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Spurious states in the Faddeev formalism for few-body systems
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We discuss the appearance of spurious solutions of few-body equations for Faddeev amplitudes. The iden-
tification of spurious states, i.e., states that lack the symmetry required for solutions of thaliSgdiro
equation, as well as the symmetrization of the Faddeev equations is investigated. As an example, systems of
three and four electrons, bound in a harmonic-oscillator potential and interacting by the Coulomb potential, are
presented[ S0556-28189)05002-3

PACS numbgs): 21.45+v, 21.60.Cs, 31.15.Pf

[. INTRODUCTION the Faddeev equations for a three-nucleon system solved in

. . an HO basis in a shell-model approach. Also, a spurious
One of the T“OSt viable approaches for solving the few'solution was reported recently in I[;pthree—body modelocalcu—

body problem is the Faddeev methpt. It has been suc- lation of °Be [15]

cessfully appligd to solve the three-nuclepn bound-state In the ?)resent baper we investigate the appearance of spu-

problem for various nucleon-nucleon potentigls-5. The s states in the Faddeev formalism and their identification

most complex calculations of this kind include up 0 50, 5 systematic manner. We use three- and four-electron sys-

channels, when all the<6 waves are taken into accou.  tems bound in an HO potential as an example for illustration
The Hamiltonian in the Schdinger equation is Hermitian g4 quantification of the problem.

and the solutions for a system of fermions, for example, are |n Sec. Il we discuss the three fermion system. A gener-

antisymmmetrized. On the other hand, the Faddeev equatioRgization for the four-body system is presented in Sec. IIl.

are non-Hermitian and the trial wave functions used for aConclusions are given in Sec. IV.

system of fermions, e.g., are not fully antisymmetrized. Also,

there are three Faddeev equations for the three-body system Il. THREE-BODY SYSTEM

acting on the same variables as in the Sdhvger equation. ) o )

One, therefore, could expect that there should be three times OUr discussion is quite general. However, we prefer to

as many solutions as for the Sctinger equation. Then, it is illustrate our points by using a particular simple exa.mple,

not surprising that spurious solutions of the Faddeev equd@mely, a system of electrons bound by an HO potential and

tions exist. A spurious solution is an eigenstate, which doedteracting by the Coulomb potential. We consider, there-

not have the symmetry required by the Salinger equation, ore the following Hamiltonian:

e.g., antisymmetry for a system of identical fermions. A spu-

A -2 A
: : ; ; o1
rious component in a solution of the Faddeev equations was H= p_,+ “mo2r2|+> VA(r =T, 1
found analytically for the first time for the ground state of Z’l 2m 2 ' .Eq ofi=ry)- @

three identical particles bound in the harmonic-oscillator
(HO) potential by Friaret al. [7]. Spurious components of Eigenstates of the Hamiltoniafl) are antisymmetric with
the Faddeev amplitudes were then observed also for the exespect to the exchange of any electron pair.
cited states in extensions of this work for three identical par- In the Faddeev formalism for a system of three identical
ticles[8], three nonidentical particlg8], as well as for four ~particles, i.e. A=3, the following transformation of the co-
identical spinless particle§10]. Spurious solutions of ordinates
Faddeev-like equations were investigated by Evans and I

r= \[E(rl_rZ).

Hoffman [11], and the existence of spurious solutions of (2a)
Faddeev equations for three identical particles was recently

demonstrated by Rudnev and Yakovigl2]. In Ref. [12]

such solutions were constructed for states of zero total angu- - \F 1. - .

lar momentum. In addition, spurious solutions of the Fad- y=V3|3(rtra)-rs|, (2b)

deev equations for three nonidentical particles interacting by

central potentials were investigated by Pupysh&8]. In  and, similarly, of the momenta, is introduced. It brings the
Ref. [14], we noted the appearance of spurious solutionspne-body HO Hamiltonian from Ed1) into the form

whose number exceeded the number of physical solutions, of

~2 2
— p 1 272 q 1 22
H0—2m+2mQr +2m+2mQ , 3)

*On leave of absence from the Institute of Nuclear Physics, Acad-
emy of Sciences of the Czech Republic, 250 68 Rear Prague, with the trivial center-of-mass term omitted. Eigenstates of
Czech Republic. Hg,
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Inlsj,NLT,J), (4) (Ho+V3—E)d3=—V3(d1+ ¢2), (5

can be used as the basis for the Faddeev calculatlo_n.n—,ﬂere whereVj is the two-body interaction between particles 1 and
andJ\/p are the HO quantum ”“”.‘bers correspondmg to th@ and ¢,, ¢,, and ¢5 are the three Faddeev components.
harmonic oscillators associated with the coordinates and MGrhe othe; two, Faddeev equations are cyclical versions of Eq

menta_tﬁﬁ andy,q, respectively. The quantum numbes§  (5). Equation(5) can be rewritten in the form
describe the spin and angular momentum of the relative-

coordinate partial channel of particles 1 and2is the an-
gular momentum of the third particle relative to the center of
mass of particles 1 and 2 adds the total angular momen-
tum. It is obvious that the basig) (similarly for trial states
used in traditional Faddeev calculatiopng/hile antisymme- 5 R
trized with respect to the exchange of particles 2, is not H=Hy+V(r)7. )
antisymmetrized with respect to the exchanges of particles

13 and 2-3. On the other hand, the physical solutions yere \/(r) is the interaction between particles 1 and 2, e.g.,

corresponding to the solutions of the Sdlirger equation V, of Eq. (5) or VC(\/EF) of Eq. (1); | #« corresponds to the

must be totally antisymmetrized. For our example system . . ) X
the stateg4) form a complete orthonormal basis. The physi- Faddeev amplitude; in Eq. (5); and7, which has the prop-

cal solutions are such linear combinations of the basis statéd €S of a metric operatd8,16], is given by

that have the proper antisymmetry for all the particle ex-

changes. On the other hand, one must expect that there are T=1+T"+T), ®
more basis state@l) than the total possible number of lin-

early independent antisymmetrized linear combinations ofvith 7(*) and 7 (") the cyclic and the anticyclic permuta-
the stateg4). Consequently, it is natural that spurious stategion operators, respectively.

will appear, when the calculation is performed using a basis For the basis(4), which we use as an example in the

H|¥)=El¢)x., (6)

with

of the type(4). present paper, we obtain a formula for the matrix elements of
The first Faddeev equation can be written in the differen<7 (7)+7(*) by simplification of the expressiofi0) in Ref.
tial form as [14], namely

<n1|1slj1aN1£1~71,J|T(_)+T(+)|nz|25212'/\[252‘72,\])

1 s 1 l, s s 11
gt n 1 2 2
= 0N, N > L2 L0T88(—~ 1) Ly 5 A L, = D
1 N2 2 2 1
— S 52
L S J L S J 2
X[(=1)s+ %2 AN L0l Lol )NG LoL )3+ (gl i N L L N, Lonal L) 5], 9

where N;=2n;+1;+2N;+£;, i=1,2,j=y2j+1 and The HamiltonianH (7) is non-Hermitian. By solving Eq.
(N1Linq14L| ol NS L5L ) 5 is the general HO bracket for two  (6) one obtains the rightket) eigenstates, while by acting
particles with mass ratio 3 as defined, e.g., in RET]. Simi-  with H to the left, one gets the bi-orthogonal Iéfira) eigen-

lar expressions for different bases are described, e.g., in Refstates. In the basis with physical and spurious states sepa-
[18,19. It follows from the symmetry properties of the statesrated, e.g., those obtained from the diagonalizatioff,ahe

(4) and of the HO brackets that the contributionsZéf) and ~ Hamiltonian matrix takes the form

7(") in Eq. (9) are identical.

We note that the eigensystem of the operafdB) con- (PHH|PH 0
sists of two subspaces. The first subspace has eigenstates - - . (10
with the eigenvalue 3, which form totally antisymmetric (SAH|PH  (SpH|Sp

physical states, while the second subspace has eigenstates

with the eigenvalue 0, which form a not completely antisym-Formally we obtain the Hamiltonian matrii@0) from the
metric, unphysical subspace of states. Although we foundHamiltonian matrix in the basis of the typd) by an or-
these properties df by direct calculation using the relation thogonal transformation that transforms the b#&jsnto the

(9), it is, in fact, a general result. The same structure ofeigenstates of the operat®i(8). In fact, this situation is very
eigenstates was also reported in Rd®] using a different much analogous to the well-known properties of the Dyson
basis. The eigenvalue structure follows from the fact §#t boson-mapped systerfi20]. It follows from the structure of
has the properties of a projection operator. the Hamiltonian matrix(10) that its right spurious eigen-
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TABLE I. Results for three-electron system bound in a HO potential are presented. The first line shows
the total of HO quanta corresponding to the relative motion in the basis states. The dimensions corresponding
to the statel”=1/2" are shown in lines 2—4. Line 2 displays the full dimens{@), while lines 3 and 4
present the number of spurio¢Sp and physicalPh states, respectively. Lines 5 and 6 show calculated
ground-state and first-excited-state energies, respectively. The calculations were dbfe=f0r5 a.u. The
ground-state center-of-mass enef@y75 a.u) is not included in the energies shown. Energies corresponding
to a particularN were obtained in calculations, where all physical basis states NMpwere included.

N 1 3 5 7 9 11 13 15 17 19 21

D 3 10 21 36 55 78 105 136 171 210 253
Sp 2 7 14 24 37 52 70 91 114 140 169
Ph 1 3 7 12 18 26 35 45 57 70 84

E, 3.4105 3.2787 3.2699 3.2669 3.2656 3.2649 3.2645 3.2643 3.2641 3.2639 3.2638
E, 4.1002 4.0497 4.0472 4.0459 4.0453 4.0450 4.0449 4.0448 4.0447 4.0447

states|; Spk are not contaminated by the physical statesThe eigenvectorg¥) of the HamiltonianH (12) are related
Similarly, the left physical eigenstategy;PH are not con- g the eigenvectors of the Hamiltoni&h (7) by

taminated by the spurious ones. On the other hand, its right
physical eigenstatdss; Phyx may have spurious admixtures;
similarly the left spurious eigenstateg #;Spg may have
physical admixtures. As a right spurious eigenstate has no
physical admixtures, it must be annihilated by the action of (W|=g(y;PHT 12 (14b)
the operator7 (8), e.g.,

W) =T y;Phy, (143

Note that we write explicitlyZ instead of7 only when an
inversion is needed. For matrix elements of a general opera-
T|¢:Sp=0. 1D tor 0 we then have
The action of the opeartdf on the right eigenstates, thus,
serves as a test for identification of spurious states among the
calculated eigenstates, in analogy to identification of spuri-
ous states in the Dyson boson mapping by the means of thg
(so-called R operator[21]. The relation(11) can be ex-
pressed in terms of the Faddeev amplitudes appearing in E
(5) as ¢p1+ ¢, + Pp3=0. We note that the sum of the three
Faddeev components has to be identified with the solution of .
the Schrdinger equation. If one finds solutions of the Fad- s, PAT Y2072y ;Sp k=0, (168
deev equations, which are unphysical, e.g., that do not have
the proper symmetry with respect to the particle exchanges, —
the corresponding three Faddeev components have to add up (1, SPT ~ V20TV ;P #0. (16b)
to zero. This is the only possibilty to avoid a contradiction.
It is possible to avoid the spurious state problem com-

pletely by Hermitizing the Hamiltonia7) on the physical
subspace, where it is quasi-Hermitiesee the discussion of For an operator that commutes wiffthe square roots df

guasi-Hermitian operators, e.g., in Rdfl6]). The Her- may-be omitted irf Egs(lS) and (16). AJSO’ in the above
mitized Hamiltonian takes the form relations the substitutioB; - ;O;; = 7¥20(r) 72 can be used
for a two-body operato®;; depending onr—r;).
. . . Let us return to our specific system example. The méfric
H=Hy+TY/(r)T2 (12)  (8) is diagonal inN=2n+1+2N+ L. It follows from the
expressior(g) that any basis truncation other than one of the
pe N<N,., would lead, in general, to mixing of physical
nd unphysical states. Herbl,,,x characterizes the maxi-
mum of total allowed harmonic-oscillator quanta in the basis.
%t the same time, the truncation into total allowed oscillator
of the Faddeev Hamiltoniaid (7) and the symmetrized quantaN<N,,,, preserves the equivalence of the Hamilto-
Hamiltonian H (12). First, we have for the left and right nians(7) and(12) on the physical subspace. A general con-
eigenstates ol sequence of this observation is that an improper truncation in
the treatment off leads to physical and spurious state mix-
ing.
s(¢;PH=(¢;PHT. (13 In Table | we present the dimensiofB) of the basig4)

(V|O| W) =g(hs;PHT V20T 3y ;Spi. (15

In addition to the relatiorill), there is another possibility
identification of spurious states. It follows from the prop-
erties of the matrix elements of a general oper@tdretween

ﬂwe physical and spurious eigenstatediof7), namely

These relations follow from the properties of the left and
right eigenstates as discussed in the paragraph aft€iBq.

where?operates on the physical subspace only, e.g., it ha
only the eigenvalues 3.
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corresponding to a particulaN=2n+1+2N+ £ together with the trivial center-of-mass term omitted.

with the number of physical statéBh and spurious states A possible generalization of the Faddeev equat@®rfor
(Sp for the three-electron system with"=1/2". Appar- four identical particles can be written in the form

ently, the number of physical states is about a third of all

basis states. We also present the ground state and the first _

excited state energies obtained with the basis restricted by H|¥(1234) =E[¥(1234), (19
N=<Nax. WhereN,,, corresponds to the number in the first

row. We used the HO energy()=0.5 atomic units(a.u).  with

The physical eigenenergies are shown without the trivial

center-of-mass contribution. It is immediately seen from Egs.

(7) and(11) that the spurious states have the energies corre- _ 1

sponding to the unperturbed Hamiltoniaty (3). Typically H[¢/(1234) =Hol ¥11234) + 5 (Viz+ Vagt Vo3 (| h(1234)

in the search for a bound state in the Faddeev calculations

the lowest state would be physical and the spurious state 1 ¥az21) | ¥1302) + | ¥(1423)), (20)

existence would be unnoticed. The present electron system
with a repulsive Coulomb interaction is interesting becausgyq
of the fact that the physical ground state is the tenth state as
can be deduced from the Table I. There are 2 spurious states

with the unperturbed HO energy 2 a.u. and 7 spurious states (|(1234) + | ¥a321) T | ¥(13092) + | ¥ (1423))

with the energy 3 a.u. We note that for the discussed system

the ground-state energy obtained by the stochastic variational =(1— T~ Tou— T3a) | ¥(1294) = Tal Y(1234) -
method (SVM) [22] is 3.26324 a.u[23] (after subtracting (22)

0.75 a.u. for the center-of-mass energyn our HO basis
calculation two-decimal place precision is obtained rathe
rapidly. A further improvement of the precision is, however,
slow. We performed calculations up k.= 39, where we
obtained the ground state energy of 3.2634 a.u. and 4.04
a.u. for the first-excited state. A substantial acceleration o

convergency can be achieved by employing the effective in resent equations are different from the traditional Faddeev-

teraction approach in a manner similar to that discussed i . . . :
) i A akubovsky equationg24], which combine Faddeev ampli-
Ref.[14]. By replacing the interactioN(r) in Egs.(7) and  ydes depending on two sets of Jacobi coordinates. As we are
(12) by Veg(r) we reach the SVM ground-state result for working with a complete orthonormal basis, it is sufficient
Nmax=27 and for the first excited state we then obtainand convenient to use a single set of Jacobi coordinates de-
4.04458 a.u. fined by the relationg17). Unlike the Faddeev amplitudes
used typically in the Faddeev-Yakubovsky equations, the
IIl. FOUR-BODY SYSTEM amplitudes appearing in Eq19) are antisymmetrized with
_ _ respect to the first three particles. The present equations al-
To demonstrate that the problems d|scusse_d prevail alsgy to employ easily three-body interactions or three-body
for the Faddeev-type approach to systems with more thaggfective interactions. The latter property makes them par-

three particles, we present briefly the extension of the studiegcy|arly useful for an extension of shell-model calculations
system to four electrons. We use the Hamilton@@hwith o four nucleong25].

rHere, |1,b(123)4> is a four-fermion Faddeev amplitude com-
pletely antisymmetrized for particles 1, 2, and 3. There are
igree other equations that can be obtained from(E®). by
ermuting particle 4 with particles 1, 2, and 3. Their sum
hen leads to the Schidinger equation. We note that the

A=4. By introducing the coordinat@nd momentgtransfor- The starting point for the present four-electron calculation
mation is the basis
I . _
r= E(rl—rz), (179 [N1idq,n,l,7,,3), (22
501 with the three-fermion part given by the antisymmetrized
v S TN 7 i tates of (8 ding to ei lue 3, e.g.,
y= \[g[i(fﬁfz)—fs}, (17p  eigenstates (8) corresponding to eigenvalue 3, e.g
N . N4idg)y=> NVt |nlsj,NLTs,d4), 23
7= %—[g(r1+r2+r3)_r4 , (17(:) | 1 1> E nISJN£j3| J 3 1> ( )
the one-body part of the Hamiltoniga) is obtained as whereN;=2n+1+2N+ £ andi counts the eigenstates
with the eigenvalue 3 for giveN; andJ;.
2 2 2 As for the three-particle transposition operatdgs, a
L S E e L T P L compact formula can be derived for the matrix elements of
HO_ijL ZmQ e ijL 2mQ yor ijL 2mQ Z the four-particle transposition operators in the bag@sg),

(18 e.g.,
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(Nyid1 ng ) o Tar 3| That+ Togt Tag Nigird 1R, Norl 2rTaRJ)

_ Nypid N1RiRJ (212 &2 &2 (2827 % A I oG TG Sy +S
__5 c lLL_lL c lRR_lR L L S S L J _1 1L 1R
NL,NRE N1 SU LN, £ T3, Ol rSrl pVRERTar— L IRPILDIR 2] L rTaLT3rTaL Tard 1 dir(— 1)

1 b st o lr Sk Jr Ly S Ju Lir Sir Jir
> Sk Sir
2 r 1 7 r 1 7 | 1 7 | 1 7
X 1 s s L 5 3L R 3 3R 5 aL R 5 4R
5 1L
2 Ly Sy Ju Lir Sir Jir L, S J L, S J
1 1 S
IPNE g L, L')(lg Ly LY .. ]2 2 °R
XL'"e(— S.S
R (P | TP | R
5> Su SL

X (=)' Rha((= 1) 2(n" 1 ny Ly L' nggl mNrCrL Ye(NU I LNLL Ly In'1'NRl gLy )3

+(=1)SR SR Ly | 'L [NrLrngrl 1L Ye(NLLNL Ly nRlgn' 1Ly )a)

+ 8 1285, sgON, Oz, 11 (— LR RN Ly NLLL | NRLrRI L Vg | (24)

where  Ny=2ny+Iyx+2Nx+ Lx+2n,x+1,x=N1x+2n,x by N<N,,., WhereN,,,, corresponds to the number in the
+1,x,X=L,R. We will give more details on the derivation, first row. As in the three-electron calculations the physical
symmetry properties, as well as a generalization that includesigenenergies, which were obtained with the HO energy
the isospin quantum numbers, elsewhes]. #0=0.5 a.u., are shown without the trivial center-of-mass

As the structure of Eq(19) is the same as the Faddeev contribution. We note that the studied system, when de-
equation(6), the discussion of the spurious state problem forscribed by Eq.(19), has a spurious ground state with the
the three-fermion system can be extended to the fourenergy 3.25 a.u., corresponding to the unperturbed HO
fermion system as well. In particular, eigenstates of the opHamiltonianH, (18). We note that the preliminary result of
erator7, defined by the relatiof21) can be subdivided into  the ground-state energy of the studied system obtained by the
two subspaces. A physical subspace corresponding to th@/M is 5.6002[23] (after subtracting 0.75 a.u. for the
eigenvalue 4 spanned by totally antisymmetric states and @enter-of-mass energyAs for the three-electron calcula-
spurious subspace spanned by eigenvectors correspondingtions, we get a fast convergence to two-decimal place preci-
the eigenvalue 0. In the basis of tl§ eigenstates, the
HamiltonianH appearing in Eq(19) has the same structure TABLE II. Results for four-electron system bound in a HO
as shown in Eq(10). Its spurious eigenstates can be identi-potential are presented. The first line shows the total of HO quanta
fied by the action ofZ, on the right eigenstates, like in Eq. corresponding to the relative motion in the basis states. The dimen-
(12), e-g-:T4|¢(123)4?Sp>K:0- sions cqrrespondlng to t.he st§l§=0* are §h0wn in lines 2—4.

It is possible to symmetrize the Hamiltonidh on the Line 2 displays the full dimensiofD), while lines 3 and 4 present

physical subspace and eliminate the spurious state problethe number of spuriouéSp and physicalPh states, respectively.

: - . . ines 5 and 6 shows calculated ground-state and first-excited-state
at the same time. The symmetrized Hamiltonian then takeénergies respectively. The calculations were doneffr=0.5
the form '

atomic units. The ground-state center-of-mass ené@gb a.u) is
_ _ _ not included in the energies shown. Energies corresponding to a
H=Ho+ 7,23 (Vip+ Vigt Vo) T, (25 particularN were obtained in calculations where all physical basis
states up td\ were included.

wherei operates only on the physical subspace.

In Table 1l we show the dimension{®) of the basig22) N O 2 4 6 8 10 12 14
corresponding to particulaN=N;+2n,+1, together with D o 4 21 68 178 391 767 1390
the number of physical statéPh) and spurious stateSp
for the four-electron system with”=0". The relative num- Sp0 2 14 48 128 284 °64 1024

: Ph O 2 7 20 50 107 203 366

ber of physical states decreases wtland approaches about
a fourth of all basis states for larghir In the last two rows of g, 5.8829 5.6346 5.6094 5.6043 5.6022 5.6012 5.6006
Table Il we present the ground state and the first excited state, 6.0239 5.7396 5.7116 5.7034 5.7003 5.6988 5.6979
energies obtained in the calculations with the basis restricted
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sion in our HO basis calculation. A further improvement of Coulomb interaction, such systems have spurious ground
the precision is slow and requires larger model spaces. As istates, when solved in the Faddeev formalism. By examining
the three-electron calculation, a substantial acceleration dhe basis dimensions, we have illustrated that the number of
convergence can be achieved by employing the effective inphysical states for the three-electron system is about a third
teraction approachl4]. By replacing the interactio by a  of the total number of basis statdét is exactly one-third,
two-body effective interaction, we obtained a ground-statavhen the total number of basis states is divisible by three.
energy of 5.5991 a.u. and a first-excited-state energy dfor the four-electron system we formulated equations for the
5.6958 a.u. folN,,,=14. An additional speeding up of the Faddeev amplitudes antisymmetrized for the first three par-
rate of convergence can be achieved by using the three-bodigles. Using this approach we observed that almost 3/4 of all
effective interactiorj25]. the states were spurious.

IV. CONCLUSIONS
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