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Bound-state problem of theND and NDD systems
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We used theND andDD potentials derived from the chiral quark cluster model to analyze the bound-state
problem of theND andNDD systems when the two-body subsystems can be inS-wave states. We found that
the ND system has only one bound state right at theND threshold while for theNDD system there are no
bound-state solutions in any of the allowed channels, although a couple of them are nearly bound. Our model
predicts theNN 1D2 resonance as being a bound state of theND system at theND threshold.
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PACS number~s!: 14.20.Gk, 13.75.Cs, 14.20.Pt, 12.40.Yx
f
u
c
to
e
a

in
n
e
e
it
in
s
-
a

-

th

e

bo
id
in
th
d
i

he
-
e
dy
n
h
s
a

te
in
ly

.
ve
and
In a
or
e
ing

al-

e

y
tum
dy
ac-

e.

to
m

se
l-
the

ce
ur

se-
of

-
i-
ne-

re
I. INTRODUCTION

The study of the bound-state problem for the system o
nucleon and one or two deltas will provide information abo
the possible existence of dibaryon and tribaryon resonan
that decay mainly into two nucleons and one pion or in
three nucleons and two pions, respectively. Some of th
resonances may even decay into two or three nucleons
no pions if the quantum numbers of theND or NDD bound
states can be reached by the correspondingNN or NNN
systems.

ND andDD interactions have been derived in the past
the framework of meson-exchange models or phenome
logical potentials@1,2#. These models have been used ov
the years to fit theNN data very accurately. However, in th
ND andDD sectors experimental data are so scarce that
not possible to obtain reliable values of the parameters
volved in the interaction. The situation is different in the ca
of chiral quark cluster models@3,4#. In these models the ba
sic interaction is at the level of quarks involving only
quark-quark-field~pion or gluon! vertex. Therefore its pa
rameters~coupling constants, cutoff masses, etc.! are inde-
pendent of the baryon to which the quarks are coupled,
difference among them being generated by SU~2! scaling, as
explained in Ref.@5#. Note that in the meson-exchang
model of Pen˜a et al. @1#, the SU~2! scaling is used only in
those cases where there is no experimental information a
theND coupling constants. Moreover, quark models prov
a definite framework to treat the short-range part of the
teraction. The Pauli principle between quarks determines
short-range behavior of the different channels without ad
tional phenomenological assumptions. In this way, even
the absence of experimental data, one has a complete sc
which starting from theNN sector allows us to make predic
tions in the ND and DD sectors. This fact is even mor
important if one takes into account that the short-range
namics of theND andDD systems is to a large extent drive
by quark Pauli blocking effects, which do not appear in t
NN sector. Pauli blocking acts in a selective way in tho
channels where the spin-isospin-color degrees of freedom
not enough to accommodate all the quarks of the sys
@6,7#. Therefore, meson-exchange models cannot fully
clude the effect of quark Pauli blocking through its pure
PRC 590556-2813/99/59~1!/46~7!/$15.00
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phenomenological short-range channel-independent part
This is the second part of a project in which we ha

embarked to study the bound-state problem of the two-
three-body systems composed of nucleons and deltas.
previous work@8# we presented the formalism and results f
the cases of theDD andDDD systems. Thus, we now go on
step away from the systems of identical-particle by replac
one of the deltas by a nucleon. In a future work@9# we will
present the results of our model for theNN and NND sys-
tems which correspond to moving away from the identic
particle case by replacing two deltas by two nucleons.

In order to perform theNDD calculations we follow the
same procedure that we used with theDDD case@8# which
has been taken from the experience gained in theNNN
bound-state problem@10,12#. The three-body calculations ar
performed using a truncatedT-matrix approximation where
the inputs of the three-body equations are the two-bodT
matrices truncated such that the orbital angular momen
in the initial and final states is equal to zero. These two-bo
T matrices, however, have been constructed taking into
count the coupling to thel 52 states due to the tensor forc
This approximation in the case of theNNN system with the
NN interaction taken as the Reid soft-core potential leads
a triton binding energy which differs less than 1 MeV fro
the exact value@10#.

We describe in Secs. II and III our formalism. In the ca
of theND system an important difference with the identica
particle case is the absence of the Pauli principle at
baryon level. In the case of theNDD system the formalism
differs considerably from the identical-particle case sin
now one has two types of particles. In Sec. IV we give o
results and we present the conclusions in Sec. V.

II. TWO-BODY SYSTEM

The interaction between two baryons (ND, DD) was ob-
tained from the chiral quark cluster model developed el
where@4#. In this model baryons are described as clusters
three interacting massive~constituent! quarks, the mass com
ing from the breaking of the chiral symmetry. The ingred
ents of the quark-quark interaction are confinement, o
gluon-exchange~OGE!, one-pion-exchange~OPE!, and one-
sigma-exchange~OSE! terms, and whose parameters a
46 ©1999 The American Physical Society
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fixed from theNN data. Explicitly, the quark-quark (qq)
interaction is

Vqq~rW i j !5Vcon~rW i j !1VOGE~rW i j !1VOPE~rW i j !1VOSE~rW i j !,
~1!

whererW i j is the i j interquark distance and

Vcon~rW i j !52aclW i•lW j r i j
2 , ~2!

VOGE~rW i j !5
1

4
aslW i•lW j H 1

r i j
2

p

mq
2F11

2

3
sW i•sW j G

3d~rW i j !2
3

4mq
2r i j

3 Si j J , ~3!

VOPE~rW i j !5
1

3
ach

L2

L22mp
2

3mpH FY~mpr i j !2
L3

mp
3

Y~Lr i j !GsW i•sW j

1FH~mpr i j !2
L3

mp
3 H~Lr i j !GSi j J tW i•tW j , ~4!

VOSE~rW i j !52ach

4mq
2

mp
2

L2

L22ms
2

3msFY~msr i j !2
L

ms
Y~Lr i j !G , ~5!

where

Y~x!5
e2x

x
, H~x!5S 11

3

x
1

3

x2DY~x!, ~6!

ac is the confinement strength, thelW ’s are the SU~3! color
matrices, thesW ’s (tW ’s! are the spin~isospin! Pauli matrices,
Si j is the usual tensor operator,mq (mp ,ms) is the quark
~pion, sigma! mass,as is the qq-gluon coupling constant
ach is the qq-meson coupling constant, andL is a cutoff
parameter.

The present model does not contain any massive ve
meson exchange (r or v). These are known to be very im
portant in one-boson-exchange models. The inclusion of
ditional vector-meson-exchange potentials between qu
could lead to double counting. This problem has been s
ied by Yazaki@11#, concluding that the inclusion of vecto
meson exchanges between quarks indeed leads to prob
with double counting whereas there is no problem with
changing scalar and pseudoscalar mesons between quar
fact, in conventional one-boson-exchange models the ve
mesons provide the short-range repulsion of theNN interac-
tion. In the present quark model, the OGE and/or OPE co
bined with quark antisymmetrization takes over this ta
Besides, ther meson is known to reduce the strength of t
tensor force of the pion. In the present quark model,
quark-exchange terms of the OPE produce a similar effe
or

d-
ks
d-

ms
-
. In
or

-
.

e
.

Usually, two-body calculations for theNN system have
been carried out using the resonating group method~RGM!.
However, as our aim is to treat in the same framework tw
and three-body systems, for the last case the RGM forma
is technically very much involved. Therefore, in order
derive aBD potential (B5N,D) from the basicqq interac-
tion defined above we use a Born-Oppenheimer approxi
tion @6#. The validity of this approximation for bound an
scattering states of theNN andND systems will be discusse
in Sec. IV A. Explicitly, the potential is calculated as fo
lows:

VBD~LST!→BD~L8S8T!~R!5jLST
L8S8T~R!2jLST

L8S8T~`!, ~7!

where

jLST
L8S8T~R!

5

K CBD
L8S8T~RW !U (

i , j 51

6

Vqq~rW i j !UCBD
LST~RW !L

A^CBD
L8S8T~RW !uCBD

L8S8T~RW !&A^CBD
LST~RW !uCBD

LST~RW !&
.

~8!

In the last expression the quark coordinates are integrated
keepingR fixed, the resulting interaction being a function
the B-D distance. The wave functionCBD

LST(RW ) for the two-
baryon system is discussed in detail in Refs.@6,7#. The pa-
rameters of the model are summarized in Table I.

If we consider two baryons in a relativeSstate interacting
through a potential that contains a tensor force, then ther
a coupling to theBD D wave so that the Lippmann
Schwinger equation of the system is of the form

t
i ; j i i i

l i si l i9si9~pi ,pi9 ;E!5V
i ; j i i i

l i si l i9si9~pi ,pi9!

1(
l i8si8

E
0

`

pi8
2dpi8Vi ; j i i i

l i si l i8si8~pi ,pi8!

3
1

E2pi8
2/2h i1 i e

t
i ; j i i i

l i8si8 l i9si9~pi8 ,pi9 ;E!,

~9!

wherej i andi i are the angular momentum and isospin of t
system, whilel isi , l i8si8 , and l i9si9 are the initial, intermedi-
ate, and final orbital angular momenta and spin of the s

TABLE I. Quark model parameters.

mq (MeV) 313
b (fm) 0.518

as 0.485
ac (MeV fm22) 46.938
ach 0.027
ms (fm21) 3.421
mp (fm21) 0.70
L (fm21) 4.2
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48 PRC 59MOTA, VALCARCE, FERNÁNDEZ, AND GARCILAZO
tem, respectively.pi and h i are, respectively, the relativ
momentum and reduced mass of the two-body system.

We give in Table II the two-body channels that a
coupled together for the four possible values ofj i andi i that
allow a nucleon and a delta to be in a relativeSwave. As one
can see from this table each state contains three cou
channels as a result of the coupling to theD waves produced
by the tensor force. In the case of theDD system the Paul
principle requires that (2) l i1si1 i i521 so that one can hav
at most three coupled channels for the eight possible st
where two deltas can be in a relativeSwave. We have given
theseDD channels and states in Table I of Ref.@8#.

As mentioned before, for the solution of the three-bo
system we will use only the component of theT matrix ob-
tained from the solution of Eq.~9! with l i5 l i950, so that for
that purpose we define theS-wave truncated amplitude

t i ;si i i
~pi ,pi9 ;E![t i ;si i i

0si0si~pi ,pi9 ;E!. ~10!

III. THREE-BODY SYSTEM

We will assume that the nucleon is particle 1 and the t
deltas are particles 2 and 3. If we restrict ourselves to
configurations where all three particles are inS-wave states,
the Faddeev equations for the bound-state problem in
case of three particles with total spinSand total isospinI are

Ti ;SI
si i i ~piqi !5(

j Þ i
(
sj i j

hi j ;SI
si i i sj i j

1

2E0

`

qj
2dqj

3E
21

1

d cosu t i ;si i i
~pi ,pi8 ;E2qi

2/2n i !

3
1

E2pj
2/2h j2qj

2/2n j
Tj ;SI

sj i j ~pjqj !, ~11!

wherepi andqi are the usual Jacobi coordinates andh i and
n i the corresponding reduced masses:

h i5
mjmk

mj1mk
, ~12!

n i5
mi~mj1mk!

mi1mj1mk
, ~13!

with i jk an even permutation of 123. The momentapi8 and
pj in Eq. ~11! are given by

pi8
25qj

21
h i

2

mk
2 qi

212
h i

mk
qiqjcosu, ~14!

TABLE II. Coupled channels (l 2 ,s2) that contribute to a given
ND state with total angular momentumj 2 and isospini 2 .

j 2 i 2 ( l 2 ,s2)

1 1 ~0,1!,~2,1!,~2,2!
1 2 ~0,1!,~2,1!,~2,2!
2 1 ~0,2!,~2,1!,~2,2!
2 2 ~0,2!,~2,1!,~2,2!
ed

es

y

o
e

e

pj
25qi

21
h j

2

mk
2 qj

212
h j

mk
qiqjcosu. ~15!

hi j ;SI
si i i sj i j are the spin-isospin coefficients,

hi j ;SI
si i i sj i j5~2 !sj 1s j 2SA~2si11!~2sj11!W~s jskSs i ;sisj !

3~2 ! i j 1t j 2IA~2i i11!~2i j11!W~t jtkI t i ; i i i j !,

~16!

whereW is the Racah coefficient, ands i , si , andS(t i , i i ,
andI ) are the spins~isospins! of particlei, of the pairjk, and
of the three-body system.

Since the variablespi in Eqs.~9! and ~11! run from 0 to
`, it is convenient to make the transformation

xi5
pi2b

pi1b
, ~17!

where the new variablexi runs from21 to 1 andb is a scale
parameter. With this transformation Eq.~11! takes the form

Ti ;SI
si i i ~xiqi !5(

j Þ i
(
sj i j

hi j ;SI
si i i sj i j

1

2E0

`

qj
2dqj

3E
21

1

d cosu t i ;si i i
~xi ,xi8 ;E2qi

2/2n i !

3
1

E2pj
2/2h j2qj

2/2n j
Tj ;SI

sj i j ~xjqj !. ~18!

Since in the amplitudet i ;si i i
(xi ,xi8 ;e) the variablesxi andxi8

run from21 to 1, one can expand this amplitude in terms
Legendre polynomials as

t i ;si i i
~xi ,xi8 ;e!5(

nm
Pn~xi !t i ;si i i

nm ~e!Pm~xi8!, ~19!

where the expansion coefficients are given by

t i ;si i i
nm ~e!5

2n11

2

2m11

2

3E
21

1

dxiE
21

1

dxi8Pn~xi !t i ;si i i
~xi ,xi8 ;e!Pm~xi8!.

~20!

Applying expansion~19! in Eq. ~18! one gets

Ti ;SI
si i i ~xiqi !5(

n
Ti ;SI

nsi i i~qi !Pn~xi !, ~21!

whereTi ;SI
nsi i i(qi) satisfies the one-dimensional integral equ

tion

Ti ;SI
nsi i i~qi !5(

j Þ i
(

msj i j

E
0

`

dqjAi j ;SI
nsi i imsj i j~qi ,qj ;E!Tj ;SI

msj i j~qj !,

~22!

with
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Ai j ;SI
nsi i imsj i j~qi ,qj ;E!5hi j ;SI

si i i sj i j(
l

t isi i i
nl ~E2qi

2/2n i !
qj

2

2

3E
21

1

d cosu
Pl~xi !Pm~xj !

E2pj
2/2h j2qj

2/2n j
.

~23!

The three amplitudes T1;SI
ls1i 1(q1), T2;SI

ms2i 2(q2), and

T3;SI
ns3i 3(q3) in Eq. ~22! are coupled together. The number

coupled equations can be reduced, however, since two o
particles are identical. The reduction procedure for the c
where one has two identical fermions has been descr
before @13,14# and will not be repeated here. With the a
sumption that particle 1 is the nucleon and particles 2 an
are the deltas, only the amplitudesT1;SI

ns1i 1(q1) andT2;SI
ms2i 2(q2)

are independent from each other and they satisfy the cou
integral equations

T1;SI
ls1i 1~q1!52 (

ns2i 2
E

0

`

dq3A13;SI
ls1i 1ns2i 2~q1 ,q3 ;E!T2;SI

ns2i 2~q3!,

~24!

T2;SI
ms2i 2~q2!

5 (
ns3i 3

~2 ! idenE
0

`

dq3A23;SI
ms2i 2ns3i 3~q2 ,q3 ;E!T2;SI

ns3i 3~q3!

1 (
ls1i 1

E
0

`

dq1A31;SI
ms2i 2ls1i 1~q2 ,q1 ;E!T1;SI

ls1i 1~q1!,

~25!

with the identical-particle factor

iden511s11s32s21t11t32 i 2 . ~26!

Substitution of Eq.~24! into Eq.~25! yields an equation with
only the amplitudeT2 :

T2;SI
ms2i 2~q2!5 (

ns3i 3
E

0

`

dq3K23;SI
ms2i 2ns3i 3~q2 ,q3 ;E!T2;SI

ns3i 3~q3!,

~27!

where

K23;SI
ms2i 2ns3i 3~q2 ,q3 ;E!5~2 ! idenA23;SI

ms2i 2ns3i 3~q2 ,q3 ;E!

12 (
ls1i 1

E
0

`

dq1A31;SI
ms2i 2ls1i 1~q2 ,q1;E!

3A13;SI
ls1i 1ns3i 3~q1,q3;E!. ~28!

In order to find the solutions of Eq.~27! we replace the
integral by a sum, applying a numerical integration quad
ture @15#. In this way Eq.~27! becomes a set of homoge
neous linear equations. This set of linear equations has s
tions only if the determinant of the matrix of the coefficien
~the Fredholm determinant! vanishes for certain energie
Thus, the procedure to find the bound states of the sys
consists simply in searching for the zeros of the Fredho
determinant as a function of energy. We give in Table III t
he
se
ed

3

ed

-

lu-

m

16 NDD states characterized by total spin and isospin (S,I )
that are possible as well as the two-bodyND andDD chan-
nels that contribute to each state.

Our method of solution of the three-body problem
based in the separable expansion~19! of the two-bodyT
matrices. We tested the convergence of this expansion
considering the three-nucleon bound-state problem with
Reid soft-core potential in the truncatedT-matrix approxima-
tion ~two-channel calculation! @12#. We show in Table IV the
triton binding energy obtained when the number of terms
the expansion changes. As one can see from this table
vergence is reached withN510 although a very reasonab
result is obtained already withN55. In the calculations of

TABLE III. Two-body ND channels (s2 ,i 2) and two-bodyDD
channels (s1 ,i 1) that contribute to a givenNDD state with total
spin S and isospinI.

S I (s2 ,i 2) (s1 ,i 1)

1/2 1/2 ~1,1!,~1,2!,~2,1!,~2,2! ~1,0!,~0,1!
1/2 3/2 ~1,1!,~1,2!,~2,1!,~2,2! ~0,1!,~1,2!
1/2 5/2 ~1,1!,~1,2!,~2,1!,~2,2! ~0,3!,~1,2!
1/2 7/2 ~1,2!,~2,2! ~0,3!
3/2 1/2 ~1,1!,~1,2!,~2,1!,~2,2! ~1,0!,~2,1!
3/2 3/2 ~1,1!,~1,2!,~2,1!,~2,2! ~1,2!,~2,1!
3/2 5/2 ~1,1!,~1,2!,~2,1!,~2,2! ~1,2!,~2,3!
3/2 7/2 ~1,2!,~2,2! ~2,3!
5/2 1/2 ~1,1!,~1,2!,~2,1!,~2,2! ~2,1!,~3,0!
5/2 3/2 ~1,1!,~1,2!,~2,1!,~2,2! ~2,1!,~3,2!
5/2 5/2 ~1,1!,~1,2!,~2,1!,~2,2! ~2,3!,~3,2!
5/2 7/2 ~1,2!,~2,2! ~2,3!
7/2 1/2 ~2,1!,~2,2! ~3,0!
7/2 3/2 ~2,1!,~2,2! ~3,2!
7/2 5/2 ~2,1!,~2,2! ~3,2!
7/2 7/2 ~2,2!

TABLE IV. Binding energy of the three-nucleon system wi
the Reid soft-core potential~two-channel calculation! obtained us-
ing different number of Legendre polynomials in the separable
pansion~19!.

N B (MeV)

1 unbound
2 3.39
3 4.94
4 4.98
5 6.59
6 6.73
7 6.68
8 6.67
9 6.56

10 6.58
11 6.58
12 6.58
13 6.58
14 6.58
15 6.58
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50 PRC 59MOTA, VALCARCE, FERNÁNDEZ, AND GARCILAZO
this paper we usedN510. Notice that the convergenc
of the separable expansion~19! is much slower than tha
obtained with the Ernst-Shakin-Thaler~EST! method
@16,17#.

IV. RESULTS

We discuss now our results considering separately
two-body and three-body systems.

A. Two-body system

We give in Table V the results for the binding energies
the ND system. Out of the four possibleND states of Table
II only one, the (j 2 ,i 2)5(2,1), has a bound state which lie
exactly at theND threshold. The states (j 2 ,i 2)5(1,1) and
( j 2 ,i 2)5(2,2) are unbound because they present quark P
blocking @6# and therefore they have a strong repulsive b
rier at short distances in theS-wave central interaction. Thes
two states play an important role in the three-body spectr
The state (j 2 ,i 2)5(2,1) can also exist in theNN system and
there it corresponds to the1D2 partial wave which has a
resonance at an invariant mass of 2.17 GeV@18–21#.
This means that theND bound state may decay into tw
nucleons and appear in theNN system as a resonanc
Since theND bound state of Table V lies exactly at theND
threshold, its invariant mass is precisely 2.17 GeV. Th
our model predicts theNN 1D2 resonance as being aND
bound state. As far as we know, ours is the first calculat
based on the quark model where this result has b
obtained.

It is important to have in mind that this result has be
obtained under the use of some approximations which n
to be examined closely. First, there is the question of
validity of the Born-Oppenheimer approximation~7! and~8!;
second, we have neglected the coupling to theNN state in
the 1D2 channel; and finally, we have not taken into accou
the effects of the unstable nature of theD. We examine these
points next.

We have investigated the validity of the Born
Oppenheimer approximation~7! and ~8! in the case of the
bound-state problem by considering the case of the deute
Our exact model of theNN interaction@3,4# does not use the
Born-Oppenheimer approximation and of course it give
deuteron binding energy of 2.225 MeV. If we now apply t
Born-Oppenheimer approximation, we obtain instead a d
teron binding energy of 3.13 MeV. Thus, there is an error
the binding energy of less than 1 MeV. Same accurac
obtained in the case of the scattering states of theNN system
as is shown in Fig. 1. The validity of the Born-Oppenheim
approximation for theND case has been also tested in t

TABLE V. Binding energiesB of the ND states with total an-
gular momentumj 2 and isospini 2 .

j 2 i 2 B (MeV)

1 1 unbound
1 2 unbound
2 1 0.0
2 2 unbound
e

f

uli
-

.

,

n
n

ed
e

t

n.

a

u-
n
is

r

past for the scattering states. In Ref.@6# the phase shifts of
the ND system are given and in Ref.@22# other observables
are calculated, justifying the validity of such an approxim
tion. Therefore, we expect that the binding energy of
ND bound state in the (2,1) channel~which as seen in
Table II is very similar to the deuteron! will not change
appreciably as a consequence of the Born-Oppenheime
proximation.

We have neglected the coupling between theND (2,1)
state and theNN 1D2 state. We do not expect that there w
be a large effect in the binding energy of theND state from
this approximation due to the fact that theNN 1D2 state is a
D wave while theND (2,1) state is predominantly anS
wave. As is well known in the systems with coupled cha
nels, the coupling between anl 50 and anl 52 state will
have a big effect on thel 52 component while thel 50
component will not be much affected. In other words, t
NN channel will be strongly modified~so much that a reso
nant structure will arise! while the ND channel will
stay more or less the same. Of course, this coupling
generate a width in theND bound state. The main contribu
tion to the width of theND state, however, will come from
the unstable nature of theD ~the decayD→pN) which we
discuss next.

We have not taken into account the unstable nature of
D. In a previous investigation ofND bound states@23# we
have shown by several numerical calculations of the ene
eigenvalue that the effect of the unstable nature of theD ~the
decay D→pN) is to generate an imaginary part in th
energy eigenvalue while having a very little effect in th
real part of the eigenvalue~see Tables 1 and 2 of Ref.@23#!.

FIG. 1. 3S1 and 3D1 NN phase shifts using the Born
Oppenheimer approximation as a function of the laboratory ene
Experimental data are taken form Ref.@21#.
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Thus, the effect of the decayD→pN is mainly to
broaden theND bound state without changing its positio
noticeably.

Thus, we believe that our result for theND(2,1) bound
state rests in very solid ground. We should finally ment
that the amplitudes of the reactionspd→pd @24# and
pd→NN @25# exhibit also a resonant behavior in the part
waves corresponding to theND ~2,1! channel. The position
of the resonance can be inferred from the amplitude of
elastic channel and again it corresponds to an invariant m
of 2.17 GeV @24#. Thus, since the three reactionsNN
→NN, pd→pd, andpd→NN couple very strongly to the
ND ~2,1! channel, they all feel the effect of theND bound
state.

B. Three-body system

We found in the case of theNDD system that all of the 16
states of Table III are unbound. It is the structure of t
interaction of the two-body system that is the one wh
largely determines the three-body spectrum. As mentio
before the ND states (j 2 ,i 2)5(1,1) and (j 2 ,i 2)5(2,2)
present quark Pauli blocking. None of the three-body ch
nels is absent of the repulsion generated by the quark P
blocking in the two-body states, and, as in theDDD case, the
presence of this repulsive barrier completely destroys
bound state or allows just barely ones. There are twoNDD

states that are almost bound. They are the (S,I )5( 5
2 , 5

2 ) and

( 7
2 , 3

2 ) states. We show in Fig. 2 the Fredholm determinan
these two states as a function of energy. If the Fredh
determinant would pass through zero at a given nega
energy, then there would be a bound state at that energy
can be seen from Fig. 1, in the case of these two states
Fredholm determinant does not become zero for any ne
tive energy, but if one extrapolates to positive energies,

FIG. 2. Fredholm determinants of theNDD system in the states

(S,I )5( 5
2 , 5

2 ) and (72 , 3
2 ) as a function of energy.
n
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can get an idea of how close the state is to being bou
From the results of Fig. 1 we get that the state (S,I )

5( 5
2 , 5

2 ) is unbound by about 0.6 MeV and the state (S,I )

5( 7
2 , 3

2 ) is unbound by about 1.4 MeV. Thus, the stat

(S,I )5( 5
2 , 5

2 ) and (7
2 , 3

2 ) may be observable as tribaryo
resonances which decay into three nucleons and two p
with masses close to theNDD threshold.

There is a marked contrast between the spectra of theND
and NDD systems studied here and those of theDD and
DDD system that were calculated in@8#. TheDD system has
six bound states@8# while theND system has only one. Simi
larly, theDDD system has seven bound states@8# while the
NDD system has none. However, theND andNDD systems
are far more interesting than theDD andDDD systems from
the experimental point of view. For example, the s
DD bound states obtained in@8# correspond to dibaryon
resonances of high mass (;2.4 GeV) which are hard to
observe experimentally while theND bound state of Table
IV with a mass of;2.17 GeV corresponds to a dibaryo
resonance that has already been observed. Similarly,
sevenDDD bound states obtained in@8# correspond to trib-
aryon resonances of masses between 3.6 and 3.7 GeV w
the two almost-bound states of theNDD system correspond
to tribaryon resonances with masses of;3.4 GeV so that
the last ones should be much easier to observe experim
tally.

V. CONCLUSIONS

We have examined theND and NDD bound-state prob-
lems using baryon-baryon interactions derived from the c
ral quark cluster model for the case when all the two-bo
subsystems are in relativeS-wave states. There is only on
ND bound state which has the same quantum numbers
mass as theNN 1D2 resonance. This suggests that t
NN 1D2 resonance is a true dibaryon. TheNDD bound-
state problem comes largely determined by quark P
blocking effects in the two-body subsystems. TheNDD sys-

tem has two almost-bound states at (S,I )5( 5
2 , 5

2 ) and (7
2 , 3

2 )
which correspond to tribaryon resonances with masses c
to theNDD threshold.

Other systems that remain to be studied within our proj
of two- and three-body bound states of nucleons and de
are theNN andNND systems. These last two systems w
be discussed in a future work@9#. Of particular interest is the
NND system which has the possibility of obtaining tribaryo
resonances with even lower masses.

ACKNOWLEDGMENTS

This work has been partially done during different sta
of R.D. Mota and H. Garcilazo at the University of Sal
manca. This work has been partially funded by COFAA-IP
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