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Spurious states in the Faddeev formalism for few-body systems

P. Navrátil,1,* B. R. Barrett,1 and W. Glöckle2
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We discuss the appearance of spurious solutions of few-body equations for Faddeev amplitudes. The iden-
tification of spurious states, i.e., states that lack the symmetry required for solutions of the Schro¨dinger
equation, as well as the symmetrization of the Faddeev equations is investigated. As an example, systems of
three and four electrons, bound in a harmonic-oscillator potential and interacting by the Coulomb potential, are
presented.@S0556-2813~99!05002-5#

PACS number~s!: 21.45.1v, 21.60.Cs, 31.15.Pf
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I. INTRODUCTION

One of the most viable approaches for solving the fe
body problem is the Faddeev method@1#. It has been suc-
cessfully applied to solve the three-nucleon bound-s
problem for various nucleon-nucleon potentials@2–5#. The
most complex calculations of this kind include up to
channels, when all thej <6 waves are taken into account@6#.

The Hamiltonian in the Schro¨dinger equation is Hermitian
and the solutions for a system of fermions, for example,
antisymmmetrized. On the other hand, the Faddeev equa
are non-Hermitian and the trial wave functions used fo
system of fermions, e.g., are not fully antisymmetrized. Al
there are three Faddeev equations for the three-body sy
acting on the same variables as in the Schro¨dinger equation.
One, therefore, could expect that there should be three ti
as many solutions as for the Schro¨dinger equation. Then, it is
not surprising that spurious solutions of the Faddeev eq
tions exist. A spurious solution is an eigenstate, which d
not have the symmetry required by the Schro¨dinger equation,
e.g., antisymmetry for a system of identical fermions. A sp
rious component in a solution of the Faddeev equations
found analytically for the first time for the ground state
three identical particles bound in the harmonic-oscilla
~HO! potential by Friaret al. @7#. Spurious components o
the Faddeev amplitudes were then observed also for the
cited states in extensions of this work for three identical p
ticles @8#, three nonidentical particles@9#, as well as for four
identical spinless particles@10#. Spurious solutions of
Faddeev-like equations were investigated by Evans
Hoffman @11#, and the existence of spurious solutions
Faddeev equations for three identical particles was rece
demonstrated by Rudnev and Yakovlev@12#. In Ref. @12#
such solutions were constructed for states of zero total an
lar momentum. In addition, spurious solutions of the Fa
deev equations for three nonidentical particles interacting
central potentials were investigated by Pupyshev@13#. In
Ref. @14#, we noted the appearance of spurious solutio
whose number exceeded the number of physical solution

*On leave of absence from the Institute of Nuclear Physics, Ac
emy of Sciences of the Czech Republic, 250 68 Rˇ ež near Prague,
Czech Republic.
PRC 590556-2813/99/59~2!/611~6!/$15.00
-

te

e
ns
a
,
em

es

a-
s

-
as

r

x-
r-

d
f
tly

u-
-
y

s,
of

the Faddeev equations for a three-nucleon system solve
an HO basis in a shell-model approach. Also, a spuri
solution was reported recently in a three-body model cal
lation of L

9 Be @15#.
In the present paper we investigate the appearance of

rious states in the Faddeev formalism and their identificat
in a systematic manner. We use three- and four-electron
tems bound in an HO potential as an example for illustrat
and quantification of the problem.

In Sec. II we discuss the three fermion system. A gen
alization for the four-body system is presented in Sec.
Conclusions are given in Sec. IV.

II. THREE-BODY SYSTEM

Our discussion is quite general. However, we prefer
illustrate our points by using a particular simple examp
namely, a system of electrons bound by an HO potential
interacting by the Coulomb potential. We consider, the
fore, the following Hamiltonian:

H5(
i 51

A F pW i
2

2m
1

1

2
mV2rW i

2G1(
i , j

A

VC~rW i2rW j !. ~1!

Eigenstates of the Hamiltonian~1! are antisymmetric with
respect to the exchange of any electron pair.

In the Faddeev formalism for a system of three identi
particles, i.e.,A53, the following transformation of the co
ordinates

rW5A1

2
~rW12rW2!, ~2a!

yW5A2

3F1

2
~rW11rW2!2rW3G , ~2b!

and, similarly, of the momenta, is introduced. It brings t
one-body HO Hamiltonian from Eq.~1! into the form

H05
pW 2

2m
1

1

2
mV2rW21

qW 2

2m
1

1

2
mV2yW 2, ~3!

with the trivial center-of-mass term omitted. Eigenstates
H0 ,

-
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unls j,NLJ,J&, ~4!

can be used as the basis for the Faddeev calculation. Hern,l
andN,L are the HO quantum numbers corresponding to
harmonic oscillators associated with the coordinates and
mentarW,pW andyW ,qW , respectively. The quantum numberss, j
describe the spin and angular momentum of the relat
coordinate partial channel of particles 1 and 2,J is the an-
gular momentum of the third particle relative to the center
mass of particles 1 and 2 andJ is the total angular momen
tum. It is obvious that the basis~4! ~similarly for trial states
used in traditional Faddeev calculations!, while antisymme-
trized with respect to the exchange of particles 1↔2, is not
antisymmetrized with respect to the exchanges of parti
1↔3 and 2↔3. On the other hand, the physical solutio
corresponding to the solutions of the Schro¨dinger equation
must be totally antisymmetrized. For our example syste
the states~4! form a complete orthonormal basis. The phy
cal solutions are such linear combinations of the basis st
that have the proper antisymmetry for all the particle e
changes. On the other hand, one must expect that there
more basis states~4! than the total possible number of lin
early independent antisymmetrized linear combinations
the states~4!. Consequently, it is natural that spurious sta
will appear, when the calculation is performed using a ba
of the type~4!.

The first Faddeev equation can be written in the differ
tial form as
o
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~H01V32E!f352V3~f11f2!, ~5!

whereV3 is the two-body interaction between particles 1 a
2 andf1 , f2 , and f3 are the three Faddeev componen
The other two Faddeev equations are cyclical versions of
~5!. Equation~5! can be rewritten in the form

H̃uc&K5Euc&K , ~6!

with

H̃5H01V~rW !T. ~7!

Here,V(rW) is the interaction between particles 1 and 2, e
V3 of Eq. ~5! or VC(A2rW) of Eq. ~1!; uc&K corresponds to the
Faddeev amplitudef3 in Eq. ~5!; andT, which has the prop-
erties of a metric operator@3,16#, is given by

T511T ~2 !1T ~1 !, ~8!

with T (1) andT (2) the cyclic and the anticyclic permuta
tion operators, respectively.

For the basis~4!, which we use as an example in th
present paper, we obtain a formula for the matrix element
T (2)1T (1) by simplification of the expression~10! in Ref.
@14#, namely
^n1l 1s1 j 1 ,N1L1J1 ,JuT ~2 !1T ~1 !un2l 2s2 j 2 ,N2L2J2 ,J&

5dN1 ,N2(LS
L̂2Ŝ2 ĵ 1 ĵ 2Ĵ1Ĵ2ŝ1ŝ2~21!LH l 1 s1 j 1

L1
1

2
J1

L S J

J H l 2 s2 j 2

L2
1

2
J2

L S J

J H 1

2

1

2
s1

1

2
S s2

J
3@~21!s11s22L12 l 1^N1L1n1l 1Lun2l 2N2L2L&31^n1l 1N1L1LuN2L2n2l 2L&3#, ~9!
epa-

on

-

where Ni52ni1 l i12Ni1Li , i[1,2, ĵ 5A2 j 11 and
^N1L1n1l 1Lun2l 2N2L2L&3 is the general HO bracket for tw
particles with mass ratio 3 as defined, e.g., in Ref.@17#. Simi-
lar expressions for different bases are described, e.g., in R
@18,19#. It follows from the symmetry properties of the stat
~4! and of the HO brackets that the contributions ofT (2) and
T (1) in Eq. ~9! are identical.

We note that the eigensystem of the operatorT ~8! con-
sists of two subspaces. The first subspace has eigens
with the eigenvalue 3, which form totally antisymmetr
physical states, while the second subspace has eigens
with the eigenvalue 0, which form a not completely antisy
metric, unphysical subspace of states. Although we fo
these properties ofT by direct calculation using the relatio
~9!, it is, in fact, a general result. The same structure
eigenstates was also reported in Ref.@12# using a different
basis. The eigenvalue structure follows from the fact that1

3T
has the properties of a projection operator.
fs.

tes

tes
-
d

f

The HamiltonianH̃ ~7! is non-Hermitian. By solving Eq.
~6! one obtains the right~ket! eigenstates, while by acting
with H̃ to the left, one gets the bi-orthogonal left~bra! eigen-
states. In the basis with physical and spurious states s
rated, e.g., those obtained from the diagonalization ofT, the
Hamiltonian matrix takes the form

S ^PhuH̃uPh& 0

^SpuH̃uPh& ^SpuH̃uSp&
D . ~10!

Formally we obtain the Hamiltonian matrix~10! from the
Hamiltonian matrix in the basis of the type~4! by an or-
thogonal transformation that transforms the basis~4! into the
eigenstates of the operatorT ~8!. In fact, this situation is very
much analogous to the well-known properties of the Dys
boson-mapped systems@20#. It follows from the structure of
the Hamiltonian matrix~10! that its right spurious eigen
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TABLE I. Results for three-electron system bound in a HO potential are presented. The first line
the total of HO quanta corresponding to the relative motion in the basis states. The dimensions corres
to the stateJp51/22 are shown in lines 2–4. Line 2 displays the full dimension~D!, while lines 3 and 4
present the number of spurious~Sp! and physical~Ph! states, respectively. Lines 5 and 6 show calcula
ground-state and first-excited-state energies, respectively. The calculations were done for\V50.5 a.u. The
ground-state center-of-mass energy~0.75 a.u.! is not included in the energies shown. Energies correspond
to a particularN were obtained in calculations, where all physical basis states up toN were included.

N 1 3 5 7 9 11 13 15 17 19 21

D 3 10 21 36 55 78 105 136 171 210 253
Sp 2 7 14 24 37 52 70 91 114 140 169
Ph 1 3 7 12 18 26 35 45 57 70 84

E1 3.4105 3.2787 3.2699 3.2669 3.2656 3.2649 3.2645 3.2643 3.2641 3.2639 3
E2 4.1002 4.0497 4.0472 4.0459 4.0453 4.0450 4.0449 4.0448 4.0447 4.
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statesuc;Sp&K are not contaminated by the physical stat
Similarly, the left physical eigenstatesB^c;Phu are not con-
taminated by the spurious ones. On the other hand, its r
physical eigenstatesuc;Ph&K may have spurious admixture
similarly the left spurious eigenstatesB^c;Spu may have
physical admixtures. As a right spurious eigenstate has
physical admixtures, it must be annihilated by the action
the operatorT ~8!, e.g.,

T uc;Sp&K50. ~11!

The action of the opeartorT on the right eigenstates, thu
serves as a test for identification of spurious states among
calculated eigenstates, in analogy to identification of sp
ous states in the Dyson boson mapping by the means o
~so-called! R operator@21#. The relation~11! can be ex-
pressed in terms of the Faddeev amplitudes appearing in
~5! as f11f21f350. We note that the sum of the thre
Faddeev components has to be identified with the solutio
the Schro¨dinger equation. If one finds solutions of the Fa
deev equations, which are unphysical, e.g., that do not h
the proper symmetry with respect to the particle exchang
the corresponding three Faddeev components have to ad
to zero. This is the only possibilty to avoid a contradictio

It is possible to avoid the spurious state problem co
pletely by Hermitizing the Hamiltonian~7! on the physical
subspace, where it is quasi-Hermitian~see the discussion o
quasi-Hermitian operators, e.g., in Ref.@16#!. The Her-
mitized Hamiltonian takes the form

H̄5H01T̄ 1/2V~rW !T̄ 1/2, ~12!

whereT̄ operates on the physical subspace only, e.g., it
only the eigenvalues 3.

Let us mention several relations between the eigenst
of the Faddeev HamiltonianH̃ ~7! and the symmetrized
Hamiltonian H̄ ~12!. First, we have for the left and righ
eigenstates ofH̃

B^c;Phu5K^c;PhuT. ~13!
.
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The eigenvectorsuC& of the HamiltonianH̄ ~12! are related
to the eigenvectors of the HamiltonianH̃ ~7! by

uC&5T 1/2uc;Ph&K , ~14a!

^Cu5B^c;PhuT̄ 21/2. ~14b!

Note that we write explicitlyT̄ instead ofT only when an
inversion is needed. For matrix elements of a general op
tor O we then have

^C f uOuC i&5B^c f ;PhuT̄ 21/2OT 1/2uc i ;Sp&K . ~15!

In addition to the relation~11!, there is another possibility
of identification of spurious states. It follows from the pro
erties of the matrix elements of a general operatorO between
the physical and spurious eigenstates ofH̃ ~7!, namely

B^c f ;PhuT̄ 21/2OT 1/2uc i ;Sp&K50, ~16a!

B^c f ;SpuT̄ 21/2OT 1/2uc i ;Ph&KÞ0. ~16b!

These relations follow from the properties of the left a
right eigenstates as discussed in the paragraph after Eq.~10!.
For an operator that commutes withT the square roots ofT
may be omitted in Eqs.~15! and ~16!. Also, in the above
relations the substitution( i , jOi j 5T 1/2O(rW)T 1/2 can be used
for a two-body operatorOi j depending on (rW i2rW j ).

Let us return to our specific system example. The metriT
~8! is diagonal inN52n1 l 12N1L. It follows from the
expression~9! that any basis truncation other than one of t
type N<Nmax would lead, in general, to mixing of physica
and unphysical states. Here,Nmax characterizes the maxi
mum of total allowed harmonic-oscillator quanta in the bas
At the same time, the truncation into total allowed oscilla
quantaN<Nmax preserves the equivalence of the Hamilt
nians~7! and ~12! on the physical subspace. A general co
sequence of this observation is that an improper truncatio
the treatment ofT leads to physical and spurious state m
ing.

In Table I we present the dimensions~D! of the basis~4!
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corresponding to a particularN52n1 l 12N1L together
with the number of physical states~Ph! and spurious state
~Sp! for the three-electron system withJp51/22. Appar-
ently, the number of physical states is about a third of
basis states. We also present the ground state and the
excited state energies obtained with the basis restricted
N<Nmax, whereNmax corresponds to the number in the fir
row. We used the HO energy\V50.5 atomic units~a.u.!.
The physical eigenenergies are shown without the triv
center-of-mass contribution. It is immediately seen from E
~7! and~11! that the spurious states have the energies co
sponding to the unperturbed HamiltonianH0 ~3!. Typically
in the search for a bound state in the Faddeev calculat
the lowest state would be physical and the spurious s
existence would be unnoticed. The present electron sys
with a repulsive Coulomb interaction is interesting beca
of the fact that the physical ground state is the tenth stat
can be deduced from the Table I. There are 2 spurious s
with the unperturbed HO energy 2 a.u. and 7 spurious st
with the energy 3 a.u. We note that for the discussed sys
the ground-state energy obtained by the stochastic variati
method~SVM! @22# is 3.26324 a.u.@23# ~after subtracting
0.75 a.u. for the center-of-mass energy!. In our HO basis
calculation two-decimal place precision is obtained rat
rapidly. A further improvement of the precision is, howeve
slow. We performed calculations up toNmax539, where we
obtained the ground state energy of 3.2634 a.u. and 4.0
a.u. for the first-excited state. A substantial acceleration
convergency can be achieved by employing the effective
teraction approach in a manner similar to that discusse
Ref. @14#. By replacing the interactionV(rW) in Eqs.~7! and
~12! by Veff(rW) we reach the SVM ground-state result f
Nmax527 and for the first excited state we then obta
4.04458 a.u.

III. FOUR-BODY SYSTEM

To demonstrate that the problems discussed prevail
for the Faddeev-type approach to systems with more t
three particles, we present briefly the extension of the stud
system to four electrons. We use the Hamiltonian~1! with
A54. By introducing the coordinate~and momenta! transfor-
mation

rW5A1

2
~rW12rW2!, ~17a!

yW5A2

3F1

2
~rW11rW2!2rW3G , ~17b!

zW5
A3

2 F1

3
~rW11rW21rW3!2rW4G , ~17c!

the one-body part of the Hamiltonian~1! is obtained as

H05
pW 2

2m
1

1

2
mV2rW21

qW 2

2m
1

1

2
mV2yW 21

oW 2

2m
1

1

2
mV2zW2,

~18!
ll
rst

by
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.
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with the trivial center-of-mass term omitted.
A possible generalization of the Faddeev equation~6! for

four identical particles can be written in the form

H̃uc~123!4&5Euc~123!4&, ~19!

with

H̃uc~123!4&[H0uc~123!4&1
1

2
~V121V131V23!~ uc~123!4&

1uc~432!1&1uc~134!2&1uc~142!3&), ~20!

and

~ uc~123!4&1uc~432!1&1uc~134!2&1uc~142!3&)

5~12T142T242T34!uc~123!4&[T4uc~123!4&.

~21!

Here, uc (123)4& is a four-fermion Faddeev amplitude com
pletely antisymmetrized for particles 1, 2, and 3. There
three other equations that can be obtained from Eq.~19! by
permuting particle 4 with particles 1, 2, and 3. Their su
then leads to the Schro¨dinger equation. We note that th
present equations are different from the traditional Fadde
Yakubovsky equations@24#, which combine Faddeev ampli
tudes depending on two sets of Jacobi coordinates. As we
working with a complete orthonormal basis, it is sufficie
and convenient to use a single set of Jacobi coordinates
fined by the relations~17!. Unlike the Faddeev amplitude
used typically in the Faddeev-Yakubovsky equations,
amplitudes appearing in Eq.~19! are antisymmetrized with
respect to the first three particles. The present equation
low to employ easily three-body interactions or three-bo
effective interactions. The latter property makes them p
ticularly useful for an extension of shell-model calculatio
for four nucleons@25#.

The starting point for the present four-electron calculat
is the basis

uN1iJ1 ,nzl zJ4 ,J&, ~22!

with the three-fermion part given by the antisymmetriz
eigenstates ofT ~8! corresponding to eigenvalue 3, e.g.,

uN1iJ1&5( cnls jNLJ 3

N1iJ1 unls j,NLJ3 ,J1&, ~23!

whereN152n1 l 12N1L and i counts the eigenstates ofT
with the eigenvalue 3 for givenN1 andJ1 .

As for the three-particle transposition operators~9!, a
compact formula can be derived for the matrix elements
the four-particle transposition operators in the basis~22!,
e.g.,
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^N1Li LJ1L ,nzLl zLJ4L ,JuT141T241T34uN1Ri RJ1R,nzRl zRJ4R,J&

52dNL ,NR( cnLl LsL j LNLLLJ3L

N1Li LJ1L cnRl RsRj RNRLRJ3R

N1Ri RJ1R L̂1L
2 L̂1R

2 Ŝ1L
2 Ŝ1R

2 L̂2
2Ŝ2

2 ĵ L ĵ RĴ3LĴ3RĴ4LĴ4RĴ1LĴ1R~21!S1L1S1R

3H 1

2
sR S1R

1

2
S2 S1L

J H l L sL j L

LL
1

2
J3L

L1L S1L J1L

J H l R sR j R

LR
1

2
J3R

L1R S1R J1R

J H L1L S1L J1L

l zL
1

2
J4L

L2 S2 J

J H L1R S1R J1R

l zR
1

2
J4R

L2 S2 J

J
3L̂82~21!L8H l R L2 L8

l zR LR L1R
J H l R L2 L8

l zL l 8 L1L
J F ŝLŝRH 1

2

1

2
sR

1

2
S1L sL

J
3~21! l zR1L1L

„~21! l zL^n8l 8nzLl zLL8unzRl zRNRLRL8&8^nLl LNLLLL1Lun8l 8nRl RL1L&3

1~21!sR2sL1LR2 l L2LL^nzLl zLn8l 8L8uNRLRnzRl zRL8&8^NLLLnLl LL1LunRl Rn8l 8L1L&3…

1d l L ,l R
dsL ,sR

dNL ,n8dLL ,l 8~21!LR1 l zR^nzLl zLNLLLL8uNRLRnzRl zRL8&8G , ~24!
,
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where NX52nX1 l X12NX1LX12nzX1 l zX5N1X12nzX
1 l zX ,X[L,R. We will give more details on the derivation
symmetry properties, as well as a generalization that inclu
the isospin quantum numbers, elsewhere@25#.

As the structure of Eq.~19! is the same as the Faddee
equation~6!, the discussion of the spurious state problem
the three-fermion system can be extended to the fo
fermion system as well. In particular, eigenstates of the
eratorT4 defined by the relation~21! can be subdivided into
two subspaces. A physical subspace corresponding to
eigenvalue 4 spanned by totally antisymmetric states an
spurious subspace spanned by eigenvectors correspond
the eigenvalue 0. In the basis of theT4 eigenstates, the
HamiltonianH̃ appearing in Eq.~19! has the same structur
as shown in Eq.~10!. Its spurious eigenstates can be iden
fied by the action ofT4 on the right eigenstates, like in Eq
~11!, e.g.,T4uc (123)4;Sp&K50.

It is possible to symmetrize the HamiltonianH̃ on the
physical subspace and eliminate the spurious state prob
at the same time. The symmetrized Hamiltonian then ta
the form

H̄5H01T̄4
1/2 1

2 ~V121V131V23!T̄4
1/2, ~25!

whereT̄4 operates only on the physical subspace.
In Table II we show the dimensions~D! of the basis~22!

corresponding to particularN5N112nz1 l z together with
the number of physical states~Ph! and spurious states~Sp!
for the four-electron system withJp501. The relative num-
ber of physical states decreases withN and approaches abou
a fourth of all basis states for largerN. In the last two rows of
Table II we present the ground state and the first excited s
energies obtained in the calculations with the basis restri
es

r
r-
-

he
a
to

-

m
s

te
d

by N<Nmax, whereNmax corresponds to the number in th
first row. As in the three-electron calculations the physi
eigenenergies, which were obtained with the HO ene
\V50.5 a.u., are shown without the trivial center-of-ma
contribution. We note that the studied system, when
scribed by Eq.~19!, has a spurious ground state with th
energy 3.25 a.u., corresponding to the unperturbed
HamiltonianH0 ~18!. We note that the preliminary result o
the ground-state energy of the studied system obtained by
SVM is 5.6002 @23# ~after subtracting 0.75 a.u. for th
center-of-mass energy!. As for the three-electron calcula
tions, we get a fast convergence to two-decimal place pr

TABLE II. Results for four-electron system bound in a H
potential are presented. The first line shows the total of HO qua
corresponding to the relative motion in the basis states. The dim
sions corresponding to the stateJp501 are shown in lines 2–4.
Line 2 displays the full dimension~D!, while lines 3 and 4 presen
the number of spurious~Sp! and physical~Ph! states, respectively
Lines 5 and 6 shows calculated ground-state and first-excited-
energies, respectively. The calculations were done for\V50.5
atomic units. The ground-state center-of-mass energy~0.75 a.u.! is
not included in the energies shown. Energies corresponding
particularN were obtained in calculations where all physical ba
states up toN were included.

N 0 2 4 6 8 10 12 14

D 0 4 21 68 178 391 767 1390
Sp 0 2 14 48 128 284 564 1024
Ph 0 2 7 20 50 107 203 366

E1 5.8829 5.6346 5.6094 5.6043 5.6022 5.6012 5.60
E2 6.0239 5.7396 5.7116 5.7034 5.7003 5.6988 5.69
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sion in our HO basis calculation. A further improvement
the precision is slow and requires larger model spaces. A
the three-electron calculation, a substantial acceleration
convergence can be achieved by employing the effective
teraction approach@14#. By replacing the interactionV by a
two-body effective interaction, we obtained a ground-st
energy of 5.5991 a.u. and a first-excited-state energy
5.6958 a.u. forNmax514. An additional speeding up of th
rate of convergence can be achieved by using the three-b
effective interaction@25#.

IV. CONCLUSIONS

To summarize, we have investigated the appearanc
spurious states in the Faddeev formalism for few-body s
tems. Depending on the studied system, such states ma
pear even among the lowest eigenstates. We have also
cussed how the spurious states can be identified and
they can be eliminated by symmetrization of the Fadd
equations. We also noted that any improper truncation in
treatment of the particle exchange operators~e.g.,T,T4) may
lead, in general, to the mixing of physical and spurio
states.

We used three- and four-electron systems bound in an
potential as an example. Due to the repulsive character o
ev

e

hy
f
in
of
n-

e
of

dy

of
s-
ap-
is-
w
v
e

s

O
he

Coulomb interaction, such systems have spurious gro
states, when solved in the Faddeev formalism. By examin
the basis dimensions, we have illustrated that the numbe
physical states for the three-electron system is about a t
of the total number of basis states.~It is exactly one-third,
when the total number of basis states is divisible by thre!
For the four-electron system we formulated equations for
Faddeev amplitudes antisymmetrized for the first three p
ticles. Using this approach we observed that almost 3/4 o
the states were spurious.
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