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Chiral symmetry and three-nucleon forces
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After a brief review of the role three-nucleon forces play in the few-nucleon systems, the chiral-perturbation-
theory approach to these forces is discussed. Construction of the~nominal! leading- and subleading-order Born
terms and pion-rescattering graphs contributing to two-pion-exchange three-nucleon forces is reviewed, and
comparisons are made of the types of such forces that are used today. It is demonstrated that the short-rangec
term of the Tucson-Melbourne force is unnatural in terms of power counting and should be dropped. The class
of two-pion-exchange three-nucleon forces then becomes rather uniform.@S0556-2813~99!02401-2#

PACS number~s!: 21.30.Fe, 21.45.1v, 12.39.Fe, 11.30.Rd
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INTRODUCTION

Three-nucleon (3N) forces have come under increasin
scrutiny recently@1#. Although these forces are rather wea
they play an important role in the theory of few-nucle
systems, where computational advances permit the calc
tion of new observables that are challenged by experim
@2,3#. The most-recent~second-generation! nucleon-nucleon
~NN! potentials@4,5# fit the entireNN data base rather we
~rivaling phenomenological partial-wave analyses in the b
cases! and lead to predictions for most 3N observables tha
are in good agreement with experiment. In a few cases, s
as theAy puzzle @1,2# and the binding energies of few
nucleon ground states@6#, there are inadequacies with th
methodology that have focused attention on three-nucl
forces.

All realistic NN forces underbind the triton@7#, and small
differences among them can be traced to nonlocalit
Three-nucleon forces are incorporated into the Hamilton
and adjusted to achieve the correct triton binding. With t
addition 4He is properly bound@8#, while the two 5He p
levels have a splitting roughly 30% too small@9#. Binding of
A56 – 8 ground and low-lying excited states is too low@6#.

The best studied of these problems is theAy puzzle. The
calculated asymmetry (Ay) in neutron-deuteron and proton
deuteron scattering at low energies is 25–30 % too sm
which looks suspiciously similar to the5He problem, since
Ay is most sensitive to spin-orbit forces. A recent analysis
the former problem concludes@1# that reasonable changes
theNN force will not resolve the puzzle and that one shou
implement refined 3N force models. Although credible ex
amples of these models first began to appear 40 years
@10#, technical problems associated with nuclear-force c
struction hampered the effort, and general acceptance of
forces was delayed until it was demonstrated that goodNN
forces could not reproduce the triton binding energy.

Construction of potentials always involves theoretic
choices, since a potential is a subamplitude~an off-shell part
of an amplitude! that when iterated~in the Schro¨dinger equa-
tion, for example! produces observables~on-shell amplitudes
or energies!. The off-shell question has always been a mur
one, since it is usually ill defined. Nevertheless, thesame
PRC 590556-2813/99/59~1!/53~6!/$15.00
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Lagrangian~i.e., the same theory! can lead to different po-
tentials, although they should individually produce identic
observables. Coupled to this is the worse problem of unr
eling the underlying strong-interaction physics~i.e., deciding
on a Lagrangian or equivalent formalism to use!. In the early
days a frequently asked question@11# was, how does one
account for the off-shell nature of~virtual! pions exchanged
between nucleons? Faced with such daunting theoretical
stacles, all models were simplified. Nonlocality~nucleon-
momentum dependence! was typically ignored, for example
The early history of the field is well reviewed in Refs.@12,
13#.

Since these early beginnings a new formalism@14–17#
has been developed for implementing strong-interact
physics in low-momentum~for nucleons! regimes: chiral
perturbation theory~CPT!. This technique implements~ap-
proximate! chiral symmetry~manifested by the quarks in
QCD! in constructing the strong-interaction building block
which are then assembled inall possible ways in the mos
general Lagrangian consistent with the symmetry. At
same time, the entire framework is organized with a pow
counting scheme. A successful perturbation theory m
guarantee that succeeding orders diminish, and chiral s
metry provides the constraints mandating that more comp
calculations~loops, etc.! should yield progressively smalle
results, even though strong-interaction coupling constants
not small. This scheme also provides a testing mechan
for nuclear interactions: naturalness and naive dimensio
power counting@18#.

Chiral perturbation theory simplifies the old-fashion
nuclear-physics approach of incorporating into a field the
all known meson and baryon resonances with energies
than some large~arbitrary! cutoff. All such heavy resonance
~with the possible exception of the low-lyingD isobar, which
is ignored here for simplicity! are subsumed in short-rang
~pointlike! vertices. In the usual SU~2! approach this mean
that only pion and nucleon fields contribute explicitly, a
though the entire zoo of heavy elementary particles cont
utes implicitly to the phenomenological constants of t
theory.

Two scales that set the strength of the Lagrangian bu
ing blocks aref p;93 MeV ~the pion-decay constant! and
53 ©1999 The American Physical Society
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L;1 GeV ~the large-mass QCD scale!. Overall powers ofL
must be negative~i.e., L2D, with D>0), since they arise
from the frozen propagation of the heavy states, and inte
tions in the Lagrangian are organized by these pow
L(D). Dimensionful coupling constants in this scheme can
written as powers off p andL times dimensionless couplin
constants;61. The latter requirement is called naturalne
‘‘Unnatural’’ implies very small or very large~compared to
1! and of either sign. We will use this test later.

We wish to examine and compare the two-pion-excha
three-nucleon forces~3NF’s! that incorporate at least mini
mal phenomenology fromp-N scattering. There are bas
cally four types ~plus variants of each that we will no
treat!: ~1! Tucson-Melbourne force@11# ~the first of this
class!, based on current-algebra arguments;~2! Brazilian
force @19#, based on a chiral Lagrangian and a suppleme
current-algebra constraint;~3! Texas @20# force, based on
chiral perturbation theory; and~4! Ruhr~Pot! force @21#,
based on nonchiral Lagrangians. Each contains as term ~or
functional equivalent! for s-wave, isospin-symmetric pions
as well as p-wave pions in both isospin-symmetric an
-antisymmetric configurations, such as might arise from v
tual D-isobar excitation. We note that the august Fuji
Miyazawa @10# 3NF contained equivalents of all these e
ments ~although thes-wave part was dropped! and the
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Urbana-Argonne@22# model contains a conventional Fujita
Miyazawa D-mediated force plus an intermediate-ran
isospin- and spin-independent component.

CHIRAL PERTURBATION THEORY

We will make our comparisons using the framework
CPT, which allows us to define the theory in a consistent a
transparent way. The relevant parts of the leading-order
grangian~corresponding toD50) L(0) are given by@20,23#

L~0!5
1

2
@ṗ22~¹W p!22mp

2 p2#1N†F i ]02
1

4 f p
2 t•~p3ṗ!GN

1
gA

2 f p
N†sW •¹W ~t•p!N, ~1!

whose three terms correspond to free pions, the free-nuc
energy and Weinberg-Tomozawa two-pion interaction, a
the usual pion-nucleon interaction. We have simplified
nonlinear realizations of the SO~4! symmetry @20# and
dropped terms that would have added even numbers of
fields to all terms with pion fields; we do not require su
terms in what follows. In addition, theD51 LagrangianL(1)

is given by@20,23#
L~1!5
1

2mN
FN†¹W 2N2

1

4 f p
2 N†$t•~p3¹W p!,•pW %N1

gA

2 f p
N†$t•ṗ,sW •pW %NG

1
1

f p
2 N†F S c21c32

gA
2

8mN
D ṗ22c3~¹W p!222c1mp

2 p22
1

2 S c41
1

4mN
D « i jk«abcsktc] ipa] jpbGN

2
d1

f p
N†sW •¹W ~t•p!NN†N2

d2

2 f p
« i jk«abc] ipaN†s jtbNN†sktcN1¯ , ~2!
-
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where terms with additional pion fields have been dropp
and we have not listed@20# three separate spin- and isospi
dependent short-range 3NF terms@;(N†N)3# with coeffi-
cients ei . We have also ignored isospin violation. Whe
appropriate we have adopted the notation of Ref.@17# and
have explicitly incorporated higher-order terms resulti
from a nonrelativistic reduction of the pseudovecto
coupling Born term. The phenomenological coefficientsci

anddi must be determined from experiment.
We have not written down explicitD-isobar contributions

above. They are implicitly included in the phenomenologi
coefficients. This hides the fact that those coefficients t
contain tree-levelD contributions are expected to be larg
than ones that do not by aL/(mD2mN) factor. The alterna-
tive is to include aD field and count it as a nucleon fiel
@20#. This shifts the nominal order of the isobar effects, b
of course not their numerical value, and it unnecessa
complicates the following discussion.

For later use we also list infinitesimal generators for
~approximate! axial symmetry present in this Lagrangia
where again we ignore terms with more than two pion fiel
d,

-

l
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t
ly

e

:

p→p2 f pe, ~3a!

N→N2 i
e•t3p

4 f p
N, ~3b!

wheree is ~a constant! infinitesimal. Under this transforma
tion the three terms in Eq.~1! are separately invariant in th
limit of vanishing pion mass, as are the first bracketed te
and each remaining term inL(1) ~in the same limit!. Thus the
Lagrangian in Eqs.~1! and ~2! is term-by-term~as we have
written them! invariant, except for the pion mass andc1 term
~also conventionally known as thes term!: 24mp

2 c15s.
It is important to note that the LagrangiansL( i ) are not

unique. Redefinition of the~unphysical! fields leads to other
forms. The form we have chosen satisfies chiral constra
in a term-by-term fashion, rather than relying on cance
tions between sets of terms. It is only important that t
chosen form have sufficient generality~i.e., enough linearly
independent terms!. Different forms will then be physically
equivalent on shell, but will in general be different off she
Off-shell differences do not affect physical processes. N
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PRC 59 55CHIRAL SYMMETRY AND THREE-NUCLEON FORCES
that the Lagrangian of Ref.@24#, which is based on a nonre
ativistic reduction of the relativistic pseudovector pio
nucleon coupling, used an off-shell extension specified b
continuous parameterm. Only the choicem51 corresponds
to Eq. ~2! and only that choice satisfies term-by-term chi
symmetry. Amplitudes calculated using various values om
correspond to a unitary transformation of the Hamilton
and therefore do not alter physical amplitudes~although they
are different off shell!. We note@24# that many of the older
papers in the field have implicitly adopted different values
m @viz., 21,0,1#.

In order to determine the 3NF to~nominal! subleading
order, we need to calculate the diagrams of Fig. 1. The
interaction terms inL(0) together with the first two terms in
L(1) are usually called relativistic Born terms and are se
rately calculated using~the many orderings of! Figs. 1~a! and
1~c!, and then subtracting the iteration of the one-pio
exchange potential~OPEP! given in Fig. 1~b!. In the static
~leading-order! limit ( mN→`), they have long been know
to vanish@25,24#. If one works to subleading order, one
faced with choices, because different off-shell choices for
subtracted OPEP lead to different forms for the 3NF. Th
thechoiceof form for OPEP@to order (v/c)2# determines the
form of this ~Born-term! part of the 3NF. The reader is re
ferred to Refs.@20# and @24#, where different off-shell
choices are made. The complete~m,n! off-shell ambiguity is
discussed in the latter reference, and approximate Lor
invariance is demonstrated. The former ambiguity ari
from a nucleon-field transformation~a ‘‘chiral rotation’’!
that breaks term-by-term chiral invariance, as we discus
below Eq. ~2!. Different values ofm have been implicitly
assumed in the past by differing treatments of the Born te
~see the Appendix of Ref.@24#!. The n dependence arise
through differing treatments of the difference between~four-
vector! q2 and qW 2 @see Eq.~4b! below#, and is sometimes
called the quasipotential parameter. Different quasipoten
equations correspond~in part! to different values ofn, and
the values@0,1/2,1# have been commonly used@24#. Differ-
ent values ofn correspond to different off-shell amplitude
but unitarily equivalent on-shell values. Other calculatio
have ignored part or all of the subleading-order Born-te
contributions. We will ignore the Born terms in what fo
lows.

FIG. 1. Various three-nucleon-force components that arise
subleading order in chiral perturbation theory, as discussed in
text.
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The remaining nine terms ofL(1) @labeled byci , di , ei#
generate 3NF’s of the type in Fig. 1~c! @c1 ,c3 ,c4#, Fig. 1~d!
@d1 ,d2#, and Fig. 1~e! @e1 ,e2 ,e3#. Theṗ2 term inL(1) gen-
erates contributions ofD53 size~each time derivative is the
same as a nucleon-energy difference! and can be neglected
A wide range of physics is subsumed in each category.
c3 andc4 terms receive important contributions fromD iso-
bars at the solid circle of Fig. 1~c!, while a heavy scalar-
isoscalar meson would likewise contribute toc1 . We note
that all of the models we will compare contain this importa
physics, either through phenomenological input or via e
plicit heavy-particle intermediate states.

We summarize by noting that the Born term fromL(0),
the ci p-rescattering terms, thedi one-pion-exchange terms
and the~purely! short-rangeei terms are all nominally the
same size, although largeD-isobar contributions can be ex
pected to make some of the terms larger than others. We
not discuss thedi and ei terms further. This force was firs
derived in Ref.@20#.

COMPARISONS

To facilitate comparisons we adopt the familiar fram
work of the Tucson-Melbourne~TM! collaboration@11# for
the Born-subtracted amplitudes@26#:

S512 iT, ~4a!

V3NF5T5S gA

2 f p
D 2 sW 1•qW sW 2•qW 8

~qW 21mp
2 !~qW 821mp

2 !
@2Fabt1

at2
b#,

~4b!

tpN
ab 52Fab>dab@a1bqW •qW 81c~qW 21qW 82!#

2d~t3
geabgsW 3•qW 3qW 8!, ~4c!

whered functions, phase-space factors, etc., have been
nored, and the invariant amplitudes of@11,26# have been
expanded in 1/mN .

Equation~4b! is illustrated in Fig. 2, showing nucleon~3!
scattering a pion emitted by nucleon~1! and absorbed by
nucleon~2!. The T matrix for p-N scattering~alone! is de-
notedtpN

ab and is usually rewritten in terms ofFab, wherea
andb are the isospin labels of the initial and final pions. T
final expression in Eq.~4c! holds for pions that have a low
momentum (&mp). Summing over the symmetric permuta
tions of ~1!, ~2!, and ~3! in Fig. 2 leads to the complete
three-nucleon potential.

in
e

FIG. 2. Contribution to the three-nucleon force arising from
pion emitted by nucleon 1 and scattering from nucleon 3 bef
being absorbed by nucleon 2.
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One easily finds, from Eq.~2!,

Fab5
dab

f p
2 @2vv8~c21c3!22c3qW •qW 824c1mp

2 #

2
t3

geabgsW 3•qW 3qW 8

f p
2 @c4#, ~5!

wherev and v8 are the initial and final pion energies. W
have dropped Born term contributions toc2 andc4 in accor-
dance with our earlier discussion. Equation~5! together with
the dropped pieces generates the CPTp-N amplitude to
O(Q2). Calculations including loops and new parameters
O(Q3) have also been performed. They have been used
different pieces ofp-N scattering data to determine the c
efficientsci . In Table I we list some of these determination
Earlier fits @28,17,29,30# were made to different sets o
threshold and subthreshold parameters obtained from dis
sion analyses of older data. Newer fits@31# were made to
different phase-shift analyses~PSA’s!, the last two in Table I
including the more modern meson-factory data. TheO(Q3)
determinations are consistent with each other when their
ror bars~not shown! are considered, except forc1 , which
reflects the higher value for thes term in the newer PSA’s
Note that the coefficientsc2 , c3 , and c4 , which receive
contributions from theD at tree level, are larger thanc1 , as
expected@32#.

From the definition~4c! of the ~a,b,c,d! coefficients, we
obtain

a5
4mp

2 c1

f p
2 52

s

f p
2 , ~6a!

b5
2c3

f p
2 , ~6b!

c50, ~6c!

d52
c4

f p
2 . ~6d!

Note that there is noc term and that thea term is opposite in
sign to the TM result, although, withc3,0 andc4.0, b and
d are negative and agree with the corresponding TM sign
similar result was found in the first of the Brazil-force pape
@19#, where a field-theoretic calculation of isobar contrib
tions was performed. Thes term was not calculated usin

TABLE I. Low-energy CPT coefficients in GeV21 from several
recent fits.

Fit c1 c2 c3 c4

O(Q2) @28# 20.64 1.78 23.90 2.25
O(Q3) @17# 20.87 3.30 25.25 4.12
O(Q3) @29# 20.93 3.34 25.29 3.63
O(Q3) @30# 21.06 3.40 25.54 3.25
O(Q3) @31# 21.27 3.23 25.93 3.44
O(Q3) @31# 21.47 3.21 26.00 3.52
O(Q3) @31# 21.53 3.22 26.19 3.51
t
ith

.

er-

r-

A

-

Feynman rules derived consistently from a Lagrangian,
inferred from ap-N amplitude derived elsewhere. In a lat
paper, a different off-shell amplitude~the one used in the TM
calculation! was incorporated. Values of thea–d coeffi-
cients for popular three-nucleon force models are displa
in Table II. Note thata5a812mp

2 c51.03/mp for the TM
force.

Given that CPT is a comprehensive approach to calcu
ing strong-interaction physics based on chiral symmetry
subsumes current algebra@17,33#, how can the CPT~corre-
sponding to derivatively coupled pions! amplitude@Eq. ~5!#
and TM amplitude@Eq. ~4c!# differ?

We answer that question by noticing that the differen
resides only in terms that vanish when the pions are on s
@as we shall see in Eq.~11!#. We return to the earlier off-shel
discussion and follow closely the approach of Ref.@33#. Off-
shell amplitudes are not unique, and in a field-theoretic c
culation, they depend on the fields chosen to represent p
and nucleons. Our form was chosen to satisfy chiral symm
try term by term, thereby attaining manifest power countin
Current-algebra constraints at certain off-mass-shell po
@26# are not satisfied by our isospin-evenp-N amplitude
F (1) @Fab5dabF (1)1•••#. These points all correspond t
vanishing~four-vector! q•q8, as well asv and v8 ~to the
order we work!. Consequently, we can ignore thec2 andc3
terms in Eq.~5! and concentrate on the remaining term
which can be written in the form

FCPT
~1 ! 5

s

f p
2 , ~7!

which holds everywhere.
Again following Ref.@33#, we redefine the pion field as

p85pS 12
s

mp
2 f p

2 N†ND ~8!

and work only to orderD51 ~sinces;1/L). Substituting
Eq. ~8! into L(0), we generate the extra terms

DL~1!52
s

mp
2 f p

2 FN†N~p8•hp81mp
2 p82!

2
gA

2 f p
N†sW •¹W @t•p8N†N#NG1¯ . ~9!

TABLE II. Low-energy pion-nucleon scattering paramete
@with Z-graph~Born! terms removed# for a variety of 2p-exchange
three-nucleon forces. We have also defineda85a22mp

2 c. The
quantitiesa anda8 are in units ofmp

21, while b, c, andd are in units
of mp

23.

Three-nucleon force a8 b c d

Fujita-Miyazawa@10# 0.0 21.15 0.0 20.29
Tucson-Melbourne@11,27# 21.03 22.62 1.03 20.60
Brazil @19,27# 21.05 22.29 1.05 20.77
Urbana-Argonne@22,6# 0.0 21.20 0.0 20.30
Texas@20,31# 21.87 23.82 0.0 21.12
Ruhr~Pot! @21# 20.51 21.82 0.0 20.48
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The last term involves four nucleon fields and is not imm
diately required. The three terms inL(1) andDL(1) involving
s and two nucleon fields lead to

FCA
~1 !5

s

mp
2 f p

2 ~q21q822mp
2 !, ~10!

which agrees with Eq.~7! at any on-shell~e.g., Cheng-
Dashen! point (q25q825mp

2 ), but vanishes at the Adle
points (q25mp

2 , q8250, andq825mp
2 , q250,) and at the

Weinberg point (q25q8250) has the valueFCA
(1)52s/ f p

2 .
Equation~10! therefore agrees with the usual current-alge
constraints@11,26#, as does our entire amplitudeF (1) in the
new pion-field basis. Thus there is no conflict here betw
CPT ~with derivatively coupled pions! and an approach
based on current algebra. The only difference is in thechoice
of fields used to specify the chiral Lagrangian, and obse
ables calculated for physical processes must be identica

In the TM approach it was noted that rewriting Eq.~10! in
terms ofinversepion propagators,

FCA
~1 !5

s

f p
2 1

s

mp
2 f p

2 ~q22mp
2 1q822mp

2 !, ~11!

allows cancellation of the pion propagators in Fig. 2. T
first ~constant! term reproduces Eq.~7! (FCPT

(1) ). This rear-
rangement amounts to undoing the field transformation
Eq. ~8! that led to Eq.~9! and leads to an effectivea term
(a8) that has a common sign for all models:a85a
22mp

2 c. Canceling the inverse propagators in the seco
term in Eq.~11! leads to a new short-range-plus-pion-ran
3NF:

2S gA

2 f p
D 2 s

mp
2 f p

2 sW 1•qW sW 2•qW 8S 1

qW 21mp
2 1

1

qW 821mp
2 D t1•t2 .

~12!

However, a three-nucleon force of the same type is gener
by the last term in Eq.~9!, comprised of four nucleon field
and one pion field, together with the last term in E
~1!: two graphs as in Fig. 1~d! give

S gA

2 f p
D 2 s

mp
2 f p

2 sW 1•qW sW 2•qW 8S 1

qW 21mp
2 1

1

qW 821mp
2 D t1•t2 .

~13!

This is exactly equal in size and opposite in signto the new
short-range contribution from the off-shell extrapolation
the p-N amplitude, Eq.~12!. This cancellation is to be ex
pected, since our original~chiral! Lagrangian produced no
such terms to start with, and we have just been rearran
terms since then. In summary, the TM approach use
current-algebra representation of the amplitude, perform
an implicit field redefinition to our~CPT! choice of fields,
which resulted in an extra short-range term in their res
Why did they have an extra term and we do not?

The TM calculation was predicated upon current-alge
constraints on the off-shellp-N scattering amplitude, which
-

a

n

-

n

d

ed

.

f

ng
a
d

t.

a

can be reproduced in the CPT approach, as well, as we h
demonstrated. It is not enough, however, to worry about
that scattering amplitude, if one constructs a 3NF. To inc
porate all of the chiral constraints into the three-nucle
force, current-algebra constraints on the pion-production a
plitude from two nucleons would also be necessary@leading
to the last term in Eq.~9!#: a daunting task in the current
algebra approach of TM, but one that is unnecessary in
approach. We emphasize that a detailed analysis of the
shell region ofp-N scattering~for example! is equivalent to
a particular choice of fields and~while interesting! is not
necessary for constructing a 3NF.

If one uses the pion-field redefinition in the symmet
generators, Eq.~3!, one finds that the entire Lagrangia
maintains its original symmetry, but thatDL(1) generates
new noninvariant terms that cancel against additional con
butions fromL(0) ~via the new termesN†N/mp

2 f p in the
pion generator!. One might presume that since all of the
terms violate chiral symmetry this poses no problem. Unf
tunately, chiral-symmetry-breaking terms must vanish in
chiral limit. The additional terms in Eq.~9! ~being just a
redefinition of fields! exactly cancel each other in any on
shell amplitude. Individually, the two terms do not vanish
this limit because the presence of the 1/mp

2 in Eq. ~9! re-
moves the implicitmp

2 in s, ands/mp
2 does not vanish in the

chiral limit (mp→0). Reiterating, the structure of the add
tional terms in Eq.~9! means that they must individuall
vanish in that limit, or the entire set of terms must be kept
allow for exact cancellations between them to restore
proper limit. Because the TM approach~implicitly ! kept only
the first term in Eq.~9!, that limit could not be guaranteed fo
the three-nucleon force. Another way of saying the sa
thing is that dimensional power counting~naturalness! is not
satisfied for theindividual terms in Eq.~9!.

One can check this conclusion by dimensional pow
counting. An interaction of the form of the last term in E
~9! is chiral-symmetry breaking; if it alone is to be kept,
has to be implicitly proportional tomp

2 and, hence, is nomi-
nally anL(3) term. SuchL(3) coefficients have a generic siz
xmp

2 / f p
3 L3, where the dimensionless coefficientx should be

of order 1. If we equate this togAs/2mp
2 f p

3 @the coefficient of
the last term in Eq.~9!#, we obtain x;gAsL3/(2mp

4 )
;100, which is vastly unnatural. The unnatural coefficie
@gAs/2mp

2 f p
3 # is entirely the result ofs/mp

2 having a finite
symmetry limit.

We recommend that the short-rangec term in the TM
force be dropped~but the full value ofa8 in Table II re-
tained; note that the proper power counting has been m
tained ina8 by the factor ofmp

2 precedingc in the definition
of a85a22mp

2 c, where now each term in this definitio
vanishes in the chiral limit!. This had been previously advo
cated by the Brazil group for reasons having nothing to
with symmetry. We note that thed1 and d2 terms in the
Texas force are also short range in one pair of nucleons
of pion range in the other. These parts of that force~and the
corresponding terms in the Lagrangian! satisfy chiral con-
straints, as does a fully short-range force of the generic t
contained in the UA 3NF and shown in Fig. 1~e!.
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In summary, we have briefly reviewed the class of ‘‘re
istic’’ three-nucleon forces. We have demonstrated that
short-rangec term of the TM approach is unnatural an
should not be kept.
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@1# D. Hüber and J. L. Friar, Phys. Rev. C58, 674 ~1998!.
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