PHYSICAL REVIEW C VOLUME 59, NUMBER 1 JANUARY 1999

Nuclei in a chiral SU(3) model
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Nuclei can be described satisfactorily in a nonlinear chira{3framework, even with standard potentials
of the linearo model. The condensate value of the strange scalar meson is found to be important for the
properties of nuclei even without adding hyperons. By neglecting terms which couple the strange to the
nonstrange condensate one can reduce the model to a Walecka model structure embed@dWieSliscuss
inherent problems with chiral 38) models regarding hyperon optical potentidB80556-281@8)07712-7

PACS numbds): 24.85+p, 12.39.Fe

[. INTRODUCTION heavy-ion searches looking for strangelets and other possible
exotica[15,16].

Recently, the general principles of chiral symmetry and We have recently extended the chiral effective model to
broken scale invariance in QCD have received renewed aSU(3), X SU(3)g [17] including the baryon octet. This ap-
tention at finite baryon densities. There the underlying theoryproach shall provide a basis to shed light on the properties of
of strong interactions, QCD, is, however, not solvable in thestrange hadrons, as the in-medium properties of the kaon and
nonperturbative low-energy regime. However, QCD con-the properties of strange hadronic matter, by pinning down
straints can be imposed on an effective ansatz for nucledhe nuclear force in a chiral invariant way. This paper con-
theory through symmetries that determine largely how thdinues our previous workl17], which has applied a linear
hadrons should interact with each other. In this spirit, modelsealization of chiral SIB) symmetry and the concept of bro-
with SU(2), X SU(2)r symmetry and scale invariance were ken scale invariance to the description of hadronic matter in
applied to nuclear matter at zero and finite temperature anthe vacuum and in the medium. It has been found that simul-
to finite nuclei[1-5]. As a new feature, a glueball fiejg the  taneously both hadronic masses of the varioug3sbhultip-
dilaton, was included which accounted for the broken scaldets and the nuclear matter equation of state can be described
invariance of QCD at tree level through a logarithmic poten-reasonably well within a model respecting chiral symmetry.
tial [6]. The success of these models established the applica- However, it has been shown that the central potentials of
bility of this approach to the relativistic description of the the hyperons come out too large. They could not be corrected
nuclear many-body problem. within a model with Yukawa-type baryon-meson interac-

Chiral SU3) models have been quite successful in mod-tions. The reason for this deficiency is threefpld].
eling hadron interactions. Meson-meson interactions can be First, linear realizations of chiral symmetry restrict the
described satisfactorily by using the linear SUo model  coupling of the spin-0 mesons to the baryons to be symmet-
[7]. Kaon-nucleon scattering data can be well reproducedic (d type), while the spin-1 mesons are coupled to baryons
using a chiral effective S(3) Lagrangian[8] using a antisymmetrically { type). This destroys the balance be-
Lippmann-Schwinger approa¢B]. The lowest order term is tween the repulsive contribution of the vector potential and
sufficient to describe the kaon-nucleon scattering data whethe attraction due to the scalar potential. Therefore, the hy-
including relativistic effects consistently and adding the peron potentials attain too large values.
channel[10]. Especially, the in-medium properties of the  Secondly, the condensate of the strange scalar méson
kaon in nuclear matter are of considerable interest for recerthanges considerably in the nuclear medium even for zero
measurements of kaon spectra at GSI, Darmstadt at subtrangeness within this approach, because it couples to the
threshold energiefll]. All of the above models lack the nonstrange scalar field and therefore provides additional
feature of including the nucleon-nucleon interaction on theattraction. This is not counterbalanced by repulsive contribu-
same chiral S(B) basis and therefore do not provide a con-tions from the strange vector field,, since ¢, does not
sistent extrapolation to finite density. couple to either the nucleon or to ths, field.

Within SU(3) chiral models one can also take a different  Thirdly, it is not possible to correct these values of the
view at the properties of metastable exotic multihypernucleahyperon potentials through explicit symmetry-breaking
objects[12]. The relativistic mean field model was extendedterms, because they would destroy the relations for the par-
to include the baryon octet and the vector nonet by usingially conserved axial-vector current®CAC) of the pion
SU(6) symmetry for the coupling constants. The existence ofnd the kaon.
strange hadronic matter and bound objects consisting purely In order to deal with this general problem, nonlinear in-
of hyperons has been proposgtB,14. The properties of teraction terms of baryons with mesons were introduced in
strange hadronic matter are remarkably close to those dRef.[17] in a chirally invariant way. However, although a
strangelets and can be negatively charged while carrying eubic interaction of baryons with spin-0 mesdmsth strong
positive baryon number. This has certain impacts for presergoupling of the strange condensate to the nucleprsduces
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reasonable hyperon potentials, such a form for this interacwith a subgrougH can be decomposed uniquely into a prod-
tion seems quite artificial. Furthermore, the high mass of theict of the form[18]
strange meson~1 GeV) excludes a reasonable description

of nuclei, since the oscillations in the charge density are too "(x =ex+ x)S exp{i 0.00T
high for such an ansatz. Hence, although the cubic fit works 9'(x) 2 £S5 E 50Ty
satisfactorily for nuclear matter, it is not suitable to describe =u[£,(x)Th[ 6,(X)], 1)

finite nuclei. The constraints imposed by the linear realiza-
tion of chiral symmetry do not allow for a simultaneous de-whereh(6,) is an element oH. &, and 6, are parameters of
scription of both finite nuclei and hyperon potentials. the symmetry transformation which are generally space-time
In this paper, we propose the adoption of the nonlineadependentS, and T, represent the generators of the group
realization of chiral symmetry as a solution to this problem.G. For the case of S(3), X SU(3)g symmetry, the genera-
As was proven in Ref[18], it is sufficient to have a local tors are the vectorialT,=Q,) and axial 8,=Q3) charges,
SU(3) invariance for the hadrons, with the pseudoscalar merespectively, and the subgrouphks=SU(3)y, .
sons appearing only in derivative couplings. Therefore, both For our model, we assume invariance undgobal
d-type andf-type coupling is possible between baryons andSU(3), X SU(3)g transformations,
scalar mesons. In addition, the pseudoscalar meson masses
then depend only on the explicit symmetry breaking term. _ : a : b _
There is no reference to pseudoscalar mesons in the chirally g—exr{|2 @Ma exp{|2 arhro| =L(@)R(ag).
invariant potential. Therefore, the potential only determines 2
the masses of the scalar mesons. This allows us to decouple . .
the strange condensate from the nonstrange one. Then bdifere: the representation of Gell-Mann matrices=A(1
the results obtained with the $2) chirally symmetry mod- _ ¥5)/2 andAgr=A(1+y5)/2 with space-time-independent
els[1] and those of the nonlinear- model[19,2q can be Parametersy_and ag is used.
reproduced as special realizations of the present general chi- 1 1€ Producgu[£;(x)] is still an element o5 and can be
ral SU3) model. One can then systematically add terms of/'ltten as
strange-to-nonstrange condensate coupling. Therefore, one
can study the limiting case of a system consisting of nucle- g exp{iz £,S,
ons only. Furthermore, explicit symmetry breaking terms
(e.g., to correct the hyperon potentiatein be added without
altering the PCAC relations of the pion and the kaon. Xexl{iz 00(9,62) Ty
In this work it is demonstrated that one can simulta-
neously describe nuclei and the properties of strange hadrojghere, in general, bott, and 6;, depend org and £, . Let
within the framework of the nonlinear realization of chiral
symmetry. Formally the sectors of scalar and pseudoscalar G—D(h)g 4)
mesons are decoupled. However, the analys® and the
closeness of the coupling constamy, to my/f, in the be a linear representation of the subgrétipf G. Then the
Boguta-Bodmer model seem to suggest to keep the coriransformation
straints of the decay constants of the kaons and pions im-
posed on the vacuum expectation val(¢gVs) of the non- - / ~
strange and strange scalar fieldsnd . ex;{|2 abTqu ®)
Our paper is structured as follows. The nonlinear realiza- . ) o
tion and the connection between the linear and the nonlineonstitutes a nonlinear realization Gt S
o model of chiral symmetry are introduced in Sec. Il. The The local parameters of the axial charges are identified
chiral SU3) Lagrangian is constructed and discussed in SecWith the fields of the pseudoscalar mes¢@g]. In the rep-
ll. The equations of motion are solved in the mean fieldresentation of Gell-Mann matrices one Hatso see the Ap-
approximation which is described in Sec. IV. In Sec. V vari-Pendi¥
ous parameter sets are presented which all account for a sat- .
isfactqry de_scription of f_inite nucle_i: These include a La- u[wa(x)]=ex;{l—wa(x))\a75} (6)
grangian with the potential of the linear 8) ¢ model as 209
constructed in Ref.17] with a modified baryon scalar-meson _ ]
interaction. In the limit that the strange and nonstrange con! Nis assignment has the advantage that the pseudoscalar me-
densates are decoupled, the(8lthiral models of Refd.1] sons are the parameters of the symmetry transformation.

and[20,21] are recovered, but embedded in the nonlinearIyThey will therefore only appear if the symmetry is explicitly
realized chiral S(B) framework. broken or in terms with derivatives of the fields.

The composition of hadrons in terms of its constituents,
the quarks, has to be determined in order to build models
with hadronic degrees of freedom. This strategy has been
followed, e.g., in Ref[17] and is adopted also here. The
transformation properties of the hadrons in the nonlinear rep-

In some neighborhood of the identity transformation, ev-resentation can be derived if the “old” quarksare related
ery group elemeng’(x) of a compact, semisimple grodp  to the “new” quarksq of the nonlinear representation.

=exp{i2 §;<g,§a>sa}

N

g:(—¢, §—D

II. THE NONLINEAR REALIZATION
OF CHIRAL SYMMETRY
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The quarks of the nonlinear representation transform wittHere, M=23+iII and its conjugate contains the nonets of
the vectorial subgroup SB)y in accord with Eq(1). Split-  the linearly transforming scala®) and pseudoscalafl)
tin_g the quarks in left- and right-handed parts, they can benesons, Wheregsﬂ,TM, ¥, , and¥p are the left and right-
written as handed parts of the spin-1 mesons and baryons in the linear
representation, respectively.

. Ut
qu=UT., gr=u'Tr. () Il. LAGRANGIAN

In this section, the various terms of the Lagrangian
These equations are connected by parity. The ambiguity in

the choice oth is avoided by settingp=1. The transforma- B
tion properties of the pions and the new quarks are found by ‘C_ﬁki”“LW:x’EY;\,‘A’U Lewt Lvpt Lyect Lot Lss
considering how the old quarks transform: (17)

are discussed in detaily;, is the kinetic energy termg gy
q’'=Lg,+Rog=Luf, +Ru'Gg. (8) includes the interaction terms of the different baryons with
the various spin-0 and spin-1 mesons and with the photons.
In Lyp, the interaction terms of vector mesons with pseudo-
According to Eq.(3) (setg=L), scalar mesons and with photons is summariz&gd, gener-
ates the masses of the spin-1 mesons through interactions
with spin-0 mesons, and, gives the meson-meson interac-
Lu=u'h, Ru'=u'h, (9 tion terms which induce the spontaneous breaking of chiral
i o i symmetry. It also includes the scale breaking logarithmic
where the right equation is the parity transformed one of theﬁ)otential. Finally, Lsg introduces an explicit symmetry

left equation. Here and in the following, the abbreviationsbreaking of the 1), , the SU3),, and the chiral symmetry.
u=u[ 7,(x)] andu’ =u[ 74(x)] are used. By inserting these ' ’

relations into Eq(8), one sees tha& transforms with S(B)y,

A. Kinetic energy terms
as

Since the vector transformatidnf #(x)] of the hadrons
4, =hT., Gr=hTgr. (100  depends in general on the pseudoscalar mesons and thus is
local, covariant derivatives have to be used for the kinetic
According to Eq.(3), in general the vector transformation is terms in order to preserve chiral invariance. The covariant
a local, nonlinear function depending on pseudoscalar mederivative, i.e., for the baryons, reads
sonsh=h[g,m,(x)]. Following Eg. (9), the pseudoscalar

mesons transform nonlinearly as D,B=4,B+i[l',,B], (18
u'=Luh’=huR, 1y Where
i
u'T=hu'LT=Ru'h". (12 FMZ—E[UT&MU-FuaMuT]. (19

The second get of equalltlt_as areé agan due to parity. In COMris is a composite vector-type field, which transforms ac-
trast to the linear realization of chiral symmetry, there 'Scording to

no distinction between the left and right space. Therefore,
only the representatiorsand1 of the lowest-lying hadrons I''=hl hT=ihg ht. (20)

are possible. The various octets transform accordingly, e.g., a # .

for the scalar X), vector (V,=I,+r,), axial vector (4,  The spin-1 nonet of the strong interactions are here intro-

=l,—r,), and baryon B) matrices one has duced as massive, homogeneously transforming fields, fol-
c o P ; ; lowing the approach in Reff24, 25, in order to avoid com-
X'=hXh', V,=hV,h', A =hA h', B'=hBh" plications arising from the mixing of the axial with the

(13)  pseudoscalar mesons.

The kinetic energy term of the pseudoscalar mesons is

The present nonlinearly transforming hadronic fields can bg,.oquced by definindin analogy to Eq.(19)] the axial
obtained from the linearly transforming ones described inacior as

Ref.[17] by multiplying them byu[ 77(x) ] and its conjugate
(see also Ref.23)):

u,=— IE[u'f<9,Lu—u(9Mu‘L], (21
X= 3 (u™Mu'+uMtu), Y=2(u"™MuT—uMTu),
(14 which transforms asi, =hu,h". The standard form for the
~ kinetic energy of the pseudoscalar mesons isufuf).
IﬂzuTIMu, rM=u~rMuT, (15  However, the approximate validity @fy,~my/f,, where
f.=—0yp, in the Walecka-type model®0,21] and results
B .=u'¥ u, Bg=u¥gu'. (16)  obtained in Refs[17,1] indicate that the constraints of the
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linear o model on the scalar condensates in the vacuum, are Tr(u, Xu“X+Xu,u“X). (22)

also applicable to the description of hadronic matter and nu-

clei. To incorporate those constraints in the nonlinear realThis term contains, besides higher order self-interactions, the
ization we modify the standard kinetic energy term to in-kinetic energy term for the pseudoscalar mesons if the pseu-
clude a coupling of the scalar and pseudoscalar mesons doscalar matrix in the exponential of E@) is defined as

i 04 —778 ot 2 <
T T Wil
o B 1 o 778 KO
E”Ta)\ = m E<—’7T +m) 2W+1 . (23)
o K® AL
wil Wil o

The renormalization factors containing=v2{,/0( are in- and nuclei later on. The pseudoscalar singlet is independent
cluded to obtain the canonical form of the kinetic energyof the octet and has thus a kinetic term of its own. For the
terms for pseudoscalar mesbrfsom Eq. (22). For w=1, dilaton field y (for its discussion see Sec. Il D,3which is

one has an S(3),, symmetric vacuum and the matr{g3) also a chiral singlet, it makes no difference if the normal
reduces to the matrix normally used, e.g., in chiral perturbaderivative is replaced with the covariant derivative because
tion theory[26]. The advantage of Eq23) is that SU3),,  the additional commutator term vanishes.

breaking effect{such asf .+ f«) are accounted for even at
lowest order.

After computing the axial current for pions and kaons ) _ ) )
from Eq. (22), one obtains the same relations: The various interaction terms of baryons with mesons are

discussed in this section. The &) structure of the the
baryon-meson interaction terms are the same for all mesons,
oo=—f,, (oz—F(ZfK—fﬁ) (25  except for the difference in Lorentz space. For a general
2 meson fieldwW they read

B. Baryon-meson interaction

for the VEVs of the scalar condensates found in the linear
model[17]. In order to construct a chirally invariant kinetic
term for the spin-1 mesons, the ordinary derivatives must be

Low= V29" (aw[BOBW]¢ +(1- ay)[BOBW]p)

: S . . 1 —
replaced by the covariant derivatives as defined in(E§), —g‘l’"73 Tr(BOB)Tr W, (29
V,,=D,V,—D,V,, (26) B B B B
and analogously for the axial vector mesons, where the syrﬁ’yith _[BOB\/\/]E:Tr(BOWB—_BOBW) and [BOBW]p
bol A,,, is used. :=Tr(BOWB+BOBW)—3 Tr(BOB)Tr W. The different
In summary, the kinetic energy terms read terms to be considered are those for the interaction of bary-

ons, with scalar meson®\(= X, O=1), with vector mesons

Liin=1Tr §7ﬂDMB+ 3 Tr D, XD#X (W=V,, O=y, for the vector andV=V,,, O=c*" for

the tensor interaction with axial vector mesonsW=A,, ,
+ Tr(u, Xu“ X+ Xu,uX) + I Tr D,YDMY (27) O=v,vs), and .With pseudoscalgr meson&{\/# Uy, (9
=1v,7s), respectively. Fou,,, the singlet term is vanishing,

+ 3 D XD x— 3 Tr(V,,V*) because the matrix in the exponential of E6) involves
. . only the pseudoscalar octet and is thus traceless. The inter-
=z Tr(F, F*) = 3 Tr(A,,A""), (28)  action of the pseudoscalar chiral singtewith baryons has

. . the structuregy Tr(By, ysB)Tr Y.
where we included the usual field strength tensor of the pho- Since the pseudoscalar mesons are solely contained in the

tonF,, as we want to discuss electromagnetic form faCtorSexponentiaI, the only possible form of their coupling with

baryons is the pseudovector interaction. There, the coupling
constantg,=v2gg is restricted by the Goldberger-Treiman
'The same normalization of the pseudoscalar matrix has to beelation. In contrast to the linear representation, the axial
taken if the kinetic energy terrh Tr(9,M'3*M) is used with coupling constang, is not unity, but a valug,=1.26 can
M=u(X+iY)u, M=u"(X—iY)u' (24  be assigned to it. In this case the mixing angle between
substituted. f-type andd-type coupling isa,=0.4[27].
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In our approach, the quark model related(S{toupling 2 1 m;+2m,
scheme for the tensor coupling terms emerges naturally. This My=— §9NUU— §9Na‘/7§+ — 3
coupling scheme has been proven to be in good agreement
with the observed small Lambda hypernuclear spin-orbit
e - : My=— 30nN,0— 39N, V2E+M;. (32
splitting [28—30. For our present study, we will not discuss 3, 39Ne 39Ne 1
the tensor coupling terms as they have been found to be ] ] .
small for spherical nucldi31]. We note in passing that this For both versions of baryon-meson interaction the param-

might be not the case for exotic nuclei and we leave thigters are fixed to yield the baryon masseg=939 MeV,
issue for forthcoming studies. m,=1115 MeV, my=1196 MeV, andmz=1331.5 MeV.

1. Scalar mesons 2. Vector mesons

The baryons and the scalar mesons transform equally in TWo independent interaction terms of baryons with spin-1
the left and right subspace. Therefore, in contrast to the lintesons can be constructed in analogy with the baryon—spin-
ear realization of chiral symmetry, fatype coupling is al- 0-meson interaction. They correspond to the antisymmetric
lowed for the baryon-meson interaction. In addition, it is (f-type) and symmetric ¢-type) couplings, respectively.
possible to construct mass terms for baryons and to couplerom the universality principl¢33] and the vector meson
them to chiral singlets. After insertion of the vacuum matrix dominance model one may conclude thatdkgype coupling
(X) [Eq. (A7)], one obtains the baryon masses as generateghould be small. For most of the fits,= 1, i.e., f-type cou-

by the VEVs of the two meson fields: pling, is used. However, a small admixture atype cou-
pling allows for some fine-tuning of the single particle en-
My=Mo— %g§(4as— 1)(V2i— o), ergy levels of nucleons in nucl¢see below.

As for the case with scalar mesons in Sec. Il B 1, for
gy=16gy, the strange vector fieldp,~Sy,s does not
couple to the nucleon implying that the strange vector form
factor of the nucleon is very small. The remaining couplings
My =mo+ 505(as— 1)(V2{—0), to the strange baryons are then determined by symmetry re-

lations

my=my— 505(as—1)(v2{—0),

M==mo+ 305(2as+1)(V2{—0) (30)
Onne= (4ay—1)05

with my=g3(vV2o+{)/V3. The three parametersy, g3,

and ag can be used to fit the baryon masses to their experi- _E PSRY _ _2 v
mental values. Then, besides the current quark mass terms gAA“’_s(SaV 2)8g:  9ang= 3 (2ay+1)gg,
discussed in Sec. Il E, no additional explicit symmetry

breaking term is needed. Note that the nucleon mass depends Osso=2av0y, Gssy=—V2(2ay—1)gY

on thestrange condensaté For {=a/v2 (i.e., f=fy), the Fro STVES >4 v 8
masses are degenerate, and the vacuum {8)Slihvariant.

It is desirable to have an alternative way of baryon mass
geneLann, Wherﬁ thhedngcletorllmastf] dﬁpﬁdf fnly. g""'g’ In the limit ay,=1, the relative values of the coupling con-
can g accompiishe y aKing the fimis=1 and g; stants are related to the additive quark model via
= \/Egs. Then, the coupling constants between the baryons
and the two scalar condensates are related to the additive 2
guark model. This leaves only one coupling constant free to gAw:gzw=2g5w=§gNw=29}3’,
adjust for the correct nucleon mass. For a fine-tuning of the
remaining masses, it is necessary to introduce an explicit
symmetry breaking term, which breaks the (SlUsymmetry Ins=0 _9=¢ _ Qg (34)
along the hypercharge direction. A possible term already dis- AT SR 3 “No-
cussed in Refs[17,37, which respects the Gell-Mann-

Ozz,=(2ay—1)gy, Ozz4=—2VZeygy. (33

Okubo mass relation, is Note that all coupling constants are fixed once, &g, is
specified. Since the axial vector mesons have a vanishing
Lam=—m;Tr(BB—BBS)—m,Tr(BSB), (31  expectation value at the mean-field level their coupling con-

stants to the baryons will not be discussed here.
whereSi=—3[v3(\g)ai— 82]. As in the first case, the three
coupling ConstanthaEI%gg, m,; and m, are sufficient to C. Electromagnetic structure of pseudoscalar mesons
reproduce the experimentally known baryon masses. Explic-

. The interaction Lagrangian of the vector mesons with
itly, the baryon masses have the values grang

pions and the photon takes the form
MN= ~ONe T Lyp=e€ Tr(A,I'*)+g Tr(V,I'*)

1 2 e )
m5=—§gNUo—§gNgxf2§+ml+m2, +EFWTF[(UTQU+UQUT)V“ 1. (39
Y
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The first term originates from the kinetic energy te(22), if
the photonA,, is included inu,, through the definition of

i
U,=— 5[u'(0,+ig,l Ju—u(a,+ig,r,)u'l, (36

wherel ,=r,=QA,, with Q=T3;+Y/2, and the electrical
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=—0.10 fn?, (43

- |- o iz
9y my my
which is again in the range of the experimental value of

(ri()): —0.054+0.101 fnf [38]. The electromagnetic form
factors of the baryons will be discussed in a forthcoming

charge,g,=e. The remaining two terms can be motivated Publication[39].
from a gauge and chiral invariant Lagrangian approach

[34,35. D. Meson-meson interaction
One obtains for the form factor of the pio@f=—q?)
1. Vector meson masses
F (Q%)=1— 9 Q? 37 Here we discuss the mass terms of the vector mesons. The
77 - g, Q%+ mi' simplest scale-invariant form
Note that the pion does not couple to the other vector mesons 0 1, X2 4 5
w and . ﬁveczszF Tr V,uv'u"_ 294TI’(V'MV”) (44)
0

With g=6.05 fromp®— =" 7~ [36] andg,=5.04 from
p’—e'te” the mean-square charge radius of the pion is

2
<r§r)z—6i—(§2—) =0.48 fnt.

Q?=0

(38)

Experimentally,(r2)=0.432+0.016 fn? [37].

In analogy to the pion, one obtains for the form factor of

the kaon
Okk Q? OKkKw
Fi 2 :1_ P —
R L A BN
Q? Okk ¢ Q?
>< p—
it g, rmy Y
with the coupling constants
gKKp:}g gKKw_Eg gKqu:@g (40)
9yp 297, 9y0 6 gvy 9y¢ 6 g)',

whereg/g,=1.2. Assuming equal masses ferand w (my
=m,=m,), one gets

2 Q@ V2 Q2
3Q%m; 6 Q*+my)

(Q))- _2(
Fe(@)=1- -

(41)

Hence, for lowQ?, the momentum dependence of the kaon
form factor differs from the pion form factor by a factor

implies a mass degeneracy for the meson nonet. The first
term of Eq.(44) is made scale invariant by multiplying it
with an appropriate power of the glueball field(see Sec.
I D 3 for details). To split the masses, one can add the
chiral invariant[40,41]

LZ=Fp TV, VAR, (45)
Combining this with the kinetic energy terfiq. (27)], one
obtains the following terms for the different vector mesons:

2
1—,&7

2
_ - g 2 ury2

(Va1 EM
p) T2

2

o 1
R e EE T\ O T

4

The coefficients are no longer unity, therefore the vector me-
son fields have to be renormalized, i.e., the nefield reads
w,=Z, Y. The renormalization constants are the coeffi-
cients in the square brackets in front of the kinetic energy
terms of Eq.(46), i.e.,Z,'=1— uo?2. The mass terms of
the vector mesons deviate from the mean nmagsby the
renormalization factof,i.e.,

2_ 2 2 2 _ 2 2 2
My, =my=2Z,Mmy, Myg=Zg«sMy, my=Z,m;. (47)

2/3+ m\z,/mf,,\/?/6~0.8. The mean square charge radius of

the kaon is given as

4 V2
<r§i>:i — + — | =(0.32+0.06 fm?=0.38 fnf
Gyp \ My m¢

(42

as compared tdr%.)=(0.34+0.05) fn?, from experiment
[38]. Hence, the contribution from theé is small, but not
negligible. If one takes into account only tpecontribution,

then(r2)=1/2(r2)=0.24 fn?, which disagrees with the ex-

perimental value. For the form factor of the, the contri-

The constants, andu are fixed to give the correat and ¢
masses. The other vector meson masses are given in Table I.

The axial vector meson masses can be described by add-
ing terms analogous to E45). We refrain from discussing
them further(see Refs[40,47).

20One could also split the-w mass degeneracy by adding a term
of the form[40] (Tr VW)2 to Eq.(46). Or, alternatively, one could
break the SI) symmetry of the vacuum allowing for a nonvan-
ishing vacuum expectation value of the scalar isovector field. How-

bution coming from thep meson changes its sign and one ever, thep-o mass splitting is small£2%), and, therefore, we

gets

will not consider these complications.
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TABLE I. Parameters of the different potentials ugede text (G, is the gluon field strength tensor of QERan be mim-
icked in an effective Lagrangian at tree ley8] through the

Ko ky Kz ks Kam ke 335 jntroduction of the potential
C, 237 140 -—-555 -—-2.65 0 —-0.23 2 4
C, 236 140 —-555 —-264 0  —023 2 B 4 a X 6 4, 3
Lecae= —Kax"— = x"In 2+ =x%INn =—++. 54
Cs 235 140 —-555 —260 0 —023 2 seale= ~Kax" = ZxIN Sa+ 3xIn Gy 69
My 1.28 0 0 0 0 0 6
M, 129 0 0 0 0 0 6 The effect of the logarithmic term~ xy* In y is to break the
W, -1491 0 16.67 0 32.06 0 0  scale invariance. This leads to the proportionadify- x* as
W, —-1296 0 16.67 0 32.06 0 0  can be seen from
W, 1044 7.32 —-4.96 0 31.06 0 0
0i=4L oL 24 or 4 (55)
=aLl—X X377 N X
2. Scalar mesons . ax #20(0,ux)

The nonlinear realization of chiral symmetry offers many
more possibilities to form chiral invariants: the couplings of
scalar mesons with each other are only governed bSB_EU _tial is scale invariant. This can be achieved by multiplying
symmetry. Howelver, only three kinds of independent invari-,q inyariants of scale dimension less then four with an ap-
ants exist, namely, propriate power of the dilaton fielg.

— — 2 = The comparison of the trace anomaly of QCD with that of
1=Tr X, 1=Tr X5, 1s=detX. “4® e effective theory allows for the identification of tiefield
Al other invariants, TrX", with n=3, can be expressed as a With the gluon condensate:
function of the three invariants shown in E¢.8). This can

be shown from the characteristic equation of an arbitrary 3 “_ Bqacp 4 pv\ 2
X 3 matrix X e,u_ W g,uvga =(1- 8))( . (56)

which is a consequence of the definition of the scale trans-
formations[43]. This holds only if the meson-meson poten-

(X=X1)(X=X2)(X=X3) =0, 49 The parameted originates from the second logarithmic term

with the chiral invariantl ; [see also Refl1] for the chiral
SU(2) linear o model. An orientation for the value of may
be taken fromBqcp at the one loop level, withl; colors and

where x; are the eigenvalues of. By writing the coeffi-
cients of the powers oX in terms of invariants one obtains

X3—1,X2— [1,—(17)2]X—15=0. 50 Ni flavors,
Hence, one obtains the invariant Xf as a function of the _ 1INg® Ny 5
base(48), Baco=~ g2 |1 1IN, +0(g°). (57)
lam=Tr X*=11l5+ 3[1,= (1)?]l1+13. (51) Here the first number in parentheses arises from(amti-

screening self-interaction of the gluons and the second term,
proportional toNs, is the(screening contribution of quark
pairs. Equation(57) suggests the valué=6/33 for three
_ 4 N ) flavors and three colors. This value gives the order of mag-
L, =Tr X*=lilamt 2[1o= (1)1t 15l (52 pitude about which the parametéwill be varied.

For simplicity, we will also consider the case in which
X= Xo, Where the gluon condensate does not vary with den-
sity. We will refer to this case as the frozen glueball limit.

By multiplying Eq. (50) with, e.g.,X and taking the trace,
the invariant fom=4 can be written in terms of E¢498):

A similar expression can be found for all other Alterna-
tively, instead ofl ;=detX the invariantl 3,=Tr X3, can be
chosen as an element of the basis. THgrgan be rewritten

in terms of the new basis, |,, andl 3, as
E. Explicitly broken chiral symmetry

l3=3lam— 31102+ 5(10)°. (53 In order to eliminate the Goldstone modes from a chiral

] ) ] ] effective theory, explicit symmetry breaking terms have to
For our calculations, the invariants of E4g) are considered pe introduced. Here, we use

as building blocks, from which the different forms of the

meson-meson in'Feraction are cpnstructed. They will be in- Lsg=— %mf} TrY2—LTr Ay(uXu+ ut™Xu®)
vestigated including sets in which the models in Réfs. 0

and[21] are embedded in a chiral $8) framework(see Sec. —Tr(As—Ap)X. (58)
V).

3. Broken scale invariance
3According to Ref[6], the argument of the logarithm has to be

The concept of broken scale invariance leading to thehirally and parity invariant. This is fulfilled by the dilatgpwhich
trace anomaly inmassless QCD, ¢}, = (,BQCDIZQ)Q;"‘WQQ‘V is both a chiral singlet as well as a scalar.
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The first term, which breaks the U(1)symmetry, gives a nucleon. Therefore, for simplicity it is omitted in the mean-
mass to the pseudoscalar singlet. The second term is mofield version of the Lagrangiafl7), which reads
vated by the explicit symmetry breaking term of the linear

model 1
3Tr Ay(M+MD=Tr A Ju(X+iY)u+uf(X=iY)u'], Ekin:_iN')’iViN_iq):o’g’EX’wyp’A VieVie,
(59
with A =1#2 diag2f,, mf,.2m2f—m2f) and m, —
p T il K'K™ . _
=139 MeV, my=498 MeV. For S|mpI|C|ty 7o/ 1 Mixing Lemt Lav=—~N¥o InwwoT I, T3P0

is neglected by omittingy from the second term of E@58).
If this term is included, we get a mixing angle @£ 16° for
parameter seC; (see Sec. V A which agrees well with
experiment,§¥P~20° from 7, n" — yy.

In the case of S(B), symmetrzy, the2 quadratic Gell- 142
Mann-pkubo mass formularﬁfyg+ mﬂ—4mK—IO is satisfied. Loo= 2 2(m ® +m§p2)+gﬁ(w4+6w2p2+p4),
The third term breaks S@3),, symmetry. A;=diag,x,y) can
be used to remove the vacuum constraints on the parameters
of the meson-meson potential by adjustingndy in such a
way that the terms linear inr and ¢ vanish in the vacuum.

1
+ Ee(1+ Tg)Ao+ mﬁ Yo N,

1
Lo=— EkoX2(02+ {2 +ky(o?+ 72
IV. MEAN-FIELD APPROXIMATION

O'4 0'3

The terms discussed so far involve the full quantum op- thko| 5 F £t |+ kax o+ kamx E+§3)
erator fields which cannot be treated exactly. To apply the
model to the description of finite nuclei, we perform the . 1, Xt 6 a?l
mean-field approximation. This is a nonperturbative relativ- —kax"— 2X In ?Jr 3X o2,
istic method to solve approximately the nuclear many body 0 0
problem by replacing the quantum field operators by its clas-
sical expectation valuedor a recent review see Rg#4]). x \2

In the following, we will consider the time-independent Lgp=— E) [xo+y{]. (60)

spherically symmetric case of finite nuclei with vanishing net
strangeness, i.e., only nucleons and zero temperature. Auation (60) is the most general mean-field Lagrangian
usual, only the timelike component of the vector mesens within our discussion of which different subsets of param-
=(wg) and p=(py) survive in the mean-field approxima- eters and terms are discussed in Sec. V.

tion. Additionally, due to parity conservation we haye;) From the Lagrangiafil7), the following equations of mo-
=0. The strange vector fieldb does not couple to the tion for the various fields are derived:

2
Do=— (Xl) Mo —4g;(w3+3p%w) + gunps,
0

2
X
Dp=- (;0) m2p—495(p>+3pw?) +g,nps,

3
g
7.8
1/2g

X
Dx="= (Mg’ +mp?) +kox(?+{%) ~kso?{ ~kan
0

5 o’
lakgr1+am X gl 28
Xo 3 Uogo

X +2 [Xo'+ y{],

*

a? 28x* [x\* om
= 25— 24 72\ o 3_ _ _ N
Do=kox“o—4k(o°+ %) o—2Ky0°—2Kkzx ol 3k3m)(‘/_—2 30 +(_XO an —a Ps
sxt [ x\?  om{
D¢=kox2L— Ak (% + £2) L — k32— Kgx 0 — Bkagmx {2 — 30 (—) +o7_§p5' (61)
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TABLE II. Vacuum masses of the scalar mesons for differentin the first terme, are the Dirac single particle energies and

kinds of fits (explained in the text j o is the total angular momentum of the single particle state.
In nuclear matter this term becomes Z49,wg
Ma,(980) m, (900 My M, +kZ+m*?). The rearrangement ener@ye., is
C, 953.54 995.70 473.32 1039.10
C, 953.54 995.70 475.55 1039.10 2 4, 4, 4 2 2 4
Eicar= | drr?| 2 +p°+6 +2
C, 953.54 995.70  478.56 824.17 rearr f ga(@™+p + 6w p"+ 247
M, 482.41 448.96 422.79 482.41 .
M, 488.55 441.41 408.79 488.55 N ot
— 2Ky (024 £2)2— 2Ky -+

W, 500.83 457.49 401.54 500.83 0"+ %) 2| 3 *¢
W, 519.95 478.34 425.14 519.95 3
W. 1000.00 1255.32 480.50 1334.25 o

° —Kax00?¢—Kamxo E*‘és

The Dirac equation for the nucleon and the equation for the 5 o2
photon field are of the form given, e.g., by Reinh_Eua] and + 2§Xéln(;?> —Xo—y{
need not be repeated here. The densipigs (NN), pg 050

=(NvyoN), p3=(Nyo73N) can be expressed in terms of the t1a constant/
components of the nucleon Dirac spinors in the usual wa
[44]. In Egs.(61), the spatial derivatives are abbreviated b
D=-V2—(2/nV.

- Vvac- (64)

vac IS the vacuum energy which is subtracted

Yo yield zero energy in the vacuum. Equati¢¥) is the

yrearrangement energy for the frozen glueball model which is
used for most of the fits discussed in the following. Let us

The set of coupled equations are solved using an accelefi,, proceed to study the application to physical hadrons and
ated gradient iteration method following RE81]. The Dirac - 4ronic matter fits.

equation for the nucleons can be cast in a modified Schro
dinger equation with an effective mass. The meson field
equations reduce to radial Laplace equations. In each itera- V. CHIRAL MODELS THAT WORK

tion step, the coupled equations for the nuclear radial wave As was pointed out in Ref46], reproducing the nuclear
functions are solved for the given potentials, the correspondmatter equilibrium point is not sufficient to ensure a quanti-
ing densities are calculated, then the meson field equationgtive description of nuclear phenomenology. For this, one
are solved for the given densities, so that the new potentialgas to study the systematics of finite nuclei. This is done in
are derived and the next iteration step can begin until congne following for various potentials in a chiral $8) frame-
vergence is achieved. The meson field equations are solvggork. Those include the potential of the &Y linear o
in the form model, the potential of the Minnesota-grojig and the Wa-
lecka model including nonlinear cubic and quartic self-
(reN D)= —rf(p,e™N), (62)  interactions of the scalar field9,20.

2

[ - W + mi’o
wherem?, ; is the vacuum mass of the respective mean A. Potential of the linear - model
an arbitrary magswhich is subtracted on the right-hand side  The potential of the lineas- model is particularly inter-
of the equation. The functiof(p,¢") stands for the interac- esting because the strange condensate couples to the non-
tion terms with other meson fields, the source terms comingtrange condensatein such a way that it deviates from its
from the nucleon density and the self-interaction terms a¥EVs even in the case of a system containing only nucleons.
given above. This form achieves a five-point precision forwith the scale breaking logarithm includ¢f..,. Ssee Eq.
the Laplacian by using only a three-point formula by solving(54)], it reads
for (re). The scalar fields have to be solved by replacing,
e.g.,0—(1—oloy) to ensure the boundary condition that L5=— 3 kox?l 2+ ky(12)%+ Kol 4+ 2kgxl 3+ Lecarer

the field has to vanish far—«. The iteration is damped by (65
taking into account only a fraction of the newly calculated
density for the next iteration step. TABLE lll. Condensates and nuclear matter propertiepoat
The energy-momentum tensor can be used to obtain the
total energy of the system in the standard Wag]. After my/my oloyg &l go K
ggrS;rtliitrl]nS? é?]z%rgg;;r;t terms on the fields by using the field c, 0.61 0.63 0.92 276.34
C, 0.64 0.64 0.91 266.08
occ C; 0.61 0.63 0.92 285.29
E=2 €,(2j,+1) M, 0.62 0.62 1 269.58
“« M, 0.61 0.62 1.01 272.61
1 W, 0.65 0.62 1 224.23
) f drrz(mﬁlps_i_gNwaB+ngpps)+Erearr' W, 0.63 0.63 1 245.05
W3 0.64 0.64 0.91 217.20

(63)



420 P. PAPAZOGLOUet al. PRC 59
0.1
0.09
I T S " N
g 0.07 3
~ 0.06 \
oy
£ 0.05
g 16
=l
%0.04 O
g oosl —— Experiment
o2l Wl
_____ M1
0.01
..... Cl
0.0
0.0 0.5 1.0 1.5 2.0 25 3.0 3.5 4.0 4.5 5.0
r (fm)

FIG. 1. Charge density fot?O for the parameter sets indicated. The experimental charge density is fitted with a three-parameter Fermi

model[48].

Here, the explicit symmetry breaking term of the linear

Therefore, the parameters of the chiral invariant potektal

model is used, i.eAs=A,, which implies the same term to andk, are used to ensure an extremum in the vacuum. As for
break the chiral symmetry in the scalar and pseudoscaldhe remaining constant&g is constrained by the;’ mass
sector, respectively. In addition, the mass term of the psewand k; is varied to give ac mass of the order ofn,

doscalar singlet is set to

ka

3+k1

2 _ 2
m,,]o_ kOXO_4

4
X ({o+V200)— §5X0

1
7

( 2+ 2 ik
0o §o)+3 3Xo

+£) 66
oolo)’ (69

=500 MeV. The VEV of the gluon condensatg is fixed to
fit the binding energy of nuclear mattegy/p—my
=—16 MeV at the saturation densiy,=0.15 fm 3. The
VEVs of the fieldsoy and ¢, are constrained by the decay
constants of the pion and the kaon, respectialye Eq.
(25]. Throughout this work, the numerical valuefs,
=93.3 MeV andfy=122 MeV are used

With the same potential, E¢65), fits with (C;) and with-
out (C,) a dependence of the nucleon mass on the strange

This is equal to the pseudoscalar singlet mass which is olzondensate can be done. To see whether there is a signifi-

tained ifM andM ™" of the linearo-model potentia[17] are

replaced by Eqs(24).

The elements of the matrid, are fixed to fulfil the

cant effect from the gluon condensagteat moderate densi-
ties, a nonfrozen fit is also studie@{) where we allow the
condensate of the dilaton field to deviate from its vacuum

PCAC relations of the pion and the kaon, respectivelyvalue.
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FIG. 2. As for Fig. 1, but for*°C.
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FIG. 3. As for Fig. 1, but for%Pb.

As can be seen from Table I, the hadronic masses in th&ozen glueball is reasonable. The strange condensase
vacuum have reasonable values. If the potential of(Ef.  only reduced by about 10% from its vacuum expectation
in combination with Eq.(66) is used, the mass of the’ value. This is not surprising since there are only nucleons in
meson depends on all constaki{gnd ony,, which are also the system and the nucledneoupling is fairly weak. The
used to fit nuclear matter properties. In our fits, the pseudomain effect occurs for the non-strange condensatdhe
scalar meson masses have the valogs=574 MeV and field has dropped to 30% of its vacuum expectation value at
m,, =969 MeV. 4 times normal nuclear density. If we extrapolate to even

According to Table IlI, the values of the effective nucleon higher densities one observes that ériéeld does not change
mass and the compressibility in the medigah p,) are rea-  significantly, so for all fields a kind of saturation takes place
sonable. For a fine-tuning of the single particle energy levelsit higher densities.
and a lowering of the effective nucleon mass, a quartic term From Eq.(30) one sees that the baryon masses are gener-
for vector mesonpsee Eq(44)] has to be taken into account. ated by the nonstrange condensatend the strange conden-
Once the parameters have been fixed to nuclear matjgy at satel. So the change of these scalar fields causes the change
the condensates and hadron masses at high baryon densiti§ghe baryon masses in medium.
can be investigated. The density dependence of the effective baryon masses

In Fig. 1 we display the scalar mean fields, andy as  m is shown in Fig. 2. When the density in the system is
a function of the baryon density for vanishing strangenessiaised, the masses drop significantly up to 4 times normal
One sees that the gluon condensgtstays nearly constant nuclear density. This corresponds to the above-mentioned
when the density is raised, so that the approximation of d@ehavior of the condensates. Furthermore, one observes that

0

10° F——__ " ' " ' "
208
\\ Pb
AN .
s N Experiment
A
\ G
2 \\
— \
= \
=10 \
5 \
\ —
5 ' / N
t / \
v/ \
v \
\ 1 \
2 t 1
'l 5' \\ //’.—.‘\\
E ] 4 RN
10—2 ki ] L s
0.0 02 0.4 0.6 0.8 1.0 1.2 14 1.6

FIG. 4. The charge form factor 6P%b from the parameter s€Y, is compared to experimefs].
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the change of the baryon mass differs with the strange quarkymmetry breakindsee Eq.(58)] A;=diag(0,0y) is used,
content of the baryon. This is caused by the different behavwherey is adjusted as to eliminate the terms lineat irfFor
ior of the nonstrange condensatevhich mainly couples to  y=0 (or, generally, a matri proportional to the unit ma-
the nonstrange part of the baryons, and the strange condefjix) the vacuum is S®), invariant. Even with the S(3)
sate{ which couples mainly to the strange part of the bary-constraint on the nucleopcoupling,gy, = dy./3 and with a
ons. Without changing the parameters of the model, th@oupling of the strange condensate to the nucleon according
properties of nuclei can be predicted readily. to Eq. 30(fit M), the results are of the same quality as those
The charge densities 6f0, *°Ca, and®®®Pb are found to  gptained in Ref[1].
have relatively small radial OSCi”atior(gigS. 3, 4, and E Genera”y, the potentidG?), in which the two conden-
though such oscillations cannot be found in the daflie  satess and¢ are decoupled from each other, leads to scalar
experimental charge densities are taken from Ré8],  masses which are all of the order of 500 MeV. To correct

where a three-parameter Fermi model was used to fit theyis failure, additional terms have to be included which lead
data” The charge radii are close to the experimental obsery 3 /7 mixing, as, e.g., the lineasr model potentialsee

vation (Table IV). Sec. VA.
For the charge densities in coordinate space, it is difficult

to assess the level of agreement with experiment. Therefore,
we show exemplarily the charge form factor®#Pb for the
parameter seC,; in momentum spacéFig. 6). The low- As in the linearo model, the coupling constant of the
momentum behavior of the charge form factor is well repro-nucleon to theo mesongy,, is constrained to yield the cor-
duced, although there is some departure from experimeriect nucleon mass
[48] at higher momentum.

The binding energies off0, “°Ca, and?%®Pb are in rea- g _Mn 68)
sonable agreement with the experimental data. Nevertheless NoTg L
they are low by approximately 0.5 MeV. To correct this, a
direct fit to nuclear properties has to be d¢B8]. As can be To reproduce exactly the results obtained in the nonlinear
seen from Table IV, model€; andC, exhibit a spin-orbit o~ model[20], it is necessary to keep this coupling as a free
splitting that lies within the band of the experimental uncer-parameter. For that purpose, we introduce the additional term
tainty given in Ref.[49]. The single-particle energies of
208h are close to those of the Walecka model extended to
include nonlinearo® and o* terms[20] or the model[1],
both for neutrongFig. 7) and for protongFig. 8. This is  which should be a small correction to the dynamically gen-
encouraging since neither the nucleon-scalar meson nor therated nucleon mass. In the nonlinear realization of chiral
nucleonp meson coupling constants can be adjusted tesymmetry, this term is chirally invariant.
nuclear matter or nuclei properties, in contrast to the Wa- In order to obtain a chiral model which is capable of
lecka model20]. exactly reproducing the results of the nonlinear Walecka

C. Chiral Walecka model

—m,,Tr BB, (69)

B. Minnesota model 2
By incorporating the physics of broken scale invariance in ol
the form of a dilaton field and a logarithmic potential, the 3y
Minnesota group succeeded in formulating a model with 2 ;i’”
equally good results as those of RE#0] in the context of a iV
linearly realized symmetrjl]. When switching to S(8), it — e
is necessary to use a nonlinear realization, because there is = 4
no freedom in the linear representation to correct for the E
unrealistic hyperon potentia[47] if one adopts a Yukawa- > O
type baryon-meson interaction. %0 3pip
With a potential of the form S 8in
é() Ligsp
L(’;A: - %k0X2|2+‘CscaIe (67) 'é -10 '2fm
8 Lhop
the model[1] is embedded in S(3). Those results can be A2y oy T o
reproduced exactlyM ; fit). Here, the parameter for explicit
-14 |
4Similar problems exist also for nonchiral models, for a discussion -16 ¢

see Refs[46,47.

5 - . . Exp. W; W, W M| M, C C G
A more sophisticated model-independent analysis by means of an

expansion for the charge distribution as a sum of Gaussians would FIG. 5. Single particle energies of neutrons near the Fermi en-
lead to an even closer correspondence between our results and ey in 2°Pb. Experimentally measured levels are compared with
experimental data. predictions from various potentials uséske texk



PRC 59 NUCLEI IN A CHIRAL SU(3) MODEL 423

TABLE IV. Bulk properties of nuclei: Predictiofieft) and experimental valudsight) for binding energy
E/A, charge radius,, and spin-orbit splitting of oxygen'fO with sp=pgz,—p1), calcium (°Ca with
5dEd5/2_ d3/2), and lead ioq:)b with 5d52d5/2_ 2d3/2).

160 40Ca 208Pb
E/A Feh op E/A Ieh od E/A leh &d
Exp. —7.98 2.73 55-6.6 —8.55 3.48 54-8.0 —7.86 5.50 0.9-1.9
(o3 -7.30 2.65 6.05 —7.98 3.42 6.19 —7.56 5.49 1.59
C, —7.40 2.65 5.21 —8.07 3.42 5.39 —-7.61 5.50 141
C, -7.29 2.65 6.06 —7.98 3.42 6.22 —-7.54 5.49 161
M, -7.19 2.68 5.60 -7.93 3.45 5.83 —7.56 5.53 1.53
M, —7.34 2.67 5.90 —8.03 3.44 6.08 —7.61 5.52 1.58
W, —8.28 2.63 5.83 —8.63 3.42 5.91 -7.71 5,51 1.43
W, -8.23 2.63 5.84 —8.60 3.42 5.94 -7.75 5,51 1.45
W, —7.98 2.67 5.23 —8.47 3.44 5.45 —-7.72 5.55 1.33

model [20], it is necessary to include only terms in the breaking® To compare this field with the fields used in the
meson-meson potential, in which both condensates\d{  nonlinear Walecka modéR0], one has to perform the trans-
are decoupled from each other: formation

L7'=— 2 kox?l 3+ Kamxlam+ Kol 4. (70 T=00TS. (72
After inserting this transformation into the potenti&0), one
Here, the scale breaking potential is neglected by taking thean identify the parameters used here with those of [Réf,
frozen glueball limit and setting=0. To allow for a free 5 5 )
adjustment of the parameteks, kz,, andk, to nuclear M= Koxg— 3Kamx00ov2 — 6K207p, (73
matter propertiesi\s is set to

K= — 3k3mX0‘/§ - 12k20'0 y (74)

As=diagx,X,y). (71 A=—12%,. (75)

With x andy one then has two additional parameters toTherefore, the results obtained in the framework of the Wa-
eliminate linear fluctuations i and g The Symmetry in the lecka mode[zo] can be reproduced exa&|within this an-
scalar sector is only broken explicitly yf x. satz (from now one denotedlV;) given a special choice of
The ¢ field used here has a nonvanishing vacuum expecexplicit symmetry breaking. However, in contrast to the Wa-
tation value as a result of the spontaneous symmetrycka model the hadron masses are generated spontaneously.
The masses of the scalar multiplet as resulting from the pa-

. rameterization of Refl20] are of the order of 500 MeV, as
ol e — can be read off Table Il. To correct for this, terms which mix
e the o with the ¢ have to be addetsee below.
lign — A problem, which is well known in the context of the
My — e - Boguta-Bodmer model, exists here, too: For certain combi-
oo —. — — nations of parameters the potential is not bound from below.
S5t _ 1 To cure this problem, one can introduce additional terms, as
§ P e was done in Ref[51]. Another, more physical, way to cir-
= T e _ cumvent this problem is to use the physics of broken scale
56 S R invariance, as in Ref.1] or the models used in Secs. V A
2 hypy —.— T — and V B.
30'10 2052 T Beyond exactly reproducing an existing successful model,
-_g e — it is interesting to ask whether improvements in the phenom-
: ——
15 gy - ®In Ref. [50], the results of the Walecka model could also be
"- . reproduced in a nonlinear $2) chiral approach. There, however,
‘_ . ' _ AT the limit m,— o0 has been performed introducing in a second step a
— T — light scalaro field mimicking correlated 2 exchange. In addition,
the hadron masses were not generated dynamically.

-20 Exp. W, W, W, M, M, C; C, G, 7For_ thi._c,, a smaIU-type_ admixture o_f the baryo_n—vectorjmeson
coupling is necessary, since the relatgy,=3gy, is not fulfilled
FIG. 6. As for Fig. 5, but for protons. exactly in the Walecka mode(For the seW,, «,=0.95 is used.
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FIG. 7. Scalar condensates ¢, and y as a function of the baryon density for zero net strangeness.

enology can be made as compared to the Walecka model. Next, it is desirable to have masses for the scalar nonet
This could mean either reducing the amount of parameterwhich are(except form,) on the order of 1 GeV. This can be
needed, or a significantly improved description of existingachieved by admitting mixing between theand the/ by
data, or the description of a broader range of physical pheincluding the termk,(1,)? to the scalar potential70) (fit
nomena. WS,). Therefore, in the S(B) framework, even for a pure
Let us first consider the limitn,,= 0. Then, the relation system of only nucleons it inecessaryto take the strange
condensatd into account.

INe ™ f_ (76)

D. Hyperon central potentials
known from the lineafc model is valid. To reproduce ex-

actly the results of Ref.20] (fit W;), m,,=32 MeV, which As discussed in the Introduction, the reasons for unrealis-
is about 3% as compared tR,0, and which is roughly of tic hyperon potentials in the linear model are the different

the same order as the sum of the current quark masses in thges of coupling of the spin-0 and spin-1 mesons to baryons
baryon. Indeed, the modéfit W,) does not give worse re- and a direct coupling of the with the strange condensate.
sults than the modeW, where the relation76) and the The second reason produces too deep hyperon central poten-
SU(3)-symmetry constraingy,, = 3dy,, corresponding to a tials since the additional attraction stemming from ghean-
valuea,=1[Eq. (34)] is used. not be compensated with an additional repulsion from¢he
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FIG. 8. Effective baryon masses as a function of the baryon density for zero net strangeness.



PRC 59 NUCLEI IN A CHIRAL SU(3) MODEL 425

TABLE V. Baryon potentials and asymmetry energypgt The  radii) of nuclei. In contrast to other approaches to the nuclear
hyperon potentials of the fit€;, C,, C3, andWj; are corrected  many-body problem, all hadron masses are mainly generated

with the explicit symmetry breaking term of E(77). through spontaneous symmetry breaking leading to a non-
zero vacuum expectation value of a nonstrafge and a
Un Ua Us Uz 4 strange({) condensate. In the linear model, the vacuum
c, -71.04 -2823 317 303 4041 €xpectation value of those two condensates is constrained by
C, —68.75 —30.50 —6.46 21.1 37.29 the decay constants of the piofi.§ and of the kaonf().
Cs 7106 —2861 256 29.4 40.23 _ It was shown, however, t_hat a &) chiral model in_ the
M, 7018 _46.78 —46.78 —2339 4059 linear representation of chlral symmetry fails to 5|mult_a-
M, 7067 4796 -2871 —1562 4121 neously account for _nuclel and hyperqn. central pote_ntlals
W _68.84 —48.87 —4202 —2502  37.92 (see also Ref17]). With that approach, it is either possible
! ' ' ' ' ' to describe nuclei with unrealistically low-high hyperon po-
W, —69.02 —46.01 —46.01 —23.01 36.06 . . ;
W _6891 —9810 —2B.10 12.0 3622 ter?tla'lsqr n_uclear matter V\{lth_reasonak_ale hyperon poter_mals.
8 This limitation does not exist if one switches to the nonlinear

realization of chiral symmetr¥.This is because of the fol-
lowing reasons.
This has a vanishing expectation value in nuclear matter at First, an f-type baryon-scalar meson interaction can be
zero net strangeness since it does neither couple to thsbnstructed which does not destroy the balance between
nucleon nor to the. huge attractive and repulsive forces from the scalar and vec-
Both effects can be switched off in the nonlinear realiza-tor sector, respectively. This type of interaction improves the
tion (fits Wy, W,, M, andM,). However, even in those values for the hyperon potentials, though they remain too
fits, the experimentally extracted value for thecentral po-  attractive.
tential ofU , = —28+1 MeV [52] cannot be reproduced. The  Secondly, the nonstrange and strange condensates can be
nucleon central potential obly~—70 MeV is too deep: decoupled from each other, which reduces the level of attrac-
ZUn# —28 MeV. A shallower potential for the nucleon tion from the strange condensate. However, a decoupling of
leads to a too small spin-orbit splitting of the energy levels ofthose condensates leads to masses for the whole scalar mul-
nucleons. Therefore, both the central potentials of theiplet of the order of 500 MeV. A coupling of the conden-
nucleon and of theA cannot be reproduced if thEtype  sates implying a mixing of ther and { scalar masses is
guark-model motivated coupling constant is used for bottecessary for a correct description of the hadronic spectrum.
baryon vector-meson and baryon scalar-meson interactions. In contrast to the linear representation of chiral symmetry,
The sensitive cancellation of large vector and scalar potent is possible to add an explicit symmetry breaking term
tials amplifies and overemphasizegsaall deviation from  which reduces the depth of the hyperon potentials without
exact symmetry relations. Fortunately, explicit symmetrydestroying basic theorems in the vacuum as the PCAC rela-
breaking can be introduced in the nonlinear realization withtions for the pseudoscalar mesons. However, in that direction
out affecting, e.g., the PCAC relations. This allows for afurther work has to be done to reduce the ambiguity of the
parametrization of the hyperon potentials. Here, the term explicit symmetry breaking term.
Within the nonlinear realization of chiral symmetry one
- also has the flexibility to construct some special potentials
Liyp=m3Tr(BB+B[B,S]) Tr(X—Xp) (77 (in which the nonstrange and strange sectors are decoupled
from each otherand to reproduce the results of &Jmod-
els, as, e.g., those obtained with the (3Umodel of the
innesota group[1] and the nonlinear Boguta-Bodmer
glodel[lg].
However, to account for the scalar nonet masses, it is
necessary to include terms which couple the nonstrange to
the strange condensate. Particularly, it is possible to describe

This leads to a repulsivi potential ranging from 10-30 reasonably vacuum hadron masses, nuclear matter and nuclei
MeV (Table V). We do not take the numbers for tie o y ; - ; .
within a single chiral SB) model in the nonlinear realiza-

central potential too seriously because of the strongly Varys oo of chiral symmetry using the potential and some con-
ing values depending on the specific model and on the choice Y Y 9 P

of the explicit symmetry breaking term. Straints of the Ilnear_r model. .
The results are similar, whether the strange condensate is

allowed to couple to the nucleon, or not. However, only in
the first case is it possible to reproduce the experimentally
VI. CONCLUSIONS known baryon masses without an additional explicit symme-
We studied a chiral SB3) o-w-type model including the tr)_/ breaking term except for the one Which can be associ_at_ed
dilaton associated with broken scale invariance of QcDWith the current quark masses and which produces finite
Within such an approach it is possible to describe the mul-
tiplets of spin-0, spin-1, and spin-1/2 particles with reason-
able values for their vacuum masses as well as the nUC'ealeHowever, we kept some constraints from the lineamodel such
matter equilibrium point apo,=0.15 fm 2 and the properties as, e.g., the dependence of the condensates on the decay constants
(e.g., binding energies, single particle energy spectra, charge order to reduce the amount of the free parameter.

with the sameSi=—3[V3(\g)2— 58] as in Sec. lIB1 is
used. The explicit symmetry breaking term contributes onl
for hyperons at finite baryon densities along the hypercharg
direction. With the parameten; adjusted to the\ potential
of —28 MeV, the other hyperon potentials are determined
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masses for the pseudoscalar bosons. If the nucleon massphysical particle$54]. However, note that there is increasing
entirely generated by the nonstrangeondensate, some ad- evidence which supports the existence of a low-mass broad
ditional explicit symmetry breaking is necessary to accounscalar resonance, thg560 meson, as well as a light strange
for the correct baryon masses. scalar meson, the«(900 (see Ref.[55], and references
To improve our results, a direct fit to spherical nuclei, asthereir).

was done in Ref[31] has to be performed. This is currently ~ There is an experimental indication for a nearly ideal mix-
under investigatiorf39]. Further studies are under way to ing between the octet and singlet states. Hence, the nine vec-
investigate the effect of spin-3/2 resonances in hot and denger mesons are summarized in a single matrix. The relevant
matter, the meson-baryon scattering and the chiral dynamidields in the SW2) invariant vacuum® andui (correspond-

in transport models withine single model53]. ing to Ao and\g, respectivelyare assumed to have the ideal

mixing angle sind,=1A/3. This yields
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Similarly, for the scalar mesons
APPENDIX
The various hadron matrices used dseippressing the 1 0, .8
Lorentz indice 7= ‘73([2‘7 +o7), (A5)
0 + +
) (agto)iv2 a, K ‘= i(g'o—\/zo'g) (A6)
X:—g’a)\az aa (_a8+0')/\/? K0 s \/j
V2 - -0
K K §
(A1) s used, where® ando® belong tox, and\ g, respectively.
However, there is no experimental indication for an ideal
mixing of the scalar mesons and ¢. In general, depending
1 (p8+ w)IV2 pg K** on the interaction potential, mixing betweenand { occurs
_ a - _ 0 *0 (see Sec. V A This is also suggested by effective instanton-
V= 5” Na= Po ( p0+_w)/1/2 K ' induced interactions of 't Hooft typ[E56].
K*~ K*O ¢ The masses of the various hadrons are generated through
(A2)  their couplings to the scalar condensates, which are produced
via spontaneous symmetry breaking in the sector of the sca-
lar fields. There are nonvanishing vacuum expectation values
S0 A0 N (VEVs) of only two meson fields: of the nine scalar mesons
5+ % p in the matrixX only the VEVs of the components propor-
tional to\y and to the hyperchargé~ \ g are nonvanishing,
1 30 A0 and the vacuum expectation val(X) reduces to
B=—b%,= - - —t = n
%) V2 6
0
Ch LR (X)= = (6% g+ 0B )Edia%i z g) (A7)
V6 yp 7o e vt

(A3)

for the scalar X), vector (), baryon @), and similarly for in order to preserve parity invariance and assuming, for sim-
the axial vector meson fields. A pseudoscalar chiral singleblicity, SU(2) symmetry of the vacuum.
Y=/2/37,] can be added separately, since only an octet is
allowed to enter the exponential 6.

The notation refers to the particles of the listed by the °This implies that isospin breaking effects will not occur, i.e., all
Particle Data GrouPDG) [36], though we are aware of the hadrons of the same isospin multiplet will have identical masses.
difficulties to directly identify the scalar mesons with the The electromagnetic mass breaking is neglected.



PRC 59

[1] E. K. Heide, S. Rudaz, and P. J. Ellis, Nucl. Ph%&§71, 713
(19949.
[2] G. Carter, P. J. Ellis, and S. Rudaz, Nucl. Ph#803, 367
(1996
[3] R. J. Furnstahl, H. B. Tang, and B. D. Serot, Phys. Re%2C
1368(1995.
[4] I. Mishustin, J. Bondorf, and M. Rho, Nucl. Phy&555, 215
(1993.
[5] P. Papazogloet al, Phys. Rev. (55, 1499(1997).
[6] J. Schechter, Phys. Rev. 71, 3393(1980.
[7]1 N. A. Tornqvist, hep-ph/9711483.
[8] T. Waas and W. Weise, Nucl. Phy&625, 287 (1997.
[9] V. Koch, Phys. Lett. B337, 7 (1994.
[10] E. Oset and A. Ramos, nucl-th/9711022.
[11] KaoS Collaboration, R. Bartét al, Phys. Rev. Lett78, 4007
(1997.
[12] J. Schaffner, C. Greiner, and H."8kar, Phys. Rev. @6, 322
(1992.
[13] J. Schaffneet al,, Phys. Rev. Lett71, 1328(1993.
[14] J. Schaffneet al., Ann. Phys.(N.Y.) 235 35(1994.
[15] T. A. Armstronget al, Phys. Rev. Lett79, 3612(1997.
[16] G. Applequistet al,, Phys. Rev. Lett76, 3907 (1996.
[17] P. Papazogloet al, Phys. Rev. (57, 2576(1998.

NUCLEI IN A CHIRAL SU(3) MODEL

427

[28] J. V. Noble, Phys. Lett. B9, 325(1980.

[29] B. K. Jennings, Phys. Lett. B46, 325(1990.

[30] J. Cohen and H. J. Weber, Phys. Rev44€ 1181(1991).

[31] M. Rufaet al, Phys. Rev. C38, 390(1988.

[32] J. Schechter, Y. Ueda, and G. Venturi, Phys. Ref7, 2311
(1969.

[33] J. J. SakuraiCurrents and MesongUniversity of Chicago
Press, Chicago, 1969

[34] J. Schechter, Phys. Rev. 34, 868(1986.

[35] F. Klingl, N. Kaiser, and W. Weise, Z. Phys. 856 193
(1996.

[36] Particle Data Group, R. M. Barnett al, Phys. Rev. D64, 1
(1996.

[37] F. Schlumpf, Phys. Rev. B0, 6895(1995.

[38] S. R. Amendolizet al, Phys. Lett.178B, 435 (1986.

[39] C. Beckmanret al. (unpublisheg

[40] S. Gasiorowicz and D. Geffen, Rev. Mod. Phykl, 531
(1969.

[41] P. K. Mitter and L. J. Swank, Nucl. PhyB8, 205(1968.

[42] P. Ko and S. Rudaz, Phys. Rev.3D, 6877(1994.

[43] J. Schechter and Y. Ueda, Phys. Rev3D168(1971).

[44] B. D. Serot and J. D. Walecka, Int. J. Mod. Phys6C515
(1997.

[45] P. Reinhard, Rep. Prog. Phys2, 439(1989.

[18] C. G. Callan, S. Coleman, J. Wess, and B. Zumino, Phys. Re{46] R. J. Furnstahl and B. D. Serot, Phys. Rev;2338(1993.

177, 2247(1969.
[19] J. Boguta and A. R. Bodmer, Nucl. Phy&292, 413 (1977).

[20] R. J. Furnstahl, C. E. Price, and G. E. Walker, Phys. Rev. 48] H. de Vries, C. W. de Jager, and C. de Vries, At. Data Nucl.

36, 2590(1987).

[21] R. J. Furnstahl, B. D. Serot, and H. B. Tang, Nucl. P#&98,
539 (1996.

[22] S. Weinberg;The Quantum Theory of Field€ambridge Uni-
versity Press, Cambridge, 1996/0l. 2.

[23] V. J. G. Stoks and T. A. Rijken, Nucl. Phy&613, 311(1997.

[24] B. Borasoy and U. G. Meissner, Int. J. Mod. PhyslA 5183
(1996.

[25] M. C. Birse, Z. Phys. A355, 231(1996.

[26] J. F. Donoghue, B. R. Holstein, and E. Golowi€lynamics of

the Standard ModeglCambridge University Press, Cambridge, [55] D. Black, A. H. Fariborz, F. Sannino, and J. Schechter,

1995.
[27] M. Bourquinet al, Z. Phys. C21, 27 (1983.

[47] C. E. Price, J. R. Shepard, and J. A. McNeil, Phys. Re¢1C
1234(1990.

Data Tables36, 495 (1987.

[49] R. J. Furnstahl, J. J. Rusnak, and B. D. Serot, Nucl. Phys.

A632, 607 (1998.

[50] R. J. Furnstahl, B. D. Serot, and H. B. Tang, Nucl. PR&15,
441 (1997).

[51] P. G. Reinhardt, Z. Phys. B29 257 (1988.

[52] A. R. Bodmer and Q. N. Usmani, Nucl. PhyA468, 653
(1988.

[53] S. Hofmannet al. (unpublishegl

[54] M. Harada and J. Schechter, Phys. Rev64) 3394 (1996.

hep-ph/9804273.
[56] G. 't Hooft, Phys. Rev. 14, 3432(1976); 18, 2199E) (1978.



