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Strong pNN coupling derived from QCD
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We study the two point correlation function of two nucleon currents sandwiched between the vacuum and
the rho meson state. The light cone QCD sum rules are derived fosNIiN vector and tensor couplings
simultaneously. The contribution from the excited states and the continuum is subtracted cleanly through the
double Borel transform with respect to the two external momepﬁtapgz(pfq)z. Our results arg,=2.5
*+0.2, x,=(8.0=2.0), in good agreement with the values used in the nuclear forces.
[S0556-28189)01701-X
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I. INTRODUCTION tracting the low-lying hadron masses and couplings. In the
QCD sum rule approach the nonperturbative QCD effects are
Quantum chromodynamia®CD) is asymptotically free taken into account through various condensates in the non-
and its high energy behavior has been tested to two-looprivial QCD vacuum. A recent review of QSR is given by
accuracy. On the other hand, the low-energy behavior haShifman[5]. In this work we shall use the light cone QCD
become a very active research field in the past years. Variougim rules(LCQSR to calculate thegNN couplings.
hadronic resonances act as suitable labs for exploring the The LCQSR is quite different from the conventional
nonperturbative QCD. Among which, the inner structure ofQSR, which is based on the short-distance operator product
nucleon and mesons and their interactions is of central imexpansion. The LCQSR is based on the OPE on the light
portance in nuclear and particle physics. cone, which is the expansion over the twists of the operators.
Internationally there are a number of experimental col-The main contribution comes from the lowest twist operator.
laborations, like TINAL(former CEBAB, COSY, ELSA  Matrix elements of nonlocal operators sandwiched between a
(Bonn), MAMI (Mainz), and Spring8Japamn, focusing on hadronic state and the vacuum defines the hadron wave func-
the nonperturbative QCD dynamics. Especially the Mainztions. When the LCQSR is used to calculate the coupling
research project MAMI (Mainzer Mikrotror) with its  constant, the double Borel transformation is always invoked
planned extension from a 855 MeV to 1.5 GeV electron c.wso that the excited states and the continuum contribution can
accelerator and the Japan Hadron FaciliiiP) at Spring8 be treated quite nicely. Moreover, the final sum rule depends
will extensively study the photo and electroproduction ofonly on the value of the hadron wave function at a specific
vector mesons off nucleons. point, which is much better known than the whole wave
Moreover, the strongNN couplings are, likerNN and  function[6]. In the present case our sum rules involve with
7NA couplings, the basic inputs for the description ofthe rho wave functiofRWF) gop(u(,:%). Reviews of the
nuclear forces in terms of meson exchange between nuclenethod of LCQSR can be found [i7,8].
ons. So far the linkage between the underlying theory QCD The LCQSR has been widely used to treat the couplings
and the phenomenologicaiNN couplings has not been of pions with hadrons. Recently the couplings of pions with
made. Especially the commonly adopted tensor-vector ratibeavy mesons in full QCD6], in the limit of mg— [9],
k,=6.8 is much larger than the vector meson dominancé/mg corrections and mixing effecfd0], the couplings of
model (VDM) result k,=3.7. One wonders whether it is pions with heavy baryongl1], the #NN and 7N N* (1535)
feasible to calculate theNN couplings directly with the couplings[12], the p— 77 andK* — K= decays[13], and
fundamental theory QCD. various semileptonic decays of heavy mes{d§ have been
Although it is widely accepted that QCD is the underlying discussed.
theory of the strong interaction, the self-interaction of the The QCD sum rules were used to analyze the exclusive
gluons causes the infrared behavior and the vacuum of QCEadiativeB-decays with the help of the light-cone vector me-
highly nontrivial. In the typical hadronic scale QCD is non- son wave function in15]. With the same formalism the
perturbative which makes the first principle calculation ofoff-shell gg«g, andgp«p, couplings in[16] and thep decay
these couplings unrealistic except the lattice QCD approactwidths of excited heavy mesoifi$7] were calculated.
which is very computer time consuming. Therefore, a quan- Our paper is organized as follows. Section | is an intro-
titative calculation of thgNN couplings with a tractable and duction. We introduce the two point function for tidNN
reliable theoretical approach proves valuable. vertex and saturate it with nucleon intermediate states in Sec.
The method of QCD sum ruldQSR), as proposed origi- Il. The definitions of the RWFs and the formalism of
nally by Shifman, Vainshtein, and ZakhardM and adopted, LCQSR are presented in Sec. lll. In Sec. IV we present the
or extended, by many othef&,3,4], are very useful in ex- LCQSR for thepNN coupling. In Sec. V we present some
discussions of these RWFs and their values at the pgjnt
= 1. We make the numerical analysis and a short discussion
*Electronic mail: zhusl@itp.ac.cn in Sec. VI.
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Il. TWO POINT CORRELATION FUNCTION wheree”(\) is the rho meson polarization vector. The el-
FOR THE pNN COUPLING lipse denotes the continuum and the single pole excited states

to nucleon transition contributioi., is the overlapping am-

Many authors have studied the stropiyN couplings. It . . . .
was pointed out that the inclusion of an effectppole con- gg&{fe of the interpolating currengy(x) with the nucleon

tribution leads to a large value for the tensor-vector coupling
ratio x,,= 6.6+ 1 [18,19, in the dispersion-theoretical analy-

sis of the nucleon electromagnetic form factors. The above (0] 7(0)IN(p))=Anun(pP). (6)
value is consistent with other determinatid0,21]. Brown ) ) ) ]
and Machleidt have discussed the evidence for a stpdly Expanding (5) with the independent variableB=(p;

coupling from the measurement ef parameter irNN scat- T p-)/2,g and deqomposing it into the chiral odd and chiral
tering [22]. Brown, Rho, and Weise suggested thgy ~ EVen part, we arrive at
=2k, Is consistent with a quark core radius of 0.5 fm for the

nucleon and an equal factorization of the baryon charge be- =M, +1l, @)
tween the quark and meson cloud in the two-phase Skyrmﬁ/here

model[23]. Recently Wen and Hwang used the external field

method in QCD sum rules to study th&N couplings[24]. iN2g

They obtainedx,= 3.6, in agreement with VDM resulk, My(P1,P2.0)=

=3.7 andk,=—0.12. In their work the authors introduced (P1=my) (P2 —my)

the vector-likep-quark interaction Lagrangian by hand and 14k 1+ 2k

treated the vector meson quark coupling as free parameter. In X1i(e-P)P+ 5 Pge— 7 Ple-q)§

other words, thegNN vector and tensor couplings cannot be

determined simultaneously. _
We shall calculate theNN vector and tensor couplings (14 K,) €ap,8" PGPy ys(+-, (8)
simultaneously using vector meson light cone wave func-
tions up to twist four, which will result in a reliable extrac- gnq
tion of «,,.
We start with the two point function
e(p1.p2,9)
1I(py,p, q)=J d*x€P(0| T7a(x) 7,(0)[p " (@) (1) = hai ((Zm + 522 (e-P)
L] ) n - *
i (PE— M) (P2 —My) N 2my
with p;=p, p>=p—q and the loffe nucleon interpolating 1+k, o Kp L
field [3] - my(eq—88)— 5~ (e-P)(Gp—pa)
N
7p(X) = €apd UA(X)Cy,UP(X) ] y5y*d(X), 2 oo €)
To(y) = €and UP(Y) ¥, CT(y)]d(y) ¥" 95, (3)  With q’= mf). We have not kept the single pole terms in Egs.

(8) and (9) since they are always eliminated after making

wherea,b,c are the color indices an@=i y,y, is the charge double Borel transformation in deriving final L.CQSRS.
conjugation matrix. For the neutron interpolating field, It was well known that the sum rules derived from the

ued. chiral odd tensor structure yield better results than those
The rho nucleon Coup"ngs are defined by i“\éN inter- from the chiral even ones in the QSR analySiS of the nucleon
action: mass and magnetic mom€,25]. We shall consider chiral
odd tensor structures only below.
io,,9"
‘CpNN:gpp’uN Yt KPW (4) Ill. THE FORMALISM OF LCQSR AND RHO WAVE
N FUNCTIONS

p. IS an isovetor in Eq(4). g, is the rho-nucleon vector Neglecting the four particle component of the rho wave

coupling constant and,, is the tensor-vector ratio. function, the expression foFl(p3,p3,q?) with the tensor
At the phenomenological level Eq4l) can be expressed structure at the quark level reads

as

II(py,p2,a)=iN{g,*(N) f ePdx(0| T 7,(x) 75(0) | p ¥ (q))
M 'h! ! . !
(Pr+my)| vt x, 02',;:(4 )(ﬁZ"_mN) =—detheen e y5yMIS§a (%)
N ’
: (p2—m2) (2= X ,C(0]d°() T (0)] p* (a))"
+eo 5 X C,iSI* (X)7,7s, (10)
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and
Q @ (0[u(0) ¥, ¥sd(X)|p ™ (q,\))

a b ¢ d =- %fpmpfymﬁeﬁj)qaxﬁfoldueiuq‘xga(ua,uz),
ON AN RN 13
\\é/ \E/ \E,/ where

¢ f g C(u)=ga(u)+ ¢(u) —2g("(u). (14)

FIG. 1. The relevant Feynman diagrams for the derivation of the . —
LCQSR forpNN coupling. The squares denote the rho wave func- The link operators? exp[lgfodax"AM(ax)] are under-

tion (RWF). The broken solid line, broken curly line, and a broken St00d in between the quark fields. The distribution ampli-

solid line with a curly line attached in the middle stands for the tudes describe the probability amplitudes to find thin a

quark condensate, gluon condensate, and quark gluon mixed coftate with quark and antiquark carrying momentum fractions

densate, respectively. u (quark and 1-u (antiquarl, respectively, and have a
small transverse separation of orden 127].

whereiS(x) is the full light quark propagator with both per- ~ The vector decay constafif is defined as

turbative term and contribution from vacuum fields

: _ 0[u(0)y,d(0)|p~(q,\))=f,m e 15
iS(x)=(0|T[q(x),§(0)]]0) (0[u(0)y,d(0)[p~ (a,N))=f,m,e, (15
X (qq) x* _ All distributions ¢={¢, ,9",9% A,C} are normalized as
= 2772X4_ 12 _Ez<qgsa- Gq>
L J g 1 16
+Wfodu{2(l—2u)x#y,, . ug(u)=1. (16)
Ti€,p0 Y5y XTIGHY(UX) -0, 11 The twist-three three-particle quark-antiquark-gluon dis-

. N . tributions areg[27
where we have introducexi=x,y*. In our calculation we &27]

take the tiny current quark mass to be zero.

The relevant Feynman diagrams are presented in Fig. 1. 0[u(0) G,,(ux)d(x)|p(g,\)
The squares denote the rho wave functiBWF). The bro- (Olu(0) 749Gy P (@)
ken solid line, broken curly line, and a broken solid line with =ig,[a,el)—a,eM1fy Vu,q+:--, (17)

a curly line attached in the middle stands for the quark con-
densate, gluon condensate, and quark gluon mixed conden-

sate, respectively. o[T(0) & (ux)dx)|p(qN)
By the operator expansion on the light-cone the matrix (Olu(0) 7475055, lp7(a.M)
element of the nonlocal operators between the vacuum and =q.[a,e)—a,eNf5, AU+, (18

rho meson defines the two particle rho wave function. Up to
twist four the Dirac components of this wave function can benere  the operator G s is the dual of G
(23 af3 "

Y;/ggeruoafnggorgs[la26,22. For the longitudinally polar- G.p= 3 €45,G° and the ellipses denote higher twist contri-

butions.
— _ The following shorthand notation for the integrals defin-
(0|u(0)yﬂd(x)|p ChYY ing three-particle distribution amplitudes is used:
eM.x (1 .
— —1ug- X
—fpmp q’uq—X fodue q -
2,,2 f(u!qX)E f Dgeilq.X(aeruag)JT(al 1&g !a3)' (19)

X

5 X
$(u, )+ ——Alu,u)
Here F={V,A} refers to the vector and axial-vector distribu-

eMy\ r1 . tions, a is the set of three momentum fractionsz (d
+eM-q, v )f due M9*g¥(u, u?) quark, a; (u quark, and e (gluon), and the integration
ax/Jo measure is defined as
1 eM.x , (1 g )
_ = —iug-x
ZX“—(q-x)szfodue C(u,u) ¢,

(12) fDc_zEfoldalfoldaafoldagé(l—E ai). (20)
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The normalization constanfy,,f5,f3, are defined in such
a way that

f Da(az—ay)V(ay,aq,a3)=1, (21)

f DaA(ay,aq,a3)=1. (22

The functionA is symmetric and the functiongis antisym-
metric under the interchange;< a5 in the SU3) limit
[28,27], which follows from the G-parity transformation
property of the corresponding matrix elements.

In the infinite momentum frame the RWHs are associ-
ated with the leading twist two operat@(u) correspond to
twist four operators, ang?(u),g’(u) to twist three ones.

g%(u)
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The three particle RWF¥,.A are of twist three. Details can
be found in[27].

IV. THE LCQSR FOR THE pNN COUPLING

Expressing10) with the longitudinal rho wave functions
(LRWFs9), we can obtain the expressions for the correlator in
the coordinate space. Up to dimension six the gluon conden-
sate is the only relevant condensate contributing to the chiral
odd tensor structure. Yet the gluon condensate always ap-
pears with a large suppression factor, which arises from the
two-loop internal momentum integration in the diagréa
in Fig. 1. Its contribution is quite small, which is confirmed
by our detailed calculation. For example, after double Borel
transformation, diagram(d) is suppressed by a factor
(g2G?)/24M %, where (g2G?)=0.48 GeVt and M3~1.5
Ge\2.

Diagram(a) involves with two-particle LRWFs. After te-
dious but straightforward calculation, we get

2 4 ! j(p—uq)x B o.a 4 v A (E'X) AU
I5(p1,p2,9)= | d™ OdUé f,m, ~ A Capuo U XY Y5 75 [¢y(u)—g”(u)]g m“‘eg (u)

(e-x)

2
+ Wmi%(u) @02 %

The RWFs can be found in the previous section. Diagfiam

is associated with vacuum gluon fields. But its contribution
vanishes due to isospin symmetry. Our explicit calculation

confirms it.

1, R
—aaMAU)G

(e-x) g%
(q-x) 768774xz<g§GZ>€aﬁwquMX07a?’5+‘" . (23
|
—)A(eipdex—>(—1)n+1 2072 17D T (D/2+1-n) 5
(x®)" (—p?)Piin T'(n) ,
(27)

We frequently use integration by parts to absorb the fac-

tors 1/@-x) and 1/@-x)?, which leads to the integration of
RWFs. For example,

XX, e'PX
f MY dDX_>i(_1)n2D72n+l7TD/2

(x*)"
v « Ouv r(b/2+1—n)j
° p(uydu=i | e U9 (u)du+W(u)e VI3, (—p?HPrErion I'(n)
o 0-X 0
(24) 2p,.p, I'(D/2+2—n) 29
(_ pZ)D/2+2—n F(n)
where the functionV (u) is defined as
The next step is to make double Borel transformation with
the variablesp? and p3 to Eq. (8) and Eqgs.(30) and (31).
u The single-pole terms in E@5) are eliminated. The formula
¥(u =+f u)du. 25
(u) . ¥(u) (25  reads

Note the second term in E¢R4) vanishes after double Borel
transformation or due t@,(ug)=W¥(up)=0 at end points
up=0,1.

We first finish Fourier transformation. The formulas are

M2 M2 I‘(n)z i
L 202 [m?—(1—u)pi—up3]"

= (M2 e ™M 54— up), (29
where uy=M2/(M3+M3), M2=M2M3/(MZ+M3), M},
M3 are the Borel parameters.

Finally we identify the same tensor structures both at the
hadronic level and the quark gluon level. Subtracting the

e o, 207" gP2 T(D/2—n)
|| om0
(26
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continuum contribution which is modeled by the dispersion integral in the regim=s,, we arrive at

ié
><[gv(uo)Msfz(%)_miea(uo)M4f1 ;—0 +%i°)<giez>wfo %)] (30)
i(e-P)P
)\lz\lﬁgpe‘mﬁl“"zz—e‘[uo(l_uo)mi]”\"zf:TrziGs(uo)szo ;—0)

whereqzzmﬁ, fn(x)=1—e‘XZE:0xk/k! is the factor used bution ampli_tudes of vector mesons have been studied in
to subtract the continuuns, is the continuum threshold. The [28,26,27 using QCD sum rules. We adopt the model RWFs

sum rules are symmetric with the Borel parametdrsand N Ref.[29]. _ o
M2. Itis natural to adopM2=MZ2=2M2, u,=1. The func- The values of the two-particle RWFs, their derivatives

. S : and integrals at the pointy=4 using the form in[29] are
tions G;(u), i=0,1,2,3A(u) are defined as ga:1_159_ro_23, g“=p0.64(3 iﬁn(Uo)gzl-L Go(Up)=0.5,
u 3 — —p—
Go(U):f dtgs (1), (31) (:Slz(li%) 0.5, G,(ug)=0.58, G3(ug) 0.13, A(ug)
0 The experimental value for the rho meson magsand
u the decay constant, is f,=198+7 MeV and m,=770
Gl(U)=f dtg”(t), (32 MeV [30].
0 The various parameters which we adopt a&ge=2.25
u GeV?, my=0.938 GeV, A\y=0.026 GeV [3] at the scale
Gz(U)ZJ dtA(t), (83)  w=1GeV. The working interval for analyzing the QCD
0 sum rules for nucleons is 0.9 G&¥M2<1.8 Ge\?, a stan-
u t dard choice for analyzing the various QCD sum rules asso-
Ga(u)= fo dtfodSC(S)- (34 ciated with the nucleon.

VI. NUMERICAL ANALYSIS AND RESULTS

V. DISCUSSIONS OF RWFs AND PARAMETERS L .
In order to diminish the uncertainty due iq;, we shall

The resulting sum rules depend on the RWFs, the intedivide our sum rules by the famous loffe’s mass sum rule for
grals and derivatives of them at the poing=3. The distri-  the nucleon:

—— 5=2.35GeV>
40 — Sg=2‘ZSGeV2 5
—— 5,=2.15GeV* — 5=2.35GeV’
35 — 5=225GeV”
—— 5,=2.15GeV*
4
3
QU b
en
10 2
5
1
0
0.9 1.2 15 1.8
2 2
M™ (GeV") Y
0.9 1.2 1.5 1.8
FIG. 2. The sum rule fog,(1+«,) as a function of the Borel M2 (GeVZ)

parameteM? for (30)/(35) with the model RWFs irf29]. From
bottom to top the curves correspond to the continuum threshold FIG. 3. The sum rule fog, as a function ofM? and s, for
Sp=2.35, 2.25, 2.15 Ge¥/ (31)/(35).
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5 S b s These sum rules are stable with reasonable variatiorsg of
4y 2 —MZ/M2 6 0 2 0 - .
32m\Ne TN =MPTo| pa |+ M| 2 andM? as can be seen in Figs. 2 and 3. Numerically we have
4, atmd 5 9,(1+k,)=(22%3), (36)
+-a°— .

3 3M? for (30)/(35) and

Dividing Egs. (30)—(38) by Eq. (35), we have two new 9,=(2.5£0.2), (37)

sum rules forg,(1+«,),g,. The dependence on the con-

tinuum thresholds, and Borel parametel? of these sum for (31)/(35).

rules are presented in Figs. 2 and 3. From top to bottom the We can also divide Eq30) by Eq.(31) to get a new sum
curves correspond tey=2.35, 2.25, and 2.15, respectively. rule for 1+ «,

; So So | , 9"(Up) So
g (UO)M4f2(W)_miG?,(UO)MZfl(W +T<9§Gz>fo(w)
1+k,=— (38
4 So
m,Ga(Uo)fo| 11z
|
The result is presented in Fig. 4. Numerically, Our result is
+x,=(9.0x2.
TRl > —g§(1+ ) =(39*10) (49
which corresponds to 4w o
Kp=(8.0£2.0). (40 \which agrees very well with Eq41) and deviates strongly

Brown and Machleidt emphasized that the strqrigN
coupling

2 2
G 1) aring (41)
41
= (6.6+0.1) 42)

should be adopted in order to reproduce experimental da

[22]. The vector meson dominan€éMD) model yields

2 2
g°(1+k,)
P _13.25. (43)
41
18
— 5=2.35GeV’
— §4=2.25GeV>
st $0=2.15GeV>

00.9 1.2 1.5 1.8
M (GeV?)

FIG. 4. The sum rule for + «,, as a function oM?2 ands, from
(30)/(3D.

ta

from the VMD prediction(43).

We have included the uncertainty due to the variation of
the continuum threshold and the Borel paramaférin our
analysis. Other sources of uncertainty incldtiethe trunca-
tion of OPE on the light cone and keeping only the few
lowest twist operatorg2) the inherent uncertainty due to the
model RWFs, etc. In the present case the major uncertainty
comes from the RWFs since our final sum rules depend both
on the value of RWFs and their integralsigt.

Our resultx,=(8.0=2.0) is about two times larger than
that derived in[24], x,=3.6 treating the rho meson as the
external field. The reason is twofold. First, the vector-like
pqq interaction is assumed ir24]. Moreover, for the anti-
symmetric sum rules the susceptibilitigsk, and ¢ take the
same values as in the nucleon magnetic sum rules where the
electromagnetic field is treated as the external field. In our
opinion, such a treatment employs the vector meson domi-
nance assumption inexplicitly, which may be the underlying
reason fork,~ «,=3.7. Second, the vector meson mass cor-
rections turn out to be large as pointed out[28]. This
effect is explicitly taken into account in our calculation.

In summary we have calculated tp& N couplings start-
ing from QCD. The continuum and the excited states contri-
bution is subtracted rather cleanly through the double Borel
transformation in both cases. Our result strongly supports
large value for the tensor-vector ratq in the nuclear force.
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