.#

1eL2@~NTPiN!†~NTPis•BN!1H.c.#1•••, ~2.15!

where the ellipsis refers to contact interactions irrelevant
the deuteron channel, or of higher order than we will
considering. The new couplingL2 corresponds to an interac
tion that did not enter the calculation ofNN scattering, but
which affects the deuteron magnetic form factor. As writte
Eq. ~2.15! is not chirally invariant, which can be remedied b
an appropriate insertion of thej fields; however, since the
two-body operators with pions do not contribute at NLO, w
omit them.

B. Power counting

We begin by summarizing the results of Refs.@1#. The
starting point is the effective Lagrangian for nucleons, pio
and photons introduced in the previous section. The par
the Lagrangian describing purely mesonic interactions,
well as interactions between mesons and a single baryo
the conventional chiral Lagrangian. In addition there are
cal interactions corresponding to short distance interacti
between two nucleons. These contact interactions are
panded in powers of derivatives and insertions of the qu
mass matrix,mq . ~Isospin violation from the difference be
tween the up and down quark masses is neglected. Co
quently insertions ofmq are equivalent to factors ofmp

2 .)
The lowest dimension operator is a four fermion contact
teraction; there are two independent operators of this fo
corresponding to the1S0 and 3S1 channels. The next lowes
dimension two-body operators involve a factor ofp2, where
p is the momentum of one of the nucleons in the center-
mass frame, or a factor ofmp

2 . There are seven independe
p2 operators corresponding to diagonal matrix elements
the $1S0 ,1P1 ,3S1 ,3P0 ,3P1 ,3P2% channels, as well as a3S1

23D1 mixing term; there are two independentmp
2 operators

corresponding to the1S0 and 3S1 channels. At higher pow-
ers of derivatives, the number of contact interactions quic
grows.

Central to effective field theory is a power countin
scheme which allows one to calculate consistently to a
given order in the low energy expansion. A main point
Refs.@1# was to develop thePDS subtraction scheme which
allows one to readily identify the order of any particul
Feynman graph. The scheme involves computing loop d
grams using dimensional regularization, and then subtrac
off the poles in dimensionsD<4, which correspond to loga
rithmic or power-law divergences. A typical integral in th
scheme is
u-
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I n[ i ~m/2!42DE dDq

~2p!D
q2n~E/21q02q2/2M1 i«!21~E/22q02q2/2M1 i«!21

5~m/2!42DE d~D21!q

~2p!~D21!
q2n~E2q2/M1 i«!21

52M ~ME!n~2ME2 i«!~D23!/2GS 32D

2 D ~m/2!42D

~4p!~D21!/2

→
D→4

PDS

2~ME!nS M

4p D ~m2A2ME2 i«!. ~2.16!
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The last step includes the finite subtraction mandated in
PDS scheme. The parameterm is the renormalization scal
and physical observables are independent of it. In fact,
may setm to zero and recover the usual minimal subtract
scheme (MS) withm50 if one wishes.2 However, a change
in m must be compensated by the renormalization-gro
flow of the couplings in the theory. Therefore, what is
weak coupling at one value ofm can be strong at anothe
which effects how one defines the power counting schem

Rapid scaling withm is only an issue for two-body op
erators, and then only for those affected by the large sca
ing lengths in the1S0 and 3S1 channels. Consider a fou
nucleon contact interaction connecting angular momen
statesL and L8, where conservation of angular momentu
and parity requiresuL2L8u to equal zero or two. We assum
that the operator involvesm insertions of the quark mas
matrix, and 2d[(L1L812n) spatial gradients, and

has a coefficient Cm,n
L,L8 . By examining the coupled

renormalization-group equations in thePDSscheme, one can
determine that these couplings scale as

Cm,n
L,L8~m!;H m2~m1n11! L,L8P$1S0 ,3S1 ,3D1%;

m0, otherwise,
~2.17!

in the region 1/a!m!LNN , where

LNN5
8p f 2

gA
2M

.300 MeV. ~2.18!

Here M is the nucleon mass,gA51.25 is the axial curren
coupling, andf 5132 MeV is the pion decay constant. Thu
in the deuteron channel,C0;m21, while C2 andD2 scale as
m22. Extending the analysis to include photons, we findL2
;m22 as well.

The coefficients of the four-nucleon contact terms t
have explicit factors of the electric fieldE or the magnetic
field B scale similarly to those in Eq.~2.17!, counting gauge
fields as derivatives. For example, theL2 operator in Eq.
~2.15! counts as a two-derivative,L5L850 operator, and its

2In the MS scheme withm50 one must first integrate out the pio
to avoid factors that diverge as ln(mp

2/m2).
e

e

p

.

r-

m

t

coefficient scales asL2;m22. The rapid scaling of the op
erators contributing toS-wave processes is what makes o
expansion different than the one proposed by Weinberg@10#.

Armed with the above results, we are able to arrive a
particularly simple set of rules for determining the order o
graph. Choosing the scalem;p;mp;Q we perform an
expansion inQ, where

~1! Each nucleon or pion propagator scales asQ22;
~2! Each loop integration*d4q scales asQ5;
~3! A gradient at a vertex contributesQ1, while each time

derivative scales asQ2;
~4! An insertion of the quark mass matrixmq at a vertex

counts asQ2;
~5! The coefficient of the contact interactions scale a

cording to Eq.~2.17!.
The first three rules follow simply from the scaling of fou
momentaqm appropriate to the nonrelativistic regime. E
plicitly, Mq0;q2;Q2. The fourth rule is familiar from con-
ventional chiral perturbation theory,mq;mp

2 ;Q2. The pro-
cedure for calculating physical quantities of interest is
write down the most general effective field theory consist
with gauge invariance, chiral symmetry, and Loren
invariance,3 and then compute the desired matrix element
a given order in theQ expansion, following the above rules
Note that according to the power counting rules, a loop w
two propagators entails a factor ofQ, while the coefficient of

the lowest orderNN contact interaction (C d,m
LL8 with L5L8

5d5m50, defined to beC0) scales as 1/Q; thus any graph
may be dressed by an infinite bubble chain withC0 interac-
tions without changing the order of the graph.

III. THE DEUTERON FORM FACTORS

A deuteron with four momentumpm and polarization vec-
tor em is described by the stateup,e&, where the polarization
vector satisfiespmem50. An orthonormal basis of polariza
tion vectorse i

m satisfies

3Relativistic corrections are accounted for as perturbations acc
ing to the above power counting rules, and at the order we work
theory only appears Galilean invariant. The procedure for dea
with relativistic corrections perturbatively requires distinguishi
between potential and radiation pions at NNLO, as discussed in@1#.
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pme i
m50, e im* e j

m52d i j , (
i 51

3

e i*
me i

n5
pmpn

Md
2 2hmn,

~3.1!

whereMd is the deuteron mass. It is convenient to choo
the basis polarization vectors so that in the deuteron
frame e i

m5d i
m . Deuteron states with these polarizations a

denoted byup,i & ~i.e., up,i &[up,e i
m&) and satisfy the normal

ization condition

^p8, j up,i &5
p0

Md
~2p!3d3~p2p8!d i j . ~3.2!

In terms of these states and to leading order in the n
relativistic expansion, the matrix element of the electrom
netic current is

^p8, j uJem
0 up,i &5eFFC~q2!d i j 1

1

2Md
2 FQ~q2!

3S qiqj2
1

3
q2d i j D G ,

^p8, j uJem
k up,i &5

e

2Md
FFC~q2!d i j ~p1p8!k1FM~q2!

3~d j
kqi2d i

kqj !1
1

2Md
2 FQ~q2!

3S qiqj2
1

3
q2d i j D ~p1p8!kG , ~3.3!

whereq5p82p andq5uqu. These dimensionless form fac
tors are normalized such that@11#

FC~0!51,

e

2Md
FM~0!5mM , ~3.4!

1

Md
2 FQ~0!5mQ ,

where mM50.857 41(e/2M ) is the deuteron magnetic mo
ment, andmQ50.2859 fm2 is the deuteron quadrupole mo
ment.

As shown in Appendix A, the form factors are readi
calculated by computing in perturbation theory the irred
ible two-point functionS, and the irreducible three-poin
functionGm. In the present context, ‘‘irreducible’’ means th
sum of graphs which do not fall apart when cut at anyC0
vertex. The matrix element of the electromagnetic curren
then given by the exact relation

^p8, j uJem
m up,i &5 i FG i j

m~Ē,Ē8,q!

dS~Ē!/dE
G

Ē,Ē8→2B

, ~3.5!

whereB is the deuteron binding energy andĒ is the energy
of the incoming two nucleon state in the center-of-ma
frame,
e
st
e

n-
-

-

is

s

Ē[E2
p2

4M
1•••, E[~p022M !, ~3.6!

where the ellipsis refers to relativistic corrections to t
energy-momentum relation.Ē8 is the analogous quantity fo
the outgoing nucleon pair. By Lorentz invariance,S andGm

can only depend on the energy and momentum in this co
bination.

We can now expand the relation Eq.~3.5! in perturbation
theory and determine the form factors by comparing the
sult with Eq.~3.3!. The two-point function has the graphica
expansion shown in Fig. 1, where thê vertices represent
the insertion of an interpolating fieldDi with the quantum
numbers of a deuteron with polarizationi. We takeDi to be

D i[NTPiN, ~3.7!

where Pi is the projection defined in Eq.~2.14!. The form
factor one calculates does not depend on the partic
choice forDi , so long as it is used consistently.

By examining the graphs and using the power count
outlined in the previous section, one sees thatS begins at
order Q1—the leading graph has two nucleon propagato
and one loop. At subleading order,O(Q2), there are three
two-loop graphs, one involving the exchange of a poten
pion ~which has a derivative coupling!, one with an insertion

of the C2(DI)2 two-body operator, and one with an insertio
of the D2mp

2 two-body operator. Recall that with renorma
ization scalem;Q the coefficientsC2 andD2 areO(Q22).
At O(Q3) there are a host of diagrams, including the e
change of two potential pions, or one radiative pion, as w
as p4 relativistic corrections to the nucleon propagator, e
We have calculatedS to O(Q2), and the results are pre
sented in Appendix A.

A. The NLO computation of the electric form factors

To compute the electric form factorsFC andFQ we need
to calculate the three-point functionG i j

0 , which is expanded
graphically in Fig. 2. The results for both the leadin
O(Q21) and subleadingO(Q0) contributions are presente
in Appendix A. OnceG0 is computed in theQ expansion, the
electric form factors can be determined by expanding E
~3.5! as

FIG. 1. The perturbative expansion ofS. The first row has the
leadingO(Q) result; ^ represents an insertion of the interpolatin
field defined in Eq.~3.7!. The second row has the complete su
leadingO(Q2) contribution, wherej andL denote theC2 andD2

interactions, respectively. The third row shows a couple ofO(Q3)
NNLO contributions, which we do not calculate here: the exchan
of two potential pions, and the dressing ofC0 ~the pointlikeNN
vertex! by a radiation pion.
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^p8, j uJem
0 up,i &5 i F G~21!

0

dS~1! /dĒ
G

1 i FG~0!
0 ~dS~1! /dĒ!2G~21!

0 ~dS~2! /dĒ!

~dS~1! /dĒ!2 G
1O~Q2!, ~3.8!

whereG (n)
0 , S (n) denote theO(Qn) contribution toG0 and

S, respectively. We have suppressed theq dependence o
G0, and its polarization indices. Furthermore everything
evaluated on-shell,Ē5Ē852B. Sinced/dĒ;O(Q22), the
first bracket in Eq.~3.8! is O(Q0), the second bracket i
O(Q1), etc. Therefore, taking into account the explicit fa
tors of q in the definition of the form factors, Eq.~3.3!, we
see the electric form factors have aQ expansion of the form

FC5FC
~0!1FC

~1!1O~Q2!,

FQ5FQ
~22!1FQ

~21!1O~Q0!, ~3.9!

whereF (n);O(Qn).
Using Eqs.~3.8!,~A6!,~A17! gives our leading result fo

the electric form factors,

FC
~0!~q2!5

4g

q
tan21S q

4g D ,

FQ
~22!~q2!50, ~3.10!

where we have defined

g5AMB. ~3.11!

The subleading form factors are extracted from E
~3.8!,~A6!,~A18!, and presented in terms of a Feynman p
rameter integral. The electric monopole form factor is giv
by

FIG. 2. The expansion ofG0. In all of these graphs, the photo
corresponds toA0 with the minimal coupling to the proton propa
gator, arising from the gauged nucleon kinetic energy term.
graph in the first row is the leadingO(Q21) contribution,G (21)

0 .
The second row is the subleading graphs atO(Q0), summing to
give G (0)

0 . In the third row are several graphs contributing at t
O(Q1): a dressing of the photon-nucleon vertex, a relativistic c
rection to the nucleon propagator, and an exchange current co
bution.
s

.
-
n

FC
~1!~q2!52C2~m!

Mg~m2g!2

2p F12
4g

q
tan21S q

4g D G
2

gA
2Mmp

2 g

2p f 2q
F 2

~mp12g!
tan21S q

4g D
2E

0

1

dx
1

xD
tan21bG , ~3.12!

where we have defined the functions

D~x!5Ag21x~12x!q2/4, b~x!5
qx

2~g1mp1D!
.

~3.13!

The operator with coefficientD2 does not contribute to thes
observables. Because of the running ofC2 , the above ex-
pression is independent ofm to the order we are working@1#.
From Eqs.~3.10!–~3.12! we determine the charge radius
the deuteron to NLO,

^r 2&LO5
1

8g2 ,

^r 2&NLO5C2~m!
M ~m2g!2

16pg
1

gA
2Mmp

2 ~3mp110g!

96p f 2g~mp12g!3 .

~3.14!

A comparison with the experimental value is given in Se
IV.

At NLO, the electric quadrupole form factor is given b

e

-
tri-

FIG. 3. The expansion ofG i , where the photon corresponds
the vector potentialA i . The coupling of the photon to the nucleo
lines represents the entire one-body current fromL1 , Eq. ~2.11!,
including the magnetic moment contribution. The first graph is
LO contribution atO(Q0), while the remaining graphs are the NLO
contributions atO(Q1). The photon couplings arise through any
the operators inL0 , L1, or L2 . We specifically distinguish the
C2 , D2 , and L2 vertices by the symbolsj,L, and d, respec-
tively.
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FQ
~21!~q2!

Md
2

5
3gA

2Mg

16p f 2q3E0

1

dx
1

xb4D
„@3q2x2~11b2!2224qmpbx~11b2!116mp

2 b2~31b2!#tan21 b

1b@248mp
2 b218mpqxb~312b2!2q2x2~315b2!#…. ~3.15!
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From this expression one can extract the quadrupole mom
to first nonvanishing order:

mQ
LO50, mQ

NLO5
gA

2M ~6g219gmp14mp
2 !

30p f 2~mp12g!3 .

~3.16!

A comparison with the experimental value is given in S
IV.

B. The NLO computation of the magnetic form factor

In order to calculate the magnetic form factor of the de
teron, we need the matrix element of the spatial curr
^p8,kuJem

i up, j &. This entails computingG i , using the cou-
pling of the spatial component of the gauge fieldA i , dis-
cussed in Sec. II A. The expansion ofG i in Feynman graphs
is shown to subleading order in Fig. 3. Following our pow
counting rules,G i begins atO(Q0), and so an expansio
analogous to Eq.~3.8! for the matrix element ofJem

i implies
that the magnetic form factor has the expansion

FM5FM
~0!1FM

~1!1O~Q2!. ~3.17!

Our task in computingFM is greatly simplified by recogniz
ing from Eq.~3.3! that we need only pick out contribution
with spin structure antisymmetric in the deuteron polari
tion vectors. It is straightforward to check that none of t
graphs shown in Fig. 3 contribute toFM when the photon
coupling arises from any of the operatorsN†D2N,
gAN†s•(jDj†2j†Dj)N,Tr@DmSDmS†# in Eq. ~2.11!, or
the four-nucleon operator with coefficientC2 in Eq. ~2.15!.
At LO, only the photon coupling via the isosinglet nucleo
magnetic moment one-body operator contributes,

e

2M
k0N†s•BN5

mp1mn

2
N†s•BN, ~3.18!

and we find

eFM
~0!~q2!

2Md
5

e

M
k0FC

~0!~q2!5~mp1mn!
4g

q
tan21S q

4g D .

~3.19!

For the deuteron magnetic moment this givesmM
LO5(mp

1mn), simply the sum of the neutron and proton magne
moments.

At next orderQ1 there are contributions toFM arising
from coupling the photon via Eq.~3.18!, along with inser-
tions of theC2 operator or one-pion exchange; there is als
contribution from the two-body current arising from the o
erator in Eq.~2.15! whose coefficient isL2 . We find that
there are no pion exchange current contributions at this
der, nor any two-body current contribution from theC2 op-
nt

.

-
t

r

-

c

a

r-

erator in Eq.~2.15!. With the exception of the two-body
contribution involving an explicit factor ofB @see Eq.
~2.15!#, all the graphs contributing are all proportional
those giving rise to the electric form factors in Fig. 2. The
fore to this order we can express the magnetic form facto
terms of the electric form factors and a single new coupl
constant. We find

eFM
~1!~q2!

2Md
5~mp1mn!S FC

~1!~q2!1
q2

12Md
2

FQ
~21!~q2!D

1eL2

g

p
~m2g!2, ~3.20!

and the deuteron magnetic moment is given by

mM
LO5mp1mn ,

mM
NLO5eL2

g

p
~m2g!2, ~3.21!

whereL2 depends on the renormalization scalem in such a
way thatmM

(1) is m independent. A comparison with the ex
perimental value is given in the next section.

C. Effective range theory

In effective range theory the electromagnetic form fact
are assumed to be dominated by the asymptoticS-wave deu-
teron wave function,

c~ER!~r !5A g

4p~12gr 0!

e2gr

r
. ~3.22!

Assuming the smallr part of the deuteron wave function i
only important for establishing the normalization conditio
FC(0)51, the prediction of effective range theory for th
form factor FC(q2) follows from the Fourier transform o
uc (ER)(r )u2,

FC
~ER!~q2!511S 1

12gr 0
D F211

4g

q
tan21S q

4g D G .
~3.23!

This yields the charge radius

^r 2&ER5
1

8g2

1

12gr 0
5

1

8g2 @11gr 01g2r 0
21•••#.

~3.24!

It is instructive to compare the effective range theory pred
tion for the charge radius with that from effective fie
theory. In effective field theory at NLO the effective range
(r 050 at LO!,
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TABLE I. Electromagnetic properties of the deuteron.

LO NLO ~LO1NLO! Experiment@12,13#

rms charge radius~fm! 1.53 0.36 1.89 2.1303~66!

Magnetic moment~N.M.! 0.88 20.02 ~fit! 0.86 ~fit! 0.85741
Quadrupole moment (fm2) 0.40 0.40 0.2859~3!
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r 05C2~m!
M ~m2g!2

2p
1

gA
2M

4p f 2S 12
8

3

g

mp
12

g2

mp
2 D .

~3.25!

Using this it is straightforward to show that theg expansion
of the NLO effective field theory charge radius,

^r 2&5
1

8g2F11C2~m!
Mg~m2g!2

2p

1
gA

2Mgmp
2 ~3mp110g!

12p f 2~mp12g!3 G
5

1

8g2F11C2~m!
Mg~m2g!2

2p

1
gA

2Mg

4p f 2 S 12
8

3

g

mp
14

g2

mp
2 1••• D G , ~3.26!

and theg expansion of effective range theory agree to or
g2 at linear order inr 0 .

Effective range theory predicts the matter radiusr m with
remarkable precision. Usingr 051.75 fm effective range
theory yieldsr m

(ER)51.98 fm. The most recent measureme
of the deuteron charge radius isr ch52.130360.0066 fm
from which the matter radius is found to ber m51.9685
60.0049 fm@12#. ~In effective field theory the effects tha
distinguish between the matter and charge radius do not a
until NNLO.! The numerical success of the prediction
effective range theory for the matter radius suggests that
most important higher-order terms in effective field theo
are those that arise from iterating the NLO potential fromC2
and one-pion exchange. However, from the effective fi
theory perspective this cannot be justified since there are
local operators that will contribute at the same order.

Effective range theory can also be used to predict
magnetic form factor and it gives

eFM
~ER!~q2!

2Md
5~mp1mn!FC

~ER!~q2!. ~3.27!

In the following sectionFC
(ER)(q2) and FM

(ER)(q2) are com-
pared with experimental data.

IV. COMPARISON WITH DATA

We now compare the analytic results of our effective fie
theory perturbative expansion for the deuteron form fact
with experimental data. We have evaluated these express
at the same renormalization pointm5mp used in Refs.@1#
and have used the same value

C2~mp!59.91 fm4 ~4.1!
r

t

ise

he

d
w

e

s
ns

derived from a fit to theNN scattering phase shifts in th
spin-triplet channel. The values ofC0 and D2 do not enter
our expressions explicitly, but they do enter indirec
through the constraint on the two-point function that the d
teron pole occurs at the correct binding energy, Eq.~A6!.
GivenC2 from theNN phase-shift analysis, we have no ne
parameters at NLO for fitting the electric form factors. As w
have seen, for the magnetic form factor, a single new par
eterL2 enters at NLO.

We first consider that static moments of the deuteron
q250. We have analytic formulas for the charge radius,
quadrupole moment, and the magnetic moment in E
~3.14!, ~3.16!, and ~3.21!, respectively. A comparison o
these values to experiment is given in Table I. The cha
radius shows a rapid convergence to the measured va
which is encouraging. The LO calculation is expected to
within ;30% of the experimental value, while the NLO ca
culation is expected to be within;10%. It is clear from
Table I that this expectation is fulfilled. When the NNL
calculation is performed we expect that the result is with
;3% of the experimental value. The magnetic mome
agrees well with experiment at LO, and then is fit to t
experimental value at NLO by choosing the strengthL2 of
the two-body magnetic operator appropriately. The LO p
diction for the magnetic moment is much closer to the e
perimental value~within ;3%) than naively expected from
the power counting. The quadrupole moment vanishes at
and the NLO value of 0.40 fm2 is off by ;40%, as ex-
pected from the power counting. It would be useful to co
pute the NNLO contribution tomQ to see if it exhibits the
same convergence as the charge radius. The idea of inclu
pions perturbatively has been used previously to estimate
deuteron quadrupole moment@14#, obtaining a value of
0.40 fm2. More interesting is that iterated potential pion e
change reproduces the deuteron quadrupole moment@8# rea-
sonably well. This suggests that contributions to the quad
pole moment from higher-order counterterms are sm
compared to additional insertions of potential pion exchan
This smallness is not something that arises naturally in
effective field theory. It is also interesting that state-of-th
art nuclear calculations of the quadrupole moment@15#
(;0.270 fm2) are systematically lower than the experime
tal value by ;7%. This strongly suggests that dynami
beyond potential interactions are required, something tha
fective field theory provides a systematic way to include.

Of greater interest is the comparison of the form fact
over a range ofq2, as we should be able to see at wh
momentum the expansion begins to fail; our naive estimat
that the expansion is in powers ofq/2LNN
;q/(600 MeV). The differential cross section for elast
electron-deuteron scattering is given by
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ds

dV
5

ds

dV U
Mott

@A~q2!1B~q2!tan2 u/2#, ~4.2!

whereA andB are related to the form factors@11#:

A5FC
2 1

2

3
hFM

2 1
8

9
h2FQ

2 ,

B5
4

3
h~11h!FM

2 , ~4.3!

with h[2(p2p8)2/(4Md
2).q2/4Md

2 . In order to compare
with data, we take our analytic results for the form facto
and expand the expression Eq.~4.3! in powers ofQ, where
h;O(Q2)

A5@~FC
~0!!2#1@2FC

~0!FC
~1!#1O~Q2!,

B5F4

3
h~FM

~0!!2G1F8

3
hFM

~0!FM
~1!G1O~Q4!. ~4.4!

We see that to the order we are working,A is sensitive only
to the electric form factorFC , while B depends only on the
magnetic form factorFM . A comparison ofA and B with
experimental data in Figs. 4 and 5 shows that our expan
is quite successful, and converging rapidly, in the kinema
regime where it is expected to work. The data for Fig. 4 w
taken from Ref.@16#, and the error bars are smaller than t
size of the points; the data for Fig. 5 comes from Refs.@16–
19#. It is evident from Figs. 4 and 5 that the NLO effectiv
field theory calculation of the deuteron form factors is not
accurate as what effective range theory gives. The validit
effective range theory over such a wide range of momen
occurs because of the smallness of the shape parameter 1 .
In the effective field theory expansion, the coefficients in
effective range expansion themselves have perturbative
pansions. However, ultimately when carried out to high
orders the effective field theory calculations will be mo
precise than the effective range calculations. This is beca
the effective field theory correctly describes the strong in
actions, which effective range theory only approximates.

FIG. 4. A plot of A(q2) vs q in MeV for elastic electron-
deuteron scattering. The dotted curve shows the result of the
calculation, while the solid curve is the NLO prediction. There a
no free parameters at this order. The dashed curve shows the
of effective range theory.
s
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V. CONCLUSIONS

We have demonstrated that one can compute propertie
the two-nucleon system to surprising accuracy simply by c
culating several Feynman diagrams. The technique for do
this was introduced in Refs.@1# where it had been shown
how to work at NLO forNN phase shifts in both spin single
and triplet channels. While encouraging, those results w
not definitive as the NLO calculation required three free p
rameters in both spin channels. The true test of the the
has been presented in this paper with the computation of
electromagnetic form factors of the deuteron — by using
parameters fit to scattering data, we are able to reprod
very well at NLO both the electric and magnetic form facto
in elastic e2d scattering up to momentum transfersq2

5(400 MeV)254.1 fm22. Since our results are analytic
it is straightforward to analyze what features in the data
due to short versus long distance physics. A central fea
of our expansion — that pion exchange is perturbative —
supported by the success of our fit to the form factors.

One feature of our results which is especially encourag
is the evidence that the expansion is converging rapidly. T
is apparent in the improvement of the fits toe2d scattering
data in going from LO to NLO, improvements in the stat
moments of the deuteron. The rms charge radius present
Table I deviates from the experimental value by;30% at
leading order, but only;10% at next-to-leading order. Th
magnetic moment was off by;3% at leading order, and
exact at next-to-leading order, due to the contribution o
new operator. At NLO the results of effective field theory f
the electric and magnetic form factors of the deuter
FC(q2) andFM(q2), are not as accurate as those from effe
tive range theory. However at NNLO the effective fie
theory approach should reach~or even surpass! the precision
of effective range theory. Furthermore, the methods de
oped in this paper can be used to make predictions for o
properties of the deuteron, including those for which effe
tive range theory is not applicable.

Since the NLO result for the quadrupole form factor is t
first nonvanishing term in its expansion, it is expected
work less well. At the level we are working, the quadrupo
form factor does not contribute toe2d scattering, however
we can compare the quadrupole moment with experim

O

sult

FIG. 5. A plot of B(q2) vs q in MeV for elastic electron-
deuteron scattering. The dotted curve shows the result of the
calculation, while the solid curve is the NLO prediction. There
one free parameter at this orderL2 , which is fixed to correctly
reproduce the deuteron magnetic moment. The dashed curve s
the result of effective range theory.
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and it is ;40% too large. We expect this error to be su
stantially reduced in the NNLO calculation, which includ
among other things the exchange of two potential pions,
short distance3S123D1 transitions. In general, it would b
interesting to compare NNLO results for all of the form fa
tors. Other effects that enter at this order are relativistic c
rections, radiation pions, and nucleon form factors.

There remain a number of NLO calculations to be done
the two-nucleon system, and we are optimistic about th
success. Extending this procedure to the three-body sys
and beyond remains a fascinating challenge@20#.
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APPENDIX A: THE GRAPHICAL EXPANSION
OF THE MATRIX ELEMENT OF Jem

µ

1. Irreducible Green’s functions

In this appendix we derive Eq.~3.5! which is central to
our calculation of the deuteron electromagnetic form facto
We begin with the interpolating field defined in the text

D i[NTPiN, ~A1!

where Pi is the projection defined in eq.~2.14!. The full
propagatorG is defined as the time ordered product of two
theseD fields:

G~Ē!d i j 5E d4xe2 i ~Et2p•x!^0uT@D i
†~x!Dj~0!#u0&

5d i j

iZ~Ē!

Ē1B1 i«
, ~A2!

whereB is the deuteron binding energy. By Lorentz inva
ance, the propagator only depends on the energy in
center-of-mass frame, namely

Ē[E2
p2

4M
1•••, E[~p022M !, ~A3!

where the ellipsis refers to relativistic corrections to the d
persion relation. The numeratorZ in Eq. ~A2! is assumed to
be smooth near the deuteron pole, and when evaluated a
pole gives the wave-function renormalizationZ,

Z~2B![Z52 i FdG21~Ē!

dE
G

Ē52B

21

. ~A4!

It is convenient to define ‘‘irreducible’’ Green’s function
as the sum of graphs which do not fall apart when the gr
is cut between incoming and outgoing nucleons at the fo
fermion vertices proportional toC0 . The irreducible two-
point function is denoted byS, and has the expansion show
in Fig. 1. One can see graphically~Fig. 6! that the relation
betweenG andS is
-

d

r-

n
ir
m

a
e
.
,

s.

f

he

-

the

h
r-

G5
S

11 iC0S
. ~A5!

It follows that

SuĒ52B 5
i

C0
,

1

S2

dS

dEU
Ē52B

5
i

Z
. ~A6!

In general, unphysical quantities such asZ, C0 , the deu-
teron wave function, etc. will depend on the renormalizat
scalem, while S-matrix elements will bem independent.

In order to compute the matrix element of the electrom
netic current between two deuteron states, we first define
three-point function

Gi j
m~Ē,Ē8,q!5E d4x d4y e2 i ~Ex02p•x!ei ~E8y02p8•y!

3^0uT@D i
†~x!Jem

m ~0!Dj~y!#u0&, ~A7!

whereqm5(E82E,p82p) is the photon momentum.Gm is
related to the desired form factor via the LSZ formula

^p8, j uJem
m up,i &5Z@G21~Ē!G21~Ē8!Gi j

m~Ē,Ē8,q!# Ē,Ē8→2B ,

~A8!

whereG(Ē) is defined in Eq.~A2!. It is convenient to reex-
press this formula in termsS and the irreducible three-poin
function, which we callGm. It is easy to see graphically~Fig.
7! that the relation betweenGm andGm is

Gi j
m~Ē,Ē8,q!5

G i j
m~Ē,Ē8,q!

@11 iC0S~Ē!#@11 iC0S~Ē8!#

5
G i j

m~Ē,Ē8,q!G~Ē!G~Ē8!

S~Ē!S~Ē8!
. ~A9!

Making use of this relation and Eqs.~A5!,~A6!,~A8! allows
us to reexpress the matrix element of the current in term
Gm andS:

^p8, j uJem
m up,i &5ZFG i j

m~Ē,Ē8,q!

S~Ē!S~Ē8!
G

Ē,Ē8→2B

5 i FG i j
m~Ē,Ē8,q!

dS~Ē!/dE
G

Ē,Ē8→2B

. ~A10!

FIG. 6. The expansion of of the full two-point functionG in
terms of the irreducible two-point functionS.

FIG. 7. The expansion of full three-point functionGm in terms
of the irreducible two- and three-point functionsS, Gm.
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It is this relation that has a simple perturbative description
terms of Feynman graphs.

2. Computing S

We can now computeS in our perturbative expansion
writing S as

S~Ē!5 (
n51

`

S~n!~Ē!, ~A11!

where S (n)(Ē);O(Qn). The leading contribution toS is
shown in the first row of Fig. 1, and isO(Q) according to
the rules of the previous section. These graphs are rea
evaluated using the formula Eq.~2.16!, with the result

S~1!~Ē!52 i
M

4p
~m2A2MĒ2 i«!. ~A12!

The subleading contribution isO(Q2) and one must comput
the three graphs shown in the second row of Fig. 1. T
result is@1#

S~2!~Ē!52 i
gA

2M2mp
2

32p2f 2 F i tan21S 2AMĒ

mp

D
2

1

2
lnS mp

2 14MĒ

m2 D 11G
2 i S gA

2

2 f 2 1C2MĒ1D2mp
2 D @S~1!~Ē!#2.

~A13!

To the order we are working we truncate the expansion
Eq. ~3.6! to the nonrelativistic result

Ē.E2
p2

4M
; ~A14!
n

ily

e

n

the first relativistic correction enters at NNLO, orO(Q3).
Other NNLO contributions are shown in the third row of Fi
1, and include the exchange of two potential pions, or o
radiative pion~see@1# for discussion! as well as several othe
graphs.

From Eq. ~3.5! we see that what is needed isdS/dĒ

evaluated atĒ52B. From Eqs.~A12! and ~A13! we find

dS~1!

dĒ
U

Ē52B

52 i
M2

8pg
,

dS~2!

dĒ
U

Ē52B

52 i
M3

16p2gF gA
2

2 f 2S g2m1
mp

2

mp12g D
1D2mp

2 ~g2m!2C2g~m2g!~m22g!G ,
~A15!

where we have defined

g[AMB. ~A16!

3. Computing G0

The leading contribution to the matrix element of theJem
0

current between deuteron states arises from the three-p
function G (21)

0 , the first graph in Fig. 2,

G~21!
0 52ed i j

M2

2pq
tan21S q

4g D , ~A17!

where q5uqu is the magnitude of the photon three
momentum, andg was defined above in Eq.~A16!.

At subleading order we need to sum the diagrams in
second row of Fig. 2. In each case, there is a minima
coupledA0 photon coupled to the proton propagator, wi
either an insertion of theC2 or D2 contact interactions, or a
single pion exchange.4 We find
. We
G~0!
0 5ed i j

M3

16p2H D2~m!
4mp

2 ~m2g!

q
tan21S q

4g D1C2~m!~m2g!Fm2g2
4g2

q
tan21S q

4g D G
1S gA

f D 2F2~m2g!

q
tan21S q

4g D2E
0

1

dx
mp

2

xqD~x!
tan21S xq

2@D~x!1g1mp# D G J
1e~qiqj2q2d i j !

9gA
2M3

16p2f 2q3E0

1

dxE
0

`

dr
e2@D~x!1g1mp#r

xr3D~x!
~313mpr 1mp

2 r 2!

3F 2

xqr
cosS xqr

2 D1S 1

3
2

4

x2q2r 2D sinS xqr

2 D G , ~A18!

4One might worry that in fact there are four-nucleon contact interactions involving the combination a covariant time derivativeD0 , and
hence a direct photon coupling to theN†N†NN vertex. In fact, such an operator may be eliminated by using the equations of motion
demonstrate this by explicit calculation in Appendix B.
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whereD(x) is defined in Eq.~3.13!.
As discussed in the text, the calculation of the parts ofG i

which are antisymmetric in the deuteron polarizations
completely analogous to the complete calculation ofG0 pre-
sented here.

APPENDIX B: NO OFF-SHELL AMBIGUITY — AN
EXPLICIT COMPUTATION

When working with potential models forNN interactions
one often faces ambiguities about how to continue ma
elements off-shell. In an effective field theory approa
there is no such ambiguity. All uncertainties arising in
consistent calculation are due to higher-order operators
glected at the order one is working@21#. To illustrate this, we
consider the effect of the operator

O5~NTPiN!†H iD 0~NTPiN!1F S D2

2M
NTD PiN

1NTPi S D2

2M
ND G J , ~B1!

whereDm is the gauge covariant derivative5

Dm5]m1 ieQemAm , ~B2!

Qem being the electric charge matrix. The operatorO is not
Galilean invariant but nonetheless we can, in principle, c
sider how it enters the NLO calculation of the deuteron fo
factors via the graphs in Fig. 8. However, to the order we
working, it vanishes by the equations of motion,

S iD 01
D2

2M DN~x,t !50. ~B3!

FIG. 8. Feynman diagrams contributing to the matrix elem
~denoted by the gray circle! of the operatorO in Eq. ~B1!.
s

x
,

e-

-

e

One might naively think that the equations of motion imp
that the operatorO will not enter a calculation ofNN phase
shifts ~as the nucleons are on-shell in that process!, yet that
O will affect deuteron matrix elements, since the nucleo
are not on-shell in a bound state. This would mean that a n
constant enters the deuteron calculation which cannot be
termined viaNN scattering.

However, this is reasoning is incorrect, and we now sh
by explicit calculation that operatorO does indeed vanish
when considering deuteron matrix elements. This resul
consistent with general theorems of field theory that st
that off-shell matrix elements are arbitrary~they can be
changed by making a field redefinition! and that theS-matrix
elements never depend on them~even when the matrix ele
ment is between bound states!.

As an example, consider the contribution to the deute
three-point functionG0 of the operatorO in the graphs of
Fig. 8, corresponding to the matrix element

G05^0uT@D i
†~E,0!Dj~E8,q!A0~q0,q!#u0&, ~B4!

where E85E1q0. The first graph, Fig. 8~a!, includes the
photon-independent part ofO and a minimally coupledA0

photon on a nucleon leg. It is proportional to

~a!}2 i E dD21k

~2p!D21

dD21l

~2p!D21

3
E2k2/M

~E2k2/M !~E2 l2/M !~E82@ l21~ l1q!2#/2M !

50, ~B5!

whereD→4 at the end of the calculation. To evaluate th
integral, we used the fact that the first term in the numera
cancels the first propagator, and that in dimensional regu
ization

E dD21k

~2p!D21
50. ~B6!

The second graph in Fig. 8 is similar, and proportional

t

we are
~b!}2 i E dD21k

~2p!D21

dD21l

~2p!D21

E82@k21~k1q!2#/2M

~E2k2/M !~E82@k21~k1q!2#/2M !~E82@ l21„l1q!2#/2M )

52 i E dD21k

~2p!D21

dD21l

~2p!D21

1

~E2k2/M !~E82@ l21„l1q!2#/2M )
. ~B7!

5To be chirally invariant, the covariant derivative should include pion fields, but as the pion couplings do not enter to the order
working, we have set them to zero.
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Finally, the third graph, Fig. 8~c!, arises from theA0 pho-
ton coupling inO, and gives

~c!}1 i E dD21k

~2p!D21

dD21l

~2p!D21

3
1

~E2k2/M !~E82@ l21„l1q!2#/2M )
. ~B8!
si
n

ad
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ys

C

It follows that the sum of the three graphs in Fig. 8 vanish
and there is no off-shell ambiguity arising from this ne
operatorO. Similar remarks hold for other operators with
single time derivative. Therefore, we can choose to only
clude the two spatial derivative operators in the Lagrang
~our interaction proportional toC2) and to eliminate the
analogous operators with a time derivative by the equati
of motion — even though we are considering nucleo
bound in a deuteron.This result is not peculiar to the par
ticular regularization scheme we used.
yst.
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