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We study the effects of strict conservation laws and the problem of negative contributions to final momen-
tum distribution during the freeze-out through 3-dimensional hypersurfaces with spacelike normal. We study
some suggested solutions for this problem, and demonstrate it in one example.@S0556-2813~99!04605-1#

PACS number~s!: 24.10.Nz, 25.75.2q
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I. INTRODUCTION

Fluid dynamical models, especially their simpler versio
are very popular in heavy ion physics, because they con
directly collective macroscopic matter properties, like t
equation of state~EOS! or transport properties, to measu
ables.

Particles which leave the system and reach the detec
can be taken into account via source~drain! terms in the
4-dimensional space-time based on kinetic consideration
in a more simplified way via freeze-out~FO! or final
break-up schemes, where the frozen out particles are for
on a 3-dimensional hypersurface in space-time. This in
mation is then used as input to compute measurables su
two-particle correlation, transverse, longitudinal, radial, a
cylindrical flow, transverse momentum and transverse m
spectra, etc.

In this paper we concentrate on freeze-out. A basic s
dard assumption in this case is that freeze-out happens a
a hypersurface as already mentioned, so it can be picture
a discontinuity where the kinetic properties of the matt
such as energy density and momentum distribution cha
suddenly. The hypersurface is an idealization of a layer
finite thickness~of the order of a mean free path or collisio
time! where the frozen-out particles are formed and the
teractions in the matter become negligible. The dynamics
this layer is described in different kinetic models such
Monte Carlo models@1,2# or four-volume emission model
@3–7#. In fact, the zero thickness limit of such a layer is
overidealization of kinetic freeze-out in heavy ion reactio
while it is applicable on more macroscopic scales like
astrophysics.1

Two types of hypersurfaces are distinguished: those w

1On the other hand, if kinetic freeze-out coincides with a ra
phase transition, like in the case of rapid deconfinement trans
of supercooled quark-gluon plasma, the sharp freeze-out hype
face idealization may still be applicable even for heavy ion re
tions. It is, however, beyond the scope of this work to study
freeze-out dynamics and kinetics in this latter case.
PRC 590556-2813/99/59~6!/3309~8!/$15.00
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a spacelike normal vector,dsmdsm52(ds)2 ~e.g., events
happening on a propagating 2-dimensional surface! and
those with a timelike normal vectordsmdsm5(ds)2 ~a
common example of which is an overall sudden change
finite volume!.

Once the freeze-out surface is determined, one can c
pute measurables. Landau, when drafting his hydrodyna
cal model@8#, just evaluated the flow velocity distribution a
freeze-out, and this distribution served as a basis for all
servables. This approach was used in early fluid dynam
simulations of heavy ion collisions also@9–11#. This proce-
dure was improved to add thermal velocities to the flow v
locities at freeze-out, by Milekhin@12,13# and later by Coo-
per and Frye@14#. This method is widely used, however
raises at least three problems@15#.

First, in some cases before the 1990s, the possible e
tence of discontinuities across hypersurfaces with time
normal vectors was not taken into account or conside
unphysical2 @19–22#. This point was studied recently@23# so
we do not discuss it further.

Second,since the kinetic properties of the matter are d
ferent on the two sides of the front, the explicit evaluation
conservation laws across the freeze-out surface should
taken into account which is not always easy to implement
some ~simple! cases@24–26#, these conservation laws ar
enforced and discussed. For example in@24#, it was pointed
out that the freeze-out momentum distribution for hypers
faces with timelike normal may become locally anisotrop

n
ur-
-
e

2Taub@16# discussed discontinuities across propagating hyper
faces, which have a spacelike normal vector. If one applies Ta
formalism from 1948, to freeze-out surfaces with timelike norm
vectors, one gets a usual Taub adiabat but the equation of the
leigh line yields imaginary values for the particle current across
front. Thus, these hypersurfaces were thought unphysical. How
more recently, Taub’s approach has been generalized to thes
persurfaces@17# ~see also@18#! while eliminating the imaginary
particle currents arising from the equation of the Rayleigh lin
Thus, it is possible to take into account conservation laws exa
across any surface of discontinuity with relativistic flow.
3309 ©1999 The American Physical Society
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3310 PRC 59Cs. ANDERLIK et al.
In @27# a solution for post FO massless, baryonfree Bose
was presented. Here we recall the procedure that shoul
followed in Sec. II.

The third problem is a conceptual problem arising in t
Cooper-Frye freeze-out description when we apply it to
hypersurface with spacelike normal: it is the problem
negative contributions~see Sec. II!. This is the main subjec
of this paper. This problem appears in all freeze-out calcu
tions up to now that we are aware of, and to our knowled
it was not satisfactorily discussed yet in the literature. It w
recognized by some of those who applied the Cooper-F
freeze-out description before@25,26,28#. A possible partial
solution was presented in part 2 of Ref.@26# for noninteract-
ing massless particles, in 111 dimension using the post FO
cut Jüttner ansatz. In@27# it was shown that in an oversim
plified kinetic freeze-out model one can obtain the cut Ju¨ttner
distribution as post FO distribution. In Sec. IV we comple
and generalize the results of@26# and present an example fo
the solution of the freeze-out problem. In Sec. V we sugg
improvements that go beyond the cut Ju¨ttner ansatz.

II. CONSERVATION LAWS ACROSS IDEALIZED
FREEZE-OUT DISCONTINUITIES

In the zero width limit of the freeze-out domain~freeze-
out surface!, the energy-momentum tensor changes disc
tinuously across this surface. Consequently, the four-ve
of the flow velocity may also change@17,29,30#. These
changes should be discussed in terms of the conserva
laws.

The invariant number of conserved particles~world lines!
crossing a surface element,dsm, is

dN5Nmdsm , ~1!

and the total number of all the particles crossing the
hypersurface,S, is

N5E
S
Nmdsm . ~2!

If we insert the kinetic definition ofNm

Nm5E d3p

p0
pm f FO~x,p!, ~3!

into Eq. ~1! we obtain the Cooper-Frye formula@14#:

E
dN

d3p
5E f FO~x,p!pmdsm , ~4!

where f FO(x,p) is the post FO phase space distribution
frozen-out particles which is not known from the fluid d
namical model. The problem is to choose its form correc
Usually one assumes that the pre FO momentum distribu
as well as the post FO distribution are both local therm
equilibrium distributions, with the same temperatu
boosted by the local collective flow velocity on the actu
side of the freeze-out surface, although the post FO distr
tion need not be a thermal distribution. Parametrizing
post FO distribution as thermal,f FO(x,p;T,n,um), whereT
as
be
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-
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-
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f

.
n
l

,
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e

does not necessarily coincide with the pre FO temperat
and knowing the pre FO baryon current and ener
momentum tensor,N0

m and T0
mn , we can calculate the pos

freeze-out quantitiesNm andTmn from the relations@16,17#

@Nmdsm#50 and @Tmndsm#50, ~5!

across a surface element3 of normal vectordsm. Here @A#
[A2A0. The post FO distribution is not a thermal equilib
rium distribution, so temperature does not exist, nevert
less, the conservation laws fix theparameters, e.g.,T, n,um,
of our momentum distribution,f FO(x,p;T,n,un).

To obtain a physically realizable result, in addition w
have to check the condition for entropy increase:

@Smdsm#>0 or R5
Smdsm

S0
mdsm

>1, ~6!

where, for both equilibrium and nonequilibrium FO distrib
tions @18#

Sm52E d3p

p0
pm f FO~x,p!@ ln$~2p!3f FO~x,p!%21#.

~7!

This condition is not necessary to obtain a solution of
freeze-out problem, but it should always be checked to
clude nonphysical solutions. We have to note at this st
that the post FO distribution must not be an equilibrium~or
stationary! solution of the Boltzmann transport equation, a
consequently on the post FO side the energy flow, bar
flow, and entropy flow velocities may all be different.

We can now remind briefly what the problem of negati
contributions to the Cooper-Frye formula is, and a possi
way out. For a FO surface with timelike normal, bothpm and
dsm are timelike vectors, thus,

pmdsm.0,

and the integrand in the integral~4! is always positive. For a
FO surface with spacelike normal,pm is timelike anddsm is
spacelike, thus,pmdsm can be both positive and negativ
~Note thatpm may point now both in the post and pre F
directions.! Thus, the integrand in the integral~4! may
change sign in the integration domain, and this indicates
part of the distribution contributes to a current going ba
into the front while another part is coming out of the fron
On the pre FO sidepm is unrestricted andpmdsm may have
both signs, because we are supposing that pre FO phase
thermal equilibrium. However, in the zero width limit of th
FO front, it is difficult to understand such a situation. Wh
happens actually is that internal rescatterings occur inside
finite FO domain and feed particles back to the pre FO s
to maintain the thermal equilibrium there. On the post F
side, however, we do not allow rescattering and back s
tering any more. If a particle has passed the freeze-out

3In numerical calculations the local freeze-out surface can be
termined most accurately via self-consistent iteration@26,31#.



FO

u-
,

it

it

FO

ro

e

t

th

n.
e

ts

no
fo

-
w

the

ay

ng.
ow

is
for
to

ing
ent
ow

at

is
the

ay

a
e
e

the
d to
s of

ive
rly

d

PRC 59 3311FREEZE-OUT IN HYDRODYNAMICAL MODELS
main it cannot scatter back. In other words, the post
distribution should have the form@25,26#,

f FO* ~x,p,dsm!5 f FO~x,p!Q~pmdsm!, ~8!

whereQ(x) is the step function. Consequently, this distrib
tion cannot be an ideal gas distribution.~On the pre FO side
the distribution may or may not be ideal.! The conservation
laws across a small element of the freeze-out front w
spacelike normal take the form

E
S
S E d3p

p0
f FO* ~x,p,dsg!pmD dsm5E

S
N0

m~x!dsm ,

~9!

E
S
S E d3p

p0
f FO* ~x,p,dsg!pmpnD dsm

5E
S
T0

mn~x!dsm. ~10!

III. THE ALLOWED MOMENTUM REGION
FOR SPACELIKE FO

Let us assume that the FO process happens in the pos
x direction, in other words we go in the positivex direction
from the pre FO domain to the post FO domain. The
hypersurface has a spacelike normal@dsmdsm52(ds)2#,
so thatdsm is orthogonal to the hypersurface~i.e., to the
timelike tangent vector of the surfacetm, tmdsm50) and
points into the post FO~positive x) direction ~while dsm

points in the pre FO direction!.
Depending on the reference frame, the spacelike FO f

can propagate both in the positive or negativex direction, or
it can be Lorentz transformed into its own rest frame, the r
frame of the front~RFF!, wheredsm5(0,1,0,0)ds. In other
reference framesdsm5g(v,1,0,0)ds, whereg51/A12v2.
The parameterv5ds0 /dsx52tx/t0 is frame dependen
and may be both positive and negative.

In order to use the parameterv in the following discus-
sion, we have to select a given reference frame and fix
value in that frame. Let us choose the framecomoving with
the peakof the post FO invariant momentum distributio
Following Ref.@26# let us denote this frame as the rest fram
of the gas~RFG!. Note, however, that, contrary to what i
name seems to suggest, this frame isnot the local rest frame
of the post FO matter, since the post FO distribution is
spherically symmetric in momentum space. Thus, for the
lowing discussion wedefinev in the RFG frame as

v[
ds0

dsx
U

RFG

,

or we can also define and have the samev value, by using
the velocity of the peak of the post FO distribution,uRFG

m in
the RFF.~Note: this is not equal with the post FO flow ve
locities, neither with the Eckart, nor with the Landau flo
velocity.! Thus,
h

ive

nt

st

e

t
l-

v5
uRFG

x

uRFG
0 U

RFF

,

and this means that in the RFF the peak four-velocity has
form uRFG

m 5g(1,v,0,0)uRFF. This velocity v can be both
positive and negative in RFF, i.e., the peak velocity m
point to the post FO direction~as we would expect!, and also
in the pre FO direction in RFF which seems to be confusi
This is, however, not a problem in itself because both fl
velocities ~Eckart and Landau! are always positive on the
post FO side. As we will see later, in special cases it
possible that we obtain negative post FO peak velocity
positive pre FO flow velocities. This indicates we have
discuss the importance of the cut byQ(pmdsm), otherwise
one might be tempted to believe that this cut is not affect
the post FO distribution too much, and the correct treatm
causes only a few percent cut which is negligible. We sh
in the following that this is not the case.

Thepmdsm.0 requirement in the RFG frame means th
only momenta with component

px>2vAm21~px!21~p'!2, ~11!

contribute to the post FO momentum distribution. Th
means that the boundaries of the allowed domain in
@px,p'# plane are hyperbolas in the post FO RFG

~px!2

g221
2~p'!25m2, ~12!

and the domains of the positivex side of the corresponding
hyperboloids in the 3-dimensional momentum space m
contribute to the FO distribution~Fig. 1!. In the massless
limit the hyperboloids become cones around thex axis and
centered at the origin.

Dominant case.For v50 the hyperboloid becomes
plane boundary atpx50 in RFG, i.e., the boundary cuts th
Jüttner distribution in the middle~because in the RFG th

FIG. 1. The boundaries of the cut post FO distributions in
phase space indicating the regions where particles are allowe
freeze out. These boundaries are hyperboloids, for RFF velocitie
v50.65, v50, andv520.35 ~from left to right!. Particles to the
right of these hyperboloids may freeze out. While for large posit
v values the cut is a small perturbation, for moderate or particula
for negative values ofv the cut is far from negligible. The dashe
lines show the massless limits.
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3312 PRC 59Cs. ANDERLIK et al.
peak of the distribution is centered atpW 50). If v.0, the
peak velocity points to the post FO direction and the
hyperboloid is fully in the negativepx region, thus for large
v values only a smaller fraction is excluded from the f
Jüttner distribution. Most of the particles described by a f
Jüttner distribution freeze-out in this case. We will consid
this as the dominant FO case.

On the other hand, as we can see in Fig. 1, for thev,0
case the peak flow points back into the pre FO direction,
only a small fraction of a full Ju¨ttner distribution will freeze
out. The cut eliminates the major part of the particles. T
situation leads to less frozen-out particles, but it yields
unusual post FO distribution.

IV. CONSERVED CURRENTS FOR CUT JÜTTNER
DISTRIBUTION

We now study the particular case wheref FO is a Jüttner
~or relativistic Boltzmann@32,18#! distribution and sof FO* is
a cut Ju¨ttner distribution:

f FO* ~p!5 f Juttner~p!Q~pmdsm!

5
Q~pmdsm!

~2p\!3
expS m2pmuRFG

m

T D , ~13!

where m is the chemical potential related to the invaria
scalar densityn̂, of the noncut Ju¨ttner distribution asm

5T ln@n̂(2p\)3/„4pm2TK2(m/T)…#, anduRFG
m , n̂ andT are

parametersof the distributionf FO* originating from the full
Jüttner distribution. These are not the flow velocity, prop
density, and temperature of the cut Ju¨ttner distribution. The
cut Jüttner distribution is not a thermal equilibrium distribu
tion, e.g., it does not have a temperature at all.

This distribution for massless particles was considered
part 2 of Ref.@26# ~also in @25#!. The cut selects particle
with momentapmdsm.0.

We can evaluate the baryon four-current,Nm, by inserting
the cut Ju¨ttner distribution into the definition, Eq.~3!, and we
get a time directed,N0, as well as a spatial component,Nx,
~wherex is the direction of the spatial component of the F
normal,dsm, in RFG!. In Ref. @26# the spatial component
Nx, of the four-current was not evaluated, so seeing only
zeroth component,N0, the unsuspecting reader might ha
believed falsly, that RFG~rest frame of the gas! is the local
rest frame of the gas. Performing the calculation, in the p
FO RFG frame the baryon current reads as

N05
ñ

4 H vA1a2 j @~11 j !K2~a!2K2~a,b!#1 j
b3v3

3
e2bJ

→
m50

ñ~m,T!
v11

2
, ~14!

Nx5
ñ

8
@~12v2!A2a2e2b# →

m50

ñ~m,T!
12v2

4
,

where j 5sign(v), ñ58pT3em/T(2p\)23, a5m/T, so
that n̂(m,T)5ña2K2(a)/2 is the invariant scalar density o
t

l
r

d

s
n

t

r

in

e

st

the symmetric Ju¨ttner gas, b5a/A12v2, v
5ds0 /dsx , A5(212b1b2)e2b, and

Kn~z,w![
2n~n!!

~2n!!
z2nE

w

`

dx ~x22z2!n21/2 e2x,

i.e.,Kn(z,z)5Kn(z). Just as in case of the noncut distrib
tions the cut Ju¨ttner distribution yields few modified Besse
functions in the expression of the four-currents, while t
relativistic Fermi and relativistic Bose distributions lead to
series of these functions. When evaluating the limits we u

the relationKn(a,b)→
a5b

Kn(a)→
a50

2n21(n21)!a2n. This
baryon current may then be Lorentz transformed into
Eckart local rest~ELR! frame of the post FO matter, whic
moves with uE

m5Nm/(NnNn)1/25gE(1,vE,0,0)uRFG in the
RFG, or alternatively into the rest frame of the freeze-o
front ~RFF!, wheredsm5(0,1,0,0)ds and the velocity of the
RFG isuE,RFG

m 5g(1,v,0,0)uRFF. Then the Eckart flow veloc-
ity of the matter represented by the cut Ju¨ttner distribution
viewed from the RFF isuE

m5gc(1,vc,0,0)uRFF, where vc

5(v1vE)/(11vvE).
The proper density~i.e., the density in the ELR frame! is

obtained as

n~m,T,v !5ANnNn. ~15!

Note that the proper density of the cut Ju¨ttner distribution,n,
is reduced compared to the proper density of the comp
spherical Ju¨ttner distribution,n̂.

The energy momentum tensor in the post FO RFG is

T005
3ñT

2
Hja2

2 H ~11 j !FK2~a!1
a

3
K1~a!G

2FK2~a,b!1
a

3
K1~a,b!G J 1BvJ,

T0x5
3ñT

4 H ~12v2!B2
a2

6
~b11!e2bJ ,

Txx5
ñT

2 H j
a2

2
@~11 j !K2~a!2K2~a,b!#1v3BJ ,

Tyy5
3ñT

4 H vS 12
v2

3 DB1
ja2

3
@~11 j !K2~a!2K2~a,b!#

2
va2

6
~b11!e2bJ , ~16!

where B5(11b1b2/21b3/6)e2b and Tzz5Tyy. This
energy-momentum tensor may then be Lorentz transform
into the Landau local rest~LLR! frame of the post FO mat
ter, which moves withuL

m in the RFG, or into the rest frame
of the freeze-out front~RFF! wheredsm5(0,1,0,0)ds. Al-
ternatively both flow velocities,mL

m or mE
m, can be trans-

formed to the frame where we want to evaluate the con
vation laws, Eq.~5!, and the parameters of the post FO, c
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Jüttner distribution can be determined so that they satisfy
conservation laws. In the massless limit the energy mom
tum tensor in the RFG is

T0053ñT~v11!/2, T0x53ñT~12v2!/4,

Txx5ñT~v311!/2, Tzz5Tyy5~T002Txx!/2.

In addition we have to check the entropy condition. In t
RFG frame the entropy current reads

S05
ñ

4 H S 12
m

T D vA16vB1S 12
m

T Da2 j @~11 j !K2~a!

2K2~a,b!#1 ja2@~11 j !K1~a!2K1~a,b!#J
→

m50 ñ~m,T!

2
~v11!S 42

m

T D ,

Sx5
ñ

8 F ~12v2!S 12
m

T DA16~12v2!B2a2

3S 21b2
m

T De2bG
→

m50 ñ~m,T!

4
~12v2!S 42

m

T D . ~17!

Note that in them50 limit the vectorsSm andNm are par-
allel to each other. This is explained by Fig. 1, which sho
that in the RFG the cut in them50 limit becomes a centra
cone, and since the distribution is centrally symmetric in t
frame, the integrals will be proportional to each other.

Solubility of the freeze-out problem

The situation is nontrivial and we have to take into a
count the possible directions of the flow and ofdsm . Note:
we must not assume that the flow is parallel to the freeze
direction.

Let us start on the pre FO side labeled by ‘‘0.’’ Here
the LR frameu0

m5(1,0,0,0)u and we can choose thex direc-
tion in this frame to point into the FO direction, so th
dsm5g0(v0,1,0,0)ds . We assume that we know the F
hypersurface, i.e., we knowv0. Then, in this frame the con
servation laws have three nonvanishing components yield
three known parametersN0

mdsm , T0
0mdsm , andT0

xmdsm .
To find the solution we need these values in the R

frame. However, the 3-dimensional direction of thex axis
will not change because the front is assumed to be isotr
in its own @y,z#-plane. Thus, in the RFG the peak flow p
rameter isuRFG

m 5(1,0,0,0)uRFG, and the normal of the FO
front is nm5g(v,1,0,0). Note thatvÞv0. Furthermore, let us
recall that the parameterv determines the post FO peak flo
parameter in RFF,uRFG

m 5g(1,v,0,0)uRFF ~where dsm

5(0,1,0,0)dsuRFF).
Consequently the conservation laws~9!,~10! yield three

nonvanishing equations in the RFG frame,

@Nmdsm#50, @T0mdsm#50 and @Txmdsm#50,
e
n-

s

s

-

ut

g

ic

which can determine the three unknownparametersof the
post FO cut Ju¨ttner distribution,v, T, andn ~or m). While
the first equation is an invariant scalar, the remaining two
components of a 4-vector, so they should be transformed
the same reference frame, i.e., to RFG. Since we evalu
the quantities based on the cut Ju¨ttner distribution in the
RFG, we also need the pre FO quantities in the RFG. Th
can be determined by using the standard fluid dynam
form of Tmn as seen from the RFG. From this frame the p
FO flow velocity is given by the difference of the pre an
post FO flow velocities:u0

m5g0R(1,v0R,0,0)uRFG, where
v0R5(v02v)/(12v0 v).

In the general case the solution can be obtained num
cally. In them50 limit the solution is simpler and gives a
interesting insight into the problem. The continuity equati
leads to the equation

Q22~v11!31v2150, ~18!

where Q215Q1
21(m,T)5ñ(m,T)/(4n0g0v0), which leads

to a third order equation and can be solved forv analytically.
The energy equation,@T0mdsm#50, leads to the same equa
tion but with another coefficient Q215Q2

21(m,T)

53Tñ(m,T)/(4e0g0v0), thus, these two equations can ha
one and the same solution forv, only if the two coefficients,
Q1 andQ2, are equal, which results in

T5
1

3

e0

n0
,

and the solutions of both third order equations yield the sa
expression:

v5v3rd~m!5Q2/3$@11A11Q2/27#1/3

1@12A11Q2/27#1/3%21. ~19!

Then, dividing the equation@T0mdsm#50, by the equation
@Txmdsm#50, yields another third order equation forv:

R0v313v213~22R0!v1322R050,

where R05e0v0 /p0. This equation can be solved analyt
cally and yields one physical root,v5223/R0 ~and two un-
physical onesv521). Insertingv then into Eq.~18!, we can
obtain the resulting chemical potential,m, also.

The possibility of this simple analytic solution is a cons
quence of the fact that in them50 limit the cut of the Ju¨ttner
distribution is made along central cones in the RFG, wh
then divide the energy and the baryon charge exactly in
same proportions.

As an illustration we studied the freeze-out of quar
gluon plasma~QGP! to cut Jüttner gas, in the massless limi
The pre FO side QGP is described by the most simple b
model EOS@Eqs.~5.28!–~33! in Ref. @18# #, thus local equi-
librium is assumed and all pre FO parameters are assume
be known including the baryon, energy-momentum and
tropy currents.

On the post FO side these currents were evaluated ea
in this section, and the equations arising from the conse
tion laws, Eq.~5!, were solved as presented above. Figur
indicates the change of flow velocity during freeze-o
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Physical solution exists only for positive initial velocitie
v0>0. The velocityparameterof the post FO cut Ju¨ttner
distribution varies from21 to 11, but the post FO Eckar
flow velocity is of course always positive in RFF. Thus, t
post FO baryon current is also positive in RFF~this is obvi-
ous since we do not allow any particle to cross the fr
backwards!, and consequently, the pre FO current andv0
should also be positive because of the continuity equat
For small initial velocities,v0→0, the post FO velocities
approach zero also, but for moderate velocities, deduced
cently from experiments,v50.320.7, the difference be
tween the post and pre FO flow velocities may be essen

In order to show the effect of these modifications co
pared to the original Cooper-Frye treatment~where the in-
crease of the flow velocity is ignored! we can consider cas
~a! in Fig 2. The cut Ju¨ttner distribution always leads to a
exponentialpt spectrum, but according to the new modifie
treatment starting fromv050.2 the post FO flow velocity
increases tovflow50.4, while the post FO parameter veloci
~which determines thept spectrum! increases tov50.6. This
corresponds to an increase of the slope parameter,Tslope, by
60%. This is due to the large latent heat arising from
large value of the bag constant taken in case~a!. In case~b!
the same effect is present but it is weaker. This change o
flow velocity is a basic feature of the correct freeze-out tre
ment, and it is a consequence of the conservation laws
not of the positivity requirement ofpmdsm in spacelike FO.
Thus, the flow velocity change occurs both in spacelike a
in timelike freeze-out. This effect can cause for example
conversion of latent heat to collective kinetic energy and
to heat if the freeze-out coincides with an exotherm ph
transition@29#.

Figure 3 shows that the baryon density, Eq.~15!, de-
creases in the freeze-out process. This is connected to

FIG. 2. Change of velocities in freeze-out of QGP to hadro
matter described by massless cut Ju¨ttner distribution. The final ve-
locity parameters~full lines! of the cut Ju¨ttner distribution are plot-
ted versus the initial flow velocity of QGP measured in the r
frame of the front ~RFF! for case: ~a! n051.2 fm23, T0

560 MeV, LB5225 MeV, ~b! n050.1 fm23, T0560 MeV,
LB580 MeV, and ~c! n051.2 fm23, T0560 MeV, LB50
MeV. Observe that for small initial flow velocities the center of t
cut Jüttner distribution moves backwards, although all the partic
which are allowed to freeze out move forward. Thus, the post
baryon flow velocities~dotted lines! are positive. Note the large
acceleration caused by the released latent heat in cases~a! and~b!.
LB5B1/4, whereB is the bag constant.
t
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fact that the post FO flow velocities are above the pre
ones, as shown in Fig. 2.

We should mention that the post FO temperatureparam-
eterof the cut Ju¨ttner distribution becomes rather high, abo
an order of magnitude higher than the pre FO temperat
However, we have to recall that the term temperature is
applicable for a nonequilibrium distribution, therefore th
result has no physical significance, it just illustrates the
rametrization of the distribution of the assumed cut Ju¨ttner
shape.

Finally we have to check the entropy condition for the
solutions. As we know@29,20,33# QGP can freeze out to
hadronic matter with entropy production only if the QGP
supercooled or considerably supercooled. This remains v
for the cut Ju¨ttner assumption as post FO distribution als
With most parametrizations only low temperature QGP
able to freeze-out. For the cut Ju¨ttner gas we cannot speak o
a critical temperature, because this gas is not in equilibri
and consequently cannot be in phase equilibrium either. S
this distribution can be attributed an entropy current by
kinetic definition, and the entropy condition can be check
~Fig. 4!.

In reality the entropy condition is not so stringent as F
4 indicates. In this illustrative study the post FO EOS h
relatively few degrees of freedom to accomodate the h
entropy content of QGP. By including many post FO meso
and other hadronic degrees of freedom in our post FO E
the entropy condition can be satisfied in a much wider ra
of parameters.

V. FREEZE-OUT DISTRIBUTION
FROM KINETIC THEORY

We have seen that taking the cut Ju¨ttner distribution as an
ansatz for the post FO distribution, we can solve the free
out problem formally. Although we can satisfy all requir
ments, the obtained parameter values make it question
whether the cut Ju¨ttner ansatz is an adequate assumpti
The shape of the distribution with the sharp cuts is als
rather unphysical feature of the distribution.

To obtain more realistic, and physically better applicab
FO distributions, we should evaluate the distribution in mo

c

t

s
O

FIG. 3. The final baryon density,n, as a function of the pre FO
baryon density. The baryon density decreases in the freeze-out
cess for casesv050.5, T0550 MeV, ~a! LB580 MeV ~full line!,
~b! LB5120 MeV ~dashed-dotted line!, and ~c! LB5160 MeV
~dashed line!.
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physical, microscopic nonequilibrium models. Kinetic theo
is a straightforward candidate for this task.

A first very simplified attempt to solve the freeze-o
problem dynamically in one dimensional kinetic model@27#
returned the cut Ju¨ttner distribution also, but only in highly
unrealistic situations: only when the model yielded inco
plete freeze-out. Thus, further work is needed to find phy
cally realistic post freeze-out distributions in kinetic mode
or in other dynamical microscopic models.

VI. CONCLUSIONS

The importance of taking into account conservation la
in the description of the freeze-out process is pointed o
For freeze-out across hypersurfaces with spacelike norm
the approach suggested by Bugaev@26#, assuming cut Ju¨ttner
distribution as post freeze-out distribution is worked out, a
the freeze-out problem was solved as an example for Q
freezing out into a cut Ju¨ttner gas. This calculation indicate

FIG. 4. The ratio of post FO and pre FO entropy currents tra
verse to the freeze-out front. Freeze-out can be physically real
if R.1. The entropy condition is tested for three cases:~a! n0

50.1 fm23, v050.5, LB580 MeV ~full line!, ~b! n0

50.5 fm23, v050.5, LB580 MeV ~dashed line!, and ~c! n0

51.2 fm23, v050.5, LB5225 MeV ~dotted line!.
d
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that results including the Cooper-Frye freeze-out proced
should be reconsidered and new emphasis should be give
the precise evaluation of the post freeze-out particle distri
tions.

The deviation from the earlier Cooper-Fry approa
~where changes of flow velocity, density, and temperat
were ignored! is apparent if the pre FO matter has lar
energy content in the form of compressional energy, lat
heat, or in any other way, which is not present in the p
FO, noninteracting matter. As this post FO matter is n
necessarily in thermal equilibrium, we cannot consider it a
thermal phase with equilibrium thermodynamical para
eters. Thus, this idealized approach assuming a FO surfa
always assuming a discontinuity irrespective of what was
phase of the pre FO matter. Nevertheless, this treatm
leads to the strongest modifications in cases when a
order phase transition with large latent heat is coupled to
freeze-out process.

Here we have considered an idealized transition as a
continuity across a hypersurface. In as much as the fl
across the surface is stationary our results are valid irres
tive of the surface thickness, because we used only con
vation laws. On the other hand in heavy ion reactions
flow across the surface can be considered stationary only
is 1–2 fm wide. With purely kinetic freeze-out this is not
very realistic assumption@1#. On the other hand rapid had
ronization from supercooled QGP may satisfy the requi
conditions and the sharp surface approximation is then r
istic @34#.
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