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Nuclei in a chiral SU„3… model
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Nuclei can be described satisfactorily in a nonlinear chiral SU~3! framework, even with standard potentials
of the linears model. The condensate value of the strange scalar meson is found to be important for the
properties of nuclei even without adding hyperons. By neglecting terms which couple the strange to the
nonstrange condensate one can reduce the model to a Walecka model structure embedded in SU~3!. We discuss
inherent problems with chiral SU~3! models regarding hyperon optical potentials.@S0556-2813~98!07712-7#

PACS number~s!: 24.85.1p, 12.39.Fe
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I. INTRODUCTION

Recently, the general principles of chiral symmetry a
broken scale invariance in QCD have received renewed
tention at finite baryon densities. There the underlying the
of strong interactions, QCD, is, however, not solvable in
nonperturbative low-energy regime. However, QCD co
straints can be imposed on an effective ansatz for nuc
theory through symmetries that determine largely how
hadrons should interact with each other. In this spirit, mod
with SU~2!L3SU~2!R symmetry and scale invariance we
applied to nuclear matter at zero and finite temperature
to finite nuclei@1–5#. As a new feature, a glueball fieldx, the
dilaton, was included which accounted for the broken sc
invariance of QCD at tree level through a logarithmic pote
tial @6#. The success of these models established the app
bility of this approach to the relativistic description of th
nuclear many-body problem.

Chiral SU~3! models have been quite successful in mo
eling hadron interactions. Meson-meson interactions can
described satisfactorily by using the linear SU~3! s model
@7#. Kaon-nucleon scattering data can be well reprodu
using a chiral effective SU~3! Lagrangian @8# using a
Lippmann-Schwinger approach@9#. The lowest order term is
sufficient to describe the kaon-nucleon scattering data w
including relativistic effects consistently and adding theh
channel @10#. Especially, the in-medium properties of th
kaon in nuclear matter are of considerable interest for rec
measurements of kaon spectra at GSI, Darmstadt at
threshold energies@11#. All of the above models lack the
feature of including the nucleon-nucleon interaction on
same chiral SU~3! basis and therefore do not provide a co
sistent extrapolation to finite density.

Within SU~3! chiral models one can also take a differe
view at the properties of metastable exotic multihypernucl
objects@12#. The relativistic mean field model was extend
to include the baryon octet and the vector nonet by us
SU~6! symmetry for the coupling constants. The existence
strange hadronic matter and bound objects consisting pu
of hyperons has been proposed@13,14#. The properties of
strange hadronic matter are remarkably close to those
strangelets and can be negatively charged while carryin
positive baryon number. This has certain impacts for pres
PRC 590556-2813/99/59~1!/411~17!/$15.00
d
t-
y
e
-
ar
e
ls

nd

le
-
a-

-
be

d

n

nt
b-

e
-

t
r

g
f
ly

of
a

nt

heavy-ion searches looking for strangelets and other poss
exotica@15,16#.

We have recently extended the chiral effective model
SU~3!L3SU~3!R @17# including the baryon octet. This ap
proach shall provide a basis to shed light on the propertie
strange hadrons, as the in-medium properties of the kaon
the properties of strange hadronic matter, by pinning do
the nuclear force in a chiral invariant way. This paper co
tinues our previous work@17#, which has applied a linea
realization of chiral SU~3! symmetry and the concept of bro
ken scale invariance to the description of hadronic matte
the vacuum and in the medium. It has been found that sim
taneously both hadronic masses of the various SU~3! multip-
lets and the nuclear matter equation of state can be desc
reasonably well within a model respecting chiral symmet

However, it has been shown that the central potentials
the hyperons come out too large. They could not be correc
within a model with Yukawa-type baryon-meson intera
tions. The reason for this deficiency is threefold@17#.

First, linear realizations of chiral symmetry restrict th
coupling of the spin-0 mesons to the baryons to be symm
ric (d type!, while the spin-1 mesons are coupled to baryo
antisymmetrically (f type!. This destroys the balance be
tween the repulsive contribution of the vector potential a
the attraction due to the scalar potential. Therefore, the
peron potentials attain too large values.

Secondly, the condensate of the strange scalar mesz
changes considerably in the nuclear medium even for z
strangeness within this approach, because it couples to
nonstrange scalar fields and therefore provides additiona
attraction. This is not counterbalanced by repulsive contri
tions from the strange vector fieldfm , sincefm does not
couple to either the nucleon or to thevm field.

Thirdly, it is not possible to correct these values of t
hyperon potentials through explicit symmetry-breaki
terms, because they would destroy the relations for the
tially conserved axial-vector currents~PCAC! of the pion
and the kaon.

In order to deal with this general problem, nonlinear i
teraction terms of baryons with mesons were introduced
Ref. @17# in a chirally invariant way. However, although
cubic interaction of baryons with spin-0 mesons~with strong
coupling of the strange condensate to the nucleons! produces
411 ©1999 The American Physical Society
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412 PRC 59P. PAPAZOGLOUet al.
reasonable hyperon potentials, such a form for this inte
tion seems quite artificial. Furthermore, the high mass of
strange meson ('1 GeV) excludes a reasonable descripti
of nuclei, since the oscillations in the charge density are
high for such an ansatz. Hence, although the cubic fit wo
satisfactorily for nuclear matter, it is not suitable to descr
finite nuclei. The constraints imposed by the linear reali
tion of chiral symmetry do not allow for a simultaneous d
scription of both finite nuclei and hyperon potentials.

In this paper, we propose the adoption of the nonlin
realization of chiral symmetry as a solution to this proble
As was proven in Ref.@18#, it is sufficient to have a loca
SU~3! invariance for the hadrons, with the pseudoscalar m
sons appearing only in derivative couplings. Therefore, b
d-type andf -type coupling is possible between baryons a
scalar mesons. In addition, the pseudoscalar meson ma
then depend only on the explicit symmetry breaking ter
There is no reference to pseudoscalar mesons in the chi
invariant potential. Therefore, the potential only determin
the masses of the scalar mesons. This allows us to deco
the strange condensate from the nonstrange one. Then
the results obtained with the SU~2! chirally symmetry mod-
els @1# and those of the nonlinears-v model @19,20# can be
reproduced as special realizations of the present general
ral SU~3! model. One can then systematically add terms
strange-to-nonstrange condensate coupling. Therefore,
can study the limiting case of a system consisting of nuc
ons only. Furthermore, explicit symmetry breaking ter
~e.g., to correct the hyperon potentials! can be added withou
altering the PCAC relations of the pion and the kaon.

In this work it is demonstrated that one can simul
neously describe nuclei and the properties of strange had
within the framework of the nonlinear realization of chir
symmetry. Formally the sectors of scalar and pseudosc
mesons are decoupled. However, the analysis@17# and the
closeness of the coupling constantgNs to mN / f p in the
Boguta-Bodmer model seem to suggest to keep the c
straints of the decay constants of the kaons and pions
posed on the vacuum expectation values~VEVs! of the non-
strange and strange scalar fieldss andz.

Our paper is structured as follows. The nonlinear reali
tion and the connection between the linear and the nonlin
s model of chiral symmetry are introduced in Sec. II. T
chiral SU~3! Lagrangian is constructed and discussed in S
III. The equations of motion are solved in the mean fie
approximation which is described in Sec. IV. In Sec. V va
ous parameter sets are presented which all account for a
isfactory description of finite nuclei: These include a L
grangian with the potential of the linear SU~3! s model as
constructed in Ref.@17# with a modified baryon scalar-meso
interaction. In the limit that the strange and nonstrange c
densates are decoupled, the SU~2! chiral models of Refs.@1#
and @20,21# are recovered, but embedded in the nonlinea
realized chiral SU~3! framework.

II. THE NONLINEAR REALIZATION
OF CHIRAL SYMMETRY

In some neighborhood of the identity transformation, e
ery group elementg8(x) of a compact, semisimple groupG
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with a subgroupH can be decomposed uniquely into a pro
uct of the form@18#

g8~x!5expF i( ja~x!SaGexpF i( ub~x!TbG
[u@ja~x!#h@ub~x!#, ~1!

whereh(ub) is an element ofH. ja andub are parameters o
the symmetry transformation which are generally space-t
dependent.Sa and Tb represent the generators of the gro
G. For the case of SU~3!L3SU~3!R symmetry, the genera
tors are the vectorial (Tb5Qb) and axial (Sa5Qa

5) charges,
respectively, and the subgroup isH5SU~3!V .

For our model, we assume invariance underglobal
SU~3!L3SU~3!R transformations,

g5expF i( aL
alLaGexpF i( aR

blRbG[L~aL!R~aR!.

~2!

Here, the representation of Gell-Mann matriceslL5l(1
2g5)/2 and lR5l(11g5)/2 with space-time-independen
parametersaL andaR is used.

The productgu@ja(x)# is still an element ofG and can be
written as

g expF i( jaSaG5expF i( ja8~g,ja!SaG
3expF i( ub8~g,ja!TbG , ~3!

where, in general, bothja8 andub8 depend ong andja . Let

q̃→D~h!q̃ ~4!

be a linear representation of the subgroupH of G. Then the
transformation

g:j→j8, q̃→DS expF i( ub8TbG D q̃ ~5!

constitutes a nonlinear realization ofG.
The local parameters of the axial charges are identi

with the fields of the pseudoscalar mesons@22#. In the rep-
resentation of Gell-Mann matrices one has~also see the Ap-
pendix!

u@pa~x!#5expF i

2s0
pa~x!lag5G . ~6!

This assignment has the advantage that the pseudoscala
sons are the parameters of the symmetry transformat
They will therefore only appear if the symmetry is explicit
broken or in terms with derivatives of the fields.

The composition of hadrons in terms of its constituen
the quarks, has to be determined in order to build mod
with hadronic degrees of freedom. This strategy has b
followed, e.g., in Ref.@17# and is adopted also here. Th
transformation properties of the hadrons in the nonlinear r
resentation can be derived if the ‘‘old’’ quarksq are related
to the ‘‘new’’ quarksq̃ of the nonlinear representation.
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PRC 59 413NUCLEI IN A CHIRAL SU~3! MODEL
The quarks of the nonlinear representation transform w
the vectorial subgroup SU~3!V in accord with Eq.~1!. Split-
ting the quarks in left- and right-handed parts, they can
written as

qL5uq̃L , qR5u†q̃R . ~7!

These equations are connected by parity. The ambiguit
the choice ofh is avoided by settingh51. The transforma-
tion properties of the pions and the new quarks are found
considering how the old quarks transform:

q85LqL1RqR5Luq̃L1Ru†q̃R . ~8!

According to Eq.~3! ~setg5L!,

Lu5u8h, Ru†5u†8h, ~9!

where the right equation is the parity transformed one of
left equation. Here and in the following, the abbreviatio
u[u@pa(x)# andu8[u@pa8(x)# are used. By inserting thes
relations into Eq.~8!, one sees thatq̃ transforms with SU~3!V
as

q̃L85hq̃L , q̃R85hq̃R . ~10!

According to Eq.~3!, in general the vector transformation
a local, nonlinear function depending on pseudoscalar
sons h5h@g,pa(x)#. Following Eq. ~9!, the pseudoscala
mesons transform nonlinearly as

u85Luh†5huR†, ~11!

u8†5hu†L†5Ru†h†. ~12!

The second set of equalities are again due to parity. In c
trast to the linear realization of chiral symmetry, there
no distinction between the left and right space. Therefo
only the representations8 and1 of the lowest-lying hadrons
are possible. The various octets transform accordingly, e
for the scalar (X), vector (Vm5 l m1r m), axial vector (Am
5 l m2r m), and baryon (B) matrices one has

X85hXh†, Vm8 5hVmh†, Am8 5hA mh†, B85hBh†.
~13!

The present nonlinearly transforming hadronic fields can
obtained from the linearly transforming ones described
Ref. @17# by multiplying them byu@p(x)# and its conjugate
~see also Ref.@23#!:

X5 1
2 ~u†Mu†1uM†u!, Y5 1

2 ~u†Mu†2uM†u!,
~14!

l m5u† l̃ mu, r m5ur̃mu†, ~15!

BL5u†CLu, BR5uCRu†. ~16!
h
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Here, M5S1 iP and its conjugate contains the nonets
the linearly transforming scalar~S! and pseudoscalar~P!

mesons, whereasl̃ m , l̃ m , CL , andCR are the left and right-
handed parts of the spin-1 mesons and baryons in the li
representation, respectively.

III. LAGRANGIAN

In this section, the various terms of the Lagrangian

L5Lkin1 (
W5X,Y,V,A,u

LBW1LVP1Lvec1L01LSB

~17!

are discussed in detail.Lkin is the kinetic energy term,LBW
includes the interaction terms of the different baryons w
the various spin-0 and spin-1 mesons and with the photo
In LVP, the interaction terms of vector mesons with pseud
scalar mesons and with photons is summarized.Lvec gener-
ates the masses of the spin-1 mesons through interac
with spin-0 mesons, andL0 gives the meson-meson intera
tion terms which induce the spontaneous breaking of ch
symmetry. It also includes the scale breaking logarithm
potential. Finally, LSB introduces an explicit symmetry
breaking of the U~1!A , the SU~3!V , and the chiral symmetry

A. Kinetic energy terms

Since the vector transformationh@p(x)# of the hadrons
depends in general on the pseudoscalar mesons and th
local, covariant derivatives have to be used for the kine
terms in order to preserve chiral invariance. The covari
derivative, i.e., for the baryons, reads

DmB5]mB1 i @Gm ,B#, ~18!

where

Gm52
i

2
@u†]mu1u]mu†#. ~19!

This is a composite vector-type field, which transforms a
cording to

Gm8 5hGmh†2 ih]mh†. ~20!

The spin-1 nonet of the strong interactions are here in
duced as massive, homogeneously transforming fields,
lowing the approach in Refs.@24, 25#, in order to avoid com-
plications arising from the mixing of the axial with th
pseudoscalar mesons.

The kinetic energy term of the pseudoscalar meson
introduced by defining@in analogy to Eq.~19!# the axial
vector as

um52
i

2
@u†]mu2u]mu†#, ~21!

which transforms asum8 5humh†. The standard form for the
kinetic energy of the pseudoscalar mesons is Tr(umum).
However, the approximate validity ofgNs'mN / f p , where
f p52s0 , in the Walecka-type models@20,21# and results
obtained in Refs.@17,1# indicate that the constraints of th
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linear s model on the scalar condensates in the vacuum,
also applicable to the description of hadronic matter and
clei. To incorporate those constraints in the nonlinear re
ization we modify the standard kinetic energy term to
clude a coupling of the scalar and pseudoscalar mesons
gy
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Tr~umXumX1XumumX!. ~22!

This term contains, besides higher order self-interactions,
kinetic energy term for the pseudoscalar mesons if the ps
doscalar matrix in the exponential of Eq.~6! is defined as
1

&
pala5S 1

&
S p01

h8

A112w2D p1 2
K1

w11

p2 1

&
S 2p01

h8

A112w2D 2
K0

w11

2
K2

w11 2
K̄0

w11
2

h8&

A112w2

D . ~23!
dent
the

al
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,
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the
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n
xial

en
The renormalization factors containingw5&z0 /s0 are in-
cluded to obtain the canonical form of the kinetic ener
terms for pseudoscalar mesons1 from Eq. ~22!. For w51,
one has an SU~3!V symmetric vacuum and the matrix~23!
reduces to the matrix normally used, e.g., in chiral pertur
tion theory @26#. The advantage of Eq.~23! is that SU~3!V
breaking effects~such asf pÞ f K! are accounted for even a
lowest order.

After computing the axial current for pions and kao
from Eq. ~22!, one obtains the same relations:

s052 f p , z052
1

&
~2 f K2 f p! ~25!

for the VEVs of the scalar condensates found in the lineas
model @17#. In order to construct a chirally invariant kineti
term for the spin-1 mesons, the ordinary derivatives mus
replaced by the covariant derivatives as defined in Eq.~18!,

Vmn5DmVn2DnVm , ~26!

and analogously for the axial vector mesons, where the s
bol Amn is used.

In summary, the kinetic energy terms read

Lkin5 i Tr B̄gmDmB1 1
2 Tr DmXDmX

1Tr~umXumX1XumumX!1 1
2 Tr DmYDmY ~27!

1 1
2 DmxDmx2 1

4 Tr~VmnVmn!

2 1
4 Tr~FmnFmn!2 1

4 Tr~AmnA mn!, ~28!

where we included the usual field strength tensor of the p
ton Fmn as we want to discuss electromagnetic form fact

1The same normalization of the pseudoscalar matrix has to
taken if the kinetic energy term1

2 Tr(]mM†]mM ) is used with

M5u~X1iY!u, M5u†~X2iY!u† ~24!

substituted.
-

e

-

o-
s

and nuclei later on. The pseudoscalar singlet is indepen
of the octet and has thus a kinetic term of its own. For
dilaton fieldx ~for its discussion see Sec. III D 3!, which is
also a chiral singlet, it makes no difference if the norm
derivative is replaced with the covariant derivative beca
the additional commutator term vanishes.

B. Baryon-meson interaction

The various interaction terms of baryons with mesons
discussed in this section. The SU~3! structure of the the
baryon-meson interaction terms are the same for all mes
except for the difference in Lorentz space. For a gene
meson fieldW they read

LBW52&g8
W~aW@B̄OBW#F1~12aW!@B̄OBW#D!

2g1
W 1

)
Tr~B̄OB!Tr W, ~29!

with @B̄OBW#FªTr(B̄OWB2B̄OBW) and @B̄OBW#D

ªTr(B̄OWB1B̄OBW)2 2
3 Tr(B̄OB)Tr W. The different

terms to be considered are those for the interaction of b
ons, with scalar mesons (W5X, O51), with vector mesons
(W5Vm , O5gm for the vector andW5Vmn , O5smn for
the tensor interaction!, with axial vector mesons (W5Am ,
O5gmg5!, and with pseudoscalar mesons (W5um , O
5gmg5!, respectively. Forum , the singlet term is vanishing
because the matrix in the exponential of Eq.~6! involves
only the pseudoscalar octet and is thus traceless. The in
action of the pseudoscalar chiral singletY with baryons has
the structureg1

YTr(B̄gmg5B)Tr Y.
Since the pseudoscalar mesons are solely contained in

exponential, the only possible form of their coupling wi
baryons is the pseudovector interaction. There, the coup
constantgA[&g8

u is restricted by the Goldberger-Treima
relation. In contrast to the linear representation, the a
coupling constantgA is not unity, but a valuegA.1.26 can
be assigned to it. In this case the mixing angle betwe
f -type andd-type coupling isau.0.4 @27#.

e
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In our approach, the quark model related SU~3! coupling
scheme for the tensor coupling terms emerges naturally.
coupling scheme has been proven to be in good agreem
with the observed small Lambda hypernuclear spin-o
splitting @28–30#. For our present study, we will not discus
the tensor coupling terms as they have been found to
small for spherical nuclei@31#. We note in passing that thi
might be not the case for exotic nuclei and we leave t
issue for forthcoming studies.

1. Scalar mesons

The baryons and the scalar mesons transform equall
the left and right subspace. Therefore, in contrast to the
ear realization of chiral symmetry, af -type coupling is al-
lowed for the baryon-meson interaction. In addition, it
possible to construct mass terms for baryons and to co
them to chiral singlets. After insertion of the vacuum mat
^X& @Eq. ~A7!#, one obtains the baryon masses as gener
by the VEVs of the two meson fields:

mN5m02 1
3 g8

S~4aS21!~&z2s!,

mL5m02 2
3 g8

S~aS21!~&z2s!,

mS5m01 2
3 g8

S~aS21!~&z2s!,

mJ5m01 1
3 g8

S~2aS11!~&z2s! ~30!

with m05g1
S(&s1z)/). The three parametersg1

S , g8
S ,

andaS can be used to fit the baryon masses to their exp
mental values. Then, besides the current quark mass t
discussed in Sec. III E, no additional explicit symme
breaking term is needed. Note that the nucleon mass dep
on thestrange condensatez. For z5s/& ~i.e., f p5 f K!, the
masses are degenerate, and the vacuum is SU~3!V invariant.

It is desirable to have an alternative way of baryon m
generation, where the nucleon mass depends only ons. This
can be accomplished by taking the limitaS51 and g1

S

5A6g8
S . Then, the coupling constants between the bary

and the two scalar condensates are related to the add
quark model. This leaves only one coupling constant free
adjust for the correct nucleon mass. For a fine-tuning of
remaining masses, it is necessary to introduce an exp
symmetry breaking term, which breaks the SU~3! symmetry
along the hypercharge direction. A possible term already
cussed in Refs.@17,32#, which respects the Gell-Mann
Okubo mass relation, is

LDm52m1Tr~B̄B2B̄BS!2m2Tr~B̄SB!, ~31!

whereSb
a52 1

3 @)(l8)b
a2db

a#. As in the first case, the thre
coupling constantsgNs[3g8

S , m1 and m2 are sufficient to
reproduce the experimentally known baryon masses. Exp
itly, the baryon masses have the values

mN52gNss,

mJ52
1

3
gNss2

2

3
gNs&z1m11m2 ,
is
nt

it

e

s

in
-

le

ed

i-
ms

ds

s

s
ive
to
e
it

s-

c-

mL52
2

3
gNss2

1

3
gNs&z1

m112m2

3
,

mS52 2
3 gNss2 1

3 gNs&z1m1 . ~32!

For both versions of baryon-meson interaction the para
eters are fixed to yield the baryon massesmN5939 MeV,
mL51115 MeV, mS51196 MeV, andmJ51331.5 MeV.

2. Vector mesons

Two independent interaction terms of baryons with spin
mesons can be constructed in analogy with the baryon–s
0-meson interaction. They correspond to the antisymme
~f -type! and symmetric (d-type! couplings, respectively
From the universality principle@33# and the vector meson
dominance model one may conclude that thed-type coupling
should be small. For most of the fitsaV51, i.e., f -type cou-
pling, is used. However, a small admixture ofd-type cou-
pling allows for some fine-tuning of the single particle e
ergy levels of nucleons in nuclei~see below!.

As for the case with scalar mesons in Sec. III B 1, f
g1

V5A6g8
V , the strange vector fieldfm; s̄gms does not

couple to the nucleon implying that the strange vector fo
factor of the nucleon is very small. The remaining couplin
to the strange baryons are then determined by symmetry
lations

gNNv5~4aV21!g8
V ,

gLLv5
2

3
~5aV22!g8

V , gLLf52
&

3
~2aV11!g8

V ,

gSSv52aVg8
V , gSSf52&~2aV21!g8

V ,

gJJv5~2aV21!g8
V , gJJf522&aVg8

V . ~33!

In the limit aV51, the relative values of the coupling con
stants are related to the additive quark model via

gLv5gSv52gJv5
2

3
gNv52g8

V ,

gLf5gSf5
gJf

2
5
&

3
gNv . ~34!

Note that all coupling constants are fixed once, e.g.,gNv is
specified. Since the axial vector mesons have a vanish
expectation value at the mean-field level their coupling c
stants to the baryons will not be discussed here.

C. Electromagnetic structure of pseudoscalar mesons

The interaction Lagrangian of the vector mesons w
pions and the photon takes the form

LVP5e Tr~AmGm!1g Tr~VmGm!

1
e

4gg
FmnTr@~u†Qu1uQu†!Vmn#. ~35!
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The first term originates from the kinetic energy term~22!, if
the photonAm is included inum through the definition of

ũm52
i

2
@u†~]m1 igvl m!u2u~]m1 igvr m!u†#, ~36!

where l m5r m5QAm , with Q5T31Y/2, and the electrica
charge,gv5e. The remaining two terms can be motivate
from a gauge and chiral invariant Lagrangian approa
@34,35#.

One obtains for the form factor of the pion (Q252q2)

Fp~Q2!512
g

gg

Q2

Q21mr
2 . ~37!

Note that the pion does not couple to the other vector mes
v andf.

With g56.05 fromr0→p1p2 @36# and gg55.04 from
r0→e1e2 the mean-square charge radius of the pion is

^r p
2 &[26

dF~Q2!

dQ2 U
Q250

50.48 fm2. ~38!

Experimentally,̂ r p
2 &50.43260.016 fm2 @37#.

In analogy to the pion, one obtains for the form factor
the kaon

FK
6~Q2!512

gKKr

ggr

Q2

Q21mr
2 2

gKKv

ggv

3
Q2

Q21mv
2 2

gKKf

ggf

Q2

Q21mf
2 ~39!

with the coupling constants

gKKr

ggr
5

1

2

g

gg
,

gKKv

ggv
5

1

6

g

gg
,

gKKf

ggf
5
&

6

g

gg
, ~40!

whereg/gg51.2. Assuming equal masses forr andv (mV
[mv5mr), one gets

FK6~Q2!512
g

gg
S 2

3

Q2

Q21mV
2 1
&

6

Q2

Q21mf
2 D . ~41!

Hence, for lowQ2, the momentum dependence of the ka
form factor differs from the pion form factor by a facto
2/31mV

2/mf
2&/6'0.8. The mean square charge radius

the kaon is given as

^r K6
2 &5

g

ggr
S 4

mV
2 1
&

mf
2 D 5~0.3210.06! fm250.38 fm2

~42!

as compared tôr K6
2 &5(0.3460.05) fm2, from experiment

@38#. Hence, the contribution from thef is small, but not
negligible. If one takes into account only ther contribution,
then^r K

2 &51/2̂ r p
2 &50.24 fm2, which disagrees with the ex

perimental value. For the form factor of theK0, the contri-
bution coming from ther meson changes its sign and o
gets
h

ns

f

f

^r K0
2 &5

g

ggr
S 2

2

mV
2 1
&

mf
2 D 520.10 fm2, ~43!

which is again in the range of the experimental value
^r K0

2 &520.05460.101 fm2 @38#. The electromagnetic form
factors of the baryons will be discussed in a forthcomi
publication@39#.

D. Meson-meson interaction

1. Vector meson masses

Here we discuss the mass terms of the vector mesons.
simplest scale-invariant form

L vec
~1!5

1

2
mV

2 x2

x0
2 Tr VmVm12g4

4Tr~VmVm!2 ~44!

implies a mass degeneracy for the meson nonet. The
term of Eq. ~44! is made scale invariant by multiplying i
with an appropriate power of the glueball fieldx ~see Sec.
III D 3 for details!. To split the masses, one can add t
chiral invariant@40,41#

L vec
~2!5 1

4 m Tr@VmnVmnX2#. ~45!

Combining this with the kinetic energy term@Eq. ~27!#, one
obtains the following terms for the different vector meson

2
1

4 F12m
s2

2 G~Vr
mn!22

1

4 F12
1

2
mS s2

2
1z2D G~VK*

mn
!2,

2
1

4 F12m
s2

2 G~Vv
mn!22

1

4
@12mz2#~Vf

mn!2. ~46!

The coefficients are no longer unity, therefore the vector m
son fields have to be renormalized, i.e., the newv field reads
v r5Zv

21/2v. The renormalization constants are the coe
cients in the square brackets in front of the kinetic ene
terms of Eq.~46!, i.e., Zv

21512ms2/2. The mass terms o
the vector mesons deviate from the mean massmV by the
renormalization factor,2 i.e.,

mv
2 5mr

25ZvmV
2 , mK*

2
5ZK* mV

2 , mf
2 5ZfmV

2 . ~47!

The constantsmV andm are fixed to give the correctv andf
masses. The other vector meson masses are given in Ta

The axial vector meson masses can be described by
ing terms analogous to Eq.~45!. We refrain from discussing
them further~see Refs.@40,42#!.

2One could also split ther-v mass degeneracy by adding a ter
of the form@40# (Tr Vmn)2 to Eq. ~46!. Or, alternatively, one could
break the SU~2! symmetry of the vacuum allowing for a nonvan
ishing vacuum expectation value of the scalar isovector field. Ho
ever, ther-v mass splitting is small (;2%), and, therefore, we
will not consider these complications.
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2. Scalar mesons

The nonlinear realization of chiral symmetry offers ma
more possibilities to form chiral invariants: the couplings
scalar mesons with each other are only governed by SU~3!V
symmetry. However, only three kinds of independent inva
ants exist, namely,

I 15Tr X, I 25Tr X2, I 35det X. ~48!

All other invariants, TrXn, with n>3, can be expressed as
function of the three invariants shown in Eq.~48!. This can
be shown from the characteristic equation of an arbitrar
33 matrix X

~X2x1!~X2x2!~X2x3!50, ~49!

where xi are the eigenvalues ofX. By writing the coeffi-
cients of the powers ofX in terms of invariants one obtain

X32I 1X22 1
2 @ I 22~ I 1!2#X2I 350. ~50!

Hence, one obtains the invariant TrX3 as a function of the
base~48!,

I 3m[Tr X35I 1I 21 1
2 @ I 22~ I 1!2#I 11I 3 . ~51!

By multiplying Eq. ~50! with, e.g.,X and taking the trace
the invariant forn54 can be written in terms of Eq.~48!:

I 4[Tr X45I 1I 3m1 1
2 @ I 22~ I 1!2#I 21I 3I 1 . ~52!

A similar expression can be found for all othern. Alterna-
tively, instead ofI 35detX the invariantI 3m5Tr X3, can be
chosen as an element of the basis. Then,I 3 can be rewritten
in terms of the new basisI 1 , I 2 , andI 3m as

I 35 1
3 I 3m2 1

2 I 1I 21 1
6 ~ I 1!3. ~53!

For our calculations, the invariants of Eq~48! are considered
as building blocks, from which the different forms of th
meson-meson interaction are constructed. They will be
vestigated including sets in which the models in Refs.@1#
and@21# are embedded in a chiral SU~3! framework~see Sec.
V!.

3. Broken scale invariance

The concept of broken scale invariance leading to
trace anomaly in~massless! QCD, um

m5(bQCD/2g)G mn
a G a

mn

TABLE I. Parameters of the different potentials used~see text!.

k0 k1 k2 k3 k3m k4 33d

C1 2.37 1.40 25.55 22.65 0 20.23 2
C2 2.36 1.40 25.55 22.64 0 20.23 2
C3 2.35 1.40 25.55 22.60 0 20.23 2
M1 1.28 0 0 0 0 0 6
M2 1.29 0 0 0 0 0 6
W1 214.91 0 16.67 0 32.06 0 0
W2 212.96 0 16.67 0 32.06 0 0
W3 10.44 7.32 24.96 0 31.06 0 0
f

-

3

-

e

(Gmn is the gluon field strength tensor of QCD!, can be mim-
icked in an effective Lagrangian at tree level@6# through the
introduction of the potential

Lscale52k4x42
1

4
x4ln

x4

x0
4 1

d

3
x4ln

I 3

det̂ X&
. ~54!

The effect3 of the logarithmic term;x4 ln x is to break the
scale invariance. This leads to the proportionalityum

m;x4, as
can be seen from

um
m54L2x

]L
]x

22]mx
]L

]~]mx!
5x4, ~55!

which is a consequence of the definition of the scale tra
formations@43#. This holds only if the meson-meson pote
tial is scale invariant. This can be achieved by multiplyi
the invariants of scale dimension less then four with an
propriate power of the dilaton fieldx.

The comparison of the trace anomaly of QCD with that
the effective theory allows for the identification of thex-field
with the gluon condensate:

um
m5 K bQCD

2g
Gmn

a G a
mnL [~12d!x4. ~56!

The parameterd originates from the second logarithmic ter
with the chiral invariantI 3 @see also Ref.@1# for the chiral
SU~2! linears model#. An orientation for the value ofd may
be taken frombQCD at the one loop level, withNc colors and
Nf flavors,

bQCD52
11Ncg

3

48p2 S 12
2Nf

11Nc
D1O~g5!. ~57!

Here the first number in parentheses arises from the~anti-
screening! self-interaction of the gluons and the second ter
proportional toNf , is the ~screening! contribution of quark
pairs. Equation~57! suggests the valued56/33 for three
flavors and three colors. This value gives the order of m
nitude about which the parameterd will be varied.

For simplicity, we will also consider the case in whic
x5x0 , where the gluon condensate does not vary with d
sity. We will refer to this case as the frozen glueball limit

E. Explicitly broken chiral symmetry

In order to eliminate the Goldstone modes from a chi
effective theory, explicit symmetry breaking terms have
be introduced. Here, we use

LSB52 1
2 mh0

2 Tr Y22 1
2 Tr Ap~uXu1u†Xu†!

2Tr~As2Ap!X. ~58!

3According to Ref.@6#, the argument of the logarithm has to b
chirally and parity invariant. This is fulfilled by the dilatonx which
is both a chiral singlet as well as a scalar.
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The first term, which breaks the U(1)A symmetry, gives a
mass to the pseudoscalar singlet. The second term is m
vated by the explicit symmetry breaking term of the lineas
model

1
2 Tr Ap~M1M†!5Tr Ap@u~X1 iY!u1u†~X2 iY!u†#,

~59!

with Ap51/& diag(mp
2 fp ,mp

2 fp ,2mK
2 f K2mp

2 f p) and mp

5139 MeV, mK5498 MeV. For simplicity,h0 /h8 mixing
is neglected by omittingY from the second term of Eq.~58!.
If this term is included, we get a mixing angle ofu516° for
parameter setC1 ~see Sec. V A!, which agrees well with
experiment,uexp'20° from h,h8→gg.

In the case of SU~3!V symmetry, the quadratic Gell
Mann-Okubo mass formula 3mh8

2 1mp
2 24mK

2 50 is satisfied.

The third term breaks SU~3!V symmetry.As5diag(x,x,y) can
be used to remove the vacuum constraints on the param
of the meson-meson potential by adjustingx andy in such a
way that the terms linear ins andz vanish in the vacuum.

IV. MEAN-FIELD APPROXIMATION

The terms discussed so far involve the full quantum
erator fields which cannot be treated exactly. To apply
model to the description of finite nuclei, we perform th
mean-field approximation. This is a nonperturbative rela
istic method to solve approximately the nuclear many bo
problem by replacing the quantum field operators by its c
sical expectation values~for a recent review see Ref.@44#!.

In the following, we will consider the time-independe
spherically symmetric case of finite nuclei with vanishing n
strangeness, i.e., only nucleons and zero temperature
usual, only the timelike component of the vector mesonsv
[^v0& and r[^r0& survive in the mean-field approxima
tion. Additionally, due to parity conservation we have^p i&
50. The strange vector fieldf does not couple to the
ti-

ers

-
e

-
y
-

t
As

nucleon. Therefore, for simplicity it is omitted in the mea
field version of the Lagrangian~17!, which reads

Lkin52 iN̄g i¹
iN2

1

2 (
w5s,z,x,v,r,A

¹ iw¹ iw,

LBM1LBV52N̄g0FgNvv01gNrt3r0

1
1

2
e~11t3!A01mN* g0GN,

Lvec5
1

2

x2

x0
2 ~mv

2 v21mr
2r2!1g4

4~v416v2r21r4!,

L052
1

2
k0x2~s21z2!1k1~s21z2!2

1k2S s4

2
1z4D1k3xs2z1k3mxS s3

&
1z3D

2k4x42
1

4
x4ln

x4

x0
4 1

d

3
x4ln

s2z

s0
2z0

,

LSB52S x

x0
D 2

@xs1yz#. ~60!

Equation ~60! is the most general mean-field Lagrangi
within our discussion of which different subsets of para
eters and terms are discussed in Sec. V.

From the Lagrangian~17!, the following equations of mo-
tion for the various fields are derived:
Dv52S x

x0
D 2

mv
2 v24g4

4~v313r2v!1gvNrB ,

Dr52S x

x0
D 2

mr
2r24g4

4~r313rv2!1grNr3 ,

Dx52
x

x0
2 ~mv

2 v21mr
2r2!1k0x~s21z2!2k3s2z2k3mS s3

&
1z3D

1S 4k41114 ln
x

x0
24

d

3
ln

s2z

s0
2z0

Dx312
x

x0
2 @xs1yz#,

Ds5k0x2s24k1~s21z2!s22k2s322k3xsz23k3mx
s2

&
2

2dx4

3s
1S x

x0
D 2

x1
]mN*

]s
rs ,

Dz5k0x2z24k1~s21z2!z24k2z32k3xs223k3mxz22
dx4

3z
1S x

x0
D 2

y1
]mN*

]z
rs . ~61!
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The Dirac equation for the nucleon and the equation for
photon field are of the form given, e.g., by Reinhard@45# and
need not be repeated here. The densitiesrs5^N̄N&, rB

5^N̄g0N&, r35^N̄g0t3N& can be expressed in terms of th
components of the nucleon Dirac spinors in the usual w
@44#. In Eqs.~61!, the spatial derivatives are abbreviated
D[2¹22(2/r )¹.

The set of coupled equations are solved using an acc
ated gradient iteration method following Ref.@31#. The Dirac
equation for the nucleons can be cast in a modified Sc¨-
dinger equation with an effective mass. The meson fi
equations reduce to radial Laplace equations. In each it
tion step, the coupled equations for the nuclear radial w
functions are solved for the given potentials, the correspo
ing densities are calculated, then the meson field equat
are solved for the given densities, so that the new poten
are derived and the next iteration step can begin until c
vergence is achieved. The meson field equations are so
in the form

F2
d2

dr2 1mw,0
2 G~rw~N11!!52r f ~r,w~N!!, ~62!

wheremw,0
2 is the vacuum mass of the respective meson~or

an arbitrary mass! which is subtracted on the right-hand sid
of the equation. The functionf (r,wN) stands for the interac
tion terms with other meson fields, the source terms com
from the nucleon density and the self-interaction terms
given above. This form achieves a five-point precision
the Laplacian by using only a three-point formula by solvi
for (rw). The scalar fields have to be solved by replaci
e.g., s→(12s/s0) to ensure the boundary condition th
the field has to vanish forr→`. The iteration is damped by
taking into account only a fraction of the newly calculat
density for the next iteration step.

The energy-momentum tensor can be used to obtain
total energy of the system in the standard way@44#. After
eliminating the gradient terms on the fields by using the fi
equations, one obtains

E5(
a

occ

ea~2 j a11!

2
1

2 E drr 2~mN* rs1gNvvrB1gNrrr3!1Erearr.

~63!

TABLE II. Vacuum masses of the scalar mesons for differe
kinds of fits ~explained in the text!.

ma0
(980) mk ~900! ms mf 0

C1 953.54 995.70 473.32 1039.10
C2 953.54 995.70 475.55 1039.10
C3 953.54 995.70 478.56 824.17
M1 482.41 448.96 422.79 482.41
M2 488.55 441.41 408.79 488.55
W1 500.83 457.49 401.54 500.83
W2 519.95 478.34 425.14 519.95
W3 1000.00 1255.32 480.50 1334.25
e

y

er-

o
d
a-
e

d-
ns
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-

ed

g
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r

,

he

d

In the first termea are the Dirac single particle energies a
j a is the total angular momentum of the single particle sta
In nuclear matter this term becomes 4(k(gvv0

1Ak21m* 2). The rearrangement energyErearr is

Erearr5E drr 2F2g4
4~v41r416v2r212f4!

22k1~s21z2!222k2S s4

2
1z4D

2k3x0s2z2k3mx0S s3

&
1z3D

12
d

3
x0

4lnS s2z

s0
2z0

D 2xs2yzG2Vvac. ~64!

The constantVvac is the vacuum energy which is subtracte
to yield zero energy in the vacuum. Equation~64! is the
rearrangement energy for the frozen glueball model whic
used for most of the fits discussed in the following. Let
now proceed to study the application to physical hadrons
hadronic matter fits.

V. CHIRAL MODELS THAT WORK

As was pointed out in Ref.@46#, reproducing the nuclea
matter equilibrium point is not sufficient to ensure a quan
tative description of nuclear phenomenology. For this, o
has to study the systematics of finite nuclei. This is done
the following for various potentials in a chiral SU~3! frame-
work. Those include the potential of the SU~3! linear s
model, the potential of the Minnesota-group@1# and the Wa-
lecka model including nonlinear cubic and quartic se
interactions of the scalar field@19,20#.

A. Potential of the linear s model

The potential of the linears model is particularly inter-
esting because the strange condensate couples to the
strange condensates in such a way that it deviates from it
VEVs even in the case of a system containing only nucleo
With the scale breaking logarithm included@Lscale, see Eq.
~54!#, it reads

L 0
C52 1

2 k0x2I 21k1~ I 2!21k2I 412k3xI 31Lscale.
~65!

t

TABLE III. Condensates and nuclear matter properties atr0 .

mN* /mN s/s0 z/z0 K

C1 0.61 0.63 0.92 276.34
C2 0.64 0.64 0.91 266.08
C3 0.61 0.63 0.92 285.29
M1 0.62 0.62 1 269.58
M2 0.61 0.62 1.01 272.61
W1 0.65 0.62 1 224.23
W2 0.63 0.63 1 245.05
W3 0.64 0.64 0.91 217.20
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FIG. 1. Charge density for16O for the parameter sets indicated. The experimental charge density is fitted with a three-paramete
model @48#.
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Here, the explicit symmetry breaking term of the linears
model is used, i.e.,As5Ap , which implies the same term t
break the chiral symmetry in the scalar and pseudosc
sector, respectively. In addition, the mass term of the ps
doscalar singlet is set to

mh0

2 5k0x0
224S k2

3
1k1D ~s0

21z0
2!1

4

3
k3x0

3~z01&s0!2
4

9
dx0

4S 1

s0
2 1

&

s0z0
D . ~66!

This is equal to the pseudoscalar singlet mass which is
tained if M andM† of the linears-model potential@17# are
replaced by Eqs.~24!.

The elements of the matrixAp are fixed to fulfil the
PCAC relations of the pion and the kaon, respective
ar
u-

b-

.

Therefore, the parameters of the chiral invariant potentiak0
andk2 are used to ensure an extremum in the vacuum. As
the remaining constants,k3 is constrained by theh8 mass
and k1 is varied to give as mass of the order ofms
5500 MeV. The VEV of the gluon condensatex0 is fixed to
fit the binding energy of nuclear mattere0 /r2mN
5216 MeV at the saturation densityr050.15 fm23. The
VEVs of the fieldss0 and z0 are constrained by the deca
constants of the pion and the kaon, respectively@see Eq.
~25!#. Throughout this work, the numerical valuesf p
593.3 MeV andf K5122 MeV are used

With the same potential, Eq.~65!, fits with (C1) and with-
out (C2) a dependence of the nucleon mass on the stra
condensatez can be done. To see whether there is a sign
cant effect from the gluon condensatex at moderate densi
ties, a nonfrozen fit is also studied (C3) where we allow the
condensate of the dilaton field to deviate from its vacu
value.
FIG. 2. As for Fig. 1, but for40C.
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FIG. 3. As for Fig. 1, but for208Pb.
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As can be seen from Table II, the hadronic masses in
vacuum have reasonable values. If the potential of Eq.~65!
in combination with Eq.~66! is used, the mass of theh8
meson depends on all constantski and onx0 , which are also
used to fit nuclear matter properties. In our fits, the pseu
scalar meson masses have the valuesmh5574 MeV and
mh85969 MeV.

According to Table III, the values of the effective nucleo
mass and the compressibility in the medium~at r0! are rea-
sonable. For a fine-tuning of the single particle energy lev
and a lowering of the effective nucleon mass, a quartic te
for vector mesons@see Eq.~44!# has to be taken into accoun
Once the parameters have been fixed to nuclear matter ar0
the condensates and hadron masses at high baryon den
can be investigated.

In Fig. 1 we display the scalar mean fieldss, z, andx as
a function of the baryon density for vanishing strangene
One sees that the gluon condensatex stays nearly constan
when the density is raised, so that the approximation o
e

o-

ls
m

ities

s.

a

frozen glueball is reasonable. The strange condensatez is
only reduced by about 10% from its vacuum expectat
value. This is not surprising since there are only nucleon
the system and the nucleon-z coupling is fairly weak. The
main effect occurs for the non-strange condensates. The
field has dropped to 30% of its vacuum expectation value
4 times normal nuclear density. If we extrapolate to ev
higher densities one observes that thes field does not change
significantly, so for all fields a kind of saturation takes pla
at higher densities.

From Eq.~30! one sees that the baryon masses are ge
ated by the nonstrange condensates and the strange conden
satez. So the change of these scalar fields causes the ch
of the baryon masses in medium.

The density dependence of the effective baryon mas
mi* is shown in Fig. 2. When the density in the system
raised, the masses drop significantly up to 4 times nor
nuclear density. This corresponds to the above-mentio
behavior of the condensates. Furthermore, one observes
FIG. 4. The charge form factor of208Pb from the parameter setC1 is compared to experiment@48#.
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422 PRC 59P. PAPAZOGLOUet al.
the change of the baryon mass differs with the strange qu
content of the baryon. This is caused by the different beh
ior of the nonstrange condensates which mainly couples to
the nonstrange part of the baryons, and the strange con
satez which couples mainly to the strange part of the ba
ons. Without changing the parameters of the model,
properties of nuclei can be predicted readily.

The charge densities of16O, 40Ca, and208Pb are found to
have relatively small radial oscillations~Figs. 3, 4, and 5!,
though such oscillations cannot be found in the data.4 The
experimental charge densities are taken from Ref.@48#,
where a three-parameter Fermi model was used to fit
data.5 The charge radii are close to the experimental obs
vation ~Table IV!.

For the charge densities in coordinate space, it is diffic
to assess the level of agreement with experiment. There
we show exemplarily the charge form factor of208Pb for the
parameter setC1 in momentum space~Fig. 6!. The low-
momentum behavior of the charge form factor is well rep
duced, although there is some departure from experim
@48# at higher momentum.

The binding energies of16O, 40Ca, and208Pb are in rea-
sonable agreement with the experimental data. Neverthe
they are low by approximately 0.5 MeV. To correct this,
direct fit to nuclear properties has to be done@39#. As can be
seen from Table IV, modelsC1 andC2 exhibit a spin-orbit
splitting that lies within the band of the experimental unc
tainty given in Ref. @49#. The single-particle energies o
208Pb are close to those of the Walecka model extende
include nonlinears3 and s4 terms @20# or the model@1#,
both for neutrons~Fig. 7! and for protons~Fig. 8!. This is
encouraging since neither the nucleon-scalar meson no
nucleon-r meson coupling constants can be adjusted
nuclear matter or nuclei properties, in contrast to the W
lecka model@20#.

B. Minnesota model

By incorporating the physics of broken scale invariance
the form of a dilaton field and a logarithmic potential, th
Minnesota group succeeded in formulating a model w
equally good results as those of Ref.@20# in the context of a
linearly realized symmetry@1#. When switching to SU~3!, it
is necessary to use a nonlinear realization, because the
no freedom in the linear representation to correct for
unrealistic hyperon potentials@17# if one adopts a Yukawa
type baryon-meson interaction.

With a potential of the form

L 0
M52 1

2 k0x2I 21Lscale ~67!

the model@1# is embedded in SU~3!. Those results can b
reproduced exactly (M1 fit!. Here, the parameter for explic

4Similar problems exist also for nonchiral models, for a discuss
see Refs.@46,47#.

5A more sophisticated model-independent analysis by means o
expansion for the charge distribution as a sum of Gaussians w
lead to an even closer correspondence between our results an
experimental data.
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symmetry breaking@see Eq.~58!# As5diag(0,0,y) is used,
wherey is adjusted as to eliminate the terms linear inz. For
y50 ~or, generally, a matrixAs proportional to the unit ma-
trix! the vacuum is SU~3!V invariant. Even with the SU~3!
constraint on the nucleon-r coupling,gNr5gNv/3 and with a
coupling of the strange condensate to the nucleon accor
to Eq. 30~fit M2!, the results are of the same quality as tho
obtained in Ref.@1#.

Generally, the potential~67!, in which the two conden-
satess andz are decoupled from each other, leads to sca
masses which are all of the order of 500 MeV. To corre
this failure, additional terms have to be included which le
to a s/z mixing, as, e.g., the linears model potential~see
Sec. V A!.

C. Chiral Walecka model

As in the linears model, the coupling constant of th
nucleon to thes mesongNs is constrained to yield the cor
rect nucleon mass

gNs5
mN

f p
. ~68!

To reproduce exactly the results obtained in the nonlin
s-v model@20#, it is necessary to keep this coupling as a fr
parameter. For that purpose, we introduce the additional t

2mavTr B̄B, ~69!

which should be a small correction to the dynamically ge
erated nucleon mass. In the nonlinear realization of ch
symmetry, this term is chirally invariant.

In order to obtain a chiral model which is capable
exactly reproducing the results of the nonlinear Walec

n

an
ld
the

FIG. 5. Single particle energies of neutrons near the Fermi
ergy in 208Pb. Experimentally measured levels are compared w
predictions from various potentials used~see text!.
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TABLE IV. Bulk properties of nuclei: Prediction~left! and experimental values~right! for binding energy
E/A, charge radiusr ch, and spin-orbit splitting of oxygen (16O with dp[p3/22p1/2), calcium (40Ca with
dd[d5/22d3/2!, and lead (208Pb with dd[2d5/222d3/2).

16O 40Ca 208Pb

E/A rch dp E/A rch dd E/A rch dd

Exp. 27.98 2.73 5.5–6.6 28.55 3.48 5.4–8.0 27.86 5.50 0.9–1.9
C1 27.30 2.65 6.05 27.98 3.42 6.19 27.56 5.49 1.59
C2 27.40 2.65 5.21 28.07 3.42 5.39 27.61 5.50 1.41
C3 27.29 2.65 6.06 27.98 3.42 6.22 27.54 5.49 1.61
M1 27.19 2.68 5.60 27.93 3.45 5.83 27.56 5.53 1.53
M2 27.34 2.67 5.90 28.03 3.44 6.08 27.61 5.52 1.58
W1 28.28 2.63 5.83 28.63 3.42 5.91 27.71 5.51 1.43
W2 28.23 2.63 5.84 28.60 3.42 5.94 27.75 5.51 1.45
W3 27.98 2.67 5.23 28.47 3.44 5.45 27.72 5.55 1.33
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model @20#, it is necessary to include only terms in th
meson-meson potential, in which both condensatess and z
are decoupled from each other:

L 0
W52 1

2 k0x2I 21k3mxI 3m1k2I 4 . ~70!

Here, the scale breaking potential is neglected by taking
frozen glueball limit and settingd50. To allow for a free
adjustment of the parametersk0 , k3m , and k4 to nuclear
matter properties,As is set to

As5diag~x,x,y!. ~71!

With x and y one then has two additional parameters
eliminate linear fluctuations ins andz. The symmetry in the
scalar sector is only broken explicitly ifyÞx.

The s field used here has a nonvanishing vacuum exp
tation value as a result of the spontaneous symm

FIG. 6. As for Fig. 5, but for protons.
e

c-
ry

breaking.6 To compare this fields with the fields used in the
nonlinear Walecka model@20#, one has to perform the trans
formation

s5s01s. ~72!

After inserting this transformation into the potential~60!, one
can identify the parameters used here with those of Ref.@20#,

ms
25k0x0

223k3mx0s0&26k2s0
2, ~73!

k523k3mx0&212k2s0 , ~74!

l5212k2 . ~75!

Therefore, the results obtained in the framework of the W
lecka model@20# can be reproduced exactly7 within this an-
satz ~from now one denotedW1! given a special choice o
explicit symmetry breaking. However, in contrast to the W
lecka model the hadron masses are generated spontaneo
The masses of the scalar multiplet as resulting from the
rameterization of Ref.@20# are of the order of 500 MeV, as
can be read off Table II. To correct for this, terms which m
the s with the z have to be added~see below!.

A problem, which is well known in the context of th
Boguta-Bodmer model, exists here, too: For certain com
nations of parameters the potential is not bound from bel
To cure this problem, one can introduce additional terms
was done in Ref.@51#. Another, more physical, way to cir
cumvent this problem is to use the physics of broken sc
invariance, as in Ref.@1# or the models used in Secs. V A
and V B.

Beyond exactly reproducing an existing successful mod
it is interesting to ask whether improvements in the pheno

6In Ref. @50#, the results of the Walecka model could also
reproduced in a nonlinear SU~2! chiral approach. There, howeve
the limit ms→` has been performed introducing in a second ste
light scalars field mimicking correlated 2p exchange. In addition,
the hadron masses were not generated dynamically.

7For this, a smalld-type admixture of the baryon–vector-meso
coupling is necessary, since the relationgNv53gNr is not fulfilled
exactly in the Walecka model.~For the setW1 , av50.95 is used.!
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FIG. 7. Scalar condensatess, z, andx as a function of the baryon density for zero net strangeness.
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oten-
enology can be made as compared to the Walecka mo
This could mean either reducing the amount of parame
needed, or a significantly improved description of existi
data, or the description of a broader range of physical p
nomena.

Let us first consider the limitmav50. Then, the relation

gNs5
mN

f p
~76!

known from the linears model is valid. To reproduce ex
actly the results of Ref.@20# ~fit W1!, mav532 MeV, which
is about 3% as compared togNss0 and which is roughly of
the same order as the sum of the current quark masses i
baryon. Indeed, the model~fit W1! does not give worse re
sults than the modelW2 where the relation~76! and the
SU~3!-symmetry constraintgNv53gNr , corresponding to a
valueav51 @Eq. ~34!# is used.
el.
rs

e-

the

Next, it is desirable to have masses for the scalar no
which are~except forms! on the order of 1 GeV. This can b
achieved by admitting mixing between thes and thez by
including the termk1(I 2)2 to the scalar potential~70! ~fit
W3!. Therefore, in the SU~3! framework, even for a pure
system of only nucleons it isnecessaryto take the strange
condensatez into account.

D. Hyperon central potentials

As discussed in the Introduction, the reasons for unrea
tic hyperon potentials in the linears model are the different
types of coupling of the spin-0 and spin-1 mesons to bary
and a direct coupling of thes with the strange condensate
The second reason produces too deep hyperon central p
tials since the additional attraction stemming from thez can-
not be compensated with an additional repulsion from thef.
FIG. 8. Effective baryon masses as a function of the baryon density for zero net strangeness.
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This has a vanishing expectation value in nuclear matte
zero net strangeness since it does neither couple to
nucleon nor to thev.

Both effects can be switched off in the nonlinear realiz
tion ~fits W1 , W2 , M1 , and M2!. However, even in those
fits, the experimentally extracted value for theL central po-
tential ofUL522861 MeV @52# cannot be reproduced. Th
nucleon central potential ofUN'270 MeV is too deep:
2
3 UNÞ228 MeV. A shallower potential for the nucleo
leads to a too small spin-orbit splitting of the energy levels
nucleons. Therefore, both the central potentials of
nucleon and of theL cannot be reproduced if thef -type
quark-model motivated coupling constant is used for b
baryon vector-meson and baryon scalar-meson interacti
The sensitive cancellation of large vector and scalar po
tials amplifies and overemphasizes a~small! deviation from
exact symmetry relations. Fortunately, explicit symme
breaking can be introduced in the nonlinear realization w
out affecting, e.g., the PCAC relations. This allows for
parametrization of the hyperon potentials. Here, the term

Lhyp5m3Tr~B̄B1B̄@B,S# !Tr~X2X0! ~77!

with the sameSb
a52 1

3 @)(l8)b
a2db

a# as in Sec. III B 1 is
used. The explicit symmetry breaking term contributes o
for hyperons at finite baryon densities along the hypercha
direction. With the parameterm3 adjusted to theL potential
of 228 MeV, the other hyperon potentials are determin
This leads to a repulsiveJ potential ranging from 10–30
MeV ~Table V!. We do not take the numbers for theJ
central potential too seriously because of the strongly va
ing values depending on the specific model and on the ch
of the explicit symmetry breaking term.

VI. CONCLUSIONS

We studied a chiral SU~3! s-v-type model including the
dilaton associated with broken scale invariance of QC
Within such an approach it is possible to describe the m
tiplets of spin-0, spin-1, and spin-1/2 particles with reas
able values for their vacuum masses as well as the nuc
matter equilibrium point atr050.15 fm23 and the properties
~e.g., binding energies, single particle energy spectra, ch

TABLE V. Baryon potentials and asymmetry energy atr0 . The
hyperon potentials of the fitsC1 , C2 , C3 , and W3 are corrected
with the explicit symmetry breaking term of Eq.~77!.

UN UL US UJ a4

C1 271.04 228.23 3.17 30.3 40.41
C2 268.75 230.50 26.46 21.1 37.29
C3 271.06 228.61 2.56 29.4 40.23
M1 270.18 246.78 246.78 223.39 40.59
M2 270.67 247.96 228.71 215.62 41.21
W1 268.84 248.87 242.92 225.92 37.92
W2 269.02 246.01 246.01 223.01 36.06
W3 268.21 228.10 228.10 12.0 35.22
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radii! of nuclei. In contrast to other approaches to the nucl
many-body problem, all hadron masses are mainly gener
through spontaneous symmetry breaking leading to a n
zero vacuum expectation value of a nonstrange~s! and a
strange~z! condensate. In the linears model, the vacuum
expectation value of those two condensates is constraine
the decay constants of the pion (f p) and of the kaon (f K).

It was shown, however, that a SU~3! chiral model in the
linear representation of chiral symmetry fails to simult
neously account for nuclei and hyperon central potent
~see also Ref.@17#!. With that approach, it is either possib
to describe nuclei with unrealistically low-high hyperon p
tentialsor nuclear matter with reasonable hyperon potentia
This limitation does not exist if one switches to the nonline
realization of chiral symmetry.8 This is because of the fol
lowing reasons.

First, an f -type baryon-scalar meson interaction can
constructed which does not destroy the balance betw
huge attractive and repulsive forces from the scalar and v
tor sector, respectively. This type of interaction improves
values for the hyperon potentials, though they remain
attractive.

Secondly, the nonstrange and strange condensates ca
decoupled from each other, which reduces the level of att
tion from the strange condensate. However, a decouplin
those condensates leads to masses for the whole scalar
tiplet of the order of 500 MeV. A coupling of the conden
sates implying a mixing of thes and z scalar masses is
necessary for a correct description of the hadronic spectr

In contrast to the linear representation of chiral symme
it is possible to add an explicit symmetry breaking te
which reduces the depth of the hyperon potentials with
destroying basic theorems in the vacuum as the PCAC r
tions for the pseudoscalar mesons. However, in that direc
further work has to be done to reduce the ambiguity of
explicit symmetry breaking term.

Within the nonlinear realization of chiral symmetry on
also has the flexibility to construct some special potent
~in which the nonstrange and strange sectors are decou
from each other! and to reproduce the results of SU~2! mod-
els, as, e.g., those obtained with the SU~2! model of the
Minnesota group@1# and the nonlinear Boguta-Bodme
model @19#.

However, to account for the scalar nonet masses, i
necessary to include terms which couple the nonstrang
the strange condensate. Particularly, it is possible to desc
reasonably vacuum hadron masses, nuclear matter and n
within a single chiral SU~3! model in the nonlinear realiza
tion of chiral symmetry using the potential and some co
straints of the linears model.

The results are similar, whether the strange condensa
allowed to couple to the nucleon, or not. However, only
the first case is it possible to reproduce the experiment
known baryon masses without an additional explicit symm
try breaking term except for the one which can be associa
with the current quark masses and which produces fi

8However, we kept some constraints from the linears model such
as, e.g., the dependence of the condensates on the decay con
in order to reduce the amount of the free parameter.
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426 PRC 59P. PAPAZOGLOUet al.
masses for the pseudoscalar bosons. If the nucleon ma
entirely generated by the nonstranges condensate, some ad
ditional explicit symmetry breaking is necessary to acco
for the correct baryon masses.

To improve our results, a direct fit to spherical nuclei,
was done in Ref.@31# has to be performed. This is current
under investigation@39#. Further studies are under way
investigate the effect of spin-3/2 resonances in hot and de
matter, the meson-baryon scattering and the chiral dynam
in transport models withinone single model@53#.
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APPENDIX

The various hadron matrices used are~suppressing the
Lorentz indices!

X5
1

&
sala5S ~a0

01s!/& a0
1 k1

a0
2 ~2a0

01s!/& k0

k2 k0 z
D ,

~A1!

V5
1

&
vala5S ~r0

01v!/& r0
1 K* 1

r0
2 ~2r0

01v!/& K* 0

K* 2 K* 0 f
D ,

~A2!

B5
1

&
bala5S S0

&
1

L0

A6
S1 p

S2
2

S0

&
1

L0

A6
n

J2 J0
22

L0

A6

D
~A3!

for the scalar (X), vector (V), baryon (B), and similarly for
the axial vector meson fields. A pseudoscalar chiral sin
Y5A2/3h01 can be added separately, since only an octe
allowed to enter the exponential 6.

The notation refers to the particles of the listed by t
Particle Data Group~PDG! @36#, though we are aware of th
difficulties to directly identify the scalar mesons with th
is

t

s

se
cs

e

et
is

physical particles@54#. However, note that there is increasin
evidence which supports the existence of a low-mass br
scalar resonance, thes~560! meson, as well as a light strang
scalar meson, thek~900! ~see Ref. @55#, and references
therein!.

There is an experimental indication for a nearly ideal m
ing between the octet and singlet states. Hence, the nine
tor mesons are summarized in a single matrix. The relev
fields in the SU~2! invariant vacuumvm

0 andvm
8 ~correspond-

ing to l0 andl8 , respectively! are assumed to have the ide
mixing angle sinuv51/). This yields

fm5vm
8 cosuv2vm

0 sin uv5
1

)
~&vm

0 1v8
m!,

vm5vm
8 sin uv1vm

0 cosuv5
1

)
~vm

0 2&v8
m!. ~A4!

Similarly, for the scalar mesons

s5
1

)
~&s01s8!, ~A5!

z5
1

)
~s02&s8! ~A6!

is used, wheres0 ands8 belong tol0 andl8 , respectively.
However, there is no experimental indication for an ide
mixing of the scalar mesonss andz. In general, depending
on the interaction potential, mixing betweens andz occurs
~see Sec. V A!. This is also suggested by effective instanto
induced interactions of ’t Hooft type@56#.

The masses of the various hadrons are generated thr
their couplings to the scalar condensates, which are produ
via spontaneous symmetry breaking in the sector of the
lar fields. There are nonvanishing vacuum expectation va
~VEVs! of only two meson fields: of the nine scalar meso
in the matrixX only the VEVs of the components propo
tional tol0 and to the hyperchargeY;l8 are nonvanishing,
and the vacuum expectation value^X& reduces to

^X&5
1

&
~s0l01s8l8![diagS s

&
,

s

&
,z D , ~A7!

in order to preserve parity invariance and assuming, for s
plicity, SU~2! symmetry9 of the vacuum.

9This implies that isospin breaking effects will not occur, i.e.,
hadrons of the same isospin multiplet will have identical mass
The electromagnetic mass breaking is neglected.
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