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Anomalous distributions in heavy ion collisions at high energies
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A multifractal Bernoulli distribution, which appears by a natural way at some morphological phase transi-
tion, is introduced and it is shown that this distribution gives a good fit to the data obtained in laboratory
experiments and in a numerical simulation of the particle multiproduction in the heavy ions collisions at high
energies[S0556-281®9)03801-7

PACS numbdrs): 25.70.Pq, 24.60.Ky

[. INTRODUCTION ions collisions(usingG-moments methodologyand inmod-
erateheavy ions collisiongusing Takagi methodologyhave
It is expected that particle multiproduction in nuclear col- the same gapgqual to 1/4 at the morphological phase tran-
lisions at high energies related to phase-transition-like pheSitiOl’] described by the multifractal Bernoulli distribution.
nomena(see for recent reviews Reffl,2]). These phase We do not know why th& moments seem to be applicable
transitions imply anomalous distributions. Different distribu-to obtain the adequate results just for wery heavy ions
tions laws were suggested to interpret experimental data b&ollisions and, therefore, direct calculation of the multifractal
ginning from paperg3]. Simple Bernoulli distributionf4]  spectra for the very heavy ions collisions with Takagi meth-
corresponding to monofractal states was suggested in Re@dology remains an interesting problem for future investiga-
[5] using an analogy with second order phase transitises ~ tions.
also further development of this analogy in R€f§] and
[7]). The log-normal multiplicity distribution related to self- Il. MULTIFRACTAL BERNOULLI DISTRIBUTION

similar cascade processed as well as the Levy stable dis- . L
tribution and the negative binomial distribution are widely L-6tA# be the pseudorapidity interval, and subdivide into

discussed in the literaturésee Ref.[1], and references M b?ns egch of Widthg.”:.A”/M' Let N be the number of
therein. particles in one event i 7 interval andk,, be the number of

We, however, believe that an adequate distribution shoul@@rticles in themth bin. TheG, moments are defined 48]
appear by a natural way when transition from monofractality M
to multifractality is studied. We also believe that this mor- G.= z ud (1)
phological transition could play a crucial role in the particle S =
multiproduction at high energiegvhich has a critical na-
ture). In the present paper we perform such an investigatiowvhere un,=kn,/N is the probability of particles in thenth
and introduce a new type of statistical distribution—a muiti-bin for one event and is any real number. The summation is
fractal Bernoulli distribution—to describe this transition. carried out over nonempty bins only. If the particle produc-
This new distribution is then used to find some systematic§ion process exhibit self-similar behavior then the moment
in the data on fractal parameters of the multiparticle spectr&ollow the power law
observed in collisions of heavy ions. Q)

Three methodswith some modificationsare used at Gqx(8n/An)™Y. @)
present to obtain multifractal spectra from the experiment
data: factorial momentg3], so-calledG moments[8], and
Takagi methodology9]. The method of factorial moments D,=#q)/(q—1) &)
has some problems just in the case of heavy ions collisions a '

[10], while theG moments are known to be strongly biased Then, if one uses standard averaging one obtains

by “statistical noise,” particularly important in the small

bins where the multiplicity is small. The comparatively new EiM=1[Mi(|)]q
Takagi methodology has been applied to the analysis of the (u= M
heavy ions collisions data only very recenflyl]. Compar-

ing the data obtained by th@—moments method with the Let us define

data obtained by the Takagi methodology we shall conclude

that theG moments give reasonable results for very heavy = i Imax wi}.

ions (such as?®U and '%’Au) collisions while formoderate i

heavy ions more fine Takagi methodology should be used. In

both these cases it is shown that the multifractal BernoulliThen

distribution can be used to fit the experimental data on the

multiparticle production. Moreover, it is shown that the mul- (&P) = i S p (5)
tifractal specific heat for the data obtained in trexy heavy M 5

a'Il'he generalized dimension spectrum is then given by

x(SylAn) Tath), (4
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The simplest structure, that can be used for fractal descrip-
tion, is a system for whiclx; can take only two values 0 and

1. It follows from Eg. (5) that for such a systenfwith
p>0)
(6)

(uP)=(w)
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and fluctuations in this system can be identified as Bernoulifnen

fluctuations[4]. The Bernoulli probability law with param-
eter(u) is specified by the probability mass functi®{x)
given by P(x)=(u) for x=1,P(x)=1—{u) for x=0, and

P(x) =0 otherwise. It is clear that the Bernoulli distribution From a comparison of Eq$15) and (17) we obtain at the

can be monofractal onlisee also Ref.14]). The character-
istic function of the Bernoulli distribution is

x(N)=1+(my(e*~1). (7)

Generalization of Eq(6) in the form of a generalized
scaling

(i)~ ()" ®

can be used to describe more complewiltifractal) systems.
We use invariance of the generalized scali@gwith dimen-
sion transforn]12]

e
to find f(p). This invariance means that
(BN ~((E)" P )

for all positive. Then, it follows from Eqs(8) and(9) that

(()*P) = () 0P = () TP (10
Hence,
f(xp)=f(M)f(p). 11
The general solution of functional equati@tl) is
f(p)=p”, 12

lim a(qk.m) In(g/m) (15
im Jkm)y=————.
o In(k/m)
If there is ordinary scaling
(uP)~(SmlAn)*P, (16)
gq_gm
lklm = . 1
a(q,k,m) = im 17)
limit y—0
- In(g/m
£q=¢m _ In(a/m) .
{k—&m  In(k/m)
The general solution of functional equati@tB) is
{q=a+clingq, (19
wherea andc are some constants.
If we use the relationship
(20)

max{ui}~ (87/Ap)°=

(see, for instance, Ref14]), then it follows from Eqs(3)—
(5) and(16), (19), (20) that

Dy=D..+ Ing
C——
(g—1)

for the multifractal Bernoulli fluctuations§.e., for the fluc-
tuations which appear at the limjt—0).

(21)

Ill. GAP OF THE MULTIFRACTAL SPECIFIC HEAT

From Egs.(8), (16), and (19) we can findf(p) corre-
sponding to the multifractal Bernoulli fluctuations
c
f(p)=1+aln p, (22
where a=d—D,. One can see that for finite the
dimension-invariance is broken at the limit-0.

Where»y is a positive number. It should be noted that case Let us find the characteristic function of the multifractal

y=1 corresponds to Gauss fluctuatidds]. We, however,
shall consider limity—0 (i.e., transition to the Bernoulli

Bernoulli distribution. It is known that the characteristic
function x(\) can be represented by the following seliese,

fluctuations. This transition is nontrivial. Indeed, let us con- for instance, Ref{4]):

sider generalized scaling

Fqm~ Ftakm (13
where

Fam=(u)/(u™). (14

Substituting Eq(8) into Eqgs.(13), (14) and using Eq(12)
we obtain

Y—m?
kY—m?’

a(q,k,m)=

Hence,

=3 D, 23
p=0 P°
Then using Eqgs(8) and(22) we obtain from Eq(23)
Z(in
=14 F, ) s (24
where
3 C

ﬁ—m Inxe). (25

The characteristic functiof24) gives complete description
of the multifractal Bernoulli distribution. Wheo=0 distri-
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FIG. 1. Generalized dimension spectrufim pseudorapidity 0.60 , N
spacg for 1Au collisions on 10.8 GeV (dotg. Data taken from 0 - 1.0
Ref.[17]. The straight line is drawn for comparison with the mul-
tifractal Bernoulli representatiof®21). ln(q)/(q-l)
bution (24), (25) coincides with the simple Bernoulli distri- FIG. 2. Generalized dimension spectra f3fU collisions at

bution (7). The multifractality-monofractality phase transi- .96a GeV (dotg. Data taken from Ref:18]. The lower set of dots

tion (with y—0) corresponds to a gap froo=0 to a finite  corresponds to pseudorapidity phase space and the upper set of dots
nonzero value of. If we use a thermodynamic interpretation corresponds to azimuthal phase space. The straight lines are drawn
of the multifractality represented in RdfL5], then the con- for comparison with the multifractal Bernoulli representati@n).

stantc can be interpreted as multifractal specific heat of the

system. The gap of the multifractal specific heat at theered as an indication of an universal nature of this value of
multifractality-monofractality transitiofi.e., with y—0) al-  the multifractal specific hedsee next section

lows us to consider this transition as a thermodynamic phase

ransition[16].
transitio [ 6] V. TAKAGI METHODOLOGY AND LABORATORY DATA

FOR MODERATE HEAVY IONS COLLISIONS

IV. LABORATORY DATA ON VERY HEAVY IONS . . . .
COLLISIONS Let us recall briefly the formalism introduced by Takagi

[9]. A single event contain® particles distributed in the

Let us compare these theoretical results with laboratorynterval y,,;,<y<Ymax in the rapidity (y) space. The multi-
data. Figure 1 shows a generalized dimension specBym plicity n changes from event to event according to the distri-
against variable I)/(q—1). This experimental spectrum bution P,(y) wherey=y.—Ymin- Divide the full rapidity
(dotg was calculated in a recent pafddi7] using the pseu- interval of lengthy into v bins of equal sizeSy=y/v. The
dorapiditity phase space for the shower particles produced imultiplicity distribution for a single bin is denoted as
the interactions of'®/Au emulsion at 10.8 GeV. The P, (dy). Particles produced ift independent events are dis-
straight line in this figure indicates good agreement betweetributed in Qv bins of sizedy. Let K be the total number of
the data and the multifractal Bernoulli representati@t). particles produced in th@ events anah,; the multiplicity of
Analogous data orf°Si ions collisions(also represented in particles in theith bin of ath event. If the multifractal ap-
Ref. [17]) do not give such clear indication of the morpho- proach is applicable for the system then the quantity
logical phase transition. This trend is confirmed by the data
represented in Ref.18] and obtained for projective frag- Q v
ments in nuclear collisions at (1-&)GeV. Figure 2 shows Tq(dy)=In > D (pan)® (26)
generalized dimension spectra calculated in R&8] for a=li=1
233 at 0.96A GeV both in the pseudorapiditjower set of
dotg and in the azimuthajupper set of dojsphase spaces. (wherep,=n,;/K) behaves similar to a linear function of
Again the straight lines drawn in this figure indicate goodthe logarithm of the “resolution’R(dy),
agreement between the data and the multifractal Bernoulli
representatior{21). Analogous data calculated in R¢8] To(8y)=Aq+Bg In R(SY). (27
for 8Kr and for *°Fe ion collisions do not give such a clear

indication. If such a behavior is observed for a considerable range of

If we calculate the multifractal specific heat from Fig. 1 R(dy), the generalized dimension may be determined as
i 97 i ~1 F ' -
we obtain for the'®’Au reactions value=%. Figure 2 also Dy=B,/(q—1). For sufficiently large®, one hag9]

gives for the'®U reactions value=13 both in pseudorapid-

ity and in azimuthal phase spaces. One can see that the value o (nd)

of the multifractal specific heat does not practically depend NA— ap JK)9= n

on the type of very heavy ions as well as on their energy or azl izl (Pa) ngo wPaloy)(/K) K@= 1(n)y’

on the type of phase space. This observation can be consid- (28
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FIG. 3. Generalized dimension spectra {&8-AgBr interactions

at 200n GeV[data(dots, taken from Ref[11]]. The data obtained  pe noted that for the relatively “light” heavy-ion§C the
in azimuthal phase space using Takagi methodology. The straighéyperimentally observed value of the multifractal specific
line indicates agreement with multifractal Bernoulli representationneat is different from the valuerz% observed in interactions

1.

where (f(n))=2,_,/(n)P,(8y), and Qv=K/{n). Then
the D, compute from the experimental data using the rela- o
tion al

In(n% =A,+[(q—1)Dy+1]In(n). (29

Figure 3[data(dotg taken from Ref[11]] shows data of o
multiparticle production obtained in azimuthal phase space a 0sr
using the Takagi methodology for dynamical fluctuation of
target evaporated particles if°S-AgBr interactions at
200A GeV. The straight line indicate agreement with multi-
fractal Bernoulli representatiof21). It is interesting that the

of very and moderate heavy ions suchd%u, 2%, and
32C (also see Sec. VI

N\

multifractal specific heat calculated from this figure 3 as 0
for very heavy ions(see previous sectipn

Figure 4(adapted from Ref.19]) shows the data obtained (a)
(using the Takagi methodologyn the pseudorapidity phase
space at'’C-AgBr interactions at 44 GeV for “hot” and 1.0

“cold” events as characterized by two temperatu{48 and
10 MeV correspondingly The straight lines in this figure
indicate agreement between the datats and the multifrac-
tal Bernoulli representatiori21). The multifractal specific

0.5 1.0

In(g)/(q-1)

N\

heatc=3% both for “hot” and for “cold” events. It should 5 05
055
045 0 0.5 1.0
(=
o] (b) In(q)/(¢-1)
0351 FIG. 6. (a) Generalized dimension spectra f§O-AgBr inter-
actions at 60 GeV/nucleofdata taken from Ref.21]). The upper
set of the data corresponds to pseudorapidity phase space and the
0.25 : ) lower set of the data corresponds to azimuthal phase space. Data in
0 0.5 1.0 this figure were obtained in the intervakaV <21. The straight
1 / 1 lines are drawn for comparison with the multifractal Bernoulli rep-
n(q) (Q' ) resentation(21). (b) Generalized dimension spectra f§O-AgBr

interactions at 60 GeV/nucleofata taken from Ref[21]). The
FIG. 4. The generalized dimensiobg againsty In g/(q—1) for upper set of the data corresponds to pseudorapidity phase space and
“hot” (upper set of dojsand for “cold” (lower set of dotsevents  the lower set of the data corresponds to azimuthal phase space. Data
in 2C-AgBr collisions at 4.8 GeV (adapted from Refl19]). The in this figure were obtained in intervak2M < 35. The straight lines
straight lines are drawn for comparison with representatin. are drawn for comparison with the multifractal Bernoulli represen-

tation (21).
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VI. DATA OF A NUMERICAL EXPERIMENT information just forvery heavy ions collisions, while for

. . . . . moderateheavy ions one should use the more fine Takagi
. It is also interesting to check Whethe( numerlca! SIrml""'methodology. Moreover, using the Takagi methodology for
tions based on some models of underlying dynamics of thg,o moderate heavy ions we obtain an additional indication
heavy ions reactions exhibit the multifractal Bernoulli distri- ¢ universality of the multifractal specific heat valae: & for
bution law as well. It is pointed out in a recent pajp20]  yery and moderate heavy ions, while for the relatively
that just the expectation of a phase transition from hadronie|ighi» heavy ions (such as!?C) the multifractal specific
matter to quark-gluon plasma at high temperatures or densifyeat could have different values. It is interesting to check this
has created excitement in the field of ultrarelativistic heavyconclusion for relatively “light” heavy ions using also data
ions collisions. The authors of R¢20] proposed to look for  gptained with the corrected factorial moments. Figurés 6

a generalized dimension spectrum in azimuthal phase spaggq gp) [data(dotg, taken from Ref[21]] show data ob-

to check this possibility. Namely, a large number of particlesined using the scaled factorial moments of large local fluc-
emerging within a narrow azimuthal angular range is deyyations of multiparticle production observed 1FO-AgBr
scribed as a jetlike event. Then, the generalized dimensiongieractions at 60 GeV/nucleon. Upper sets of the data cor-
Dq with g>1 should be dominated just the localizéd the  respond to pseudorapidity phase space and lower sets of the
phase spageevents with large concentration of the particles 4ata correspond to azimuthal phase space. Data in Eay. 6
(see, for instance, Reff14]). The authors of Ref.20] claim  yere obtained in interval 2M <21 whereas data in Fig.
that j[he jettiness can be a S|gnaturg of phase transition in tr@b) were obtained in interval 2 M <35. The straight lines
multifractal formalism. They study jetlike central events in gre grawn for comparison with the multifractal Bernoulli

heavy ion collisions to see the consequences in the azimuthglresentatiori21). The multifractal specific heat in this in-
plane. In particular, they simulate single jetlike events withio 4ction isc=2.

very high multiplicity. Figure 5(adapted from Ref[20]) Thus, we can conclude thét) the data considered in the
show an example of the generalized dimension spedo®  reqent paper of different laboratory and numerical investi-
obtained in Ref[20] for a single-jet event in the azimuthal 4tions exhibit the multifractal Bernoulli fluctuations af®i
phase space. Again the straight line indicates good agreg-seems from comparison between data obtained with differ-
ment of the data with the multifractal Bernoulli distribution ont methods tha® moments could be used foery heavy
(22). In this case, however, this distribution is applicable for;y,¢ reactions while fomoderateheavy ions reactions the
g>3 only. The constant multifractal specific heat, calculated,ore fine Takagi methodology shouid be used. Moreover
from this figure,c=0.56 is different from the experimentally (he vajue of multifractal specific heat obtained for very and

observed values. moderate heavy ions reactions=3 seems to be universal
for this type of reactions, while for relatively “light” heavy
VII. DISCUSSION AND SUMMARY ions reactions we do not observed such universality.

If one compares Figs. 3 and @btained using Takagi
methodology with Figs. 1 and 2(obtained byG-moments
methodology fovery heavy ion$ one can conclude that the  The author is grateful to D. Stauffer for discussions and to
G moments turn out to be applicable to obtain an adequatMachanaim CentefJerusalemfor support.
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