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Stochastic number projection method in the pairing-force problem
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A new stochastic number projection method is proposed. The component of the BCS wave function corre-
sponding to the right number of particles is obtained by means of a Metropolis algorithm in which the weight
functions are constructed from the single-particle occupation probability. Either standard BCS or Lipkin-
Nogami probability distributions can be used, thus the method is applicable for any pairing strength. The
accuracy of the method is tested in the computation of pairing energies of model and real systems.
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The microscopic model of superconductivity introducedthe exact eigenvalues and eigenstates of the pairing force
in 1957 by Bardeen, Cooper, and SchriefBCS) [1] has  Hamiltonian when the pairing strength is constant.
had astonishing success in correlating and explaining the In a recent paper, Ceffl6] has proposed the application
properties of simple superconductors in terms of a few exof a diffusion Monte CarldDMC) technique to the treatment
perimental parameters. For its conceptual and computation@f the pairing force in nuclei. By making use of DMC, it is
simplicity, the BCS method has been widely used as the firspossible to compute exactly the ground-state energy of the
step in nuclear structure calculations involving pairing forcesSystem with a general, state-dependent, pairing interaction, at
[2]. The theory is quite satisfactory when the number of valeast in principle. However, the DMC method can only deal

lence nucleons is large and the pairing interaction is stron lith pairing Har_nilltonian_s_ in WE_iCh thle interﬁction m]:atrixh
(as compared with the level spacjngut in a nucleus with a errents are stlr_||ct y.ﬁ)os.ltlve.th 'Str'ls atways tfe case for tb €
relatively small number of valence nucleons, or with a larg r:aungseigsgll\r/lirr]]g C%T;O?nnl;airr]{terlfa\cct)in er grgii?ecs), %?'Z?(grﬂrole'
spacing between levels, the BCS method fails. As is wel ! g &0 . 9p . P'e,

. cannot be solved in this way. Monte Carlo techniques have
known, the method has two inherent drawbacks.

o : been widely applied to solve the nuclear shell modal—
(112 The BCS W_Ifi‘xe function kl)s nOtdaP elge;]nstate Off theZZ], where pairing plays also an important role.
number operator. The energy obtained from this wave func- -y, 1his paper, we present a novel stochastic algorithm,

tion is, thereforg, biased with an inaccuracy caused by thg,caq on the Metropolis meth®®3], for projecting out the
number fluctuation. N component of the BCS wave function with the correct num-
(2) In some cases, there may be a critical value of theyer of particles. The method does not depend on the type of
pairing force below which the BCS equations have no nonjnteraction involved, as long as we can assume that the par-
trivial solution. Exact calculations show that this behavior isticular BCS functional form holds for our ground-state wave
spurious{3]. function. Moreover, number projection can be done starting
Attempts have been made at improving the method. Kereither from the BCS or Lipkin-Noganii7,8] calculated oc-
man et al [4] showed that the wave function obtained by cupation probability distribution. Therefore, it can be applied
projecting out the BCS function to the sector with the rightfor any strength of the pairing interaction. In what follows,
number of particles is a very good approximation to the exwe first introduce the model Hamiltonian, then discuss our
act wave function. Many works have been devoted toMonte Carlo projection method. Next, we apply the method
particle-number conserving approaches, including projectiofo simple systems, and compare the results with those ob-
before and after variatiof5—11], and many others, see for tained from other approaches.
example Ref[12]. However, it is well known that these =~ We consider the problem of a many-body system de-
approximate methods can lead, in some cases, to significaf€ribed by the Hamiltonian
errors.
The exact solution of this problem is only available for + + = — 1t
some very simple systems, such as a single-level or a twoH =2 €(a; aj+aT°‘J_)_j ]2 . ("1 Vpaidi] )ay aga73; .

Q Q

level model[3,12,13, or the case of equispaced doubly de- =0 e 1)
generate single-particle levdl$4]. Richardson and Sherman

[15] have also developed a general method for determinin%_T andar create particles in time-reversed conjugate single-
J i

particle statesj) and|j) with energiese; . The interaction
*Electronic address: rcapote@infomed.sld.cu Vpair SCatters only time-reversed pairs of particles from the

"Electronic address: agonzale@democritus.udea.edu.co occupied leveldj,j) to the empty one§j’,j’). The indices
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jandj’ run from 1 to(), where(} is the total number of TABLE I. Pairing energies for selected values of the interaction
conjugate orbit pairs. Our purpose is to compute the exagitrength in the two-level model witfd =10 double degenerate lev-
N-particle ground-state energy dfi. We construct the els andN=4,10 particles.

ground state oH by projecting BCS-type wave functions

onto theN-particle sector. Let us define the number of pairs® Exact BCS LNM  DMC  MCRcs MCPiy
N,=N/2. The following projected function is obtained: Q=10N=4
N, Vk 4 1 0.024 0.202 0.161 0.205 0.2@ 0.2033) 0.2053)
rhh=Cy > H u—ala; lvac), (20 0138 1495 1269 1507 1.4@8 15005 1.5005)
Juendng LRSI Hk 1.105 18.05 16.276 18.05 18@ 18.042) 18.052)
where 0=10N=10
b2 p2 \ 12 0.024 0.147 0.122 0.14B 0.1455)
c=l S S 0.060 0.36 0311 0379 0.3539)
N S vl 0.100 0.711 0.603 0.715) 0.6967)
P No 0.500 10.56 9.300 10.56 1045 10.565) 10.565)

are the normalization coefficients/ac) is the vacuum state, 1105 28.40 2564 2840 2840 28402) 28.402)

v; is the amplitude for finding a pair of particles in time-
reversed levelsj,j), and u; is the amplitude for the levels In the Metropolis evaluation, we start from the unper-
being empty. These amplitudes are obtained either by BC$urbed ground state and perform®1thermalization steps.
[1] or Lipkin-Nogami(LN) [7,8] methods. Using the Hamil- We define a trial Metropolis move as a random transition of
tonian given by Eq(1) and the wave functiof2), we arrive  one pair from the occupied level$,j) to the empty ones
to the following expression for the projected ground-statﬁj,'?>_ The trial move is accepted or rejected according to

energy- the Metropolis rule W(jj, ....j{ JW(i, - in)>7,

N ) ) ) ) wherey is a random number uniformed distributed between
EBCS=J_ 21 W(j, - uingelins - v B) 0and 1. An acceptance ratis obtained from the thermal-
T ization loop. Using this ratio a total number of Metropolis
where the sum runs over all possible combinationsNgf Stelps'NM}ftropoliszd%tot'\ldeco"e'aﬁon's_?ﬁed to %St'm?tje averalg?
occupied single-particle  double degenerated state¥d'U€S of ground-state energies. 1he number ot decorrelation

{j1, .- -.in}, from a maximum ofQ) states allowed in the steps were taken @¥gecorrefatior SO/R-
p In the following, we will compare results for several

Monte Carlo evaluation. The “weightsW and “energies” soluble models with those obtained by BCS, [Kg], and

e(j1, .- in,) are defined as DMC [16] methods. We are interested in the two-body pair-
, , ) b\ 1 ing energy E,,, Which we define asEp,= E(Vpair=o)
PRl i UV.y...0. _ I
' o v in, i i, E(Vpaﬁo)' whereE(Vpair.:O) andE(Vpaﬁo) are, r.espectlvely, .
W(j1, ---vJNp)_W , > 22 ' the ground-state energies of the system without and with
I Ing \ Jadng Fig J,’\,p pairing interaction.

(4) The symmetric two-level modélere, we study an exactly
solvable, symmetric, two-level model, with number of par-
) ) — — ticles N and level degenerac§). The pairing interaction is
e(ja, .- JNP):.E{, > ) (2€;—(ji[Vpailii ) taken constant and equal @ This model was first exam-
Jedin -y ined by Hogaase[R25], and its exact solution was studied in
detail by Rho and Rassmussg3] in the caseN={(). More
_ > > recently, the general cadé+ () was discussed in Ref10].
The exact pairing enerdy,,,; is obtained by introducing two

jedin, - INg 7 &g, inpt I .
sets of quasispin operators, so that the problem finally re-
duces to the diagonalization of a tridiagonal mafr3x10].
= — Uju; The results of the BCS approximation, the LN prescription,
X' Vpaidii ) : (5) is proiecti
pai ujv,; and the DMC and Metropolis projection methddi$éCP) us-

ing v andu; either from BCS (MCBcg) or LN (MCPyyy)
This summation is impracticable as it involves a hugecalculations are compared against exact results in Table | for

number of terms {) for usual model spaces. Fortunately, =10 andN=4,10 for several values of the interaction

th iori3) for th ected I ol strengthG. It is shown that Metropolis projection methods
€ expressio or the projected energy allows a simpie give very good agreement with the exact resqlte same
Monte Carlo evaluation, where the ensemblgs . . . ,ij}

quality of agreement as the DMC methodecall that for
are generated with probabili/(j,, ... jn ) by meansofa N the BCS ansatz always have a nontrivial minimum
Metropolis algorithn{23]. Other equivalent forms of E43),  [26]. For N=, a nontrivial solution is found only fofs
see for example Ref24], are not suited for the Monte Carlo greater than 1 —1).

evaluation. We make in Fig 1 a more detailed comparison among
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5 110 TABLE Ill. Single-particle energies of°’Zr in a 10 MeV inter-
,j‘:j 1.05 val around the Fermi energy. The deformation parametet is
2 100l =0.33.
E 0.95 ]
F Levels above Fermi energy Levels below Fermi energy
3 0.90
% 085 ] 4.684 0.0000
2 o080 4.559 —0.254
2 ol 4.275 —1.303
'n‘i: ] ./ —m— Lipkin Nogami Method (LNM) 3.566 —-1.520
g 77 / —¢—B0S method 3.300 ~2.224
E 0654 [ 1 —A— Projection from LNM
X ] ./ —Ww— Projection from BCS 2.908 —2.826
a 080 T T T T v T v T T 1 —
;:& 0.0 0.1 0.2 0.3 04 0.5 2.235 3.914
Pairing Strength G 1.928 —4.125
1.497 —4.605
FIG. 1. Pairing energies in the symmetric two-level model. 1.323
0.311

BCS, LNM, and MCP forN==10. Attention has been
specially paid to the regio®~0.1, where the BCS solution
dissapears and the LNM shows a relative error approxi=1.25 for both particlesof the central potential radius pa-
mately equal to 15%. The results are presented as a ratio @imeter were employefB1]. The computer codE€ASSINI
the given pairing energy to the exact one. The projected sd32] using Cassinian ovals parametrization was applied to
lution is consistent with the exact solutigwithin statistical  obtain single-particle level energies. In the pairing calcula-
errorg in the whole range of pairing strength values. Notetions, we keep all single-particle level§ & 20) obtained in
that, for small G, i.e., at the low density limit or weak pair- the deformed ground-state potential in a 10 MeV interval
ing, the Monte Carlo estimation of the pairing energy be-around the Fermi level5 MeV above and 5 MeV below
comes inaccurate because it is dominated by the statisticalhe single-particle energies relative to Fermi level energy
noise(in this case the acceptance probability of the Metropo-are listed in Table IIl. The number of pairs in this system is
lis chain is almost equal to zerdHowever, this situation has equal to the number of considered single-particle levels be-
no practical importance since the pairing energy becomerpw the Fermi energy, i.e., fnumber of particlesN=18).
very small compared to the one-body energy. Notice alsohe BCS, LN, and MCP results are compared against bench-
that perturbation methods work very well in this low-pairing mark DMC calculations in Table IV for interaction strength
regime. G=0.255. Differences between publishE2l7] and present

Equidistant doubly degenerate levdis this case, we deal BCS results arise from the consideration of the self-energy.
with a system of equispaced doubly degenerate singlethe accuracy of MCP is, once more, comparable to DMC.
particle levels and a constant pairing interaction. This prob- |n conclusion, we have proposed a method for projecting
lem has been solved exacfl¥4,15 for some model spaces out BCS-like wave functions to this-particle Hilbert space.
with values of the interaction strength reproducing typicalThe method shares with the BCS approach its computational
nuclear pairing energies. Results obtained from differentimplicity. The use of LN approximate projection makes it
methods are shown in Table Il f&@ =N=8 and three val- possible to apply the MCP at any pairing strength, even be-
ues of G. Again MCP is in good agreement with the exact|ow the BCS critical coupling, if it exists. These properties
results. make the method very suitable for nuclear structure calcula-

The °%Zr nucleus Here we apply our method to compute tions. We stress that, unlike DMC, any pairing interaction
the ground-state pairing energy of the strongly deformedcan be treated in our approach.
neutron-rich nucleus®zr. Recently, the pairing problem in In addition to the nuclear pairing problem, there are other
this nucleus was studied by the DMC metH@f]. The av-  possibilities of application of the MCP method. Recently, we
erage field was assumed to be an axially deformed Woodsave used it in the computation of the ground-state energy of
Saxon potentia[28] with Cassinian ovals shape parametri- electron-hole systems in a quantum ¢i88]. The electron-
zation [29]. The universal Woods-Saxon parametershole attractive Coulomb potential is the pairing interaction in
proposed by Dudelet al. [30] were used in the single- this case. MCP is used to improve the BCS estimation. The
particle level calculations, except that smaller valu& ( BCS approach to electron correlations in molecii4,35

is another example with Coulomb matrix elements. It was

TABLE Il. Pairing energies for selected values of the interactionshown that this approach fails to reproduce the correlation
strength in the system witR =8 double degenerate levels and ~ energy of small molecules, probably because of the need of
=8 patrticles.

TABLE IV. Ground-state pairing energy for the interaction
G Exact BCS LNM  DMC  MCRcs MCPyy strengthG=0.255 in the'°%Zr nucleus.

0.7 5309 389 5245 523 5.285) 5.256)
09 8018 6.18 7.977 8.0® 7.985) 7.974)
11 11181 883 11.05 11.09 11.1x5 11.099) 0.255 5.0 3.87 4.94 5(1) 4.996)

G DMC BCS LNM  MCPscs MCPy
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an exact projection. MCP may be a good alternative. Finally, The authors acknowledge support from the Colombian In-
we shall mention as a possibility of application the recentstitute for Science and Technolog€OLCIENCIAS). R.C.
study of superconductivity in ultrasmall graif@6]. Some of is grateful to the Physics Department of the Universidad de
these problems are currently under investigation. Antioquia for kind hospitality and support.
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