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Scaling of chiral Lagrangians and Landau Fermi liquid theory for dense hadronic matter
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We discuss the Fermi-liquid properties of hadronic matter derived from a chiral Lagrangian field theory in
which Brown-Rho~BR! scaling is incorporated. We identify the BR scaling as a contribution to Landau’s
Fermi-liquid fixed-point quasiparticle parameter from ‘‘heavy’’ isoscalar meson degrees of freedom that are
integrated out from a low-energy effective Lagrangian. We show that for the vector~convection! current, the
result obtained in the chiral Lagrangian approach agrees precisely with that obtained in the semiphenomeno-
logical Landau-Migdal approach. This precise agreement allows one to determine the Landau parameter that
enters in the effective nucleon mass in terms of the constant that characterizes BR scaling. When applied to the
weak axial current, however, these two approaches differ in a subtle way. While the difference is small
numerically, the chiral Lagrangian approach implements current algebra and low-energy theorems associated
with the axial response that the Landau method misses and hence is expected to be more predictive.
@S0556-2813~99!04506-9#
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I. INTRODUCTION

At very low energies, the relevant degrees of freedom
strong interactions in nuclear matter are pions, nucleons
other low-mass hadrons identified in the laboratory and
appropriate theory is an effective quantum field theory
volving these hadrons even though the fundamental theo
known to be QCD with quarks and gluons@1#. Just which
and how many hadronic degrees of freedom must appea
the theory depends upon the energy scale that is pro
Thus for example, if one is probing energies of a few Me
as in the case of low-energy properties of two-nucleon s
tems, then the nucleon field as a matter field and poss
pions as pseudo-Goldstone bosons would suffice.

In this paper, we would like to extend the strategy
effective field theories to many-body systems and a den
regime corresponding to a shorter-length or higher-ene
scale than that probed by the low-energy two-nucleon s
tems @2,3#. This would entail two important changes to th
effective Lagrangian: First we need to introduce more m
sive degrees of freedom~such as vector mesons and/
higher-dimensional operators in the nucleon fields! in the
effective Lagrangian and second, we need to take into
count the Fermi sea of nucleons in the bound system.

The principal aim in this paper is then to tie in togeth
various results obtained previously in diverse contexts int
unified framework so as to be able to extrapolate our id
into the kinematic domains that are yet to be explored
perimentally. In doing this, we shall be using nonrelativis
arguments which are justified for low-energy and lo
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density processes we are concerned with here. A relativ
formulation more appropriate for high-energy and hig
density heavy-ion processes is in progress and will be p
sented elsewhere.

The basic strategy we will develop is as follows. First w
will present an argument for an effective chiral Lagrangi
which in the mean field approximation corresponds to a n
topological soliton describing a lump of nuclear matter. T
parameters of this effective Lagrangian will then be iden
fied with the fixed-point quantities in Landau Fermi-liqu
theory. Given this identification, one can associate cer
mean field quantities of heavy mesons~e.g., the light-quark
vector mesonsr and v) to Brown-Rho ~BR! scaling via
Landau parameters. We first illustrate how this chain of
guments works for electromagnetic properties of heavy
clei. Turning the arguments around, we determine the B
scaling parameterF at nuclear matter density from magnet
moments of heavy nuclei in terms of the Landau parame
F1

v associated with massive isoscalar vector meson deg
of freedom that are integrated out from the effective L
grangian. We then use a similar line of arguments to der
the corresponding formulas for the axial current. In this p
per, we shall focus on the processes that are dominate
pionic effects, that is, those to which the ‘‘chiral filte
mechanism’’@4# applies, namely, the electromagnetic co
vection current and the axial charge operator.

This paper is organized as follows. In Sec. II, effecti
field theories that figure in nuclear physics are described
cluding a brief summary of Landau’s Fermi-liquid theo
adapted to strongly interacting nuclear systems. The calc
tion of the electromagnetic current for a particle sitting
top of the Fermi sea in Landau-Migdal theory and in chi
Lagrangian theory is given in Sec. III. The Landau parame
figuring in the nucleon effective mass is determined in ter
of the parameter of the chiral Lagrangian that scales a
3357 ©1999 The American Physical Society
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function of density~in the manner of BR scaling!. The prob-
lem of treating axial charge transitions in heavy nuclei
presented in Sec. IV. The two methods—Fermi liquid a
chiral Lagrangian—are found to give almost same numer
results at nuclear matter density but differ in a subtle w
due to the intricacy with which chiral symmetry is man
fested in nuclear systems. A possible cause of this differe
between the electromagnetic current and the weak curre
discussed. A summary is given in Sec. V wherein so
unresolved/open problems are mentioned. In Appendix
we show how to compute relativistically the pionic contrib
tion to the Landau parameterF1 using a Fierz transforma
tion. Appendix B sketches how the particle-hole graph fi
uring in the ‘‘back-flow’’ argument is computed. Remark
not directly relevant to the theme of the paper but helpful
the discussions are relegated to footnotes.

II. EFFECTIVE FIELD THEORY „EFT…

There are two superblyeffectiveeffective field theories
for nuclear physics. One is chiral Lagrangian field theory
low-energy nonperturbative description of hadrons and
other is Landau Fermi-liquid theory applied to nuclear m
ter.

A. EFT for dilute systems

For two-nucleon systems at very low energies conside
in Refs. @2,3#, one can integrate out all meson degrees
freedom including the pions and set the cutoff near the p
mass. One then writes an effective Lagrangian in terms
the nucleon field in a systematic~chiral! expansion to com-
pute the irreducible graphs, while summing an infinite se
reducible diagrams to describe the deuteron bound state
scattering states with a large scattering length. Since the
tem is dilute, the parameters of the theory can be taken f
free-space ~zero-density! experiments. In principle, we
should be able to calculate these parameters from QCD b
present we do not know how to perform this calculation
practice. The results in Refs.@2,3# confirm that the approach
works remarkably well. When the pion field is included
addition, it provides a ‘‘new’’ degree of freedom and im
proves the theory even further and allows one to go highe
energy scale@3#. This can be formulated systematically
terms of chiral perturbation theory. But what about heav
~denser! nuclei or higher energy scales?

B. EFT for dense systems

In going to heavier many-nucleon systems, the stand
approach has been to start with a Lagrangian whose pa
eters are defined in free space and then develop perturb
and nonperturbative schemes to account for the complex
namics involved. Higher-energy scales will be involv
since the interactions between nucleons in such syst
sample all length scales and hence other degrees of free
than nucleonic and pionic need be introduced. In doing s
calculations, symmetry constraints, such as those of ch
symmetry, are found to be useful but not always prope
implementable. Basically phenomenological in charac
given a sufficient number of free parameters, such an
proach can be quite successful but one cannot check un
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biguously that it is consistent with the modern notion
effective field theory. As such, it is difficult to gauge th
power of the theory. When something does not work, th
there is very little one can do to improve on it since there
no systematic strategy available.

In this paper we will take a different route. Followin
Lynn @5#, we shall assume that a high-order~in chiral count-
ing! effective chiral action supports a nontopological solit
solution that corresponds to a chiral liquid with a give
baryon numberA. Lynn proposes to construct such an effe
tive action using chiral perturbation theoryto all orders of
the chiral expansion, but up to now explicitly deriving such
an action has not been feasible. Lacking such a first-princ
derivation, we propose to develop an effective Lagrang
strategy applied to dense many-body systems resortin
certain assumptions based on symmetries which are to
justified a posteriori. Given such an action possessing
stable nontopological soliton, we follow Lynn’s proposal
identify such a soliton solution as the ground state of a he
nucleus and to make fluctuations around that ground st
Excitations on top of that state could then be described
terms of the parameters determined at that minimum, the
bulk properties of which are to be generically characteriz
by the density of the state that is probed. There have rece
been several works along this line. For instance, Furns
et al. @6# construct such an effective action consisting
‘‘heavy baryons’’ ~nucleons! and heavy mesons using arg
ments based on the ‘‘naturalness condition’’ of chiral sy
metry of QCD and show that in the mean field the effect
Lagrangian quantitatively describes the ground state
nuclear matter as well as the excitation spectra of finite
clei. The point pertinent to us in the work of Furnstahlet al.
is that their formulation is basically equivalent to a variant
Walecka mean-field theory. A recent argument by Bro
and Rho@7# ~and also Ref.@8#! has established that Waleck
mean field theory is equivalent to a chiral Lagrangian me
field theory with the parameters of the Lagrangian scaling
the manner of Brown and Rho~BR scaling! @9#. In Ref. @10#,
a Walecka-type Lagrangian with BR-scaling parameters w
constructed and shown to describe the nuclear matter gro
state as successfully as the effective chiral action of Fu
tahl et al. does. Such a Lagrangian has also been show
possess thermodynamic properties that are consistent
Landau Fermi-liquid structure of nuclear matter@11#. This is
the approach we shall use in this paper. Similar ideas w
developed by Brown but using different arguments@12#.

C. Fermi-liquid fixed points

A conceptually important point in our arguments is th
Landau Fermi-liquid theory@13–16# is an effective field
theory with fixed points@17#. In this paper, we will not at-
tempt to show that the Fermi-liquid theory for nuclear mat
is also a fixed-point field theory. We will simply take th
result established in Ref.@17# and implement its implications
in our scheme.

One of the principal consequences of this identification
that the nucleon effective mass~which will be referred to as
‘‘Landau effective mass’’! and Landau quasiparticle interac
tions ~defined below! are fixed-point quantities with vanish
ing b functions. Our goal is to connect these fixed-po
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quantities to BR scaling parameters that figure in effect
chiral Lagrangians appropriate for dense medium. We
thereby combining two effective field theories, the chiral L
grangian field theory and Landau Fermi-liquid theory, in
an effective field theory for dense matter in which BR sc
ing plays an important role. We believe this ‘‘marriage’’ is
successful one for density at least up to that of nuclear m
ter. Going beyond that and extrapolating into the regime
relativistic heavy-ion collisions involves guesses that need
verified a posteriori.

D. A primer on Fermi-liquid theory

Before getting into our main calculation, we give a min
primer on Landau Fermi-liquid theory to define the quan
ties involved. We should point out that once the fixed-po
quantities are identified in the chiral Lagrangian, then we
use all the standard relations established in Landau’s orig
theory.

Landau Fermi-liquid theory is a semiphenomenologi
approach to strongly interacting normal Fermi systems
small excitation energies. It is assumed that a one-to-
correspondence exists between the low-energy excitation
the Fermi liquid and that of a noninteracting Fermi gas. T
elementary excitations of the Fermi liquid, which correspo
to single particle degrees of freedom of the Fermi gas,
called quasiparticles. The quasiparticle properties, e.g.,
mass, in general differ from those of free particles due
interaction effects. In addition there is a residual quasipa
cle interaction, which is parametrized in terms of the
called Landau parameters.

Fermi-liquid theory is a prototype effective theory, whic
works because there is a separation of scales. The theo
applicable to low-energy phenomena, while the parame
of the theory are determined by interactions at higher en
gies. The separation of scales is due to the Pauli princ
and the finite range of the interaction. Fermi-liquid theo
has proven very useful@16# for describing the properties of
e.g., liquid 3He and provides a theoretical foundation for t
nuclear shell model@14# as well as nuclear dynamics of low
energy excitations@18,19#.

The interaction between two quasiparticlesp1 and p2 at
the Fermi surface of symmetric nuclear matter can be wri
in terms of a few spin and isospin invariants@20#

f p1s1t1 ,p2s2t2
5

1

N~0! FF~cosu12!1F8~cosu12!t1•t2

1G~cosu12!s1•s2

1G8~cosu12!s1•s2t1•t2

1
q2

kf
2

H~cosu12!S12~ q̂!

1
q2

kf
2

H8~cosu12!S12~ q̂!t1•t2G , ~1!

where u12 is the angle betweenp1 and p2 and N(0)
5lkFmN

! /(2p2) is the density of states at the Fermi surfa
~we use natural units where\51 and denote bymN

! the
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~Landau! effective mass of the nucleon to be distinguish
from the BR-scaling massMN

! ). The spin and isospin degen
eracy factorl is equal to 4 in symmetric nuclear matte
Furthermore,q5p12p2 and

S12~ q̂!53s1•q̂s2•q̂2s1•s2 , ~2!

whereq̂5q/uqu. The tensor interactionsH andH8 are impor-
tant for the axial charge, which we consider in Sec. IV. T
functionsF,F8, . . . , areexpanded in Legendre polynomia

F~cosu12!5(
l

F l Pl ~cosu12!, ~3!

with analogous expansions for the spin- and isosp
dependent interactions. The energy of a quasiparticle1 with
momentump5upu, spins and isospint is denoted byep,s,t
and the corresponding quasiparticle number distribution
np,s,t . The effective mass of a quasiparticle on the Fer
surface is defined by

dep

dp U
p5kF

5
kF

mN
!

. ~4!

By using Galilean invariance one finds a relation between
effective mass and the velocity dependence of the quasi
ticle interaction

mN
!

mN
511

F1

3
5S 12

F̃1

3
D 21

, ~5!

where F̃ l5(mN /mN
! )Fl , with analogous definitions forF̃ l8

etc.

III. ELECTROMAGNETIC CURRENT

We will first give a brief derivation of the Landau-Migda
formula for the convection current for a particle of mome
tum k sitting on top of the Fermi sea responding to a slow
varying electromagnetic~EM! field. We will then analyze it
in terms of the specific degrees of freedom that contribute
the current. This will be followed by a description in term
of a chiral Lagrangian as discussed in Ref.@21#. This proce-
dure will provide the link between the two approaches.

A. Landau-Migdal formula for the convection current

Following Landau’s original reasoning adapted by Migd
to nuclear systems, we start with the convection curr
given by2

1Below we omit the spin and isospin indicess and t from our
formulas to avoid overcrowding, except where needed to avoid
biguities. We will also omit the space and time dependence of
quantities, e.g.,e[e(r,t).

2More precisely, this is a matrix element of the current opera
corresponding to the response of a nucleon~proton or neutron! sit-
ting on top of the Fermi sea to the EM field. The sum over spin a
isospin and the momentum integral go over all occupied states u
the valence particle. What we want is a current operator and
deduced after the calculation is completed. One can of course w
directly with the operator but the result is the same.
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J5(
s,t

E d3p

~2p!3
~“pep!np

1

2
~11t3!, ~6!

where the sum goes over the spins and isospint which in
spin- and isospin-saturated systems may be written as a
over thes and t operators. We consider a variation of th
distribution function from that of an equilibrium state

np5np
01dnp , ~7!

where the superscript 0 refers to equilibrium. The variat
of the distribution function induces a variation of the qua
particle energy

ep5ep
01dep . ~8!

In the equilibrium state the current is zero by symmetry,
we have

J5(
s,t

E d3p

~2p!3
@~“pep

0!dnp1~“pdep!np
0#

1

2
~11t3!,

5(
s,t

E d3p

~2p!3
@~“pep

0!dnp2~“pnp
0!dep!]

1

2
~11t3!

~9!

to linear order in the variation. We consider a proton
neutron added at the Fermi surface of a system in its gro
state. Then

dnp5
1

V
d3~p2k!

16t3

2
~10!

and

“pnp
052

p

kF
d~p2kF!, ~11!

wherek with uku5kF is the momentum of the quasiparticl
The modification of the quasiparticle energies due to the
ditional particle is given by

depst5 (
s8,t8

E d3p8

~2p!3
f pst,p8s8t8dnp8s8t8 . ~12!

Combining Eqs.~1!, ~9!, ~10!, and~12! one finds that the
first term of Eq.~9! gives theoperator

J(1)5
k

mN
!

11t3

2
, ~13!

wherek is taken to be at the Fermi surface. The second te
yields

dJ5dJs1dJv5
k

mN
S F̃11F̃18t3

6
D , ~14!

where
ce

n
-

o

r
nd

d-

m

dJs5
k

mN
!

1

2

F1

3
, ~15!

dJv5
k

mN
!

t3

2

F18

3
5

k

mN
!

t3

2

F1

3
1

k

mN
!

t3

2

F182F1

3
. ~16!

Putting everything together we recover the well known res
of Migdal @14,19#

J5
k

mN
gl5

k

mN
S 11t3

2
1

1

6
~ F̃182F̃1!t3D , ~17!

where

gl5
11t3

2
1dgl ~18!

is the orbital gyromagnetic ratio and

dgl5
1

6
~ F̃182F̃1!t3 . ~19!

Thus, the renormalization ofgl is purely isovector. This is
due to Galilean invariance, which implies a cancellation
the isoscalar channel.

We have derived Migdal’s result using standard Ferm
liquid theory arguments. This result can also be obtain
@22# by using the Ward identity, which follows from gaug
invariance of the electromagnetic interaction. This is
course physically equivalent to the above formulation. W
shall now identify specific hadronic contributions to the cu
rent ~17! in two ways: the Fermi-liquid theory approach an
the chiral Lagrangian approach.

B. Pionic contribution

1. Fermi-liquid theory approach

In this approach, all we need to do is to compute t
Landau parameterF1 from the pion-exchange interaction
The one-pion-exchange contribution to the quasiparticle
teraction is3

f pst,p8s8t8
p-exch

52PsPtVp~q!

5
1

3

f 2

mp
2

q2

q21mp
2

3S S12~ q̂!1
1

2
~32s•s8! D 32t•t8

2
, ~20!

whereq5p2p8 and f 5gpNN(mp/2mN)'1. The one-pion-
exchange contributions to the Landau parameters relevan
the convection current are

3In a relativistic formulation sketched in Appendix A, we ca
Fierz the one-pion exchange. Done in this way, the Fierzed sc
channel is canceled by a part of the vector channel and the rem
ing vector channel makes a natural contribution to the pionic pi
of F1.
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F1~p!

3
52F18~p!52

3 f 2mN
!

8p2kF

I 1, ~21!

where

I 15E
21

1

dx
x

12x1mp
2 /2kF

2
5221S 11

mp
2

2kF
2 D lnS 11

4kF
2

mp
2 D .

~22!

Thus, from Eq.~19!, the one-pion-exchange contribution
the gyromagnetic ratio is

dgl
p5

mN

kF

f 2

4p2
I 1t3 . ~23!

In Sec. III C, we include contributions also from other d
grees of freedom.

2. Chiral Lagrangian approach

In the absence of other meson degrees of freedom, we
simply calculate Feynman diagrams given by a chiral L
grangian defined in the matter-free space. Nonperturba
effects due to the presence of heavy mesons introduc
subtlety that will be treated below.

In the leading chiral order, there is the single-particle co
tribution Fig. 1~a! which for a particle on the Fermi surfac
with the momentumk is given by

J1-body5
k

mN

11t3

2
. ~24!

Note that the nucleon mass appearing in Eq.~24! is the free-
space massmN as it appears in the Lagrangian, not the
fective massmN

! that enters in the Fermi-liquid approach, E
~13!. To the next-to-leading order, we have two ‘‘soft-pion
terms as discussed in Refs.@4,23,24#. To the convection cur-
rent we need, only Fig. 1~b! contributes4

4We should recall a well-known caveat here discussed alread
Ref. @23#. If one were to blindly calculate the convection curre
coming from Fig. 1~b!, there would be a gauge noninvariant ter
that is present because the hole line is off shell. Figure 1~c! contains
also a gauge noninvariant term which is exactly the same as in
1~b! but with an opposite sign, so in the sum of the two graphs,
two cancel exactly so that only the gauge-invariant term surviv
Of course we now know that the off-shell dependence is not ph
cal and could be removed by field redefinitionab initio.

FIG. 1. Feynman diagrams contributing to the EM convect
current in effective chiral Lagrangian field theory.~a! is the single-
particle term and~b!, ~c! the next-to-leading chiral order pion
exchange current term.~c! does not contribute to the convectio
current; it renormalizes the spin gyromagnetic ratio.
an
-
ve

a

-

-

J2-body5
k

kF

f 2

4p2
I 1t35

k

mN

1

6
@ F̃18~p!2F̃1~p!#t3 . ~25!

We should emphasize that the Landau parametersF̃1 andF̃18
are entirely fixed by chiral symmetry for any density.

The sum of Eqs.~24! and ~25! agrees precisely with the
Fermi-liquid theory result~17!,~21!,~23!. This formula first
derived in Ref.@25# in connection with the Landau-Migda
parameter is of course the same as the Miyazawa form
@26# derived nearly half a century ago. Note the remarka
simplicity in the derivation starting from a chiral Lagrangia
However, we should caution that there are some nontri
assumptions to go with the validity of the formula. As w
will see shortly, we will not have this luxury of simplicity
when other degrees of freedom enter.

C. Vector-meson contributions and BR scaling

So far we have computed only the pion contribution
gl . In nuclear physics, more massive degrees of freed
such as the vector mesonsr andv of mass 700–800 MeV
and the scalar mesons of mass 600–700 MeV play an im
portant role. When integrated out from the chiral Lagrangi
they give rise to effective four-Fermion interactions5

L45
Cf

2

2
~N̄N!22

Cv
2

2
~N̄gmN!22

Cr
2

2
~N̄gmtN!21•••,

~26!

where the coefficientsC8s can be identified with

CM
2 5

gM
2

mM
2

with M5f,r,v. ~27!

Such interaction terms are ‘‘irrelevant’’ in the renormaliz
tion group flow sense but can make crucial contributions
becoming ‘‘marginal’’ in some particular kinematic situa
tion. A detailed discussion of this point can be found in R
@17#. The effective four-Fermion interactions play a key ro
in stabilizing the Fermi-liquid state and leads to the fix
points for the Landau parameters. In the two-nucleon s
tems studied in Refs.@2,3#, they enter into the next-to
leading order term of the potential, which is crucial in pr
viding the cut-off independence found for cutoff mass
*mp .

1. Fermi-liquid theory approach

Again it suffices to compute the Landau parameters co
ing from the velocity-dependent part of heavy meson
changes. We treat the effective four-Fermion interaction~26!
in the Hartree approximation. Then the only velocit
dependent contributions are due to the current couplings
diated byv and r exchanges. The corresponding contrib
tions to the Landau parameters arein

ig.
e
s.
i-

5For the moment, we make no distinction as to whether one
taking into account BR scaling or not. For the Fermi-liquid a
proach, this is not relevant since the parameters are not calcul
However, with chiral Lagrangians, we will specify the scalin
which is essential.
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F1~v!52Cv
2

2kF
3

p2m
.2Cv

2
2kF

3

p2mN

~28!

and

F18~r!52Cr
2

2kF
3

p2m
.2Cr

2
2kF

3

p2mN

, ~29!

wherem is the baryon chemical potential and the final e
pressions correspond to the nonrelativistic limit.

Now the calculation of the convection current and t
nucleon effective mass with the interaction~26! in the Lan-
dau method goes through the same way as in the case o
pion. The net result is just Eq.~17! including the contribution
of the contact interactions~28!, ~29!, i.e.,

F̃15F̃1~p!1F̃1~v!, ~30!

F̃185F̃18~p!1F̃18~r!. ~31!

Similarly, the nucleon effective mass is determined by E
~5! with

F15F1~p!1F1~v!. ~32!

2. Chiral Lagrangian approach

The most efficient way to bring the vector mesons into
chiral Lagrangian is to implement BR scaling in the para
eters of the Lagrangian. We shall take the masses of
relevant degrees of freedom to scale according to the
scaling6 @9#

6In this paper, we are not addressing how this relation was arr
at since our main objective is to connect the scaling parameterF to
many-body interactions and its link to the quark-antiquark cond
sate in the medium-modified ‘‘vacuum’’ does not enter directly in
our discussion. But it may be useful for the sake of record to re
that this relation was first written down using the Skyrme Lagra
ian embedded in medium with the scaling given by the expecta
value of the scalar that figures in the trace anomaly of QCD@9#.
Since this relation was first proposed, many authors have attem
to ‘‘derive’’ this scaling relation using various QCD-motivate
models as well as sum-rule-type arguments. None of them has
ceeded to reproduce this relation. The reasons for this are mult
but one of the main reasons is that the scalar field that enters in
scaling has not been correctly identified. As argued in Ref.@10#, the
scalar field that dials BR scaling is the ‘‘quarkonium’’ compone
of the trace anomaly, not the hard ‘‘gluonic’’ component. The lat
dominates the trace anomaly but in the effective theory we
considering, this is integrated out with its effects lodged in high
dimensional operators in the effective Lagrangian. In medium
density is increased and the chiral transition point is approac
the ‘‘mended symmetry’’ argument of Weinberg@27# as interpreted
by Beane and van Kolck@28# suggests that the scalar contributin
to the trace anomaly that plays an important role in the scaling
hadron properties is the scalar that makes up the fourth compo
of O(4) in linears model. This structure immediately gives, via
Nambu–Jona-Lasinio mechanism developed in Ref.@29#, the had-
ron scaling relation~33!. It has been pointed out to us by Brow
that this picture is supported by a detailed lattice analysis of
et al. @30# for the source of the mass of a constituent quark. Ind
most of the mass of the light-quark hadron is shown to arise fr
the dynamical symmetry breaking and hence is intricately tied
the change of the vacuum implied in Eq.~33!.
-

the

.

e
-
he
R

MN
!

mN
'

mv
!

mv
'

mr
!

mr
'

mf
!

mf
'

f p
!

f p
[F. ~33!

Here MN
! is a BR-scaling nucleon mass which will turn o

to be different from the Landau effective massmN
! @21#. For

our purpose, it is more convenient to integrate out the vec
and scalar fields and employ the resulting four-Fermi int
actions ~26!. The coupling coefficients are modified com
pared to Eq.~27!, because the meson masses are replace
effective ones

CM
2 5

gM
2

mM
! 2

with M5f,r,v. ~34!

The coupling constants may also scale@10# but we omit their
density dependence for the moment.

The relation between the BR factorF and F1
v . The first

thing we need is the relation between the BR-scaling fac
F which was proposed in@9# to reflect the quark condensa
in the presence of matterand the contribution to the Landa
parameterF1 from the isoscalar vector (v) meson. For this
we first calculate the Landau effective massmN

! in the pres-
ence of the pion and thev fields @21#

mN
!

mN
511

1

3
@F1~v!1F1~p!#

5S 12
1

3
@ F̃1~v!1F̃1~p!# D 21

. ~35!

Next we compute the nucleon self-energy using the ch
Lagrangian. Given the single quasiparticle energyep , we get
the effective mass as in Ref.@21#

mN
!

mN
5

kF

mN S d

dp
epU

p5kF

D 21

5S F212
1

3
F̃1~p! D 21

.

~36!

Comparing Eqs.~35! and~36!, we obtain the important resul

F̃1~v!53~12F21!. ~37!

This is an intriguing relation. It shows that the BR facto
which was originally proposed as a precursor manifesta
of the chiral phase transition characterized by the vanish
of the quark condensate at the critical point@9#, is intimately
related~at least up tor'r0) to the Landau parameterF1,
which describes the quasiparticle interaction in a particu
channel. We believe that the BR factor can be computed
QCD sum-rule methods or obtained from current algebra
lations such as the Gell-Mann-Oakes-Renner~GMOR! rela-
tion evaluated in-medium. As was shown in Ref.@21#, Eq.
~37! implies that the BR factor governs in some, perha
intricate way low-energy nuclear dynamics. This sugges
possible ‘‘dual’’ description at low density between what
given in QCD variables~e.g., quark condensates! and what is
given in hadronic variables~e.g., the Landau parameter!,
somewhat reminiscent of the quark-hadron duality in hea
light-quark systems@31#.

How to calculate the convection current in the presen
of BR scaling.In the presence of the BR scaling, a no
interacting nucleon in the chiral Lagrangian propagates w
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a massMN
! , not the free-space massmN . Thus, the single-

particle current Fig. 1~a! is not given by Eq.~24! but instead
by

J1-body5
k

MN
!

11t3

2
. ~38!

Now the current~38! on its own does not carry conserve
charge as long asMN

! ÞmN . This means that two-body cur
rents are indispensable to restore charge conservation.
that the situation is quite different from the case of Ferm
liquid theory. In the latter case, the quasiparticle propaga
with the Landau effective massmN

! and it is the gauge in-
variance that restoresmN

! to mN .7 This clearly indicates tha
gauge invariance is more intricate when BR scaling is imp
mented. Indeed if the notion of BR scaling and the associa
chiral Lagrangian is to make sense, we have to reco
charge conservation from higher-order terms in the ch
Lagrangian. This constitutes a strong constraint on
theory.

Let us now calculate the contributions from the pion a
heavy-meson degrees of freedom. The pion contributes in
same way as before, so we can carry over the previous re
of Fig. 1~b!,

J2-body
p 5

k

mN

1

6
@ F̃18~p!2F̃1~p!#t3 . ~39!

This is of the same form as Eq.~25! obtained in theabsence
of BR scaling. It is in fact identical to Eq.~25! if we assume
that one-pion-exchange graphdoes not scalein medium at
least up to nuclear matter density. This assumption is s
ported by observations in pion-induced processes in he
nuclei.8 In what follows, we will make this assumption im
plicitly.

The contributions from the vector-meson degrees of fr
dom are a bit trickier. They are given by Fig. 2.

7In condensed matter physics, this is related to a phenome
associated with the cyclotron frequency which is referred to as
Kohn effect@32#. More on this later.

8In the early discussion of BR scaling in Ref.@9#, the mass pa-
rameter for an in-medium pionmp

! in the effective chiral Lagrang-
ian was taken to scale down as;AF. However, chiral perturbation
theory in medium predicts the ‘‘pole mass’’ of the pion not to sc
up to nuclear matter density@33#. In fact a recent analysis of deepl
bound pionic states in heavy nuclei@34# shows that the pole mass o
the pion could be a few per cent higher than the free-space valu
nuclear matter density. Themp

! in our in-medium effective chiral
Lagrangian is not necessarily the pole mass and so it is not c
how to implement this empirical information into our theory. Wh
we shall assume in this paper is that ourmp

! does not scale. This
means that the observation that the one-pion-exchange pote
does not scale implies that the constantgA

! / f p
! remains unscaling a

least up to normal nuclear matter density. At high density ab
normal nuclear matter density, however,gA

! will stabilize to 1 while
f p

! will continue to drop and hence the coupling-constant ratio w
increase.
ote
-
es

-
d

er
l
e

he
ult

p-
vy

-

Both thev ~isoscalar! andr ~isovector! channels contrib-
ute through the antiparticle intermediate state as shown
Fig. 2~a!. The antiparticle is explicitly indicated in the figure
However in the heavy-fermion formalism, the backwar
going antinucleon line should be shrunk to a point as F
2~b!, leaving behind an explicit 1/mN dependence folded
with a factor of nuclear density signaling the 1/mN correction
in the chiral expansion. One can interpret Fig. 2~a! as satu-
rating the corresponding counter term although this has to
yet verified by writing the full set of counter terms at th
same order. These terms have been evaluated in Ref.@21#
with Fig. 2~a!

J2-body
v 5

k

mN

1

6
F̃1~v!, ~40!

J2-body
r 5

k

mN

1

6
F̃18~r!t3 , ~41!

where F̃1(v) and F̃18(r) are given by Eqs.~28!, ~29! with
mN replaced byMN

! . The total current given by the sum o
Eqs. ~38!–~40! and ~41! precisely agrees with the Ferm
liquid theory result~17! when we take

F̃15F̃1~v!1F̃1~p!, ~42!

F̃185F̃18~r!1F̃18~p!. ~43!

The way in which this precise agreement comes abou
nontrivial. What happens is that part of thev channel re-
stores the BR-scaled massMN

! back to the free-space mas
mN in the isoscalar current.@It has been known for some tim
that something similar happens in the standard Wale
model~without pions and BR scaling! @35#.# Thus, the lead-
ing single-particle operator combines with the sub-lead
four-Fermi interaction to restore the charge conservation
required by the Ward identity. This is essentially the ‘‘bac
flow mechanism’’ which is an important ingredient in Ferm
liquid theory. We describe below the standard back-fl
mechanism as given in textbooks@15#, adapted to nuclea

on
e

at

ar

tial

e

l

FIG. 2. ~a! Feynman diagram contributing to the EM convectio
current from four-Fermi interactions corresponding to thev andr
channel~contact interaction indicated by the closed circle! in effec-

tive chiral Lagrangian field theory. TheN̄ denotes the antinucleon
state that is given in the chiral Lagrangian as a 1/mN correction and
the one without arrow is a Pauli-blocked or occupied state.~b! The
equivalent graph in heavy-fermion formalism with the anti-nucle
line shrunk to a point.
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systems with isospin degrees of freedom, and elucidate
connection to the results obtained with the chiral Lagrang
in this section.

3. The v/q˜0 limit and the ‘‘back-flow current’’

The current so constructed is valid for a process occur
very near the Fermi surface corresponding to the li
(v,q)→(0,0) whereq is the spatial momentum transfer an
v is the energy transfer. In the diagrams considered so
~Figs. 1 and 2! the order of the limiting processes does n
matter. However, the particle-hole contribution, which w
illustrate in Fig. 3 with the pion contribution,9 does depend
on the order in whichq5uqu andv approach zero. Thus, in
the limit q/v→0, the particle-hole contributions vanis
whereas in the opposite casev/q→0, they do not. This can
be seen by examining the particle-hole propagator

nk~12nk1q!

v1ek2ek1q1 id
2

nk1q~12nk!

v1ek2ek1q2 id
, ~44!

where (v,q) is the four-momentum of the external~EM!
field. This vanishes if we setq→0 with v nonzero but its
real part is nonzero if we interchange the limiting proce
since forv we have

q• k̂

2q•k/mN
d~kF2k!. ~45!

In the limit v/q→0, the particle-hole contribution to th
current is10

Jph52
k

mN
S F̃11F̃18t3

6
D . ~46!

Adding the particle-hole contribution~46! to the Fermi-
liquid result~17! we obtain the current of adressedor local-
ized quasiparticle

9The relation we derive below holds in general regardless of w
is being exchanged as long as the exchanged particle has the
quantum numbers.

10See Appendix B for a brief derivation of this expression w
one pion exchange.

FIG. 3. Particle-hole contributions to the convection curre
Here backward-going nucleon lineN21 denotes a hole. Thes
graphs vanish in theq/v→0 limit.
he
n

g
it

ar
t

s

JlocQP5
k

mN
! S 11t3

2 D . ~47!

Note that Jph precisely cancelsdJ, Eq. ~14!. The current
JlocQP is the total current carried by the wave packet of
localized quasiparticle with group velocityvF5k/mN

! . How-
ever, the physical situation corresponds to homogene
~plane wave! quasiparticle excitations. The current carried
a localized quasiparticle equals that of a homogeneous
siparticle excitation modified by the so-called back-flow cu
rent @15#. The back-flow contribution (JlocQP2JLM) is just
the particle-hole polarization current in thev/q→0 limit,
Eq. ~46!.

D. The gyromagentic ratio and Kohn’s theorem

One of the most important results of this section is th
the Landau-Migdal formula~17! does not depend on th
Landau massmN

! but depends on the bare massmN even
though a single quasiparticle responds to the photon w
mN

! . This is completely analogous to the bare-mass dep
dence of the frequency of the collective excitations of t
interacting quasiparticles of the half-filled Landau lev
known as Kohn’s theorem@32#. That our chiral Lagrangian
formulation which starts with a BR-scaled massMN

! satisfies
a Kohn theorem is a consistency check of the theory.

It should also be remarked that it is due to this pheno
enon that the anomalous gyromagnetic ratio depends on
BR scale factorF in a simple way as

dgl5
1

6
~ F̃182F̃1!t35

4

9 FF21212
1

2
F̃1~p!Gt3 . ~48!

This provides the link between the Landau massmN
! , BR

scalingF, anddgl .

IV. AXIAL CHARGE TRANSITIONS

No one has yet derived the analog to Eq.~17! for the axial
current. Attempts using axial Ward identities in analogy
the electromagnetic case have not met with success@36#. The
difficulty has presumably to do with the role of the Gol
stone bosons in nuclear matter which is not well understo
In this section, we analyze the expression for the axial cha
operator obtained by a straightforward application of t
Fermi-liquid theory arguments of Landau and Migdal a
compare this expression with that obtained directly from
chiral Lagrangian using current algebra. For the vector c
rent we found precise agreement between the two
proaches.

A. Applying Landau quasiparticle argument

The obvious thing to do is to simply mimic the steps us
for the vector current to deduce a ‘‘Landau-Migdal’’ expre
sion for the axial charge operator. We use both meth
developed above and find that they give the same result

In free space, the axial charge operator nonrelativistica
is ;s•v wherev5k/mN is the velocity. In the infinite mo-
mentum frame, it is the relativistic invariant helicitys•n̂. It
is thus tempting to assume that near the Fermi surface,

at
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axial charge operator for a local quasiparticle in a wa
packet moving with the group velocityvF5k/mN

! is simply
;s•vF . This suggests that we take the axial charge oper
for a localizedquasiparticle to have the form

A0locQP
i 5gA

s•k

mN
!

t i

2
. ~49!

As in the vector current case, we take Eq.~49! to be the
v/q→0 limit of the axial charge operator. The next step is
compute the particle-hole contribution to Fig. 3~with the
vector current replaced by the axial current! in the v/q→0
limit. A simple calculation gives

A0ph
i 52gA

s•k

mN
!

t i

2
D8 ~50!

with

D85
f 2kFmN

!

4mp
2 p2

~ I 02I 1!, ~51!

whereI 1 was defined in Eq.~22! and

I 05E
21

1

dx
1

12x1mp
2 /2kF

2
5 lnS 11

4kF
2

mp
2 D . ~52!

In an exact parallel to the procedure used for the vector
rent, we take the difference

A0locQP
i 2A0ph

i ~53!

and identify it with the corresponding Landau axial char
~LAC!

A0LAC
i 5gA

s•k

mN
!

t i

2
~11D8!. ~54!

Let us now rederive Eq.~54! with an argument analogou
to that proven to be powerful for the convection current. W
shall do the calculation using the pion exchange only but
argument goes through when the contact interaction~26! is
included. We begin by assuming that the axial charge—
analogy to Eq.~6! for the convection current—takes the for

A0
i 5gA(

st
E d3p

~2p!3
s•~“pep!np

t i

2
, ~55!

wherenp andep are 232 matrices with matrix elements

@np~r,t !#aa85np~r,t !daa81sp~r,t !•saa8 ~56!

and

@ep~r,t !#aa85ep~r,t !daa81hp~r,t !•saa8 , ~57!

with
e

or

r-

e
e

n

sp~r,t !5
1

2 (
aa8

saa8@np~r,t !#a8a . ~58!

In generaln54 in the spin-isospin space. But without loss
generality, we could confine ourselves ton52 in the spin
space with the isospin operator explicited as in Eq.~55!.
Then upon linearizing, we obtain from Eq.~55!

A0
i 5gA(

st
E d3p

~2p!3
@s•~“pep

0!dnpst

2s•~“pnp
0!depst#

t i

2
1•••, ~59!

where

dnpst5
1

V
d3~p2k!

11s3

2

t i

2
~60!

and

depst5 (
s8,t8

E d3p8

~2p!3
f pst,p8s8t8dnp8s8t8 ~61!

in analogy with Eq.~12!. Equation~59! is justified if the
density of polarized spins is much less than the total den
of particles~assumed to hold here!. The first term of Eq.~59!
with Eq. ~60! yields the quasiparticle charge operator

A0QP
i 5gA

s•k

mN
!

t i

2
~62!

while the second term represents the polarization of the
dium, due to the pion-exchange interaction~20!

dA0
i 5gA

s•k

mN
!

t i

2
D8. ~63!

The sum of Eqs.~62! and ~63! agrees precisely with the
Landau charge~54!.

It is not difficult to take into account the full Landau
Migdal interactions ~1! which includes the one-pion
exchange interaction as well as other contributions to
quasiparticle interaction. Thus, the general expression is
tained by making the replacement

D8→
1

3
G182

10

3
H081

4

3
H182

2

15
H28 ~64!

in Eq. ~63!. This combination of Fermi-liquid parameter
corresponds to al 5l 851,J50 distortion of the Fermi sea
@20#. We will see later that the result obtained with the nai
Landau argument may not be the whole story, since the o
pion-exchange contribution disagrees, though by a sm
amount, with the chiral Lagrangian prediction derived belo
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B. Chiral Lagrangian prediction

We now calculate the axial charge using our chiral L
grangian that reproduced the Landau-Migdal formula for
convection current. Consider first only the pion-exchan
contribution. In this case we can take the unperturb
nucleon propagator to carry the free-space massmN . The
single-particle transition operator corresponding to Fig. 1~a!
is given by

A01-body
i 5gA

s•k

mN

t i

2
. ~65!

There is no contribution of the type of Fig. 1~b! because of
the ~G! parity conservation. The only contribution to th
two-body current comes from Fig. 1~c! and is of the form
@37#

A02-body
i 5gA

s•k

mN

t i

2
D ~66!

with

D5
f 2kFmN

2gA
2mp

2 p2 S I 02I 12
mp

2

2kF
2

I 1D . ~67!

The factor (1/gA
2) in Eq. ~67! arose from replacing 1/f p

2 by
gpNN

2 /gA
2mN

2 using the Goldberger-Treiman relation.
Now consider what happens when the vector degree

freedom are taken into account. Within the approximat
adopted, the only thing that needs be done is to implem
the BR scaling. The direct intervention of the vector meso
r and v in the axial-charge operator is suppressed by
chiral counting, so they will be ignored here. This means t
in the single-particle charge operator, all that one has to d
to replacemN by MN

! 5mNF in Eq. ~65!:

A01-body
i 5gA

s•k

mNF

t i

2
~68!

and that in the two-body charge operator~66!, f p should be
replaced byf pF andmN by mNF:

A02-body
i 5gA

s•k

mNF

t i

2
D. ~69!

In the two-body operator, there is a factor (gA / f p) coming
from thepNN vertex which as mentioned before, is assum
to be nonscaling at least up to nuclear matter density@12,21#,
in consistency with the observation that the pion-excha
current does not scale in medium. The total predicted by
chiral Lagrangian~modulo higher-order corrections! is then

gA

s•k

mNF

t i

2
~11D!. ~70!

which differs from the charge operator obtained by the L
dau method, Eq.~54!.
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C. Some„incomplete… observations on the difference

To expose the differences of the two approaches
cussed above, let us look at the effect of the pion field. T
cancellation between the two-body currentJ2-body

p ~39! and
Jph

p ~46! leaving only a term that changesMN
! to mN

! in the
one-body operator with a BR-scaling mass, Eq.~38!, in the
EM case can be understood as follows. Both terms invo
the two-body interaction mediated by a pion-exchange. I
obvious how this is so in the latter. To see it in the form
we note that it involves the insertion of an EM current in t
propagator of the pion. Thus the sum of the two terms c
responds to the insertion of an EM current inall internal
hadronic linesof the one-pion exchange self-energy graph
the nucleon. The two-body pionic current—that togeth
with the single-particle current preserves gau
invariance—is in turn related to the one-pion-exchange
tential Vp . Therefore what is calculated is essentially
effect of a nuclear force. Now the point is that the densi
dependent part of the sum~that is, the ones containing on
hole line!—apart from a term that changesMN

! to mN
! in Eq.

~38!—vanishes in thev/q→0 limit. In contrast, the cancel
lation between Eqs.~63! and ~50! in the case of the axia
charge, has no corresponding interpretation. While the o
pion-exchange interaction is involved in the particle-ho
terms ~50!,~63! cannot be interpreted as an insertion of t
axial vector current into the pion propagator since such
insertion is forbidden by parity. In other words, Eq.~63! does
not have a corresponding Feynman graph which can
linked to a potential. We interpret this as indicating that the
is no corresponding Landau formula for the axial charge
the same sense as in the vector current case.

In a chiral Lagrangian formalism, each term is associa
with a Feynman diagram. There is no contribution to t
convection current from a diagram of the type Fig. 1~c!
@apart from a gauge noninvariant off-shell term which ca
cels the counter part in Fig. 1~b!#. Instead this diagram renor
malizes the spin gyromagnetic ratio. In contrast, the co
sponding diagram for the axial currentdoescontribute to the
axial charge~66!. As first shown in Ref.@4#, the contribution
from Fig. 1~c! for both the vector current and the axial-vect
current is current algebra in origin and constrained by ch
symmetry. Furthermore it does not have a simple connec
to the nuclear force. While the convection current is co
pletely constrained by gauge invariance of the electrom
netic field, and hence chiral invariance has little to say, b
the EM spin current and the axial charge are principally d
tated by the chiral symmetry. This again suggests that
Landau approach to the axial charge cannot give the c
plete answer even at the level of a quasiparticle descript
There is, however, a caveat here: in the Landau approach
nonlocal pionic and local four-Fermion interactions~26! en-
ter together in an intricate way as we saw in the electrom
netic case. Perhaps this is also the case in the axial cha
with an added subtlety due to the presence of Goldst
pions. It cannot be ruled out that the difference is due to
contribution of the four-Fermion interaction term to Eq.~64!
which cancels out in the limitv/q→0 but contributes in the
q/v→0 limit. This term cannot be given a simple interpr
tation in terms of chiral Lagrangians. This point needs f
ther study.
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D. Numerical comparison

To compare the two results, we rewrite the sum of E
~62! and~63!, i.e., ‘‘Landau axial charge’’~LAC!, using Eqs.
~5! and ~21!

A0LAC
i 5gA

s•k

mNF

t i

2
~11D̃ !, ~71!

where

D̃5
f 2kFmNF

4p2mp
2 S I 02I 11

3mp
2

2kF
2

I 1F21D ~72!

and the sum of Eqs.~68! and~69!, i.e., the ‘‘current-algebra
axial charge’’~CAAC!, as

A0CAAC
i 5gA

s•k

mNF

t i

2
~11D!, ~73!

where

D5
f 2kFmN

2gA
2mp

2 p2 S I 02I 12
mp

2

2kF
2

I 1D . ~74!

We shall compareD̃ and D for two densitiesr5 1
2 r0 (kF

51.50mp) andr5r0 (kF51.89mp) wherer0 is the normal
nuclear matter density 0.16/fm3.

For numerical estimates, we take

F~r!5S 110.28
r

r0
D 21

~75!

which givesF(r0)50.78 found in QCD sum-rule calcula
tions@10,21#. Somewhat surprisingly, the resulting values f
D̃ andD are close; they agree within 10%. For instance,
r'r0/2, D̃'0.48 while D'0.43 and atr'r0 , D̃'0.56
while D'0.61. Whether this close agreement is coinciden
or has a deep origin is not known.

E. Experimental evidences

The small difference between the two approaches
little effect on the axial charge transition matrix element
heavy nuclei,

A~J1!↔B~J2! ~76!

with change of one unit of isospinDT51. To confront quan-
titatively our formulas with experiments, we would have
incorporate the finite-size effect for BR scaling which w
could do in the local density approximation. This should b
well-defined, though laborious, exercise. However, perfo
ing such a calculation is out of scope of this work, so wh
we will do here is to make a qualitative~yet reliable! esti-
mate to see how things go as a function of density. T
quantity of interest is the Warburton ratioeMEC @38#

eMEC5Mexp/M sp, ~77!
.

t

l

s

a
-
t

e

where Mexp is the measured matrix element for the ax
charge transition andM sp is the theoretical single-particle
matrix element. It was observed by Warburton that in hea
nuclei,

eMEC
heavy nuclei51.9–2.0 ~78!

showing that the ‘‘mesonic enhancement’’ could be as big
100% at nuclear matter density. More rece
measurements—and their analyses—in different nuclei@39#
ranging fromA512 toA5205 nuclei quantitatively confirm
this result of Warburton.

To compare our theoretical prediction with the Warburt
analysis, we simply taker'r0'0.16 fm23 and calculate
the same ratio using11 Eq. ~73!

eMEC
CAAC5F21~11D!. ~79!

The enhancement corresponding to the Landau formula~71!

is obtained by replacingD by D̃ in Eq. ~79!. Using the value
for F andD at nuclear matter density, we find

eMEC
th '2.1~2.0!. ~80!

Here the value in parenthesis is obtained with the Lan
formula ~71!. The difference between the two formulas~i.e.,
current algebra vs Landau! is indeed small. It should be
noted that this is a check of the scaling off p in combination
with the assumption that the pion does not scale up
nuclear matter density.

V. SUMMARY AND DISCUSSIONS

In this section we summarize what we have achieved
and failed to achieve—and take up some of the matters
adequately discussed.

By means of nuclear response to electromagnetic con
tion current, we have identified the BR-scaling parameterF
with the scaling nucleon massM !. The Landau effective
mass of the nucleonmN

! is in turn given in terms ofF and
the Goldstone boson cloud of the broken chiral symme
i.e., pion, through the parameterF̃1

p . The relation between
the orbital gyromagnetic ratiodgl andmN

! provides the cru-
cial link betweenF and the Landau parameterF1

v coming
from the massive degrees of freedom in the isoscalar ve
channel dominated by thev meson.

In the BR-scaling Lagrangian approach, the axial cha
transitions in heavy nuclei provides a relation betweenF and
the in-medium pion decay constantf p

! / f p . We have, how-
ever, failed to link this theory to a corresponding Landa
Fermi-liquid description. This may be due to our poor und
standing of the subtle role that Goldstone bosons play
nuclear axial currents in Fermi-liquid theory.

11This formula differs from what was obtained in Ref.@40# in that
here the nonscaling in medium of the pion mass and the ratiogA / f p

is taken into account. We believe that the scaling used in Ref.@40#
@which amounted to havingD/F in place ofD in Eq. ~79!# is not
correct.
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A Walecka-type linear model for nuclear matter with t
parameters of the Lagrangian scaling in the manner
Brown-Rho consistent with chiral symmetry provides t
connection betweenF and the scaling of the vector-meso
degrees of freedom (v andr) and scalar-meson degrees
freedoms in the situation where the mesons are highly o
shell. This relation has been checked against fluctuations
various flavor directions, including strangeness flavor. So
the check is only semi-quantitative and approximate
there is consistency.

A rigorous derivation of BR scaling starting from an e
fective chiral action via multiple scale decimations requir
for the problem is yet to be formulated but the main ing
dients, both theoretical and phenomenological, seem to
available.

So far, we have succeeded in mapping the chiral Lagra
ian theory with BR scaling to nonrelativistic Landau Ferm
liquid theory. This is natural since we worked in heav
Fermion formalism for the chiral Lagrangian field theor
However, in order to apply the correspondence to dense m
ter encountered in relativistic heavy-ion collisions and
neutron stars—a nontrivial open problem, we should form
late the mapping relativistically as in Ref.@11# where ther-
modynamic properties of a BR-scaled chiral Lagrangian
the mean field were shown to be consistent with the rela
istic Landau formulas derived by Baym and Chin@41#. This
work is in progress.

In discussing properties of dense matter, such as BR s
ing of masses and coupling constants, e.g.,f p

! , we have been
using a Lagrangian which preserves Lorentz invariance. T
seems to be at odds with the fact that the medium bre
Lorentz symmetry. One would expect for instance that
space and time components of a current would be chara
ized by different constants. Specifically such quantities
gA , f p , etc., would be different if they were associated w
the space component or time component of the axial curr
So a possible question is, how is the medium-induced s
metry breaking accommodated in the formalism we ha
been discussing in this paper? The answer to this ques
was provided in Ref.@11#. There the argument was given
an exact parallel to Walecka mean field theory of nucl
matter. One writes an effective Lagrangian with all symm
tries of QCD which in the mean field defines the parame
relevant to the state of matter with density. The parame
that become constants~masses, coupling constants, etc.! at
given density are actually functionals of chiral invariant b
linears in the nucleon fields. When the scalar fieldf and the
bilinearc†c, wherec is the nucleon field, develop a nonva
nishing expectation value Lorentz invariance is broken a
the time and space components of a nuclear current pic
different constants. This is how, for instance, the Gamo
Teller constantgA measured in the space component of
axial current isquenchedin dense medium while the axia
charge measured in the axial charge transitions isenhanced
as described above. If one were to calculate the pion de
constant in medium, one would also find that the quan
measured in the space component is different from the t
component. The way Lorentz-invariant Lagrangians figure
nuclear physics is in some sense similar to what happen
condensed matter physics. For example, on a lattice w
there is not even rotational invariance, one finds a Loren
of
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invariant dispersion formula. Another well-known examp
is the fractional quantized Hall effect which is described b
Lorentz-invariant Lagrangian containing the Chern-Simo
term @42#.

ACKNOWLEDGMENTS

One of us~C.S.! is grateful to Dong-Pil Min for useful
comments. M.R. acknowledges the hospitality of Theo
Group of GSI where part of this work was done under t
support of the Humboldt Foundation and that of Korea Ins
tute for Advance Study~KIAS! where part of this paper wa
written. The work of C.S. was supported in part by KOSE
through the Center for Theoretical Physics, Seoul Natio
University, and in part by Korea Ministry of Educatio
~Grant No. BSRI98-2418!.

APPENDIX A: RELATIVISTIC CALCULATION OF F 1
p

In the text, the Landau parameterF1
p ~or f p) was calcu-

lated nonrelativistically via the Fock term of Fig. 4. Here w
calculate it relativistically by Fierz transforming the on
pion-exchange graph and taking the Hartree term. This p
cedure is important for implementing relativity in the co
nection between Fermi-liquid theory and chiral Lagrang
theory along the line discussed by Baym and Chin@41#.

The one-pion-exchange potential in Fig. 4 is

Vp52gpNN
2 ~t21•t43!

ū2g5u1ū4g5u3

~p22p1!22mp
2

. ~A1!

The Dirac spinors are normalized by

u†~p,s!u~p,s8!5dss8 . ~A2!

By a Fierz transformation, we have

t21•t435
1

2
~3d41d232t41•t32! ~A3!

and

FIG. 4. The-one-pion-exchange diagram that gives rise toF1
p .
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ū2g5u1ū4g5u35
1

4
@ ū4u1ū2u32ū4gmu1ū2gmu3

1ū4smnu1ū2smnu31ū4gmg5u1ū2gmg5u3

1ū4g5u1ū2g5u3#. ~A4!

Remembering a minus sign for the fermion exchange,
obtain the corresponding pionic contribution to the quasip
ticle interaction at the Fermi surfacef p52Vp(p15p4

5p,p25p35p8,p25p825kF
2) @see Eq.~1!#. Decomposingf p

as

f p5
32t•t8

2
~ f S1 f V1 f T1 f A1 f P!, ~A5!

whereS, V, T, A, andP represent scalar, vector, tensor, ax
vector, and pseudoscalar channel, respectively, we find

f S52
mN

4 f 2

EF
2mp

2

1

q21mp
2

,

f V5
mN

4 f 2

EF
2mp

2

1

q21mp
2 S 11

q2

2mN
2 D ,

f T52
mN

4 f 2

EF
2mp

2

1

q21mp
2 Fs•s8S 11

q2

2mN
2 D

1
2s8•ps•p82s•ps8•p2s•p8s8•p8

2mN
2 G ,

f A5
mN

4 f 2

EF
2mp

2

1

q21mp
2

3S s•s82
2s•ps8•p82s•ps8•p2s•p8s8•p8

2mN
2 D ,

f P50 ~A6!

with EF5AkF
21mN

2 andq5up2p8u. Thus we obtain

f p5
f 2

mp
2

mN
2

EF
2

1

q21mp
2 S s•qs8•q2

q2~12s•s8!

2 D32t•t8

2

5
1

3

f 2

mp
2

mN
2

EF
2

q2

q21mp
2 S 3

s•qs8•q

q2
2s•s8

1
1

~32s•s8!D 32t•t8
. ~A7!
2 2
e
r-

l

In the nonrelativistic limit,EF;mN and we recover Eq.~20!.
The factormN /EF comes since there is one particle in th
unit volume which decreases relativistically as the speed
creases. Note that onlyf S and f V in Eq. ~A6! are spin-
independent and contribute toF1

p . The f S is completely can-
celed by the leading term off V with the remainder giving
F1

p . In this way of deriving the Landau parameterF1, it is
the vector channel that plays the essential role.

APPENDIX B: PARTICLE-HOLE CONTRIBUTION
TO THE VECTOR CURRENT

The leading contribution of the particle-hole polarizatio
with one-pion exchange is shown in Fig. 3. This graph w
computed by several authors~e.g., see Ref.@22#! and is given
in the limit v/q→0 by

Jph52(
t8

K t~1!•
11t38

2
t~2!L E d3p

~2p!3
p̂d~kF2upu! f s

p ,

~B1!

wheref s
p[ f S1 f V1 f T1 f A1 f P . The isospin factor is given

by the Fierz transformation

(
t8

K t~1!•
11t38

2
t~2!L

5(
t8

K 3

4
2

1

4
t•t81

3

4
tr@t38#2

1

4
t•tr@t38t8#L

5
3

2
2

1

2
t3 . ~B2!

Note that the factor32 comes fromf p and 1
2 t3 from f p8 . In

the limit that we are concerned with~i.e., T50 and v/q
→0), we find

Jph52
1

3p2
k̂kF

2~ f 11 f 18t3!

52
k

mN

F̃1~p!1F̃18~p!t3

6
. ~B3!

Contributions from heavy-meson exchanges are calculate
a similar way.
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