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Equivalence of the impulse approximation and the Gersch-Rodriguez-Smith
series for structure functions
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For a nonrelativistic system we compare the Gersch-Rodriguez-$8iRE and the impulse approximation
(IA) approaches to the structure function. The first of these two approaches generates a seyjashiargas
the second treats the interaction between the struck and core nucleons perturbatively. Instead of the IA series
we derive a DWIA representation and prove that, up to and including terms of &{ddg?), it is contained
in the GRS series of the same order. This clarifies the relation between the two approaches and suggests that
the two approaches, when treated exactly, produce identical structure function to arbitrary order in 1/
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PACS numbgs): 24.10-i, 13.60—r, 25.30—c, 25.70.Lm

[. INTRODUCTION gies are by necessity accompanied by effects due to relativ-
ity, particle production and the like, whose treatment can
Virtually all computations of structure functions of nuclei, never be exact. We therefore suggest as a starting point a
as measured by inclusive scattering of high-energy electrongvell-defined nonrelativisti¢éNR) model, based on a Hamil-
use relativistic generalizations of either the nonrelativistictonian for point-particles which cannot be excited. Such a
(NR), perturbative impulse approximaticihA) series[1,2], model can be treated exactly and provides insight which later

or of a nonperturbative theori], formulated by Gersch, ¢an be incorporated in realistic situations. _
Rodriguez, and SmitkGRS [4]. We start in Sec. Il with the GRS theory, recapitulate some

formally exact expressions for the lowest order terms of the
GRS series and cite results for partial summations of selected
higher order terms. In Sec. Ill we consider the response of a
r,?emi—inclusive(SI) A(e,e’'p)Xa_, reaction in the PWIA,
which features the one-hole spectral function. We then sug-
gest a realistic form for FSI which in nuclear parlance is

The GRS approach produces an expansion of the respon
in inverse powers of the momentum transéewith coeffi-
cient functions, depending on the inter-particle interaction
and the many-body density-matrices. The leading term i
this series is thg— o limit while the correction terms con-

tain the final state mteractpr(E_SI). . called the distorted wave impulse approximatid@iwIA).

To lowest order the IA is just the plane wave IMpulse|nioqration of the SI response over the momenta of the out-
approximation (PWIA) where the interaction V(r;)  going nucleon produces for that model the totally inclusive
=2=2V(r;—ry) between the struck nucleon and the core is(Tl) cross section. In Sec. IV we demonstrate that the GRS to
neglected. The remaining terms in the IA series are then thé@(1/q?) contains the DWIA terms to the same order and
contributions of increasing order in the initially neglected attribute the absence of an extra term to the approximate
struck nucleon-core interaction, i.e., the FSI calculated pernature of the chosen DWIA. In Sec. V we briefly discuss the
turbatively. embedding of the above in a relativistic theory.

The GRS and the IA series are very dissimilar, yet each
provides a representation of the structure function. Conse- ||. THE GRS SERIES AND SOME RESUMMATIONS
guently anexacttreatment of each must provide identical
results. A frequently raised question is how the two are re- _We consider the Tl structure function, or the response
lated, and which approach is better when treapgroxi- S'(d,) for a NR many-body system to a scalar perturba-
mately i.e., truncated at finite order in some perturbation ortion, defined as the ratio of cross sections for the inclusive
small quantity. To our knowledge not even a criterion, to bescattering of a projectile from a composite target and from a
followed in principle, has been previously formulated. Theconstituent. The kinematic variableg,{») are the momen-
main purpose of the present article is just such a formulationfum and energy, transfered by the projectile to the target. The
followed by a proof of equivalence. response per particle can be written as

The above quest is encumbered by the fact that we do not _, B 1,401t 0 0
know of a manageable evaluation of FSI in the |A series as $'(q,@)=(2mA) " (Palpgd(w+Ea—Ha)pg| Pa),
exists for the GRS theory. A prerequisite for a comparison is
therefore a realistic model for FSI, replacing the IA series. =(27A) 1D, |<<I)2|pg|<b,T>|25(w+ EX—ED),

As to the nature of such a model, one is guided by the fact m
that the relative weight of FSI in the response diminishes (1)
with increasingg. It is therefore natural to consider on the
one hand kinematic conditions, generally reached for scattewhere @ ,E} are states and energies of the exadtody
ing with high beam energies. On the other hand, high enerHamiltonianH,. For largeq it is useful to introduce the
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reduced responsé(q,y)=(a/M)S(q,w), with M the mass 1 1 ds |
of a particle and/ a kinematic variable, replacing the energy SFa(y)= oAl J 'Syj di Hﬁzzf dk}
lossw [4,5] v
s 2
2 X pa(1—s,k; 1K) f do >, Xq(1—k,S)
_M( _q_) (2) [ 0 k=2 q
y= 9 0= 5]
1
- ar _ +=Fy), (50)
Substitution ofpq=X;e'%" into Eq. (1) produces incoherent Vg
and coherent components. When considering lojghe-
sponses, it suffices to consider the dominant incoherent part,
where a single particle is tracked in its propagation through  — FO(y)= f_elsyf di Hk>2f dk}
the mediuni5]. We cite Ref[4] for a derivation of the GRS g
series
1 92 s .
X pa(1l—s,k;1k) E_( J doxq
é)s k=2 JO
$(ay)= 2, (1) Faly), (3)

(5d)

2 2
X(l—k,a’)) —( > }q(l—k,s))
wherev,=0q/M is the recoil velocity, corresponding to a
momentum transfeq. The coefficient functions-,(y) are
functionals of the interparticle interactiohand density ma- Wwith n(p) the single-particle momentum distribution. The
tricespn(1'j;1j),j=2. Those are diagonal in all coordinates expression forF(r) is easily derived from Eq(14) in Ref.
j=rj, except that of the struck nucleon, which is chosen tq6]. Above we also introduced
be “1.” All derive from pa(1',k;1K),A=k=2 and satisfy
in our convention the relations - s
Xq(1.8)=—(1lvg) J;) do[V(1-0)—V(1)]

pn(1',2...n;1,2...n)

1 :
G s

pa(1'K; 1K) = Al DX (1K) D A(1K). (4)

=—(1hg) f:daV(l,a) =—(1lvg)

pa(1'j;1j),

% [ aotvPa)-vera, ®)
0

The appearance of exact many-body densities shows thglquatlon(G) defines the coordinate representation of the off-
from the onset the theory accounts for correlations of theshell eikonal phasg(1,s) corresponding to the totaf and

target nucleons. its components)®® a=1,2 which are characteristic of the
For our purposes it suffices to mentipp for n=1,2,3 GRS theory or of path integral methods for the respdiige

which enter expressions for the asymptotic lifjj and the It is frequently useful to make resummations within the

two dominant FSI correctiong,F,: GRS serieq3). We consider first a ladder sum of repeated

interactions which results in the replacem&ftt=Vy;.
This replacement is mandatory if the bare interactioms

1 (ds ~
Foly)= Ef o 'ysf dl(l‘[k>2f dk) pa(1—s,k;1k) §ingular. The corresponding change in the phas&qg. (6),
: is

1 ~
f—e'syf dip(i-si= =] ppn(p) ix—T=ex-1, @)

(5a with T' the total off-shell profile function.
Next we consider a cumulant resummation which to low-

est order read
Hk>2J dk} Bl

1
_ _ T Aiys
qul(Y) AJ e fdl

( )—ifEeisyf dip,(1-s;1)
><pA(1—s,k;1k)k§2 Xo(1—K.5) d@y)=%| 5 p1 ;

fdzpz(l—s,z;l,afq(l—z,s)

ifds | ff
=— z—e"s d1d2p,(1-s,2;12
Al 2m e pr(1-S1) '

X Xq(1-28), (5b) ®)
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When expanded, it reproduces the lowest order terms in thearticle. Whenever a state contains both 1 knpdne may to
GRS series, as well as selected higher order contributionewest order negledp| altogether, or equivalently, freeze in
(3). In the next section we shall compare with this partially a standard fashion the core coordindte&or the final scat-
summed results. tering states in Eq(8) we now suggesfo—11]

lll. FSI CORRECTIONS TO THE PWIA RESPONSE Wials) prd LR~ R (K 1k). (14

We approach the IA treatment of the Tl response for a NROne notes that, contrary to the perturbative nature of the
system of point-particles by considering first SI scatteringactual IA series, the approximatidf4) is nonperturbative.

The corresponding response per nucleon is The eikonal approximation for a state, describing scatter-
ing of the high-momentum, knocked-out particle 1 from a
SS(q,wip)= z |<‘DA|P (A " p+q>|2 static, noncentral fiel&®,-,V(1—(k)) reads[12]
, < (LK) = €1, (1(K)) (15
(p+9)
Slo=An=—5y ] (9 with distortion function¢
wherep is the momentum of the struck, apd- g that of the ()(1-(k}) = ex _i_ J’wd V(1—(k)—
detected outgoing nucleon after absorbing the momentum §g (1K) Uq ; 7 Va-=to=0|.
transferq. W{,) ;) ., qis the state of that nucleon, scattered (16)

fr?{.m a nucleus fOA_l Ipartic'lesh:n staten. dA'? ;f@thg sepa- Substituting Eq(14) into Eqg. (9) and replacing again state-
ration energy of-a nucieon in the ground-s ody Sys- dependent separation energies by an average, one performs

tem, with the daughter nucleus in the stdtg ;. We write  15qre over states of the daughter nucleus and obtains
the total Hamiltonian as

$°(0,Y0:P) = 8(yo— P(PR(LK)[e T 1 g h(175K))
XU (LK€l DR(L;K))*

Ha(1:K)=Ha_1(K)+T(1)+V(1) (10)

with V(1)=Ek>2V(1—k), the interaction of particle “1”
with the core. Neglect of the latter defines the PWIA ~ 8(Yo— P (DAL ;k)|e” P r1|§p+q (1"5¢k)))

[qugzl)m:p+q(r1;rk)]P\MA—’Cbgll(rk)eii(mq)‘rl- X<§p+q(1 (K)|eP | DR(L:K))* . (17

11 . : .
(D The distorted wave, Eq(15), for the outgoing particle 1
When substituted into Eq(9), it produces the standard depends implicitly on all other coordinaték). Having per-
PWIA approximation for the S| response formed closure, we treat those again as dynamical coordi-
) nates and obtain for reM the following expression for the
(p+a) Sl response in the DWIAU,. ~v )
2M

SSI:PWIA(q,w;p):f dEP(p,E)(S( E—w—

1 .
(123 4SIOWAG,y0:p) = 57 (Yo Py) f dse'P*

¢>"PYA(q,y0:p)~ 8(Yo— P)N(P), (12b
xfdl{nkng dk

i z
_ , , Xexg — — > fldg“V(l—k—g) .
Here P(p,E) is the single-hole spectral function, dependent Vg 'k Jz
on the separation-energies of each of the daughter states (18)
Equation (12b results from the approximation ,—(A)

with (A) an average separation energy. One may then replag§ince in the model, degrees of freedom other than point-
the energy los® by the IA scaling variable, also in terms of particles are absent, the Tl response is obtained by integrat-
(A) ing ¢°' over missing momentp leading to

Yo=—0+V2M(w—(A)). (13

FSI corrections to the PWBA result E¢L2b) are, by defi-

pa(1—s,k;1k)

n(p)=deP(p,E). (1209

1 (ds .
¢T|,DWIA(q,yO):Hf Eelyos'[ lek>2f dkpa

nition, contributions due to the residual interactirtreated
perturbatively. With no practical way to do so systemati- x(l—s,k;l,k)exp{ E x§P(1-k,s)
cally, we proceed in an approximative manner. k=2

Whereas the core particlehave momenta of the order of (19

the Fermi momentunpe, for particle 1 after absorption of )
the high-mass virtual photonp+qg|~q>pg, i.e., its mo- with s=r;—r;=sq lying in the direction ofg. The above
mentum exceeds by far the average momentum of a conesult still has the full complexity of a many-body problem,
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present in theA-body density matrix. That complexity is to terms up to, and includin@(1/g?).
considerably reduced in a Kirkwood independent-pair ap- \We start with the GRS serig8)

proximation

(A—1)! I ,p2(1k;17K)
(A—1)A7L [py(1;1)]A72

pa(1k;1'k)~ (20

which respects the sum rul€d). Substitution in Eq.(19)
produces for the reduced Tl response per nucleon in th
DWIA

¢(q,y;v>=ngo (L g)"Fr(y; V). (22)

Using (6) we make explicit the two components of the
;full” interaction action in Eq. (6)

l ©
TI,DWIA F :_f d ; 23
b (9,Yo) o(y) antly ppn(p) (239
~ L —IEGWOS —jdl Fi(y)= | [ds iysfdl Iy fdk 1-s,k;1k
AA=DAE) 27 [p(1-s1)]A2 =" 24° =2 | dK[pa(1=sk;1k)
~ S
X | =2 f dkpa(1—s,k; 1K) (1—k,s) x 2 Odo[vg”u—k)—v(z)(l—k)]
Nl ds iYosq . 1 ds ivs
~A 5,670 d1py(1-571) =—Kjﬂeyffdld2p2(1—s,2;12)
~ S
Jd2pz(1—s,2:1,afgl)(1—2.s) xf da[VD(1-2)— V@ (1-2)], (23b)
X ex 21 0
p(1-s1) (213
i (ds
1 . . , Fz(y)z—f —e'syf d1 H’ksz dk|pa(1—s,k;1k)
“KJ dYoFo(Yo=Yo) Rq(Yo). (21b Al 2m -
1 s s 2
ds X5 fdaE do[vs”u—k)—v(”(l—k)]}
~ iyoS =
Rq(yO)NJZeYO f di 0 k=2 Jo
+FYA(y). (239
J d2p,(1-5,2;1,2T{P(1-2)
X ex Next we expand in parallel the approximate DWIA expres-
p1(1—s;1) sion (219
(210

¢TI'DW|A(q,yo : V(l))

For later use we expressed the respoi2d&) as a convolu-
tion of the asymptotic limit and a generalized FSI fadicft
Eq. (5a), of the last article of Ref3]].

There clearly is a formal similarity in the expressiaBs
and (219 for the Tl response in, respectively, the first cumu-
lant expression in the GRS theory, and the approximate IA
series. The apparent differences amourittthe appearance
of y, instead ofy=y,, and(ii) the presence in the DWIA of
a profile function' ™), related to the first potential in E¢6)
and not to both, as is the case in the GRS theory. In the
following section we shall investigate whether, and to what
extent, these apparently similar expressions coincide.

IV. MEASURE OF EQUIVALENCE OF GRS AND
APPROXIMATE IA SERIES

There are two, in principle, equivalent ways to compare
the exact IA and GRS series for the response, namely by
isolating and counting powers in either the residual interac-

tion V(l) or in 1f. However, in view of the fact that the 1A

1(ds ,
:Kf %eyojdl p1(1—s;1)

i s
——f d2p2(1—s,2;1,2)f dovM(1-2)
Uq 0

1 s 2
——zf dzU davgl)(1—2)>
21)q 0

1
2vg

S S 1
xf do-vf,”(l—z)f do'V(1-3)
0 0

o'

+0O(1h).

(24)

It is then our quest to investigate whether, and to what

series is treated approximately, the exact GRS series bextent, the term$2339—(230 of the GRS series contain the
comes the natural standard. Both approaches shall be tracBWIA counterparts, Eq(24). We do so as follows:
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(i) Separate in Eq423) terms that depend exclusively on 1 1 9 d
VM), The former we expect to meet in E@4). F&2(y)=— INEEN 'VSJ dl[H|>2f dl}

(i) Track in the remainder of Eq$23) parts where)(?) o y
acts on the ground state ji, . Using Eq.(8) one has

X pa(l=skilk)— EZV(l k)—
2, V(1= k)} =[Ha=Ha-1=T(1)]®(Lk) .
x> | doV(1—1—a)]
0

1=2
%_f dp eip~r
(2m)°

where, in line with the assumption made above, separation
energies are again replaced by an average. (31)

(iii) Collect terms, which enable the replacement of the
GRS-West scaling variable by the IA one, making use of

2
<A>+2p—M>(I)(p,k), (25) 1 ( y2 < >) dl:(l)(y) dF(ll)(y)

gl HA Ty Ty

Assembling the last three results and using &%) one

finds
Y(=Yu)= yo+— % i) (26 1 1 ;
2M #(a,y;V)=Fo(y)+ _Fl(y V)+ = Fa(y; V) +0(1hg)
We start with q (323
Fl(V):Fg_l)(v(l))+Fg_2)(V(2))v (27) O(y) 1 dZFO(y)
+ _ _ 2
where the superscripts indicate dependenceVéh, V(). Foly) +(y=Yo) =g~ dy Yo dy?
Following (i) we consider the part L
- (0 dFYw 1 g,
Loy 1 0[O, +— FOy)+(y- yo)— SIFPw)]
U_qFl (y)——mw dl | I P dk Uq
1
) 3
X(1—s,k; 1k)— 3, vy 3R () + Oy (32b
q 1=2 q
J dp p2) 1 1 1
=—| ——¢ A)+——1n =|Fo(yo)+ —FM(yo)+ SFP(yo) |+ S FY
oy a3 0PV A (p) o(¥o) ¥ Fyo)+ 5F2v0) | + 5F20Y)
dFo(y) +O(1h}), 32¢
= (VYo gy 28 Sl (929
and thus
Continuing withF, we write [cf. Egs.(5¢), (230)]
1
Fo(V)=FP+FP+FA+ D), (29 B(A.y: V)= d(0.y0; VD) + SFD(y; V) +0(1)),
v
q
with F+?) containing mixedy®, V) terms. The reasoning (33

which leads to Eq(28) produces
a8 p where, as in Eq(323, we reinstated for greater clarity the

1 1 2 ( ds dependence oW and its componeny ™).
—2F(22)(y)— AT 2 2—e'y3f dl[H|>zf dl} Equation(33) is our final result. It makes explicit that all
Uq ay?) 2m terms of the IA series up to and incIudir@(llyﬁ) are con-
tained in the GRS series of the same order, which however,
Xpa(l—sk;1 k)— 2 V(1- k)— has one additional term, not reproduced in the DWIA. This
k=2 Uq can be traced to the approximati¢td). Higher order eiko-
nal terms[13] to the distortion functior¢ in Eg. (15) are at
X |22 V(1-1) least of order 1/5 and are expected to account for the above

difference to that order.
y2 | 2]d2F o(y) Equations(28),(230),and(31) are truly remarkable. Those
{ ((A) ) }— show that theV® dependence of coefficient functions
dy? (L) "Fr (VP +1@) of ordern can be expressed in terms
of mth order derivatives of (B)""Fp_ (V1) of lower
_ —(y y )gd Fo(y) (30 ordern—m, and which are free ‘of the componeéi). Prop-
0 dy? erly grouped terms ultimately produce the replacement
—Yo and bring about significant cancellations in the GRS
Finally for the mixed term series.
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The above completes the equivalence proof of the two V. SUMMARY AND CONCLUSION
expressions of the structure function for any NR many-body
system. Were it not for the use of average separation enefs
gies, Eq.(33) would be exacf14]. In a way this approxima-

The major goal in of this paper was a comparison of the
RS and IA approaches to calculating the structure function

N idable. b h ¢ . of a NR system of point-particles. Whereas for the former
tion Is unavoidable, because the appearance of an essentiafiyare exists a formally exact expression, we do not know of

kinematic IA scaling variablg/, as in Eq.(15) requires an 3 manageable expression for the IA series. Any comparison
average separation energy. An earlier attempt to keep actugerefore requires an approximation for this second series.
separation energies invites other approximatiéels EQs.  sych an approximation was developed in Sec. Ill and the
(2.23 and following in Ref.[14]), but we shall not pursue comparison done in Sec. IV.

that extension here. _ o o Our demonstration starts with of the GRS series up to and
We conclude this section by mentioning previous INCOr~jnciuding O(l/vé), with coefficient functions of the GRS-

porations of FSI interactions in the IA series. In particularWest scaling variable. We then proved striking cancela-
Benhar and co-workei,15] have advocated a convolution tions, producing the same lowest order terms from the
of the PWIA spectral function and an expression for the FSIDWIA expressed in the parallel IA scaling variabjg. The

in the energy loss variable, and not iny. Ot{f};—:‘rwis_e thelr  ynretrieved term in the GRS series is undoubtedly due to the
FSI correctly features only the component™ as in EA.  pyyia we chose to approximate the FSI within the actual 1A

(213. . . . series. Thus there is a very close connection between the
An expression for a structure function as a convolution OfGRS and 1A approaches.

the lowest order asymptotic limit and a FSI factor has been ¢ apqve success naturally elicits the question of a rela-
provedfor the GRS theory and the appropriate variable is the;yistic extension. There clearly is no hope to derive results
GRS-West scaling variablg and notw [8]. A presumed it comparable rigor. It is nevertheless of interest to recall
generalization, valid for the IA series, certainly requires aere some models where nuclear and nucleon structure func-

parallel proof, which to our knowledge has not been pro+i;ns are related by a generalized convolutja]
vided. Such a proof would select the convolution variable.

Let us put aside th@d hocconvolution in Refs[2,15] FA=fPNxE
and attempt to replace by a scaling variable. That is pos-

sible for any candidate, built from purely kinematic variables . . .
a nucleus, composed of point-particles, where internucleon

as isy,,, Eq.(2). The result is clearly neither E¢8) nor Eq. . . . :
213 V‘Y’he latter manifestly requires the IA variable £26) potentials as in Eq.7) are replaced by scattering amplitudes
" vidwhich also have meaning in a relativistic theory. We refer to

which in principle is ruled out, because it assumes the exis L ;
tence of an average separation energy. This is foreign to th ef. [3] wh_ere a ge_nerallzanon Of. _the _effect|vely
IA approach in terms of the exact spectral function with a -component interaction in the above spirit is discussed.
state-dependent ,,. The latter is just demonstrated by Eq.
(213, which may be written as a convolutid21b) in the
“natural” |IA variable yj,. A.S.R. is grateful to E. Mavrommatis for discussions on

Finally we mention a conference repdigurrently not the topic and for pointing him to the work of Patrakd al.
published [16] which also uses the above folding procedure.He also acknowledges the graceful hospitality, experienced
A discussion should await the publication of a complete acat TRIUMF. B.K.J. thanks the Natural Sciences and Re-
count. search Council of Canada for financial support.

with fPNoc b, Here ¢ is in principle the structure function of
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