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Stochastic number projection method in the pairing-force problem
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A new stochastic number projection method is proposed. The component of the BCS wave function corre-
sponding to the right number of particles is obtained by means of a Metropolis algorithm in which the weight
functions are constructed from the single-particle occupation probability. Either standard BCS or Lipkin-
Nogami probability distributions can be used, thus the method is applicable for any pairing strength. The
accuracy of the method is tested in the computation of pairing energies of model and real systems.
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The microscopic model of superconductivity introduc
in 1957 by Bardeen, Cooper, and Schrieffer~BCS! @1# has
had astonishing success in correlating and explaining
properties of simple superconductors in terms of a few
perimental parameters. For its conceptual and computati
simplicity, the BCS method has been widely used as the
step in nuclear structure calculations involving pairing forc
@2#. The theory is quite satisfactory when the number of
lence nucleons is large and the pairing interaction is str
~as compared with the level spacing!. But in a nucleus with a
relatively small number of valence nucleons, or with a lar
spacing between levels, the BCS method fails. As is w
known, the method has two inherent drawbacks.

~1! The BCS wave function is not an eigenstate of t
number operator. The energy obtained from this wave fu
tion is, therefore, biased with an inaccuracy caused by
number fluctuation.

~2! In some cases, there may be a critical value of
pairing force below which the BCS equations have no n
trivial solution. Exact calculations show that this behavior
spurious@3#.

Attempts have been made at improving the method. K
man et al. @4# showed that the wave function obtained
projecting out the BCS function to the sector with the rig
number of particles is a very good approximation to the
act wave function. Many works have been devoted
particle-number conserving approaches, including projec
before and after variation@5–11#, and many others, see fo
example Ref.@12#. However, it is well known that thes
approximate methods can lead, in some cases, to signifi
errors.

The exact solution of this problem is only available f
some very simple systems, such as a single-level or a t
level model@3,12,13#, or the case of equispaced doubly d
generate single-particle levels@14#. Richardson and Sherma
@15# have also developed a general method for determin
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the exact eigenvalues and eigenstates of the pairing f
Hamiltonian when the pairing strength is constant.

In a recent paper, Cerf@16# has proposed the applicatio
of a diffusion Monte Carlo~DMC! technique to the treatmen
of the pairing force in nuclei. By making use of DMC, it i
possible to compute exactly the ground-state energy of
system with a general, state-dependent, pairing interactio
least in principle. However, the DMC method can only de
with pairing Hamiltonians in which the interaction matr
elements are strictly positive. This is always the case for
nuclear pairing Hamiltonian, but other types of pairing pro
lems, involving Coulomb interacting particles for examp
cannot be solved in this way. Monte Carlo techniques h
been widely applied to solve the nuclear shell model@17–
22#, where pairing plays also an important role.

In this paper, we present a novel stochastic algorith
based on the Metropolis method@23#, for projecting out the
component of the BCS wave function with the correct nu
ber of particles. The method does not depend on the typ
interaction involved, as long as we can assume that the
ticular BCS functional form holds for our ground-state wa
function. Moreover, number projection can be done start
either from the BCS or Lipkin-Nogami@7,8# calculated oc-
cupation probability distribution. Therefore, it can be appli
for any strength of the pairing interaction. In what follow
we first introduce the model Hamiltonian, then discuss o
Monte Carlo projection method. Next, we apply the meth
to simple systems, and compare the results with those
tained from other approaches.

We consider the problem of a many-body system
scribed by the Hamiltonian

H5(
j .0

V

e j~aj
†aj1aj̄

†
aj̄ !2 (

j ,, j 8.0

V

^ j 8 j̄ 8uVpairu j j̄ &aj 8
† aj̄ 8

†
aj̄aj .

~1!

aj
† andaj̄

† create particles in time-reversed conjugate sing

particle statesu j & and u j̄ & with energiese j . The interaction
Vpair scatters only time-reversed pairs of particles from
occupied levelsu j , j̄ & to the empty onesu j 8, j̄ 8&. The indices
3477 ©1999 The American Physical Society
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j and j 8 run from 1 toV, whereV is the total number of
conjugate orbit pairs. Our purpose is to compute the ex
N-particle ground-state energy ofH. We construct the
ground state ofH by projecting BCS-type wave function
onto theN-particle sector. Let us define the number of pa
Np5N/2. The following projected function is obtained:

uC0
N&5CN (

j 1 ,•••, j Np

F )
k5 j 1

j Np vk

uk
ak

†ak̄
†G uvac&, ~2!

where

CN5S (
j 1 , . . . ,j Np

v j 1

2 . . . v j Np

2

uj 1

2 . . . uj Np

2 D 21/2

are the normalization coefficients,uvac& is the vacuum state
v j is the amplitude for finding a pair of particles in time
reversed levelsu j , j̄ &, anduj is the amplitude for the levels
being empty. These amplitudes are obtained either by B
@1# or Lipkin-Nogami~LN! @7,8# methods. Using the Hamil
tonian given by Eq.~1! and the wave function~2!, we arrive
to the following expression for the projected ground-st
energy:

EBCS
N 5 (

j 1 ,•••, j Np

W~ j 1 , . . . ,j Np
!«~ j 1 , . . . ,j Np

!, ~3!

where the sum runs over all possible combinations ofNp
occupied single-particle double degenerated sta
$ j 1 , . . . ,j Np

%, from a maximum ofV states allowed in the
Monte Carlo evaluation. The ‘‘weights’’W and ‘‘energies’’
«( j 1 , . . . ,j Np

) are defined as

W~ j 1 , . . . ,j Np
!5

v j 1

2
•••v j Np

2

uj 1

2
•••uj Np

2 S (
j 18 , . . . ,j Np

8

v j
18

2
. . . v j

Np
8

2

uj
18

2
. . . uj

Np
8

2 D 21

,

~4!

«~ j 1 , . . . ,j Np
!5 (

j P$ j 1 , . . . ,j Np
%

~2e j2^ j j̄ uVpairu j j̄ &!

2 (
j P$ j 1 , . . . ,j Np

%
(

j 8P” $ j 1 , . . . ,j Np%

3^ j 8 j̄ 8uVpairu j j̄ &
ujv j 8

uj 8v j

. ~5!

This summation is impracticable as it involves a hu
number of terms (Np

V ) for usual model spaces. Fortunate

the expression~3! for the projected energy allows a simp
Monte Carlo evaluation, where the ensembles$ j 1 , . . . ,j Np

%
are generated with probabilityW( j 1 , . . . ,j Np

) by means of a
Metropolis algorithm@23#. Other equivalent forms of Eq.~3!,
see for example Ref.@24#, are not suited for the Monte Carl
evaluation.
ct

s

S

e

s

In the Metropolis evaluation, we start from the unpe
turbed ground state and perform 105 thermalization steps
We define a trial Metropolis move as a random transition
one pair from the occupied levelsu j , j̄ & to the empty ones
u j 8, j̄ 8&. The trial move is accepted or rejected according
the Metropolis rule W( j 18 , . . . ,j Np

8 )/W( j 1 , . . . ,j Np
).g,

whereg is a random number uniformed distributed betwe
0 and 1. An acceptance ratioR is obtained from the thermal
ization loop. Using this ratio a total number of Metropol
steps,NMetropolis5300 Ndecorrelationis used to estimate averag
values of ground-state energies. The number of decorrela
steps were taken asNdecorrelation550/R.

In the following, we will compare results for severa
soluble models with those obtained by BCS, LN@7,8#, and
DMC @16# methods. We are interested in the two-body pa
ing energy Epair, which we define asEpair5E(Vpair50)

2E(VpairÞ0) , whereE(Vpair50) andE(VpairÞ0) are, respectively,
the ground-state energies of the system without and w
pairing interaction.

The symmetric two-level model. Here, we study an exactly
solvable, symmetric, two-level model, with number of pa
ticles N and level degeneracyV. The pairing interaction is
taken constant and equal toG. This model was first exam
ined by Hogaasen@25#, and its exact solution was studied
detail by Rho and Rassmussen@3# in the caseN5V. More
recently, the general caseNÞV was discussed in Ref.@10#.
The exact pairing energyEpair is obtained by introducing two
sets of quasispin operators, so that the problem finally
duces to the diagonalization of a tridiagonal matrix@3,10#.
The results of the BCS approximation, the LN prescriptio
and the DMC and Metropolis projection methods~MCP! us-
ing v j anduj either from BCS (MCPBCS) or LN (MCPLNM)
calculations are compared against exact results in Table
V510 and N54,10 for several values of the interactio
strengthG. It is shown that Metropolis projection method
give very good agreement with the exact results~the same
quality of agreement as the DMC method!. Recall that for
NÞV the BCS ansatz always have a nontrivial minimu
@26#. For N5V, a nontrivial solution is found only forG
greater than 1/(N21).

We make in Fig. 1 a more detailed comparison amon

TABLE I. Pairing energies for selected values of the interact
strength in the two-level model withV510 double degenerate lev
els andN54,10 particles.

G Exact BCS LNM DMC MCPBCS MCPLNM

V510,N54

0.024 0.202 0.161 0.205 0.205~3! 0.203~3! 0.205~3!

0.138 1.495 1.269 1.507 1.498~3! 1.500~5! 1.500~5!

1.105 18.05 16.276 18.05 18.05~9! 18.05~2! 18.05~2!

V510,N510

0.024 0.147 0.122 0.146~2! 0.145~5!

0.060 0.36 0.311 0.373~9! 0.353~9!

0.100 0.711 0.603 0.717~5! 0.696~7!

0.500 10.56 9.300 10.56 10.56~5! 10.56~5! 10.56~5!

1.105 28.40 25.64 28.40 28.40~7! 28.40~2! 28.40~2!
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BCS, LNM, and MCP forN5V510. Attention has been
specially paid to the regionG'0.1, where the BCS solution
dissapears and the LNM shows a relative error appro
mately equal to 15%. The results are presented as a rat
the given pairing energy to the exact one. The projected
lution is consistent with the exact solution~within statistical
errors! in the whole range of pairing strength values. No
that, for small G, i.e., at the low density limit or weak pa
ing, the Monte Carlo estimation of the pairing energy b
comes inaccurate because it is dominated by the statis
noise~in this case the acceptance probability of the Metro
lis chain is almost equal to zero!. However, this situation ha
no practical importance since the pairing energy becom
very small compared to the one-body energy. Notice a
that perturbation methods work very well in this low-pairin
regime.

Equidistant doubly degenerate levels. In this case, we dea
with a system of equispaced doubly degenerate sin
particle levels and a constant pairing interaction. This pr
lem has been solved exactly@14,15# for some model space
with values of the interaction strength reproducing typi
nuclear pairing energies. Results obtained from differ
methods are shown in Table II forV5N58 and three val-
ues ofG. Again MCP is in good agreement with the exa
results.

The 100Zr nucleus.Here we apply our method to compu
the ground-state pairing energy of the strongly deform
neutron-rich nucleus100Zr. Recently, the pairing problem in
this nucleus was studied by the DMC method@27#. The av-
erage field was assumed to be an axially deformed Woo
Saxon potential@28# with Cassinian ovals shape paramet
zation @29#. The universal Woods-Saxon paramete
proposed by Dudeket al. @30# were used in the single
particle level calculations, except that smaller valuesR0

FIG. 1. Pairing energies in the symmetric two-level model.

TABLE II. Pairing energies for selected values of the interact
strength in the system withV58 double degenerate levels andN
58 particles.

G Exact BCS LNM DMC MCPBCS MCPLNM

0.7 5.309 3.89 5.245 5.27~3! 5.28~5! 5.25~6!

0.9 8.018 6.18 7.977 8.06~2! 7.98~5! 7.97~4!

1.1 11.181 8.83 11.05 11.05~4! 11.11~5! 11.09~9!
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51.25 for both particles! of the central potential radius pa
rameter were employed@31#. The computer codeCASSINI

@32# using Cassinian ovals parametrization was applied
obtain single-particle level energies. In the pairing calcu
tions, we keep all single-particle levels (V520) obtained in
the deformed ground-state potential in a 10 MeV inter
around the Fermi level~5 MeV above and 5 MeV below!.
The single-particle energies relative to Fermi level ene
are listed in Table III. The number of pairs in this system
equal to the number of considered single-particle levels
low the Fermi energy, i.e., 9~number of particlesN518).
The BCS, LN, and MCP results are compared against ben
mark DMC calculations in Table IV for interaction streng
G50.255. Differences between published@27# and present
BCS results arise from the consideration of the self-ener
The accuracy of MCP is, once more, comparable to DMC

In conclusion, we have proposed a method for project
out BCS-like wave functions to theN-particle Hilbert space.
The method shares with the BCS approach its computatio
simplicity. The use of LN approximate projection makes
possible to apply the MCP at any pairing strength, even
low the BCS critical coupling, if it exists. These properti
make the method very suitable for nuclear structure calc
tions. We stress that, unlike DMC, any pairing interacti
can be treated in our approach.

In addition to the nuclear pairing problem, there are oth
possibilities of application of the MCP method. Recently, w
have used it in the computation of the ground-state energ
electron-hole systems in a quantum dot@33#. The electron-
hole attractive Coulomb potential is the pairing interaction
this case. MCP is used to improve the BCS estimation. T
BCS approach to electron correlations in molecules@34,35#
is another example with Coulomb matrix elements. It w
shown that this approach fails to reproduce the correla
energy of small molecules, probably because of the nee

TABLE III. Single-particle energies of100Zr in a 10 MeV inter-
val around the Fermi energy. The deformation parameter i«
50.33.

Levels above Fermi energy Levels below Fermi energy

4.684 0.0000
4.559 20.254
4.275 21.303
3.566 21.520
3.300 22.224
2.908 22.826
2.235 23.914
1.928 24.125
1.497 24.605
1.323
0.311

TABLE IV. Ground-state pairing energy for the interactio
strengthG50.255 in the100Zr nucleus.

G DMC BCS LNM MCPBCS MCPLNM

0.255 5.0 3.87 4.94 5.1~1! 4.98~6!
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an exact projection. MCP may be a good alternative. Fina
we shall mention as a possibility of application the rec
study of superconductivity in ultrasmall grains@36#. Some of
these problems are currently under investigation.
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