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Equivalence of the impulse approximation and the Gersch-Rodriguez-Smith
series for structure functions

A. S. Rinat1,2 and B. K. Jennings2
1Department of Particle Physics, Weizmann Institute of Science, Rehovot 76100, Israel

2TRIUMF,Vancouver, British Columbia, Canada V6T 2A3
~Received 2 November 1998!

For a nonrelativistic system we compare the Gersch-Rodriguez-Smith~GRS! and the impulse approximation
~IA ! approaches to the structure function. The first of these two approaches generates a series in 1/q, whereas
the second treats the interaction between the struck and core nucleons perturbatively. Instead of the IA series
we derive a DWIA representation and prove that, up to and including terms of orderO(1/q2), it is contained
in the GRS series of the same order. This clarifies the relation between the two approaches and suggests that
the two approaches, when treated exactly, produce identical structure function to arbitrary order in 1/q.
@S0556-2813~99!02406-1#

PACS number~s!: 24.10.2i, 13.60.2r, 25.30.2c, 25.70.Lm
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I. INTRODUCTION

Virtually all computations of structure functions of nucle
as measured by inclusive scattering of high-energy electr
use relativistic generalizations of either the nonrelativis
~NR!, perturbative impulse approximation~IA ! series@1,2#,
or of a nonperturbative theory@3#, formulated by Gersch
Rodriguez, and Smith~GRS! @4#.

The GRS approach produces an expansion of the resp
in inverse powers of the momentum transferq with coeffi-
cient functions, depending on the inter-particle interactionV
and the many-body density-matrices. The leading term
this series is theq→` limit while the correction terms con
tain the final state interactions~FSI!.

To lowest order the IA is just the plane wave impul

approximation ~PWIA! where the interaction V̄(r1)
5(k>2V(r12rk) between the struck nucleon and the core
neglected. The remaining terms in the IA series are then
contributions of increasing order in the initially neglect
struck nucleon-core interaction, i.e., the FSI calculated p
turbatively.

The GRS and the IA series are very dissimilar, yet ea
provides a representation of the structure function. Con
quently anexact treatment of each must provide identic
results. A frequently raised question is how the two are
lated, and which approach is better when treatedapproxi-
mately, i.e., truncated at finite order in some perturbation
small quantity. To our knowledge not even a criterion, to
followed in principle, has been previously formulated. T
main purpose of the present article is just such a formulat
followed by a proof of equivalence.

The above quest is encumbered by the fact that we do
know of a manageable evaluation of FSI in the IA series
exists for the GRS theory. A prerequisite for a comparison
therefore a realistic model for FSI, replacing the IA serie

As to the nature of such a model, one is guided by the
that the relative weight of FSI in the response diminish
with increasingq. It is therefore natural to consider on th
one hand kinematic conditions, generally reached for sca
ing with high beam energies. On the other hand, high en
PRC 590556-2813/99/59~6!/3371~6!/$15.00
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gies are by necessity accompanied by effects due to rela
ity, particle production and the like, whose treatment c
never be exact. We therefore suggest as a starting po
well-defined nonrelativistic~NR! model, based on a Hamil
tonian for point-particles which cannot be excited. Such
model can be treated exactly and provides insight which la
can be incorporated in realistic situations.

We start in Sec. II with the GRS theory, recapitulate so
formally exact expressions for the lowest order terms of
GRS series and cite results for partial summations of sele
higher order terms. In Sec. III we consider the response
semi-inclusive~SI! A(e,e8p)XA21 reaction in the PWIA,
which features the one-hole spectral function. We then s
gest a realistic form for FSI which in nuclear parlance
called the distorted wave impulse approximation~DWIA !.
Integration of the SI response over the momenta of the o
going nucleon produces for that model the totally inclus
~TI! cross section. In Sec. IV we demonstrate that the GRS
O(1/q2) contains the DWIA terms to the same order a
attribute the absence of an extra term to the approxim
nature of the chosen DWIA. In Sec. V we briefly discuss t
embedding of the above in a relativistic theory.

II. THE GRS SERIES AND SOME RESUMMATIONS

We consider the TI structure function, or the respon
STI(q,v) for a NR many-body system to a scalar perturb
tion, defined as the ratio of cross sections for the inclus
scattering of a projectile from a composite target and from
constituent. The kinematic variables (q,v) are the momen-
tum and energy, transfered by the projectile to the target.
response per particle can be written as

STI~q,v!5~2pA!21^FA
0 urq

†d~v1EA
02HA!rquFA

0&,

5~2pA!21(
m

u^FA
0 urq

†uFA
m&u2d~v1EA

02EA
m!,

~1!

whereFA
m ,EA

m are states and energies of the exactA-body
Hamiltonian HA . For largeq it is useful to introduce the
3371 ©1999 The American Physical Society
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3372 PRC 59A. S. RINAT AND B. K. JENNINGS
reduced responsef(q,y)5(q/M )S(q,v), with M the mass
of a particle andy a kinematic variable, replacing the energ
lossv @4,5#

y5
M

q S v2
q2

2M D . ~2!

Substitution ofrq5( je
iq.r j into Eq. ~1! produces incoheren

and coherent components. When considering high-q re-
sponses, it suffices to consider the dominant incoherent
where a single particle is tracked in its propagation throu
the medium@5#. We cite Ref.@4# for a derivation of the GRS
series

f~q,y!5 (
n>0

~1/vq!nFn~y!, ~3!

where vq5q/M is the recoil velocity, corresponding to
momentum transferq. The coefficient functionsFn(y) are
functionals of the interparticle interactionV and density ma-
tricesrn(18 j ;1 j ), j >2. Those are diagonal in all coordinate
j 5r j , except that of the struck nucleon, which is chosen
be ‘‘1.’’ All derive from rA(18,k;1,k),A>k>2 and satisfy
in our convention the relations

rn~18,2 . . .n;1,2 . . .n!

5
1

~A2n!! S P j 5n11
A E d j D rA~18 j ;1 j !,

rA~18k;1k!5A!FA* ~18,k!FA~1,k!. ~4!

The appearance of exact many-body densities shows
from the onset the theory accounts for correlations of
target nucleons.

For our purposes it suffices to mentionrn for n51,2,3
which enter expressions for the asymptotic limitF0 and the
two dominant FSI correctionsF1 ,F2:

F0~y!5
1

A! E ds

2p
eiysE d1S Pk>2

A E dkD rA~12s,k;1,k!

5
1

AE ds

2p
eisyE d1r1~12s;1!5

1

4p2Euyu

`

dppn~p!,

~5a!

1

vq
F1~y!5

i

A! E ds

2p
eiysE d1FPk>2

A E dkG
3rA~12s,k;1k!(

k>2
x̃q~12k,s!

5
i

AE ds

2p
eiysE E d1d2r2~12s,2;12!

3x̃q~122,s!, ~5b!
rt,
h

o

at
e

1

vq
2

F2~y!52
1

2A! E ds

2p
eisyE d1FPk>2

A E dkG
3rA~12s,k;1,k!F E

0

s

ds(
k>2

x̃q~12k,s!G2

1
1

vq
2

F2
(r )~y!, ~5c!

1

vq
2

F2
(r )~y!52

1

A! E ds

2p
eisyE d1FPk>2

A E dkG
3rA~12s,k;1,k!F1

2

]2

]s2 S (
k>2

E
0

s

dsx̃q

3~12k,s! D 2

2S (
k>2

x̃q~12k,s! D 2G ~5d!

with n(p) the single-particle momentum distribution. Th
expression forF2

(r ) is easily derived from Eq.~14! in Ref.
@6#. Above we also introduced

x̃q~1,s!52~1/vq!E
0

s

ds@V~12s!2V~1!#

[2~1/vq!E
0

s

dsV~1,s!52~1/vq!

3E
0

s

ds@V s
(1)~1!2V (2)~1!#. ~6!

Equation~6! defines the coordinate representation of the o
shell eikonal phasex̃(1,s) corresponding to the totalV and
its componentsV (a),a51,2 which are characteristic of th
GRS theory or of path integral methods for the response@7#.

It is frequently useful to make resummations within t
GRS series~3!. We consider first a ladder sum of repeat
interactions which results in the replacementV→t5Ve f f .
This replacement is mandatory if the bare interactionV is
singular. The corresponding change in the phasex̃, Eq. ~6!,
is

i x̃→G̃[ei x̃21, ~7!

with G̃ the total off-shell profile function.
Next we consider a cumulant resummation which to lo

est order reads@8#

f~q,y!5
1

AE ds

2p
eisyE d1r1~12s;1!

3expF E d2r2~12s,2;1,2!G̃q~122,s!

r1~12s;1!
1•••

G .

~8!
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When expanded, it reproduces the lowest order terms in
GRS series, as well as selected higher order contribut
~3!. In the next section we shall compare with this partia
summed results.

III. FSI CORRECTIONS TO THE PWIA RESPONSE

We approach the IA treatment of the TI response for a
system of point-particles by considering first SI scatteri
The corresponding response per nucleon is

SSI~q,v;p!5
1

A (
m

u^FA
0 urq

†uC (A21)m ;p1q
(2) &u2

3dS v2Dm2
~p1q!2

2M D , ~9!

wherep is the momentum of the struck, andp1q that of the
detected outgoing nucleon after absorbing the momen
transferq. C (A21)m ;p1q

(2) is the state of that nucleon, scatter

from a nucleus ofA21 particles in statem. Dm is the sepa-
ration energy of a nucleon in the ground-stateA-body sys-
tem, with the daughter nucleus in the stateFA21

m . We write
the total Hamiltonian as

HA~1;k!5HA21~k!1T~1!1V̄~1! ~10!

with V̄(1)5(k>2V(12k), the interaction of particle ‘‘1’’
with the core. Neglect of the latter defines the PWIA

@C (A21)m ;p1q
(2) ~r1 ;rk!#

PWIA→FA21
m ~rk!e

2 i (p1q)•r1.

~11!

When substituted into Eq.~9!, it produces the standar
PWIA approximation for the SI response

SSI;PWIA~q,v;p!5E dEP~p,E!dS E2v2
~p1q!2

2M D ,

~12a!

fSI;PWIA~q,y0 ;p!'d~y02pz!n~p!, ~12b!

n~p!5E dEP~p,E!. ~12c!

Here P(p,E) is the single-hole spectral function, depende
on the separation-energies of each of the daughter statem.
Equation ~12b! results from the approximationDm→^D&
with ^D& an average separation energy. One may then rep
the energy lossv by the IA scaling variable, also in terms o
^D&

y052q1A2M ~v2^D&!. ~13!

FSI corrections to the PWBA result Eq.~12b! are, by defi-
nition, contributions due to the residual interactionV, treated
perturbatively. With no practical way to do so systema
cally, we proceed in an approximative manner.

Whereas the core particlesk have momenta of the order o
the Fermi momentumpF , for particle 1 after absorption o
the high-mass virtual photon,up1qu'q@pF , i.e., its mo-
mentum exceeds by far the average momentum of a
he
ns

.

m

t

ce

-

re

particle. Whenever a state contains both 1 andk, one may to
lowest order neglectupu altogether, or equivalently, freeze i
a standard fashion the core coordinatesk. For the final scat-
tering states in Eq.~8! we now suggest@9–11#

C (A21)m ;p1q
(2) ~1;k!'FA21

m ~k!cp1q
(2) ~1;^k&!. ~14!

One notes that, contrary to the perturbative nature of
actual IA series, the approximation~14! is nonperturbative.

The eikonal approximation for a state, describing scat
ing of the high-momentum, knocked-out particle 1 from
static, noncentral field(k>2V(12^k&) reads@12#

ck
6~1;^k&!5eikz1jk

6~1;^k&! ~15!

with distortion functionj

jq
(2)~1;^k&!5expF2

i

vq
(

k
E

z1

`

dzV~12^k&2z!G .

~16!

Substituting Eq.~14! into Eq. ~9! and replacing again state
dependent separation energies by an average, one perf
closure over states of the daughter nucleus and obtains

fSI~q,y0 ;p!'d~y02pz!^FA
0~18;k!ue2 iq•r18ucp1q

(2) ~18;k!&

3^cp1q
(2) ~1;k!ueiq•r1uFA

0~1;k!&*

'd~y02pz!^FA
0~18;k!ue2 ip•r18ujp1q

(2) ~18;^k&!&

3^jp1q
(2) ~1;^k&ueip•r1uFA

0~1;k!&* . ~17!

The distorted wave, Eq.~15!, for the outgoing particle 1
depends implicitly on all other coordinates^k&. Having per-
formed closure, we treat those again as dynamical coo
nates and obtain for realV the following expression for the
SI response in the DWIA (vp1q'vq)

fSI,DWIA~q,y0 ;p!5
1

A!
d~y02pz!E dseip.s

3E d1FPk>2E dkGrA~12s,k;1,k!

3expF2
i

vq
(

k
E

z18

z1
dzV~12k2z!G .

~18!

Since in the model, degrees of freedom other than po
particles are absent, the TI response is obtained by integ
ing fSI over missing momentap leading to

fTI,DWIA~q,y0!5
1

A! E ds

2p
eiy0sE d1Pk>2E dkrA

3~12s,k;1,k!expF i (
k>2

x̃q
(1)~12k,s!G

~19!

with s5r12r185sq̂ lying in the direction ofq. The above
result still has the full complexity of a many-body problem
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present in theA-body density matrix. That complexity i
considerably reduced in a Kirkwood independent-pair
proximation

rA~1k;18k!'
~A21!!

~A21!A21

Pk>2
A r2~1k;18k!

@r1~1;18!#A22
, ~20!

which respects the sum rules~4!. Substitution in Eq.~19!
produces for the reduced TI response per nucleon in
DWIA

fTI,DWIA~q,y0!

'
1

A~A21!A21E ds

2p
eiy0s

E d1

@r1~12s;1!#A22

3FPk>2E dkrA~12s,k;1,k!G̃q
(1)~12k,s!G

'
1

AE E ds

2p
eiy0sd1r1~12s;1!

3expF E d2r2~12s,2;1,2!G̃q
(1)~122,s!

r1~12s;1!
G ~21a!

'
1

AE dy08F0~y02y08!Rq~y08!, ~21b!

Rq~y0!'E ds

2p
eiy0sE d1

3expF E d2r2~12s,2;1,2!G̃q
(1)~122,s!

r1~12s;1!
G .

~21c!

For later use we expressed the response~21a! as a convolu-
tion of the asymptotic limit and a generalized FSI factor@cf.
Eq. ~5a!, of the last article of Ref.@3##.

There clearly is a formal similarity in the expressions~8!
and~21a! for the TI response in, respectively, the first cum
lant expression in the GRS theory, and the approximate
series. The apparent differences amount to~i! the appearance
of y0 instead ofy5yw and~ii ! the presence in the DWIA o
a profile functionG̃ (1), related to the first potential in Eq.~6!
and not to both, as is the case in the GRS theory. In
following section we shall investigate whether, and to wh
extent, these apparently similar expressions coincide.

IV. MEASURE OF EQUIVALENCE OF GRS AND
APPROXIMATE IA SERIES

There are two, in principle, equivalent ways to compa
the exact IA and GRS series for the response, namely
isolating and counting powers in either the residual inter
tion V̄(1) or in 1/q. However, in view of the fact that the IA
series is treated approximately, the exact GRS series
comes the natural standard. Both approaches shall be tr
-

e

-
A

e
t

e
y
-

e-
ed

to terms up to, and includingO(1/q2).
We start with the GRS series~3!

f~q,y;V!5 (
n>0

~1/vq!nFn~y;V!. ~22!

Using ~6! we make explicit the two components of th
‘‘full’’ interaction action in Eq. ~6!

F0~y!5
1

4p2Euyu

`

dppn~p!, ~23a!

F1~y!52
i

A! E ds

2p
eiysE d1FPk>2

A E dkGrA~12s,k;1k!

3 (
k>2

E
0

s

ds@V s
(1)~12k!2V (2)~12k!#

52
1

AE ds

2p
eiysE E d1d2r2~12s,2;12!

3E
0

s

ds@V s
(1)~122!2V (2)~122!#, ~23b!

F2~y!5
i 2

A! E ds

2p
eisyE d1FPk>2

A E dkGrA~12s,k;1k!

3
1

2 F E
0

s

ds(
k>2

E
0

s

ds@V s
(1)~12k!2V (2)~12k!#G2

1F2
(r )~y!. ~23c!

Next we expand in parallel the approximate DWIA expre
sion ~21a!

fTI,DWIA~q,y0 ;V (1)!

5
1

AE ds

2p
eiy0sE d1F r1~12s;1!

2
i

vq
E d2r2~12s,2;1,2!E

0

s

dsV s
(1)~122!

2
1

2vq
2E d2S E

0

s

dsV s
(1)~122! D 2

2
1

2vq
2E d2E d3r3~12s,2,3;1,2,3!

3E
0

s

dsV s
(1)~122!E

0

s

ds8V s8
(1)

~123!G1O~1/vq
3!.

~24!

It is then our quest to investigate whether, and to w
extent, the terms~23a!–~23c! of the GRS series contain th
DWIA counterparts, Eq.~24!. We do so as follows:
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~i! Separate in Eqs.~23! terms that depend exclusively o
V (1). The former we expect to meet in Eq.~24!.

~ii ! Track in the remainder of Eqs.~23! parts whereV (2)

acts on the ground state inrA . Using Eq.~8! one has

F(
l>2

V~12k!GF~1,k!5@HA2HA212T~1!#F~1,k!

'2E dp

~2p!3
eip•rS ^D&1

p2

2M DF~p,k!, ~25!

where, in line with the assumption made above, separa
energies are again replaced by an average.

~iii ! Collect terms, which enable the replacement of
GRS-West scaling variable by the IA one, making use o

y~5yw!5y01
1

vq
S y0

2

2M
1^D& D . ~26!

We start with

F1~V!5F1
(1)~V (1)!1F1

(2)~V (2)!, ~27!

where the superscripts indicate dependence onV (1),V (2).
Following ~i! we consider the part

1

vq
F1

(2)~y!52
i

A!

]

]yE ds

2p
eiysE d1FPk>2E dkGrA

3~12s,k;1,k!
1

vq
(
l>2

V~ l !

5
]

]yE dp

~2p!3
d~pz2y!

1

vq
S ^D&1

p2

2M Dn~p!

5~y2y0!
dF0~y!

dy
. ~28!

Continuing withF2 we write @cf. Eqs.~5c!, ~23c!#

F2~V!5F2
(1)1F2

(2)1F2
(1,2)1F2

(r ) , ~29!

with F2
(1,2) containing mixedV (1),V (2) terms. The reasoning

which leads to Eq.~28! produces

1

vq
2

F2
(2)~y!5

1

2A!

]2

]y2E ds

2p
eiysE d1FP l>2E dl G

3rA~12s,k;1,k!
1

vq
(
k>2

V~12k!
1

vq

3(
l>2

V~12 l !

5
1

2 F 1

vq
S ^D&1

y2

2M D 2Gd2F0~y!

dy2

5
1

2
~y2y0!2

d2F0~y!

dy2
. ~30!

Finally for the mixed term
n

e

1

vq
F2

(1,2)~y!52
1

A!

]

]yE ds

2p
eiysE d1FP l>2E dl G

3rA~12s,k;1,k!
1

vq
(
k>2

V~12k!
1

vq

3(
l>2

E
0

s

dsV~12 l 2s!]

5
1

vq
S y2

2M
1^D& D dF1

(1)~y!

dy
5~y2y0!

dF1
(1)~y!

dy
.

~31!

Assembling the last three results and using Eq.~26! one
finds

f~q,y;V!5F0~y!1
1

vq
F1~y;V!1

1

vq
2

F2~y;V!1O~1/vq
3!

~32a!

5FF0~y!1~y2y0!
dF0~y!

dy
1

1

2
~y2y0!2

d2F0~y!

dy2 G
1

1

vq
FF1

(1)~y!1~y2y0!
dF1

(1)~y!

dy G1
1

vq
2 @F2

(1)~y!#

1
1

vq
2

F2
(r )~y!1O~1/vq

3! ~32b!

5FF0~y0!1
1

vq
F1

(1)~y0!1
1

vq
2

F2
(1)~y0!G1

1

vq
2

F2
(r )~y!

1O~1/vq
3!, ~32c!

and thus

f~q,y;V!5f~q,y0 ;V (1)!1
1

vq
2

F2
(r )~y;V!1O~1/vq

3!,

~33!

where, as in Eq.~32a!, we reinstated for greater clarity th
dependence onV and its componentV (1).

Equation~33! is our final result. It makes explicit that a
terms of the IA series up to and includingO(1/vq

2) are con-
tained in the GRS series of the same order, which howe
has one additional term, not reproduced in the DWIA. T
can be traced to the approximation~14!. Higher order eiko-
nal terms@13# to the distortion functionj in Eq. ~15! are at
least of order 1/vq

2 and are expected to account for the abo
difference to that order.

Equations~28!, ~30!, and~31! are truly remarkable. Those
show that theV (2) dependence of coefficient function
(1/vq)nFn(V (1)1V (2)) of ordern can be expressed in term
of mth order derivatives of (1/vq)n2mFn2m(V (1)) of lower
ordern2m, and which are free of the componentV (2). Prop-
erly grouped terms ultimately produce the replacemeny
→y0 and bring about significant cancellations in the GR
series.



tw
d
ne

ti

tu

or
la
n
S

o
e

th

a
ro
.

-
es

xi
t
a

q.

re
ac

the
tion
er
of

son
ies.
the

and
-
-
the

the
IA
the

ela-
lts
all
unc-

f
eon
es
to

ly

on

ced
e-

3376 PRC 59A. S. RINAT AND B. K. JENNINGS
The above completes the equivalence proof of the
expressions of the structure function for any NR many-bo
system. Were it not for the use of average separation e
gies, Eq.~33! would be exact@14#. In a way this approxima-
tion is unavoidable, because the appearance of an essen
kinematic IA scaling variabley0 as in Eq.~15! requires an
average separation energy. An earlier attempt to keep ac
separation energies invites other approximations„cf. Eqs.
~2.23! and following in Ref.@14#…, but we shall not pursue
that extension here.

We conclude this section by mentioning previous inc
porations of FSI interactions in the IA series. In particu
Benhar and co-workers@2,15# have advocated a convolutio
of the PWIA spectral function and an expression for the F
in the energy loss variablev, and not iny. Otherwise their
FSI correctly features only the componentV (1) as in Eq.
~21a!.

An expression for a structure function as a convolution
the lowest order asymptotic limit and a FSI factor has be
provedfor the GRS theory and the appropriate variable is
GRS-West scaling variabley and notv @8#. A presumed
generalization, valid for the IA series, certainly requires
parallel proof, which to our knowledge has not been p
vided. Such a proof would select the convolution variable

Let us put aside thead hocconvolution in Refs.@2,15#
and attempt to replacev by a scaling variable. That is pos
sible for any candidate, built from purely kinematic variabl
as isyw , Eq. ~2!. The result is clearly neither Eq.~8! nor Eq.
~21a!: The latter manifestly requires the IA variable Eq.~26!,
which in principle is ruled out, because it assumes the e
tence of an average separation energy. This is foreign to
IA approach in terms of the exact spectral function with
state-dependentDm . The latter is just demonstrated by E
~21a!, which may be written as a convolution~21b! in the
‘‘natural’’ IA variable y0.

Finally we mention a conference report~currently not
published! @16# which also uses the above folding procedu
A discussion should await the publication of a complete
count.
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V. SUMMARY AND CONCLUSION

The major goal in of this paper was a comparison of
GRS and IA approaches to calculating the structure func
of a NR system of point-particles. Whereas for the form
there exists a formally exact expression, we do not know
a manageable expression for the IA series. Any compari
therefore requires an approximation for this second ser
Such an approximation was developed in Sec. III and
comparison done in Sec. IV.

Our demonstration starts with of the GRS series up to
including O(1/vq

2), with coefficient functions of the GRS
West scaling variabley. We then proved striking cancela
tions, producing the same lowest order terms from
DWIA expressed in the parallel IA scaling variabley0. The
unretrieved term in the GRS series is undoubtedly due to
DWIA we chose to approximate the FSI within the actual
series. Thus there is a very close connection between
GRS and IA approaches.

The above success naturally elicits the question of a r
tivistic extension. There clearly is no hope to derive resu
with comparable rigor. It is nevertheless of interest to rec
here some models where nuclear and nucleon structure f
tions are related by a generalized convolution@17#

FA5 f PN* FN ,

with f PN}f. Heref is in principle the structure function o
a nucleus, composed of point-particles, where internucl
potentials as in Eq.~7! are replaced by scattering amplitud
which also have meaning in a relativistic theory. We refer
Ref. @3# where a generalization of the effective
2-component interaction in the above spirit is discussed.
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