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We discuss the Fermi-liquid properties of hadronic matter derived from a chiral Lagrangian field theory in
which Brown-Rho(BR) scaling is incorporated. We identify the BR scaling as a contribution to Landau’s
Fermi-liquid fixed-point quasiparticle parameter from “heavy” isoscalar meson degrees of freedom that are
integrated out from a low-energy effective Lagrangian. We show that for the vi@ciovection current, the
result obtained in the chiral Lagrangian approach agrees precisely with that obtained in the semiphenomeno-
logical Landau-Migdal approach. This precise agreement allows one to determine the Landau parameter that
enters in the effective nucleon mass in terms of the constant that characterizes BR scaling. When applied to the
weak axial current, however, these two approaches differ in a subtle way. While the difference is small
numerically, the chiral Lagrangian approach implements current algebra and low-energy theorems associated
with the axial response that the Landau method misses and hence is expected to be more predictive.
[S0556-28189)04506-9
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I. INTRODUCTION density processes we are concerned with here. A relativistic
formulation more appropriate for high-energy and high-
At very low energies, the relevant degrees of freedom fordensity heavy-ion processes is in progress and will be pre-
strong interactions in nuclear matter are pions, nucleons angented elsewhere.
other low-mass hadrons identified in the laboratory and the The basic strategy we will develop is as follows. First we
appropriate theory is an effective quantum field theory in-will present an argument for an effective chiral Lagrangian
volving these hadrons even though the fundamental theory ihich in the mean field approximation corresponds to a non-
known to be QCD with quarks and gluohs]. Just which  topological soliton describing a lump of nuclear matter. The
and how many hadronic degrees of freedom must appear iparameters of this effective Lagrangian will then be identi-
the theory depends upon the energy scale that is probefled with the fixed-point quantities in Landau Fermi-liquid
Thus for example, if one is probing energies of a few MeVtheory. Given this identification, one can associate certain
as in the case of low-energy properties of two-nucleon sysmean field quantities of heavy mesofesg., the light-quark
tems, then the nucleon field as a matter field and possiblyector mesong and w) to Brown-Rho (BR) scaling via
pions as pseudo-Goldstone bosons would suffice. Landau parameters. We first illustrate how this chain of ar-
In this paper, we would like to extend the strategy ofguments works for electromagnetic properties of heavy nu-
effective field theories to many-body systems and a densitglei. Turning the arguments around, we determine the BR-
regime corresponding to a shorter-length or higher-energgcaling paramete® at nuclear matter density from magnetic
scale than that probed by the low-energy two-nucleon sysmoments of heavy nuclei in terms of the Landau parameter
tems[2,3]. This would entail two important changes to the F7 associated with massive isoscalar vector meson degrees
effective Lagrangian: First we need to introduce more masef freedom that are integrated out from the effective La-
sive degrees of freedonisuch as vector mesons and/or grangian. We then use a similar line of arguments to derive
higher-dimensional operators in the nucleon figlis the the corresponding formulas for the axial current. In this pa-
effective Lagrangian and second, we need to take into ager, we shall focus on the processes that are dominated by
count the Fermi sea of nucleons in the bound system. pionic effects, that is, those to which the “chiral filter
The principal aim in this paper is then to tie in togethermechanism”[4] applies, namely, the electromagnetic con-
various results obtained previously in diverse contexts into aection current and the axial charge operator.
unified framework so as to be able to extrapolate our ideas This paper is organized as follows. In Sec. Il, effective
into the kinematic domains that are yet to be explored exfield theories that figure in nuclear physics are described in-
perimentally. In doing this, we shall be using nonrelativisticcluding a brief summary of Landau’s Fermi-liquid theory
arguments which are justified for low-energy and low-adapted to strongly interacting nuclear systems. The calcula-
tion of the electromagnetic current for a particle sitting on
top of the Fermi sea in Landau-Migdal theory and in chiral

*Electronic address: b.fiman@gsi.de Lagrangian theory is given in Sec. lll. The Landau parameter
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function of density(in the manner of BR scalingThe prob-  biguously that it is consistent with the modern notion of
lem of treating axial charge transitions in heavy nuclei iseffective field theory. As such, it is difficult to gauge the
presented in Sec. IV. The two methods—Fermi liquid andpower of the theory. When something does not work, then
chiral Lagrangian—are found to give almost same numericajhere is very little one can do to improve on it since there is
results at nuclear matter density but differ in a subtle wayho systematic strategy available.

due to the intricacy with which chiral symmetry is mani-  |n this paper we will take a different route. Following
fested in nuclear systems. A possible cause of this differenc_gynn [5], we shall assume that a high-ord@r chiral count-
between the electromagnetic current and the weak current jgq) effective chiral action supports a nontopological soliton
discussed. A summary is given in Sec. V wherein SOmeqtion that corresponds to a chiral liquid with a given
unresolved/open problems are mentioned. In Appendix Abaryon numbeA. Lynn proposes to construct such an effec-
we show how to compute relativistically the pionic contribu—tive action using chiral perturbation theoty all orders of

tion to the Landau parametéy, using a Fierz transforma- : , - -
tion. Appendix B sketches how the particle-hole graph fig-the Ch.lral expansionbut up t.o now expllcnly derlv_lng SL.jCh.
an action has not been feasible. Lacking such a first-principle

uring in the “back-flow” argument is computed. Remarksd ivati 0 devel Hective L ;
not directly relevant to the theme of the paper but helpful for erivation, we propose 1o develop an efiective Lagrangian

the discussions are relegated to footnotes. strategy applied to dense many-body systems resorting to
certain assumptions based on symmetries which are to be
justified a posteriori Given such an action possessing a

Il. EFFECTIVE FIELD THEORY  (EFT) stable nontopological soliton, we follow Lynn’s proposal to

There are two superblgffectiveeffective field theories ~identify such a soliton solution as the ground state of a heavy
for nuclear physics. One is chiral Lagrangian field theory forhucleus and to make fluctuations around that ground state.
low-energy nonperturbative description of hadrons and th&Xcitations on top of that state could then be described in

other is Landau Fermi-liquid theory applied to nuclear mat-terms ofthe parameters determined at that minimutie
ter. bulk properties of which are to be generically characterized

by the density of the state that is probed. There have recently
been several works along this line. For instance, Furnstahl
et al. [6] construct such an effective action consisting of
For two-nucleon systems at very low energies consideretheavy baryons” (nucleon$ and heavy mesons using argu-
in Refs.[2,3], one can integrate out all meson degrees ofments based on the “naturalness condition” of chiral sym-
freedom including the pions and set the cutoff near the piometry of QCD and show that in the mean field the effective
mass. One then writes an effective Lagrangian in terms okagrangian quantitatively describes the ground state of
the nucleon field in a systematichiral) expansion to com- nuclear matter as well as the excitation spectra of finite nu-
pute the irreducible graphs, while summing an infinite set ofclei. The point pertinent to us in the work of Furnstahlal.
reducible diagrams to describe the deuteron bound state aiglthat their formulation is basically equivalent to a variant of
scattering states with a large scattering length. Since the sy®¥alecka mean-field theory. A recent argument by Brown
tem is dilute, the parameters of the theory can be taken frorand Rho[7] (and also Ref{8]) has established that Walecka
free-space (zero-density experiments. In principle, we mean field theory is equivalent to a chiral Lagrangian mean-
should be able to calculate these parameters from QCD but &ield theory with the parameters of the Lagrangian scaling in
present we do not know how to perform this calculation inthe manner of Brown and RH&R scaling [9]. In Ref.[10],
practice. The results in Refi2,3] confirm that the approach a Walecka-type Lagrangian with BR-scaling parameters was
works remarkably well. When the pion field is included in constructed and shown to describe the nuclear matter ground
addition, it provides a “new” degree of freedom and im- state as successfully as the effective chiral action of Furns-
proves the theory even further and allows one to go higher itahl et al. does. Such a Lagrangian has also been shown to
energy scald3]. This can be formulated systematically in possess thermodynamic properties that are consistent with
terms of chiral perturbation theory. But what about heavielLandau Fermi-liquid structure of nuclear matféd]. This is
(denser nuclei or higher energy scales? the approach we shall use in this paper. Similar ideas were
developed by Brown but using different argumelitg].

A. EFT for dilute systems

B. EFT for dense systems

In going to heavier many-nucleon systems, the standard C. Fermi-liquid fixed points

approach has been to start with a Lagrangian whose param- A conceptually important point in our arguments is that
eters are defined in free space and then develop perturbatit@ndau Fermi-liquid theonf13-1§ is an effective field
and nonperturbative schemes to account for the complex dyheory with fixed pointd17]. In this paper, we will not at-
namics involved. Higher-energy scales will be involvedtempt to show that the Fermi-liquid theory for nuclear matter
since the interactions between nucleons in such systenis also a fixed-point field theory. We will simply take the
sample all length scales and hence other degrees of freedamsult established in Reff17] and implement its implications
than nucleonic and pionic need be introduced. In doing sucin our scheme.

calculations, symmetry constraints, such as those of chiral One of the principal consequences of this identification is
symmetry, are found to be useful but not always properlythat the nucleon effective maéshich will be referred to as
implementable. Basically phenomenological in character;'Landau effective mass)' and Landau quasiparticle interac-
given a sufficient number of free parameters, such an agions (defined below are fixed-point quantities with vanish-
proach can be quite successful but one cannot check unarmg B functions. Our goal is to connect these fixed-point
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guantities to BR scaling parameters that figure in effectivgLanday effective mass of the nucleon to be distinguished
chiral Lagrangians appropriate for dense medium. We arérom the BR-scaling mass! ). The spin and isospin degen-
thereby combining two effective field theories, the chiral La-eracy factor\ is equal to 4 in symmetric nuclear matter.
grangian field theory and Landau Fermi-liquid theory, into Furthermoreg=p,—p, and

an effective field theory for dense matter in which BR scal-

ing plays an important role. We believe this “marriage” is a S1(q) =301 qoy- G— 01 - 0, 2)
successful one for density at least up to that of nuclear mat-

ter. Going beyond that and extrapolating into the regime Of/vheredzq/|q|. The tensor interactiortd andH’ are impor-
relativistic heavy-ion collisions involves guesses that need beant for the axial charge, which we consider in Sec. IV. The
verified a posteriori functionsF,F’, ..., areexpanded in Legendre polynomials

D. A primer on Fermi-liquid theory F(cosfqp) = Z F,P/(cosb,), 3

Before getting into our main calculation, we give a mini- ) _ _ _
primer on Landau Fermi-liquid theory to define the quanti-With analogous expansions for the spin- and isospin-
ties involved. We should point out that once the fixed-pointdePendent interactions. The energy of a quasipattisiéh
quantities are identified in the chiral Lagrangian, then we caf"omentump= |pl, spine and isospinr is denoted by, »
use all the standard relations established in Landau’s origin&"d the corresponding quasiparticle number distribution by
theory. Npor- The effectlve mass of a quasiparticle on the Fermi

Landau Fermi-liquid theory is a semiphenomenologicaiSurface is defined by
approach to strongly interacting normal Fermi systems at
small excitation energies. It is assumed that a one-to-one
correspondence exists between the low-energy excitations of dp
the Fermi liquid and that of a noninteracting Fermi gas. TheB

elementary excitations of the Fermi liquid, which correspond->. using Galilean invariance one finds a relation between the
. Y €x quid, "T€SPONCttective mass and the velocity dependence of the quasipar-
to single particle degrees of freedom of the Fermi gas, ar

called quasiparticles. The quasiparticle properties, e.g., th%eICIe Interaction

mass, in general differ from those of free particles due to my, =
interaction effects. In addition there is a residual quasiparti- e 1+ 3"
cle interaction, which is parametrized in terms of the so N
called Landau parameters.
Fermi-liquid theory is a prototype effective theory, which
works because there is a separation of scales. The theory%c'
applicable to low-energy phenomena, while the parameters IIl. ELECTROMAGNETIC CURRENT
of the theory are determined by interactions at higher ener-
gies. The separation of scales is due to the Pauli principle We will first give a brief derivation of the Landau-Migdal
and the finite range of the interaction. Fermi-liquid theoryformula for the convection current for a particle of momen-
has proven very usefiilL6] for describing the properties of, tumk sitting on top of the Fermi sea responding to a slowly
e.g., liquid *He and provides a theoretical foundation for the varying electromagnetitEM) field. We will then analyze it
nuclear shell moddil4] as well as nuclear dynamics of low- in terms of the specific degrees of freedom that contribute to
energy excitation§18,19. the current. This will be followed by a description in terms
The interaction between two quasiparticlesandp, at  of a chiral Lagrangian as discussed in Réfl]. This proce-
the Fermi surface of symmetric nuclear matter can be writteidlure will provide the link between the two approaches.
in terms of a few spin and isospin invariaf)]

_k (4)

dep _
— —-
p=Kkg My

B\t

where F|=(my/my)F,, with analogous definitions foF|

A. Landau-Migdal formula for the convection current

Fproy7y porpr, = N(0) F(cosf)) +F'(costip) 71 - 7 Following Landau’s original reasoning adapted by Migdal
to nuclear systems, we start with the convection current
+G(c0S6b1y) 0 - 0, given by

+G,(005012)0'1' Oo27T1° T

2 . IBelow we omit the spin and isospin indicesand = from our
+ —2H(C03012)312(q) formulas to avoid overcrowding, except where needed to avoid am-
Kf biguities. We will also omit the space and time dependence of the

guantities, e.g.e=e€(r,t).

2More precisely, this is a matrix element of the current operator
corresponding to the response of a nuclémmton or neutronsit-
ting on top of the Fermi sea to the EM field. The sum over spin and
isospin and the momentum integral go over all occupied states up to
where 6;, is the angle betweerp; and p, and N(O) the valence particle. What we want is a current operator and it is
=\kemy/(27?) is the density of states at the Fermi surfacededuced after the calculation is completed. One can of course work
(we use natural units wherk=1 and denote bymy the directly with the operator but the result is the same.

2

a ., -

+PH (C0S012) S 71° 72 |, 1)
f
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= J d'p (Ve = (14 73) 6) PO (15)
= — €p)Np = 73), =5,
oor (277_)3 p=p p2 3 S mﬁ 2 3
where the sum goes over the spinand isospinr which in k 5F; Kk mF, k m3F;—F;
spin- and isospin-saturated systems may be written as atrace  dJ,=— 5 5 = - 3t > 3 (16)

v * *
over theo and r operators. We consider a variation of the My 23 My 23 My

distribution function from that of an equilibrium state Putting everything together we recover the well known result

_n0 of Migdal [14,1

np=nJ+aon,, (7) gdal [14,19

where the superscript 0 refers to equilibrium. The variation J=—g=— + < (F1=Fy) 73/, (17
of the distribution function induces a variation of the quasi- My myl 2 6

particle energy

where
vt ? g0="17 1 s (18)
1= [
In the equilibrium state the current is zero by symmetry, so 2
we have is the orbital gyromagnetic ratio and
dp o 0.1 1., -
=2, W[(Vpep)5np+(vpaep)np]§(1+73), sgi=5(Fi-Fy)ms. (19
d3p 1 Thus, the renormalization dj, is purely isovector. This is
:E f—s[(Vpeg) 5np—(Vpng)5ep)]§(l+ T3) due to Galilean invariance, which implies a cancellation in
o7 J (2m) the isoscalar channel.
(9 We have derived Migdal’'s result using standard Fermi-

liquid theory arguments. This result can also be obtained

to linear order in the variation. We consider a proton or[22] by using the Ward identity, which follows from gauge
neutron added at the Fermi surface of a system in its grounthvariance of the electromagnetic interaction. This is of
state. Then course physically equivalent to the above formulation. We
shall now identify specific hadronic contributions to the cur-

1 1*+7; rent(17) in two ways: the Fermi-liquid theory approach and
5np=vb\°’(p— K)— (100 the chiral Lagrangian approach.

and B. Pionic contribution
1. Fermi-liquid theory approach

p
0_
Vp”p__k_F5(p_kF)' 1D In this approach, all we need to do is to compute the
Landau parameteF; from the pion-exchange interaction.
wherek with |k|=kg is the momentum of the quasiparticle. The qne-pion—exchange contribution to the quasiparticle in-
The modification of the quasiparticle energies due to the adteraction i$
ditional particle is given by
f;:'ixg’ha’-r’ == PUPTV‘IT(q)
dSpr '
56po’7': E f —3fpo'7',p’a"7" 5npro.r7.r . (12) 1 f2 q2
o7’ (277) - -
3ml gt +m?
Combining Egs(1), (9), (10), and(12) one finds that the

. . .1 3—77
first term of Eq.(9) gives theoperator x| S(0)+ 5(3_ o o) o (20)
+
J(l):L 1t7s (13) whereg=p—p’ andf=g,yn(m,/2my)=1. The one-pion-

my 2 exchange contributions to the Landau parameters relevant for
the convection current are
wherek is taken to be at the Fermi surface. The second term

yields
Kk [E.+E! 3In a relativistic formulation sketched in Appendix A, we can
$1=8J+ 8] =— 1 173) (14) Fierz the one-pion exchange. Done in this way, the Fierzed scalar
s Y my 6 ' channel is canceled by a part of the vector channel and the remain-

ing vector channel makes a natural contribution to the pionic piece
where of F.
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LS S,
Y - y 2-body™ = 211737 6[ 1(m)—Fq(m)]7s.
/ We should emphasize that the Landau paramétemndF |
(a) ® © are entirely fixed by chiral symmetry for any density.

FIG. 1. Feynman diagrams contributing to the EM convection The sum of Eqs(24) and (25) agrees precisely with the

current in effective chiral Lagrangian field theotg) is the single-  ~ermi-liquid theory resul(17),(21),(23). This formula first

particle term and(b), (c) the next-to-leading chiral order pion- derived in Ref.[25] in connection with the Lz_indau-MlgdaI

exchange current ternic) does not contribute to the convection Parameter is of course the same as the Miyazawa formula

current; it renormalizes the spin gyromagnetic ratio. [26] derived nearly half a century ago. Note the remarkable
simplicity in the derivation starting from a chiral Lagrangian.
However, we should caution that there are some nontrivial

1, (21)  assumptions to go with the validity of the formula. As we

872Kg will see shortly, we will not have this luxury of simplicity

when other degrees of freedom enter.

Fum) o 3f2my,

3 1

where
C. Vector-meson contributions and BR scaling

1 X m2 4k2 _ I
|1:f dx————=-2+ ( 1+ —2) In( 1+ —2) So far we have qomputed only t_he pion contribution to
1 1-x+m2/2ke F m; g;. In nuclear physics, more massive degrees of freedom
(22)  such as the vector mesopsand w of mass 700—800 MeV
and the scalar mesam of mass 600—700 MeV play an im-
portant role. When integrated out from the chiral Lagrangian,
they give rise to effective four-Fermion interactions

Thus, from Eq.(19), the one-pion-exchange contribution to
the gyromagnetic ratio is

sqr=™ 23 ci _ . c2_ c? _
= Ta. _"9¢ 2_ @ 2_ P 24 ...
U g2 17 La=— (NN)Z= —2(Ny,N)?= £ (Ny, 7N)?+ - -,
. I (26)
In Sec. Il C, we include contributions also from other de-
grees of freedom. where the coefficient€’s can be identified with
. . 2
2. Chiral Lagrangian approach
grangian app cfﬂzg—“z” with M= ¢,p, . (27)
In the absence of other meson degrees of freedom, we can My

simply calculate Feynman diagrams given by a chiral La- ] . ) ] )
grangian defined in the matter-free space. NonperturbativeUch interaction terms are “irrelevant” in the renormaliza-
effects due to the presence of heavy mesons introduce N group flow sense but can make crucial contributions by
subtlety that will be treated below. becoming “marginal” in some particular kinematic situa-
In the leading chiral order, there is the single-particle con{ion. A detailed discussion of this point can be found in Ref.
tribution Fig. Xa) which for a particle on the Fermi surface [17]. The effective four-Fermion interactions play a key role

with the momentunk is given by in stabilizing the Fermi-liquid state and leads to the fixed
points for the Landau parameters. In the two-nucleon sys-
k 1+ tems studied in Refs[2,3], they enter into the next-to-
‘Jl-body:m_N o (24) leading order term of the potential, which is crucial in pro-

viding the cut-off independence found for cutoff masses

Note that the nucleon mass appearing in 4) is the free- =<M;.
space massy as it appears in the Lagrangian, not the ef-
fective massny, that enters in the Fermi-liquid approach, Eq.
(13). To the next-to-leading order, we have two “soft-pion”  Again it suffices to compute the Landau parameters com-
terms as discussed in Ref4,23,24. To the convection cur- ing from the velocity-dependent part of heavy meson ex-
rent we need, only Fig.(b) contribute$ changes. We treat the effective four-Fermion interactizé)
in the Hartree approximation. Then the only velocity-
dependent contributions are due to the current couplings me-

. diated byw andp exchanges. The corresponding contribu-
4 -
We should recall a well-known caveat here discussed already iBons to the Landau parameters are

Ref. [23]. If one were to blindly calculate the convection current
coming from Fig. 1b), there would be a gauge noninvariant term
that is present because the hole line is off shell. Figgcgdontains
also a gauge noninvariant term which is exactly the same as in Fig.°For the moment, we make no distinction as to whether one is
1(b) but with an opposite sign, so in the sum of the two graphs, theaking into account BR scaling or not. For the Fermi-liquid ap-
two cancel exactly so that only the gauge-invariant term survivesproach, this is not relevant since the parameters are not calculated.
Of course we now know that the off-shell dependence is not physiHowever, with chiral Lagrangians, we will specify the scaling
cal and could be removed by field redefinitiah initio. which is essential.

1. Fermi-liquid theory approach
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2k3 2k3 My mp, my omy o fr
Filo)=-Cl—-=-Ci—— @9 T m, T, m T, @3
T M r mN N w P 1] T
and 3 3 Here M}, is a BR-scaling nucleon mass which will turn out
Fl(p)=—C3 2k ~_C2 2ke 290 o be different from the Landau effective mas§ [21]. For
! P P mmy’ our purpose, it is more convenient to integrate out the vector

_ ) ) i and scalar fields and employ the resulting four-Fermi inter-
where . is the baryon chemical potential and the final ex-ctions (26). The coupling coefficients are modified com-
pressions correspond to the nonrelativistic limit. pared to Eq(27), because the meson masses are replaced by

Now the calculation of the convection current and theeffective ones
nucleon effective mass with the interacti®6) in the Lan- )
dau method goes through the same way as in the case of the 2 9w _
pion. The net result is just EGL7) including the contribution Cu= e 2 with M=¢,p, . (34)

of the contact interaction@8), (29), i.e., M

Fi=Fy(m)+F (o), (30)  The coupling constants may also scil@] but we omit their
o 5 density dependence for the moment.
Fi=Fi(m)+Fi(p). (31 The relation between the BR factdr and F;. The first

thing we need is the relation between the BR-scaling factor
® which was proposed 0] to reflect the quark condensate
in the presence of mattand the contribution to the Landau
Fi=Fi(m)+F (o). (32 parametel, from the isoscalar vectore{) meson. For this
we first calculate the Landau effective mas§ in the pres-
2. Chiral Lagrangian approach ence of the pion and the fields[21]
The most efficient way to bring the vector mesons into the N 1
chiral Lagrangian is to implement BR scaling in the param- m_N:1+ 3[Fa(@)+Fa(m)]
eters of the Lagrangian. We shall take the masses of the

relevant degrees of freedom to scale according to the BR 1. ~ -1
scaling [9] =|1-zlFl@)+Fi(m]| . (39

Similarly, the nucleon effective mass is determined by Eq
(5) with

Next we compute the nucleon self-energy using the chiral

8In this paper, we are not addressing how this relation was amveﬁj_agrangian Given the single quasiparticle enesgywe get
at since our main objective is to connect the scaling parandeter the eﬁectivé mass as in ReR1] 9

many-body interactions and its link to the quark-antiquark conden- . 1
sate in the medium-modified “vacuum” does not enter directly into % _ ﬁ i ¢

our discussion. But it may be useful for the sake of record to recall my mMyldp P

that this relation was first written down using the Skyrme Lagrang-
ian embedded in medium with the scaling given by the expectation
value of the scalar that figures in the trace anomaly of Q8D . . .
Since this relation was first proposed, many authors have attemptecdjomparlng Eqs£352 and(36), we obtain the important result

to “derive” this scaling relation using various QCD-motivated Fl(w):3(1_®7l)- (37
models as well as sum-rule-type arguments. None of them has suc-

ceeded to reproduce this relation. The reasons for this are multifolg@his is an intriguing relation. It shows that the BR factor,
but one of the main reasons is that the scalar field that enters in thghich was originally proposed as a precursor manifestation
scaling has not been correctly identified. As argued in Réfl, the  of the chiral phase transition characterized by the vanishing
scalar field that dials BR scaling is the “quarkonium” component of the quark condensate at the critical pdidl, is intimately

of the trace anomaly, not the hard “gluonic” component. The 'atterrelated(at least up top~p,) to the Landau parametét;,
dominates the trace anomaly but in the effective theory we argynich describes the quasiparticle interaction in a particular
considering, this is integrated out with its effects lodged in h'gher'channel. We believe that the BR factor can be computed by
dimensional operators in the effective Lagrangian. In medium, a CD sum-rule methods or obtained from current algebra re-
density is increased and the chiral transition point is approacheq, i < <ich as the Gell-Mann-Oakes-Ren(@KOR) rela-

the “mended symmetry” argument of Weinb€eg7] as interpreted tion evaluated in-medium. As was shown in REZ1], Eq

by Beane and van Kolck28] suggests that the scalar contributing f37) implies that the BR i‘actor governs in some 'perﬁaps

to the trace anomaly that plays an important role in the scaling o tricat | | d . Thi ¢
hadron properties is the scalar that makes up the fourth componem ”Ca e \{Yay ?,W'e”eFQY nuclear ynamlcs. IS sugges S a
sible “dual” description at low density between what is

of O(4) in linearo model. This structure immediately gives, via a possIb ) X
Nambu—Jona-Lasinio mechanism developed in Reg], the had- ~ 9iven in QCD variablege.g., quark condensajesnd what is

ron scaling relation33). It has been pointed out to us by Brown 9given in hadronic variablese.g., the Landau paramefer
that this picture is supported by a detailed lattice analysis of LiuSOmewhat reminiscent of the quark-hadron duality in heavy-
et al.[30] for the source of the mass of a constituent quark. Indeedight-quark system$31].

most of the mass of the light-quark hadron is shown to arise from How to calculate the convection current in the presence
the dynamical symmetry breaking and hence is intricately tied toof BR scaling.In the presence of the BR scaling, a non-
the change of the vacuum implied in E§3). interacting nucleon in the chiral Lagrangian propagates with

Lol
o= SFu(m)|

p=kg
(36)
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a massMy, not the free-space massy. Thus, the single- v
particle current Fig. (B) is notgiven by Eq.(24) but instead
by N
AN Y
] k 1+7 39 P
1-body~ 5 o - b
My 2 (a) b

FIG. 2. (a) Feynman diagram contributing to the EM convection
Now the current(38) on its own does not carry conserved cyrrent from four-Fermi interactions corresponding to éand p
charge as long as!{# my. This means that two-body cur- channel(contact interaction indicated by the closed ciydteeffec-
rents are indispensable to restore charge conservation. No§@e chiral Lagrangian field theory. THe denotes the antinucleon
that the situation is quite different from the case of Fermi-state that is given in the chiral Lagrangian asmy.torrection and
liquid theory. In the latter case, the quasiparticle propagatege one without arrow is a Pauli-blocked or occupied si@teThe
with the Landau effective magsy and it is the gauge in- equivalent graph in heavy-fermion formalism with the anti-nucleon
variance that restorasy, to my.” This clearly indicates that line shrunk to a point.
gauge invariance is more intricate when BR scaling is imple-
mented. Indeed if the notion of BR scaling and the associated Both thew (isoscalay andp (isovectoy channels contrib-
chiral Lagrangian is to make sense, we have to recoveute through the antiparticle intermediate state as shown in
charge conservation from higher-order terms in the chiraFig. 2(a). The antiparticle is explicitly indicated in the figure.
Lagrangian. This constitutes a strong constraint on thédowever in the heavy-fermion formalism, the backward-
theory. going antinucleon line should be shrunk to a point as Fig.
Let us now calculate the contributions from the pion and2(b), leaving behind an explicit idy dependence folded
heavy-meson degrees of freedom. The pion contributes in theith a factor of nuclear density signaling theriy/ correction
same way as before, so we can carry over the previous restitt the chiral expansion. One can interpret Fi¢p)2as satu-
of Fig. 1(b), rating the corresponding counter term although this has to be
yet verified by writing the full set of counter terms at the
same order. These terms have been evaluated in[REf.

k 1 _ ~
Jg-bodyzm—N glFi(m—Fu(m]7s. (39 with Fig. 2a)

This is of the same form as E(R5) obtained in theabsence ” k 1.

of BR scaling. It is in fact identical to E425) if we assume JZ-body:m_N EF (@), (40

that one-pion-exchange grapglves not scalén medium at

least up to nuclear matter density. This assumption is sup-

ported by observations in pion-induced processes in heavy k 1.,

nuclei® In what follows, we will make this assumption im- J’z)-body:m—N gh(p) s, (41)

plicitly.

The contributions from the vector-meson degrees of free- - - ) )

dom are a bit trickier. They are given by Fig. 2. whereF;(w) andF;(p) are given by Eqgs(28), (29) with
my replaced byM{,. The total current given by the sum of
Egs. (38)—(40) and (41) precisely agrees with the Fermi-

liquid theory result(17) when we tak
In condensed matter physics, this is related to a phenomenonqu d theory result17) € © take

associated with the cyclotron frequency which is referred to as the
Kohn effect[32]. More on this later. = _F =

8In the early discussion of BR scaling in R¢€], the mass pa- Fi=Fa(@)+Fy(m), (42)
rameter for an in-medium piom’. in the effective chiral Lagrang-
ian was taken to scale down as\/a However, chiral perturbation
theory in medium predicts the “pole mass” of the pion not to scale
up to nuclear matter densif3]. In fact a recent analysis of deeply
bound pionic states in heavy nucl&#] shows that the pole mass of ~ The way in which this precise agreement comes about is
the pion could be a few per cent higher than the free-space value &ontrivial. What happens is that part of tlae channel re-
nuclear matter density. The’, in our in-medium effective chiral ~stores the BR-scaled mabsy back to the free-space mass
Lagrangian is not necessarily the pole mass and so it is not cleany in the isoscalar currenflt has been known for some time
how to implement this empirical information into our theory. What that something similar happens in the standard Walecka
we shall assume in this paper is that ou} does not scale. This model(without pions and BR scalind35].] Thus, the lead-
means that the observation that the one-pion-exchange potentislg single-particle operator combines with the sub-leading
does not scale implies that the constgjtf’ remains unscaling at four-Fermi interaction to restore the charge conservation as
least up to normal nuclear matter density. At high density aboverequired by the Ward identity. This is essentially the “back-
normal nuclear matter density, howevef, will stabilize to 1 while  flow mechanism” which is an important ingredient in Fermi-
f* will continue to drop and hence the coupling-constant ratio will liquid theory. We describe below the standard back-flow
increase. mechanism as given in textbook$5], adapted to nuclear

Fi=Fi(p)+Fi(m). (43)
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3 k
locop=—
0cQ my,

1+ T3
) )
Note thatJy, precisely cancelss), Eqg. (14). The current
Jiocqp is the total current carried by the wave packet of a
localized quasiparticle with group velocity =k/my,. How-
(@ ®) ever, the physical situation corresponds to homogeneous
(plane wavg quasiparticle excitations. The current carried by
FIG. 3. Particle-hole contributions to the convection current.a localized quasiparticle equals that of a homogeneous qua-
Here backward-going nucleon lind~* denotes a hole. These siparticle excitation modified by the so-called back-flow cur-
graphs vanish in the/w—0 limit. rent[15]. The back-flow contribution Jocop—Jim) IS just
the particle-hole polarization current in the/g—0 limit,
systems with isospin degrees of freedom, and elucidate thgg. (46).
connection to the results obtained with the chiral Lagrangian
in this section. D. The gyromagentic ratio and Kohn’s theorem

One of the most important results of this section is that
the Landau-Migdal formula17) does not depend on the
The current so constructed is valid for a process occurringandau massny, but depends on the bare masg even
very near the Fermi surface corresponding to the limitthough a single quasiparticle responds to the photon with
(0,0)—(0,0) whereq is the spatial momentum transfer and m* . This is completely analogous to the bare-mass depen-
w is the energy transfer. In the diagrams considered so fadence of the frequency of the collective excitations of the
(Figs. 1 and 2the order of the limiting processes does notinteracting quasiparticles of the half-filled Landau level,
matter. However, the particle-hole contribution, which weknown as Kohn's theorerfB2]. That our chiral Lagrangian
illustrate in Fig. 3 with the pion contributiohdoes depend formulation which starts with a BR-scaled madg, satisfies
on the order in whicly=|q| andw approach zero. Thus, in 5 Kohn theorem is a consistency check of the theory.
the limit _q/wHO, thg particle-hole contributions .vanish It should also be remarked that it is due to this phenom-
whereas in the opposite cas¢q—0, they do not. This can engn that the anomalous gyromagnetic ratio depends on the

3. The w/q—0 limit and the “back-flow current”

be seen by examining the particle-hole propagator BR scale factorb in a simple way as
N(1=nNyiq) Ny q(1=1Ny) 1e = i 1.
— 09 ==(F1—F)r3==|® "—1—zF(mw)|73. (48
w+€k_€k+q+i5 w+€k_€k+q_i5' (44) 9 6 ! i 9 2 ' :

This provides the link between the Landau mas$, BR

where (,q) is the four-momentum of the extern@tM) scaling®, and 89, .

field. This vanishes if we sej—0 with w nonzero but its
real part is nonzero if we interchange the limiting process IV. AXIAL CHARGE TRANSITIONS
since forw we have

No one has yet derived the analog to EL) for the axial
q-k current. Attempts using axial Ward identities in analogy to
———— 8(kg—k). (45  the electromagnetic case have not met with sud@&isThe
—q-kimy difficulty has presumably to do with the role of the Gold-
stone bosons in nuclear matter which is not well understood.
In the limit w/q—0, the particle-hole contribution to the In this section, we analyze the expression for the axial charge

current is® operator obtained by a straightforward application of the
Fermi-liquid theory arguments of Landau and Migdal and

~ compare this expression with that obtained directly from the

Jom L Fit FlTa) (46) chiral Lagrangian using current algebra. For the vector cur-

ph my 6 rent we found precise agreement between the two ap-

proaches.

Adding the particle-hole contributiori46) to the Fermi-
liquid result(17) we obtain the current of dressedr local-
ized quasiparticle The obvious thing to do is to simply mimic the steps used
for the vector current to deduce a “Landau-Migdal” expres-
sion for the axial charge operator. We use both methods
The relation we derive below holds in general regardless of Whageveloped above and f|_nd that they give the same _re_SL_“t'
is being exchanged as long as the exchanged particle has the right N fré€ space, the axial charge operator nonrelativistically
quantum numbers. is ~o-v wherev=k/my is the velocity. In the infinite mo-
195ee Appendix B for a brief derivation of this expression with mentum frame, it is the relativistic invariant helicity- ». It
one pion exchange. is thus tempting to assume that near the Fermi surface, the

A. Applying Landau quasiparticle argument
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axial charge operator for a local quasiparticle in a wave 1
packet moving with the group velocity: =k/my, is simply =5 2 Ooa[Np(N )] a- (58)
~ o Vg . This suggests that we take the axial charge operator ad

for alocalizedquasiparticle to have the form In generah=4 in the spin-isospin space. But without loss of

generality, we could confine ourselvesrie-2 in the spin

Al _ 0'_k1' 49) space with the isospin operator explicited as in ESp).
OlocQP— 9A my 2 Then upon linearizing, we obtain from E5)
As in the vector current case, we take E49) to be the 3
w/q— 0 limit of the axial charge operator. The next step is to Al=ga>, 3[0 (Ve p) MNper
compute the particle-hole contribution to Fig.(®ith the or J (2m)
vector current replaced by the axial curdeint the w/q—0 i
limit. A simple calculation gives -0 (Vpno)(sfpw]i +.. (59)
. ok
Adph=—9a— ZA (500  Wwhere
My
. 1 1+os 7
with = - s’
f2kempy,
A= 4m2772(|0_|1)' (51 and
3n7
wherel; was defined in Eq(22) and _ d”p
1 q( ) (Sfp(”._ Z, (ZT);:,fp<r‘r,p’rr’T’5np'<r’T’ (61)

1 1 k|2:
' :J dX——————=In| 1+ —-|. 52 in analogy with Eq.(12). Equation(59) is justified if the
o) T 1 x m2r2Kd ( 2) 2 9y q.(12). Eq (59) is j

density of polarized spins is much less than the total density
of particles(assumed to hold hereThe first term of Eq(59)
with Eq. (60) yields the quasiparticle charge operator

K

In an exact parallel to the procedure used for the vector cur
rent, we take the difference

Abiocor Al (53) . ok 7
OlocQP70pn 0QP— ) (62)
and identify it with the corresponding Landau axial charge N
LAC
( ) while the second term represents the polarization of the me-
K/ dium, due to the pion-exchange interacti@o)
. O-KT
AdLac=9r— 5(1+A')- (54 .
my ok 7
: : SAG=0a— ZA. (63)
Let us now rederive Eq54) with an argument analogous my, 2

to that proven to be powerful for the convection current. We
shall do the calculation using the pion exchange only but th&he sum of Eqs(62) and (63) agrees precisely with the
argument goes through when the contact interact®® is  Landau charg€54).
included. We begin by assuming that the axial charge—in It is not difficult to take into account the full Landau-
analogy to Eq(6) for the convection current—takes the form Migdal interactions (1) which includes the one-pion-
exchange interaction as well as other contributions to the
5 quasiparticle interaction. Thus, the general expression is ob-

QAE 30 (V 'sp)np > (55)  tained by making the replacement
wheren, and e, are 2<2 matrices with matrix elements 1 10 4 2
p p A’ —>36l 3 O+3Hl 15H2 (64)

[np(r!t)]aa’:np(r!t)éaa’_’_sp(r!t)‘Uaa’ (56)
in Eq. (63). This combination of Fermi-liquid parameters
and corresponds to & =/"=1,J=0 distortion of the Fermi sea
[20]. We will see later that the result obtained with the naive
[ep(r D) ]aar = €p(1, 1) Spur+ (1) Ot (57) Landau argument may not be the whole story, since the one-
pion-exchange contribution disagrees, though by a small
with amount, with the chiral Lagrangian prediction derived below.
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B. Chiral Lagrangian prediction C. Some(incomplete) observations on the difference

We now calculate the axial charge using our chiral La- To expose the differences of the two approaches dis-
grangian that reproduced the Landau-Migdal formula for thecussed above, let us look at the effect of the pion field. The
convection current. Consider first only the pion-exchang&ancellation between the two-body currelt,,, 4y (39 and
contribution. In this case we can take the unperturbe(.jrjgh (46) leaving only a term that changs?, to my in the
n_ucleon propagator to carry the free-space MaRs T_he one-body operator with a BR-scaling mass, E&f), in the
_smg_le-pamcle transition operator corresponding to Fig) 1 EM case can be understood as follows. Both terms involve
is given by the two-body interaction mediated by a pion-exchange. It is

KA obvious how this is so in the latter. To see it in the former,
Al g Tt (65)  We note that it involves the insertion of an EM current in the
01-body™ YA 5" X
my propagator of the pion. Thus the sum of the two terms cor-
responds to the insertion of an EM currentat internal

There is no contribution of the type of Fig(td because of pyronic linesof the one-pion exchange self-energy graph of
the (G) parity conservation. Th? only contr|but|on t0 the the nycleon. The two-body pionic current—that together
two-body current comes from Fig(d and is of the form . the single-particle current preserves gauge

[37] invariance—is in turn related to the one-pion-exchange po-
_ tential V.. Therefore what is calculated is essentially an
Al _ "_’k ZIA 66) effect of a nuclear force. Now the point is that the density-
02-body~ 9A my 2 dependent part of the sufthat is, the ones containing one
hole line—apart from a term that chang#y, to my, in Eq.
with (38)—vanishes in thas/q—0 limit. In contrast, the cancel-
lation between Eqs(63) and (50) in the case of the axial
F2kemy ( m?2 ) c_harge, has no 'corresp_ondi_ng.interpretgtion. Whilg the one-
. (67) pion-exchange interaction is involved in the particle-hole
terms(50),(63) cannot be interpreted as an insertion of the
axial vector current into the pion propagator since such an
The factor (1@,%) in Eq. (67) arose from replacing 12 by insertion is forbidden by parity. In other words, E§3) does
g%\n/92m2 using the Goldberger-Treiman relation. not have a corresponding Feynman graph which can be
Now consider what happens when the vector degrees dinked to a potential. We interpret this as indicating that there
freedom are taken into account. Within the approximation’s no corresponding Landau formula for the axial charge in
adopted, the only thing that needs be done is to implemerihe same sense as in the vector current case.
the BR scaling. The direct intervention of the vector mesons In a chiral Lagrangian formalism, each term is associated
p and » in the axial-charge operator is suppressed by th&vith a Feynman diagram. There is no contribution to the
chiral counting, so they will be ignored here. This means thagonvection current from a diagram of the type Figc)l

in the single-particle charge operator, all that one has to do igapart from a gauge noninvariant off-shell term which can-
to replacemy by M%=my® in Eq. (65): cels the counter part in Fig()]. Instead this diagram renor-

malizes the spin gyromagnetic ratio. In contrast, the corre-
sponding diagram for the axial curreshbescontribute to the
axial chargdg66). As first shown in Ref{4], the contribution
from Fig. 1(c) for both the vector current and the axial-vector
current is current algebra in origin and constrained by chiral
and that in the two-body charge operat66), . should be  symmetry. Furthermore it does not have a simple connection

—,——2
0Tl 2l

2gzmza? F

| ok 7
A01-body™ gAmN_(I) > (68)

replaced byf .® andmy by my®: to the nuclear force. While the convection current is com-
pletely constrained by gauge invariance of the electromag-

_ ok 7 netic field, and hence chiral invariance has little to say, both

A|02-body: gAmN_(I) EA' (69 the EM spin current and the axial charge are principally dic-

tated by the chiral symmetry. This again suggests that the
Landau approach to the axial charge cannot give the com-
lete answer even at the level of a quasiparticle description.
here is, however, a caveat here: in the Landau approach, the
onlocal pionic and local four-Fermion interactiof®6) en-
er together in an intricate way as we saw in the electromag-
netic case. Perhaps this is also the case in the axial charge,
with an added subtlety due to the presence of Goldstone
pions. It cannot be ruled out that the difference is due to the
contribution of the four-Fermion interaction term to E64)
which cancels out in the limi/q— 0 but contributes in the
g/ w—0 limit. This term cannot be given a simple interpre-
which differs from the charge operator obtained by the Lan4tation in terms of chiral Lagrangians. This point needs fur-
dau method, Eq54). ther study.

In the two-body operator, there is a facta,(f,) coming
from theNN vertex which as mentioned before, is assume
to be nonscaling at least up to nuclear matter def&y21],
in consistency with the observation that the pion-exchang
current does not scale in medium. The total predicted by th
chiral Lagrangianmodulo higher-order correctionss then

ok 7

gAmN_(D 2(1+A)- (70)
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D. Numerical comparison where M, is the measured matrix element for the axial

To compare the two results, we rewrite the sum of Eqs_charge transition and/g, is the theoretical single-particle
(62) and(63), i.e., “Landau axial charge(LAC), using Egs. matrix element. It was observed by Warburton that in heavy

(5) and(21) nuclei,

_ ok 7 epeanynuclel 1 9_2 .0 (79
ABLACZQAW 7 (1+4), (7D

N showing that the “mesonic enhancement” could be as big as
100% at nuclear matter density. More recent
measurements—and their analyses—in different ny&ej
ranging fromA= 12 to A= 205 nuclei quantitatively confirm
this result of Warburton.

To compare our theoretical prediction with the Warburton
analysis, we simply takg@~p,~0.16 fm 3 and calculate
and the sum of Eq¢68) and (69), i.e., the “current-algebra the same ratio usirg Eq. (73)
axial charge”(CAAC), as

where

2

m
lo—l;+—— 1, &t

2

2k2

f2kemy®

A=
4772me

(72

evec =P H(1+4). (79
. ok 7
Abcanc= N 5(1+A). (73}  The enhancement corresponding to the Landau forrfiila
N is obtained by replacing by A in Eq. (79). Using the value
where for & andA at nuclear matter density, we find
f2kemy m2 evec~2.12.0). (80)
=522 2| o lim gl (74 . o . .
2g,mzm ke Here the value in parenthesis is obtained with the Landau

5 formula(71). The difference between the two formulae.,
We shall comparel and A for two densitiesp=13p, (kg current algebra vs Landaus indeed small. It should be
=1.50m,) andp=pq (ke=1.89m_) wherep, is the normal  noted that this is a check of the scalingfqfin combination

nuclear matter density 0.16/fm with the assumption that the pion does not scale up to
For numerical estimates, we take nuclear matter density.
P -1 V. SUMMARY AND DISCUSSIONS
®d(p)=|1+0.28— (75
Po In this section we summarize what we have achieved—

. . -~ . and failed to achieve—and take up some of the matters in-
which gives®(py)=0.78 found in QCD sum-rule calcula- adequately discussed.

Eons[lO,Z]]. Somewhat surprisingly, the resulting values for By means of nuclear response to electromagnetic convec-
A andA are close; they agree within 10%. For instance, atjon current, we have identified the BR-scaling paramdter

p~pol2, A~0.48 while A~0.43 and atp~p,, A~0.56 with the scaling nucleon mag¥l*. The Landau effective
while A=0.61. Whether this close agreement is coincidentainass of the nucleomy, is in turn given in terms ofP and

or has a deep origin is not known. the Goldstone boson cloud of the broken chiral symmetry,
. . i.e., pion, through the parametﬁrf. The relation between
E. Experimental evidences the orbital gyromagnetic ratiég, andmy, provides the cru-

The small difference between the two approaches hasial link between® and the Landau parametBf’ coming
little effect on the axial charge transition matrix element infrom the massive degrees of freedom in the isoscalar vector
heavy nuclei, channel dominated by the meson.

In the BR-scaling Lagrangian approach, the axial charge
A(J")<B(J) (76)  transitions in heavy nuclei provides a relation betwéeand
the in-medium pion decay constafit/f .. We have, how-
with change of one unit of isospihT=1. To confront quan- ever, failed to link this theory to a corresponding Landau-
titatively our formulas with experiments, we would have to Fermi-liquid description. This may be due to our poor under-
incorporate the finite-size effect for BR scaling which we standing of the subtle role that Goldstone bosons play in
could do in the local density approximation. This should be anuclear axial currents in Fermi-liquid theory.
well-defined, though laborious, exercise. However, perform-
ing such a calculation is out of scope of this work, so what———
we will do here is to make a qualitativget reliable esti-
mate to see how things go as a function of density. Theﬁ
guantity of interest is the Warburton ratég,zc [38]

UThis formula differs from what was obtained in RE40] in that
ere the nonscaling in medium of the pion mass and the gatid .
is taken into account. We believe that the scaling used in [Réf.
[which amounted to having/® in place ofA in Eq. (79)] is not
evmec=M exp/ Mgp, (77 correct.
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A Walecka-type linear model for nuclear matter with the P, Ps
parameters of the Lagrangian scaling in the manner of
Brown-Rho consistent with chiral symmetry provides the
connection betweed and the scaling of the vector-meson
degrees of freedome( and p) and scalar-meson degrees of I L S
freedomo in the situation where the mesons are highly off-
shell. This relation has been checked against fluctuations into
various flavor directions, including strangeness flavor. So far P, Ps
the check is only semi-quantitative and approximate but
there is consistency. N N

A rigorous derivation of BR scaling starting from an ef-
fective chiral action via multiple scale decimations required
for the problem is yet to be formulated but the main ingre-

dients, both theoretical and phenomenological, seem to be ) ]
available. invariant dispersion formula. Another well-known example

So far, we have succeeded in mapping the chiral Lagrand'Ls the fra_ction_al quantized Hall effect_ vyhich is describe(_j by a

ian theory with BR scaling to nonrelativistic Landau Fermi- LOréntz-invariant Lagrangian containing the Chern-Simons

liquid theory. This is natural since we worked in heavy- term[42].

Fermion formalism for the chiral Lagrangian field theory.

However, in order to apply the correspondence to dense mat-

ter encountered in relativistic heavy-ion collisions and in

neutron stars—a nontrivial open problem, we should formu- One of us(C.S) is grateful to Dong-Pil Min for useful

late the mapping relativistically as in Rdfl1] where ther- comments. M.R. acknowledges the hospitality of Theory

modynamic properties of a BR-scaled chiral Lagrangian inGroup of GSI where part of this work was done under the

the mean field were shown to be consistent with the relativsupport of the Humboldt Foundation and that of Korea Insti-

istic Landau formulas derived by Baym and Cl#t]. This  tute for Advance StudyKIAS) where part of this paper was

work is in progress. written. The work of C.S. was supported in part by KOSEF
In discussing properties of dense matter, such as BR scahrough the Center for Theoretical Physics, Seoul National

ing of masses and coupling constants, €.3,,we have been University, and in part by Korea Ministry of Education

using a Lagrangian which preserves Lorentz invariance. Thi§Grant No. BSRI98-2418

seems to be at odds with the fact that the medium breaks

Lorentz symmetry. One would expect for instance that the

space and time components of a current would be character-APPENDIX A: RELATIVISTIC CALCULATION OF  F7

ized by different constants. Specifically such quantities as In the text, the Landau parametef (or f) was calcu-

, -, etc., would be different if they were associated with L . _
tghAe space component or time compo)r/1ent of the axial currenLated nonrelativistically via the Fock term of Fig. 4. Here we
alculate it relativistically by Fierz transforming the one-

So a possnbl_e question is, how IS the medlum_lnduced sym ion-exchange graph and taking the Hartree term. This pro-
metry breaking accommodated in the formalism we hav s . ; N

: 2 . . . cedure is important for implementing relativity in the con-
been discussing in this paper? The answer to this question

was provided in Reff11]. There the argument was given in nection between Fermi-liquid theory and chiral Lagrangian

; theory along the line discussed by Baym and CHif].
an exact parallel to Walecka mean field theory of nuclear < one-pion-exchange potential in Fig. 4 is

matter. One writes an effective Lagrangian with all symme-
tries of QCD which in the mean field defines the parameters
relevant to the state of matter with density. The parameters

FIG. 4. The-one-pion-exchange diagram that gives risefto

ACKNOWLEDGMENTS

that become constantsnasses, coupling constants, ptat 2 . U y°u1usy°us
. . . o : : V==~ gann( 721" T43) R (A1)
given density are actually functionals of chiral invariant bi- (p2—py)"—mz
linears in the nucleon fields. When the scalar fi¢ldnd the
bilinear ', wherey is the nucleon field, develop a nonva- _ ) )
nishing expectation value Lorentz invariance is broken and € Dirac spinors are normalized by
the time and space components of a nuclear current pick up
different constants. This is how, for instance, the Gamow- T N
Teller constang, measured in the space component of the u'(p,s)u(p,s’)= sy - (A2)

axial current isquenchedn dense medium while the axial

charge measured in the axial charge transitiorsnisanced By a Fierz transformation, we have

as described above. If one were to calculate the pion decay

constant in medium, one would also find that the quantity

measured in the space component is different from the time

component. The way Lorentz-invariant Lagrangians figure in 21 Taz= 5 (3841023~ a1 T30) (A3)
nuclear physics is in some sense similar to what happens in

condensed matter physics. For example, on a lattice where

there is not even rotational invariance, one finds a Lorentzand
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_ _ 1 _ _ In the nonrelativistic limitEg~my and we recover Eq20).
Upy°UsUsy°us= Z[U4U1U2U3—U47"U1U27MU3 The factormy/Er comes since there is one particle in the
unit volume which decreases relativistically as the speed in-
creases. Note that onlys and fy in Eq. (A6) are spin-
o . independent and contribute Ef . Thefgis completely can-

+ Uy y°u U, yous]. (A4)  celed by the leading term df, with the remainder giving

) ) ) _ FT. In this way of deriving the Landau parametey, it is

Remembering a minus sign for the fermion exchange, Wene yector channel that plays the essential role.
obtain the corresponding pionic contribution to the quasipar-

ticle interaction at the Fermi surfac€™= —V _(p1=ps

— _ T 501 11, 5
+U4O’MVU1U20'MVU3+ U4’y’u’)’ U]_UZ'}/N')’ us

=p.p,=ps=p'.p?>=p =kE) [see Eq(1)]. Decomposing " APPENDIX B: PARTICLE-HOLE CONTRIBUTION
as TO THE VECTOR CURRENT
L 3-T 7 The leading contribution of the particle-hole polarization
fr=——F— (st iy irtiatip), (AS) " with one-pion exchange is shown in Fig. 3. This graph was

computed by several authdies.g., see Ref22]) and is given

whereS V, T, A, andP represent scalar, vector, tensor, axial in the limit »/q—0 by

vector, and pseudoscalar channel, respectively, we find

1+ 75 d3p . "
——, Jon=—2 <7(1)~ 3 7(2)>J(2W)3p5(kp—|pl)fs,
(B1)

T T

wherefl=fgs+fy+fr+fo+fp. The isospin factor is given
by the Fierz transformation

1+ 7}
2 <’(1)‘ 2T3’(2)>

N 20" -po-p'—o-po’-p—o-po-p

2m3,
_E 31+ 3 , 1 .
= 2 1 Zr T+ Ztr[T3]_ ZTtI‘[TgT ]
- mﬁf2 1 3 1
A_E'Z:mi q2+mi 25—573. (B2
20-po’-p'—o-po’-p—o-po-p
X| o0 — > ,
2my Note that the factoé comes fromf . and 5 from f/ . In
the limit that we are concerned witfi.e., T=0 and w/q
fp=0 (A6)  —0), we find

with Ex= \kZ+m?2 andq=|p—p’|. Thus we obtain

1.
B Zm o1 ‘]ph:_ﬁkklz:(fl_‘_fl’@)

g’(1-o- 0"))3—7"7’

= L A 2 o
T m _ k Fum+F(m7s -
1 f? mﬁ q? o-qo’-q __m_N 6 ' (B3)
=-— — 3 -0 o
SmlEf g’ +mi| o

y Contributions from heavy-meson exchanges are calculated in
(A7) a similar way.

13 )
+§( -0 o)
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