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Bound-state problem of theNA and NAA systems
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We used theNA andAA potentials derived from the chiral quark cluster model to analyze the bound-state
problem of theNA andNAA systems when the two-body subsystems can I®vimve states. We found that
the NA system has only one bound state right at lh® threshold while for theNAA system there are no
bound-state solutions in any of the allowed channels, although a couple of them are nearly bound. Our model
predicts theNN D, resonance as being a bound state ofNhe system at th&A threshold.
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[. INTRODUCTION phenomenological short-range channel-independent part.
This is the second part of a project in which we have
The study of the bound-state problem for the system of &mbarked to study the bound-state problem of the two- and
nucleon and one or two deltas will provide information aboutthree-body systems composed of nucleons and deltas. In a
the possible existence of dibaryon and tribaryon resonancgwevious work 8] we presented the formalism and results for
that decay mainly into two nucleons and one pion or intothe cases of thAA andAAA systems. Thus, we now go one
three nucleons and two pions, respectively. Some of thesstep away from the systems of identical-particle by replacing
resonances may even decay into two or three nucleons armhe of the deltas by a nucleon. In a future woek we will
no pions if the quantum numbers of the\ or NAA bound  present the results of our model for theN and NNA sys-
states can be reached by the correspondiitgg or NNN  tems which correspond to moving away from the identical-
systems. particle case by replacing two deltas by two nucleons.
NA andAA interactions have been derived in the pastin In order to perform theNAA calculations we follow the
the framework of meson-exchange models or phenomensame procedure that we used with thA A case[8] which
logical potentiald1,2]. These models have been used overhas been taken from the experience gained in KHéN
the years to fit théN N data very accurately. However, in the bound-state problei0,12. The three-body calculations are
NA andAA sectors experimental data are so scarce that it iperformed using a truncatéftmatrix approximation where
not possible to obtain reliable values of the parameters inthe inputs of the three-body equations are the two-bddy
volved in the interaction. The situation is different in the casematrices truncated such that the orbital angular momentum
of chiral quark cluster models,4]. In these models the ba- in the initial and final states is equal to zero. These two-body
sic interaction is at the level of quarks involving only a T matrices, however, have been constructed taking into ac-
guark-quark-field(pion or gluon vertex. Therefore its pa- count the coupling to the=2 states due to the tensor force.
rameters(coupling constants, cutoff masses, ptre inde-  This approximation in the case of tiNNN system with the
pendent of the baryon to which the quarks are coupled, th&IN interaction taken as the Reid soft-core potential leads to
difference among them being generated by(BWcaling, as a triton binding energy which differs less than 1 MeV from
explained in Ref.[5]. Note that in the meson-exchange the exact valug10].
model of Pea et al. [1], the SU2) scaling is used only in We describe in Secs. Il and Il our formalism. In the case
those cases where there is no experimental information aboof the NA system an important difference with the identical-
the NA coupling constants. Moreover, quark models provideparticle case is the absence of the Pauli principle at the
a definite framework to treat the short-range part of the inbaryon level. In the case of tHéAA system the formalism
teraction. The Pauli principle between quarks determines thdiffers considerably from the identical-particle case since
short-range behavior of the different channels without addinow one has two types of particles. In Sec. IV we give our
tional phenomenological assumptions. In this way, even imesults and we present the conclusions in Sec. V.
the absence of experimental data, one has a complete scheme
which starting from thé\ N sector allows us to make predic-
tions in theNA and AA sectors. This fact is even more
important if one takes into account that the short-range dy- The interaction between two baryons4, AA) was ob-
namics of theNA andAA systems is to a large extent driven tained from the chiral quark cluster model developed else-
by guark Pauli blocking effects, which do not appear in thewhere[4]. In this model baryons are described as clusters of
NN sector. Pauli blocking acts in a selective way in thosethree interacting massiveonstituent quarks, the mass com-
channels where the spin-isospin-color degrees of freedom aig from the breaking of the chiral symmetry. The ingredi-
not enough to accommodate all the quarks of the systemants of the quark-quark interaction are confinement, one-
[6,7]. Therefore, meson-exchange models cannot fully in-gluon-exchang€OGE), one-pion-exchangéOPBE), and one-
clude the effect of quark Pauli blocking through its purely sigma-exchanggOSE terms, and whose parameters are

II. TWO-BODY SYSTEM
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fixed from theNN data. Explicitly, the quark-quarkg@) TABLE I. Quark model parameters.
interaction is
my (MeV) 313
qu(rij):Vcon(Fij)+VOGE(rij)+VOPE(rij)+VOSE(Fij)v b (fm) 0.518
(1) @ 0.485
- MeV fm~? 46.938
wherer;; is theij interquark distance and Zch( evim™) 0.027
c .
- s s m, (fm~1) 3.421
VeorlFij) = —@cki- Ajri s (2) m, (fm~1) 0.70
A (fm™h) 4.2
1 . (1 = 2. .
VOGE(I'”)=Za’S)\| )\] E—m—g 1+ §0'i~0'j
Usually, two-body calculations for thN system have
< S(F) — 3) been carried out using the resonating group meiR@M).
(rij) 4m§ri3} Sij (- However, as our aim is to treat in the same framework two-
and three-body systems, for the last case the RGM formalism
) 1 A2 is technically very much involved. Therefore, in order to
VopdTij) = 3Yh 22 derive aBA potential 8=N,A) from the basiaq interac-
M tion defined above we use a Born-Oppenheimer approxima-
A3 tion [6]. The validity of this approximation for bound and
XM | Y(meri)——5 Y(Ar) (}i . 51. scattering states of tHéN andNA systems will be discussed
m in Sec. IV A. Explicitly, the potential is calculated as fol-
lows:
A3 -
+ H(mwr)——H(Ar)}Si -7, (4 1o g
7 m? 2 e VBA(LST)HBA(L’S’T)(R):fll:S%'T(R)_gll:SSTT(OO)' (7
Vewdin 4m§ A2 where
r“ = a h_ 5 5 ’ U
ST T mz p2-m? &SR
A 6
Xm, Y(mo.rij)_m_a—Y(Arij)}, (5) <\P|éAS T(R) ‘<Zlqu(rij) \I’IéiT(R)>
I<]=
where VS TR)WES T(R) V(YR WEST(R))
Y _e H —1+3+3Y 6 ®
(X)=—- HX= <t Y, (6)

In the last expression the quark coordinates are integrated out
] ) - keepingR fixed, the resulting interaction being a function of
A 1S the conil,nerrlent strength, _th_es are the S_l(B) C?'Or the B-A distance. The wave functioW53'(R) for the two-
matrices, thes’s (7's) are the spir(isospin Pauli matrices, paryon system is discussed in detail in R¢&7]. The pa-

S;j is the usual tensor operatamg (m,,m,) is the quark  rameters of the model are summarized in Table |.

(pion, sigma mass, as is the qg-gluon coupling constant,  |f we consider two baryons in a relati®state interacting
acy is the gg-meson coupling constant, antl is a cutoff  nrough a potential that contains a tensor force, then there is
parameter. a coupling to theBA D wave so that the Lippmann-

The present model does not contain any massive vectachwinger equation of the system is of the form
meson exchangep(or w). These are known to be very im-
portant in one-boson-exchange models. The inclusion of ad- j;s;1’s’ " lisil!'s!
ditional vector-meson-exchange potentials between quarksti;iiii (PiPi ’E):Vi;Jiii (Pi.pi)
could lead to double counting. This problem has been stud- . .
ied by Yazaki[11], concluding that the inclusion of vector +3 p/2d pirv:._ﬁ:isi (pi.p)
meson exchanges between quarks indeed leads to problems s’ J0 il
with double counting whereas there is no problem with ex- o
changing scalar and pseudoscalar mesons between quarks. In 1 Vs
fact, in conventional one-boson-exchange models the vector X oLy
mesons provide the short-range repulsion ofRh¢ interac- E—pi*f2m+ie W0
tion. In the present quark model, the OGE and/or OPE com- 9
bined with quark antisymmetrization takes over this task.
Besides, thep meson is known to reduce the strength of thewherej; andi; are the angular momentum and isospin of the
tensor force of the pion. In the present quark model, thesystem, whild;s;, ||s{, andl{s are the initial, intermedi-
quark-exchange terms of the OPE produce a similar effect.ate, and final orbital angular momenta and spin of the sys-
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TABLE II. Coupled channelslg,s,) that contribute to a given

NA state with total angular momentujp and isospiri, .

j2 in (12,52)

1 1 0,1,(2,1,(2,2
1 2 0,,(2,1,(2,2
2 1 0,2,(2,1,2,2
2 2 0,2,2,9.2,2

PRC 59
2_ 2 7} 2., 5
P =di m_ﬁqj +2quqjcose. (15
hsj"'sl I are the spin-isospin coefficients,
hS= ()% i~ S\(25+ 1) (25, + 1)W(0j0, o7 5:5))

X (=)FTTI(2+ 1) (2i+ DW(rimil 7151,

(16)

tem, respectivelyp; and 7; are, respectively, the relative \yherew is the Racah coefficient, ang| , s;, andS(r,, i,

momentum and reduced mass of the two-body system.

andl) are the spingisosping of particlei, of the pairjk, and

We give in Table Il the two-body channels that are uf the three-body system.

coupled together for the four possible valuegadindi; that

allow a nucleon and a delta to be in a relateave. As one

Since the variablep; in Egs.(9) and(11) run from 0O to
o, it is convenient to make the transformation

can see from this table each state contains three coupled

channels as a result of the coupling to thevaves produced
by the tensor force. In the case of tA& system the Pauli
1 so that one can have

principle requires that)'i*sitli= —

pi—b

Xi:

at most three coupled channels for the eight possible statgghere the new variable runs from—1 to 1 andb is a scale
where two deltas can be in a relatiavave. We have given parameter. With this transformation Ed.1) takes the form

theseAA channels and states in Table | of RES].

As mentioned before, for the solution of the three-body S.'. silis

system we will use only the component of thematrix ob-
tained from the solution of Eq9) with |;,=1]=
that purpose we define ttigwave truncated amplitude

tisgi, (PP E)=tiay (i P SE). (10)

Ill. THREE-BODY SYSTEM

0, so that for

|SI lq' |JI ISPEJ ququ

J#l s”
1

xf dcosfti.ei (Xi, X E—q?/2v))
1 i

1
p/27]J qJ/2v IS'

g ( X;d;)- (18

We will assume that the nucleon is particle 1 and the twoSince in the amplitudg.s; (i X ;e) the variablex; andx;/
deltas are partiCIeS 2 and 3. If we restrict ourselves to th@un from—1 to 1, one can expand this amp”tude in terms of

configurations where all three particles areSmwave states,

Legendre polynomials as

the Faddeev equations for the bound-state problem in the

case of three particles with total sggand total isospin are

TP =2 X hﬂ"?{'zf afdg;

#i S]]
! 2
Xf_ldcoseti;siii(pivpi, E—qi/2v))

1
QRS ——— THd Py

), (11

wherep; andq; are the usual Jacobi coordinates apdand
v; the corresponding reduced masses:

ompt+my’
m;(m; +my)
Vi_mi+mj+mk’ (13)

with ijk an even permutation of 123. The momepfaand
p; in Eq. (11) are given by

2

p’2=qJ qI +2 q g;cosé, (14)

s (XiX{ ;€)= EPn<x>r.S.<e>Pm<x> (19)

where the expansion coefficients are given by

B 2n+12m+1

1 1
Xf 1dXi f_ldxilpn(xi)ti;siii(xi X 1€)Pm(X/).
(20)
Applying expansion(19) in Eqg. (18) one gets

sII

Trd (Xd) 2 08 (@) Pa(X), (21)

whereTlnzl'(qi) satisfies the one-dimensional integral equa-
tion

T =2 X

J#i msji;

f dg;A;; ns'l mﬁl 1(qi,q; iE)T??;ij(qJ').
(22)

with
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2 TABLE Ill. Two-body NA channels $,,i,) and two-bodyAA
lnjﬁélmﬁl (qi,9;:E) = hi'lgi JE |g| (E—- q|2/21/) channels ¢;,i,) that contribute to a giveNAA state with total
spin S and isospin.
1 P (X)) Pm(X; . .
xf d cosé ng') m(xé) : S | (s2,i2) (s1,i1)
—1 E_pJ/ZﬂJ_qJ/ZVJ
1/2 1/2 (1,9,(1,2,(2,,(2,2 (1,0,(0,1
(23 12 312 (1,2),(1,2,(2,0,(2.2 0,2),(1,2
. Isqiy My, 1/2 5/2 (1,2),(1,2,(2,1,(2,2 0,3,(1,2
ns:Ihe three amplitudes T s1(d1), T,.3 (9,), and 1/2 219 (1.2.(2.2 0.3
3 SI3(q3) in Eq (22) are Coupled together The number of 3/2 1/2 (1,2,(1,2,(2,1,(2,2) (1,0,(2,2
coupled equations can be reduced, however, since two of the 3/ 3/2 (1,1,(1,2,(2,1,(2,2) (1,2,(2,0
particles are identical. The reduction procedure for the case 3/ 5/2 (1,9,(1,2,(2,1,2,2 1,2,2,3
where one has two identical fermions has been described 3/, 7/2 (1,2,(2,2 23
before[13,14 and will not be repeated here. With the as- g, 1/2 (1,1,(1,2,(2,1,(2,2) (2,1,(3,0
sumption that particle 1 is the nucleon and particles 2 and 3 ), 32 (1’1) (1.2.2.1) (2'2) (2’1) (3’2)
are the deltas, only the amphtud@%sl'l(ql) andT?Zl'z(qz) 52 5/2 (1.1),(1.2,(2.1).(2,2 (2.3.(3.2
are independent from each other and they satisfy the coupled 52 7/2 (1,2,(2,2 2,3
integral equations 7/2 1/2 (2,0,(2,2 (3,0
_ _ _ 712 3/2 2,2,(2,2 (3,2
Trika)=2 2, dqu'f;'sl.” 22(04,03:E) TH:22(0a), 712 5/2 21,22 (3.2
ns,i, 72 712 (2,2
(24)
T%22(q,) : . .
Tois17(d2 16 NAA states characterized by total spin and isosf@n
A ® o ) that are possible as well as the two-bddy andAA chan-
2%‘13 (—)'de“JO dasAR 2" %'3( 02,03, E) T5:2,X(ds) nels that contribute to each state.

Our method of solution of the three-body problem is
based in the separable expansid®) of the two-bodyT
MSpizlsyis . Is1iy matrices. We tested the convergence of this expansion by
t2 dQ1A31;S' (82,027 Ty (), considering the three-nucleon bound-state problem with the
(25 Reid soft-core potential in the truncat@ematrix approxima-
tion (two-channel calculatiof 12]. We show in Table IV the
triton binding energy obtained when the number of terms of
the expansion changes. As one can see from this table con-
vergence is reached witi=10 although a very reasonable

Substitution of Eq(24) into Eq.(25) yields an equation with result is obtained already witN=5. In the calculations of
only the amplituderT,:

Isgig

with the identical-particle factor

iden:1+0’1+0'3_32+7'1+T3_i2. (26)

TABLE IV. Binding energy of the three-nucleon system with
i the Reid soft-core potentidtwo-channel calculationobtained us-
mSz'z ms$yions3ig . nszig
2 Sl (QZ)_ s f dq3K23;SI (QZ'QB'E)Tz Sl (As), ing different number of Legendre polynomials in the separable ex-
27) pansion(19).

where N B (MeV)
KIEZ%2(q,, 051 E) = (=) S22, ) 2 e
Msyiolsyi 3 4.94
+22, dqlA315|2 Y4(d2,91,E) 4 4.98
111 5 6.59
xA|1531'51|“53'3(ql,q3; E). (28) 6 6.73
7 6.68
In order to find the solutions of Eq27) we replace the 8 6.67
integral by a sum, applying a numerical integration quadra- 9 6.56
ture [15]. In this way Eq.(27) becomes a set of homoge- 10 6.58
neous linear equations. This set of linear equations has solu- 11 6.58
tions only if the determinant of the matrix of the coefficients 12 6.58
(the Fredholm determinantvanishes for certain energies. 13 6.58
Thus, the procedure to find the bound states of the system 14 6.58
consists simply in searching for the zeros of the Fredholm 15 6.58

determinant as a function of energy. We give in Table Il the
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TABLE V. Binding energiesB of the NA states with total an-
gular momentunj, and isospini,.

j2 i) B (MeV)

unbound

unbound
0.0

unbound

NN R -
N PN -

this paper we usedN=10. Notice that the convergence
of the separable expansidi9) is much slower than that
obtained with the Ernst-Shakin-Thale(EST) method
[16,17.

IV. RESULTS

We discuss now our results considering separately the

two-body and three-body systems.

A. Two-body system

We give in Table V the results for the binding energies of

the NA system. Out of the four possibMA states of Table

Il only one, the {,,i,)=(2,1), has a bound state which lies

exactly at theNA threshold. The stateg4,i,)=(1,1) and
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(i2.i)=(2,2) are unbound because they present quark Pauli FIG. 1. °S; and °D; NN phase shifts using the Born-
blocking [6] and therefore they have a strong repulsive barOPpenheimer approximation as a function of the laboratory energy.

rier at short distances in ti&wave central interaction. These

Experimental data are taken form REZ1].

two states play an important role in the three-body spectrum.

The state |5,i») =(2,1) can also exist in thN system and
there it corresponds to théD, partial wave which has a
resonance at an invariant mass of 2.17 GEM-21].
This means that th& A bound state may decay into two
nucleons and appear in thdN system as a resonance.
Since theNA bound state of Table V lies exactly at thiA

past for the scattering states. In RES] the phase shifts of
the NA system are given and in RgR22] other observables
are calculated, justifying the validity of such an approxima-
tion. Therefore, we expect that the binding energy of the
NA bound state in the (2,1) channéhhich as seen in
Table Il is very similar to the deuterprwill not change

threshold, its invariant mass is precisely 2.17 GeV. Thusappreciably as a consequence of the Born-Oppenheimer ap-

our model predicts th&N D, resonance as being A

proximation.

bound state. As far as we know, ours is the first calculation We have neglected the coupling between M (2,1)
based on the quark model where this result has beedtate and th&iN ‘D, state. We do not expect that there will

obtained.

be a large effect in the binding energy of tN& state from

It is important to have in mind that this result has beenthis approximation due to the fact that tN\ 'D, state is a
obtained under the use of some approximations which nee@ wave while theNA (2,1) state is predominantly a8
to be examined closely. First, there is the question of thavave. As is well known in the systems with coupled chan-

validity of the Born-Oppenheimer approximati¢r) and(8);
second, we have neglected the coupling to kH¢ state in

nels, the coupling between dr-0 and anl=2 state will
have a big effect on thé=2 component while thé =0

the 1D, channel; and finally, we have not taken into accountcomponent will not be much affected. In other words, the

the effects of the unstable nature of theWe examine these
points next.

We have investigated the validity of the Born-
Oppenheimer approximatiof¥) and (8) in the case of the

NN channel will be strongly modifie@so much that a reso-
nant structure will arige while the NA channel will
stay more or less the same. Of course, this coupling will
generate a width in thBlA bound state. The main contribu-

bound-state problem by considering the case of the deuterotion to the width of theNA state, however, will come from
Our exact model of th&lN interaction[3,4] does not use the the unstable nature of the (the decayA — wN) which we
Born-Oppenheimer approximation and of course it gives aliscuss next.

deuteron binding energy of 2.225 MeV. If we now apply the

We have not taken into account the unstable nature of the

Born-Oppenheimer approximation, we obtain instead a deuA. In a previous investigation dA bound state$23] we
teron binding energy of 3.13 MeV. Thus, there is an error inhave shown by several numerical calculations of the energy
the binding energy of less than 1 MeV. Same accuracy i®igenvalue that the effect of the unstable nature ofAHéhe

obtained in the case of the scattering states of\thiesystem

decay A—wN) is to generate an imaginary part in the

as is shown in Fig. 1. The validity of the Born-Oppenheimerenergy eigenvalue while having a very little effect in the
approximation for theNA case has been also tested in thereal part of the eigenvalugsee Tables 1 and 2 of Ré23)]).
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0.0008 T T T T T

can get an idea of how close the state is to being bound.
- . From the results of Fig. 1 we get that the sta®l]
5,2) is unbound by about 0.6 MeV and the sta®I]
£,2) is unbound by about 1.4 MeV. Thus, the states
1 (SH=(3,2) and (,%) may be observable as tribaryon
] resonances which decay into three nucleons and two pions
1 with masses close to tHeA A threshold.
i There is a marked contrast between the spectra diithe
and NAA systems studied here and those of th& and
s ° 5 AAA system that were calculated[i8]. The AA system has
six bound statef8] while theNA system has only one. Simi-
larly, the AAA system has seven bound stafi@kwhile the
r T NAA system has none. However, tNA andNAA systems
( ) are far more interesting than tde\ andAAA systems from
n - the experimental point of view. For example, the six
0.02 \ AA bound states obtained i8] correspond to dibaryon
\ resonances of high mass-@.4 GeV) which are hard to
observe experimentally while thdA bound state of Table
-5 o 5 IV with a mass of~2.17 GeV corresponds to a dibaryon
E (MeV) resonance that has already been observed. Similarly, the
sevenAAA bound states obtained 8] correspond to trib-
FIG. 2. Fredholm determinants of tiAA system in the states aryon resonances of masses between 3.6 and 3.7 GeV while
(S1)=(3.3) and (3,3) as a function of energy. the two almost-bound states of thAA system correspond
to tribaryon resonances with masses-08.4 GeV so that

Thus, the effect of the deca\— =N is mainly to the last ones should be much easier to observe experimen-
broaden theNA bound state without changing its position tally.

rolon
S

0.0006 |-

0.0004 |

0.0002

0.06 T T T T T T T

FREDHOLM DETERMINANT
nole :

noticeably.
Thus, we believe that our result for tidA(2,1) bound
state rests in very solid ground. We should finally mention V. CONCLUSIONS

that the amplitudes of the reactionsd— 7d [24] and

7d— NN [25] exhibit also a resonant behavior in the partial We have examined thHA andNAA bound-state prob-

waves corresponding to tH¢A (2,1 channel. The position lems using baryon-baryon interactions derived from the chi-

of the resonance can be inferred from the amplitude of theal quark cluster model for the case when all the two-body

elastic channel and again it corresponds to an invariant masgibsystems are in relati@®wave states. There is only one

of 2.17 GeV [24]. Thus, since the three reactio®N  NA bound state which has the same quantum numbers and

—NN, 7d—7d, and7d—NN couple very strongly to the mass as theNN 'D, resonance. This suggests that the

NA (2,1) channel, they all feel the effect of thi¢A bound NN 1D, resonance is a true dibaryon. ThNAA bound-

state. state problem comes largely determined by quark Pauli
blocking effects in the two-body subsystems. Th&A sys-

tem has two almost-bound states 8fl)=(3,3) and (,3

We found in the case of tieAA system that all of the 16  which correspond to tribaryon resonances with masses close
states of Table Il are unbound. It is the structure of theig the NAA threshold.
interaction of the two-body system that is the one which  other systems that remain to be studied within our project
largely determines the three-body spectrum. As mentioneg yo- and three-body bound states of nucleons and deltas
before the NA states [5,iz)=(1,1) and (2.i2)=(2.2)  are theNN andNNA systems. These last two systems will
present quark Pauli blocking. None of the three-body chanpe giscussed in a future wofR]. Of particular interest is the

nels is absent of the repulsion generated by the quark Pay{na system which has the possibility of obtaining tribaryon
blocking in the two-body states, and, as in th&A case, the asonances with even lower masses.

presence of this repulsive barrier completely destroys the
bound state or allows just barely ones. There are M\

states that are almost bound. They are tBg)= (g,%) and ACKNOWLEDGMENTS
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