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We study the effects of strict conservation laws and the problem of negative contributions to final momen-
tum distribution during the freeze-out through 3-dimensional hypersurfaces with spacelike normal. We study
some suggested solutions for this problem, and demonstrate it in one exf8Q866-28189)04605-1

PACS numbds): 24.10.Nz, 25.75-q

I. INTRODUCTION a spacelike normal vectodo*do,= —(do)? (e.g., events
happening on a propagating 2-dimensional suifaaed
Fluid dynamical models, especially their simpler versionsithose with a timelike normal VeCtCXdO"LdO'MZ(dO')Z (a
are very popular in heavy ion physics, because they connegommon example of which is an overall sudden change in a
directly collective macroscopic matter properties, like thefinite volume.
equation of statdEOS or transport properties, to measur-  QOnce the freeze-out surface is determined, one can com-
ables. pute measurables. Landau, when drafting his hydrodynami-
Particles which leave the system and reach the detectorgal model[8], just evaluated the flow velocity distribution at
can be taken into account via sour@drain terms in the freeze-out, and this distribution served as a basis for all ob-
4-dimensional space-time based on kinetic considerations, @ervables. This approach was used in early fluid dynamical
in a more simplified way via freeze-outFO) or final  simulations of heavy ion collisions al§6—11]. This proce-
break-up schemes, where the frozen out particles are formeglire was improved to add thermal velocities to the flow ve-
on a 3-dimensional hyperSUI’face in Space-time. This inf0r1ocities at freeze_out' by M||ekh|h12,1?g and later by Coo-

mation is then used as input to compute measurables such ggr and Fryg14]. This method is widely used, however it
two-particle correlation, transverse, longitudinal, radial, antf;ses at least three problerfiss).

cylindrical flow, transverse momentum and transverse mass First, in some cases before the 1990s, the possible exis-

Spectra, etc. tence of discontinuities across hypersurfaces with timelike
In this paper we concentrate on freeze-out. A basic stamormal vectors was not taken into account or considered
dard assumption in this case is that freeze-out happens acrogéphysical [19—27. This point was studied recentl@3] so
a hypersurface as already mentioned, so it can be pictured @% do not discuss it further.
a discontinuity where the kinetic properties of the matter, Secondsince the kinetic properties of the matter are dif-
such as energy density and momentum distribution changgrent on the two sides of the front, the explicit evaluation of
suddenly. The hypersurface is an idealization of a layer otonservation laws across the freeze-out surface should be
finite thickness(of the order of a mean free path or collision taken into account which is not always easy to implement. In
time) where the frozen-out particles are formed and the iNsome (simple cases[24-26, these conservation laws are
teractions in the matter become negligible. The dynamics ognforced and discussed. For examplg24], it was pointed
this layer is described in different kinetic models such aspyt that the freeze-out momentum distribution for hypersur-
Monte Carlo model$1,2] or four-volume emission models faces with timelike normal may become locally anisotropic.
[3-7]. In fact, the zero thickness limit of such a layer is an
overidealization of kinetic freeze-out in heavy ion reactions,

while it is applicable on more macroscopic scales like in _ _ o _
astrophysics. aces, which have a spacelike normal vecor. f one appies Taub's
Two types of hypersurfaces are distinguished: those Wltrﬁormalism from 1948, to freeze-out surfaces with timelike normal
vectors, one gets a usual Taub adiabat but the equation of the Ray-
leigh line yields imaginary values for the particle current across the
on the other hand, if kinetic freeze-out coincides with a rapidfront. Thus, these hypersurfaces were thought unphysical. However

phase transition, like in the case of rapid deconfinement transitiomore recently, Taub’s approach has been generalized to these hy-
of supercooled quark-gluon plasma, the sharp freeze-out hypersupersurfaceqd17] (see also[18]) while eliminating the imaginary
face idealization may still be applicable even for heavy ion reacparticle currents arising from the equation of the Rayleigh line.
tions. It is, however, beyond the scope of this work to study theThus, it is possible to take into account conservation laws exactly
freeze-out dynamics and kinetics in this latter case. across any surface of discontinuity with relativistic flow.
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In [27] a solution for post FO massless, baryonfree Bose gadoes not necessarily coincide with the pre FO temperature,

was presented. Here we recall the procedure that should md knowing the pre FO baryon current and energy-

followed in Sec. II. momentum tensoNy and T§”, we can calculate the post
The third problem is a conceptual problem arising in the freeze-out quantitiel* and T#* from the relationg16,17]

Cooper-Frye freeze-out description when we apply it to a

hypersurface with spacelike normal; it is the problem of [N*do,]=0 and [T#"do,]=0, (5)

negative contributiongsee Sec. )l This is the main subject

of this paper. This problem appears in all freeze-out calculaacross a surface elem@mif normal vectordo®. Here[A]

tions up to now that we are aware of, and to our knowledge=A—A,. The post FO distribution is not a thermal equilib-

it was not satisfactorily discussed yet in the literature. It wagium distribution, so temperature does not exist, neverthe-

recognized by some of those who applied the Cooper-Frykess, the conservation laws fix tparameterse.g., T, n,u®,

freeze-out description befor®5,26,28. A possible partial  of our momentum distributionfo(x,p; T,n,u?).

solution was presented in part 2 of REZ6] for noninteract- To obtain a physically realizable result, in addition we

ing massless particles, int1l dimension using the post FO have to check the condition for entropy increase:

cut Jutner ansatz. 1127] it was shown that in an oversim-

plified kinetic freeze-out model one can obtain the citnkr Stda,
distribution as post FO distribution. In Sec. IV we complete [S*do,]=0 or R= o =1, (6)
and generalize the results [@6] and present an example for Sopdo,
the solution of the freeze-out problem. In Sec. V we suggest A N .
improvements that go beyond the ciittder ansatz. v_vhere, for both equilibrium and nonequilibrium FO distribu-
tions[18]
Il. CONSERVATION LAWS ACROSS IDEALIZED d3p
FREEZE-OUT DISCONTINUITIES SH=— J' — p’ufFo(Xyp)['”{(ZW)SfFo(XyP)}_1]-
In the zero width limit of the freeze-out domaifreeze- P 7)

out surfacg the energy-momentum tensor changes discon-
tinuously across this surface. Consequently, the four-vectorhis condition is not necessary to obtain a solution of the
of the flow velocity may also changfl7,29,30. These freeze-out problem, but it should always be checked to ex-
changes should be discussed in terms of the conservatiilude nonphysical solutions. We have to note at this stage

laws. . . that the post FO distribution must not be an equilibri(on
The invariant number of conserved particlesrld lines  stationary solution of the Boltzmann transport equation, and
crossing a surface elemeuty”, is consequently on the post FO side the energy flow, baryon

flow, and entropy flow velocities may all be different.
We can now remind briefly what the problem of negative
and the total number of all the particles crossing the Focontr|but|ons to the Cooper-.Fry_e fofm“'a is, and a possible
) way out. For a FO surface with timelike normal, bgtt and
hypersurfaces, is

do* are timelike vectors, thus,

dN=N*do,, D

N=fSN“d0"u. 2 p#do,>0,

and the integrand in the integrd@) is always positive. For a
FO surface with spacelike normai# is timelike anddo* is
42 spacelike, thusp#do, can be both positive and negative.
NH = f _ppﬂfpo(x,p), 3) (Note thatp* may point now both in the post and pre FO
p° directions) Thus, the integrand in the integrédf) may
change sign in the integration domain, and this indicates that
into Eq. (1) we obtain the Cooper-Frye formula4]: part of the distribution contributes to a current going back,
into the front while another part is coming out of the front.
dN u On the pre FO side” is unrestricted an@“do,, may have
Eﬁ:f fro(x,p)p#do, , (4) both signs, because we are supposing that pre FO phase is in
thermal equilibrium. However, in the zero width limit of the
where fo(x,p) is the post FO phase space distribution of FO front, it is difficult to understand such a situation. What
frozen-out particles which is not known from the fluid dy- ha_ppens actual_ly is that mternal_ rescatterings occur |n3|de_the
namical model. The problem is to choose its form correctly finité FO domain and feed particles back to the pre FO side
Usually one assumes that the pre FO momentum distributiof Mmaintain the thermal equilibrium there. On the post FO
as well as the post FO distribution are both local thermafide; however, we do not allow rescattering and back scat-
equilibrium distributions, with the same temperature,ter'ng any more. If a particle has passed the freeze-out do-
boosted by the local collective flow velocity on the actual
side of the freeze-out surface, although the post FO distribu-
tion need not be a thermal distribution. Parametrizing the 3in numerical calculations the local freeze-out surface can be de-
post FO distribution as thermalgo(x,p;T,n,u”), whereT  termined most accurately via self-consistent iterafi®®,31.

If we insert the kinetic definition oN*
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main it cannot scatter back. In other words, the post FO
distribution should have the forfi25,24,

fEO(va!do-'u):fFO(le)G)(pMda-,u)! (8)

where® (x) is the step function. Consequently, this distribu-
tion cannot be an ideal gas distributig@n the pre FO side,
the distribution may or may not be ideallhe conservation
laws across a small element of the freeze-out front with
spacelike normal take the form

25751 05 0 05 1 15 2

d3
) P S 9) FIG. 1. The boundaries of the cut post FO distributions in the

phase space indicating the regions where particles are allowed to
freeze out. These boundaries are hyperboloids, for RFF velocities of
d3p N v=0.65, v=0, andv = —0.35(from left to righy). Particles to the
f f 0 fro(X,p,do”)p*p” |do right of these hyperboloids may freeze out. While for large positive
s P v values the cut is a small perturbation, for moderate or particularly
for negative values of the cut is far from negligible. The dashed

= f T5"(x)do,. (10 lines show the massless limits.
s
_ Ures
. THE ALLOWED MOMENTUM REGION v= uo_ )
FOR SPACELIKE FO RFGI Rpp

Let us assume that the FO process happens in the positiend this means that in the RFF the peak four-velocity has the
x direction, in other words we go in the positixedirection  form u&ec=y(1,0,0,0)ree. This velocity v can be both
from the pre FO domain to the post FO domain. The FOpositive and negative in RFF, i.e., the peak velocity may
hypersurface has a spacelike norrhdb*do, = — (do)?],  point to the post FO directiofas we would expegtand also
so thatdo, is orthogonal to the hypersurfacee., to the in the pre FO direction in RFF which seems to be confusing.
timelike tangent vector of the surfadé, t“do,=0) and  This is, however, not a problem in itself because both flow
points into the post FQpositive x) direction (while do*  velocities (Eckart and Landguare always positive on the
points in the pre FO direction post FO side. As we will see later, in special cases it is

Depending on the reference frame, the spacelike FO frorpossible that we obtain negative post FO peak velocity for
can propagate both in the positive or negativ@irection, or  positive pre FO flow velocities. This indicates we have to
it can be Lorentz transformed into its own rest frame, the restliscuss the importance of the cut By(p“do,), otherwise
frame of the fron{RFF), wheredo,=(0,1,0,0d0. In other  one might be tempted to believe that this cut is not affecting
reference framedo,= y(v,1,0,0do, where y= 1/J1—v2  the post FO distribution too much, and the correct treatment
The parametew =do,/do,=—t*/t° is frame dependent causes only a few percent cut which is negligible. We show
and may be both positive and negative. in the following that this is not the case.

In order to use the parameterin the following discus- The p#do,>0 requirement in the RFG frame means that
sion, we have to select a given reference frame and fix thenly momenta with component
value in that frame. Let us choose the franmnoving with
the peakof the post FO invariant momentum distribution. p*=—vym?+(p*)?+(p,)?, (1)
Following Ref.[26] let us denote this frame as the rest frame _ o )
of the gas(RFG). Note, however, that, contrary to what its contribute to the post EO momentum d|str|but|qn. _Thls
name seems to suggest, this frameas the local rest frame Means that the boundaries Qf the allowed domain in the
of the post FO matter, since the post FO distribution is nof P*,P. ] plane are hyperbolas in the post FO RFG
spherically symmetric in momentum space. Thus, for the fol-

. . . . . (px)z
lowing discussion wealefinev in the RFG frame as . —(p,)2=m?, (12)
y—1
dog . e .
V=3 ; and the domains of the positiveside of the corresponding
IxIrre hyperboloids in the 3-dimensional momentum space may

contribute to the FO distributiofFig. 1). In the massless
or we can also define and have the samealue, by using limit the hyperboloids become cones around thaxis and
the velocity of the peak of the post FO distributiarkeg in centered at the origin.
the RFF.(Note: this is not equal with the post FO flow ve-  Dominant case.For v=0 the hyperboloid becomes a
locities, neither with the Eckart, nor with the Landau flow plane boundary go*=0 in RFG, i.e., the boundary cuts the
velocity) Thus, Jutner distribution in the middl€because in the RFG the
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peak of the distribution is centered pt=0). If v>0, the the  symmetric ~ Juner gas, b=a/y1-v? v
peak velocity points to the post FO direction and the cut=doo/do,, A=(2+2b+b?%e®, and

hyperboloid is fully in the negative* region, thus for large

v values only a smaller fraction is excluded from the full _2mt
Jutner distribution. Most of the particles described by a full Kn(zw)= (2n)! z J
Jutner distribution freeze-out in this case. We will consider

this as the dominant FO case. o i.e., K,(z,2)=K,(2). Just as in case of the noncut distribu-
On the other hand, as we can see in Fig. 1, foruk&  ions the cut Juner distribution yields few modified Bessel
case the peak flow points back into the pre FO direction, ang;nctions in the expression of the four-currents, while the
only a small fraction of a full Jiner distribution will freeze  ya|ativistic Fermi and relativistic Bose distributions lead to a
out. The cut eliminates the major part of the particles. Thisseries of these functions. When evaluating the limits we used
situation leads to less frozen-out particles, but it yields an ) a=b a=0 .
unusual post FO distribution. the relationkCy(a,b) — Ky(a) — 2" *(n—1)!a™". This
baryon current may then be Lorentz transformed into the
Eckart local res{ELR) frame of the post FO matter, which
moves with u#=N*/(N"N,)¥?= y¢(1vg,0,0)ges in the
RFG, or alternatively into the rest frame of the freeze-out
We now study the particular case whefig, is a Jitner  front (RFF), wheredo,=(0,1,0,0d0 and the velocity of the
(or relativistic Boltzmanri32,18)) distribution and sdfyis  RFG isuf gee=¥(1,0,0)|rer. Then the Eckart flow veloc-

o]
dx (XZ_ Z2)n—1/2 e—x,
w

IV. CONSERVED CURRENTS FOR CUT JUTTNER
DISTRIBUTION

a cut Jttner distribution: ity of the matter represented by the clittder distribution
. Lt viewed from the RFF isuf=y.(1v.,0,0)ree, Wherev,
Fo(p)=f"(p)@(p*do,) =(w+ve)/(1+vvg).

u u The proper densityi.e., the density in the ELR framés
=(9((2p (;I()T:) eXl{M_p{fuRFG), (13 obtained as
T
n(w,T,v)=N"N,. (15)

where u is the chemical potential related to the invariant

scalar densityn, of the noncut Juner distribution asu Note that the proper density of the ctther distributionn,

=T In[n(27h)3(47mm?TK,(m/T))], andubeg, n andT are is reduced compared to thei proper density of the complete

parametersof the distributionf®, originating from the full ~ spherical Jtiner distribution,n.

Jittner distribution. These are not the flow velocity, proper The energy momentum tensor in the post FO RFG is

density, and temperature of the cuttder distribution. The

cut Jitner distribution is not a thermal equilibrium distribu- 0. 3NT|ja’ .

tion, e.g., it does not have a temperature at all. R 7{(1+J)
This distribution for massless particles was considered in

part 2 of Ref.[26] (also in[25]). The cut selects particles a

with momentap“da,>0. ~|Ka(a,b)+ zK4(a,b)
We can evaluate the baryon four-currext;, by inserting

the cut Jttner distribution into the definition, E¢3), and we ~ )

get a time directed\?, as well as a spatial componeht?, TOXZE[ (1-v?)B— a_(b+ 1)e—b]

(wherex is the direction of the spatial component of the FO 4 6 ’

normal,do*, in RFG). In Ref.[26] the spatial component,

N*, of the four-current was not evaluated, so seeing only the TT( a2

zeroth componentN°®, the unsuspecting reader might have TXX=7[j ?[(1+j)Kz(a)—lcz(a,b)]+v3B

believed falsly, that RFGrest frame of the gass the local

rest frame of the gas. Performing the calculation, in the post

a
Ka(a)+ §K1(a)

+Bv

FO RFG frame the baryon current reads as 3nT v? ja? ]
TVV=T v 1—? B+ T[(1+1)K2(a)—lcz(a,b)]
0 ?1 2. . ) b3U3 b
NO=7 | vA+aj[(1+])Kq(a)~Kp(ab)]+]——e val
4 3 —T(b+1)e‘b : (16)
m=0_ v+1
= n(p,T)——, (149 where B=(1+b+b22+b%6)e™® and T?=TY. This
energy-momentum tensor may then be Lorentz transformed
~ m—0 1—y2 into the Landau local regtLR) frame of the post FO mat-
Nx:E[(l_UZ)A_aZG—b] e, T) v ’ ter, which moves withuf* in the RFG, or into the rest frame
8 4 of the freeze-out frontRFF) wheredo*=(0,1,0,0do. Al-

o - 3 T s ternatively both flow velocitiesu!* or ug, can be trans-
where j=sign(v), n=8nT°e* (2mh) ~, a=m/T, SO  formed to the frame where we want to evaluate the conser-
thatn(u, T)=na?K,(a)/2 is the invariant scalar density of vation laws, Eq(5), and the parameters of the post FO, cut
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Jutner distribution can be determined so that they satisfy thavhich can determine the three unknowarametersof the
conservation laws. In the massless limit the energy momerpost FO cut Jiiner distribution,y, T, andn (or w). While

tum tensor in the RFG is the first equation is an invariant scalar, the remaining two are
_ _ components of a 4-vector, so they should be transformed into
TO=3nT(v+1)/2, T™=3nT(1-v?)/4, the same reference frame, i.e., to RFG. Since we evaluated

the quantities based on the cuittder distribution in the
T*=nT(v3+1)/2, TZ=TW=(TO-T%)/2. RFG, we also need the pre FO quantities in the RFG. These

can be determined by using the standard fluid dynamical
In addition we have to check the entropy condition. In theform of T#” as seen from the RFG. From this frame the pre

RFG frame the entropy current reads FO flow velocity is given by the difference of the pre and
- post FO flow velocities:uf= yor(1,00r,0,0)|rre, Where
n " B\ o =(vo—v)/(1—vov).
O=—{|1- =|vA+6vB+|1— =|a?[(1+ Yor—1Vo™ Y 0 , , :
S 4[(1 T vA+6vB (1 T YLL+]K(2) In the general case the solution can be obtained numeri-

cally. In them=0 limit the solution is simpler and gives an
—Ko(ab)]+iad(1+])K(a)—K;(a,b interesting insight into the problem. The continuity equation
2@b)l+jat1+])Kq(a) il )]] leads to the equation

m=0'n(w,T 2(v+1)%+v—1=0, 18
- (;; ) o) 4_$), Q 2(v+1) (18)
where Q *=Q; *(u,T)=n(ux,T)/(4nyyovo), Which leads
7 “ to a third order equation and can be solvedd@nalytically.
sng[(l—vz)( 1— T A+6(1-v?)B—a? The energy equatiorﬁ,‘l’of‘daﬂ]=0, leads to the same equa-
tion but with another coefficient Q" 1=Q,*(u,T)
AN =3Tn(u,T)/(4e9yov0), thus, these two equations can have
X|2+b- T/¢ one and the same solution for only if the two coefficients,
Q: andQ,, are equal, which results in
m=0n(p,T) 1
= —v9)la-Z% le
7 (1-v )(4 T (17) T_>%

"3 ny’
Note that in them=0 limit the vectorsS* and N# are par-
allel to each other. This is explained by Fig. 1, which show
that in the RFG the cut in them=0 limit becomes a central

cone, and since the distribution is centrally symmetric in this _ o3 755113
frame, the integrals will be proportional to each other. v =vgra(p) = QH[1+V1+Q%27]
+[1- 1+ Q%273 —1. (19

Then, dividing the equatiohTO"daﬂ]=O, by the equation
[T**do,]=0, yields another third order equation for

sand the solutions of both third order equations yield the same
expression:

Solubility of the freeze-out problem

The situation is nontrivial and we have to take into ac-
count the possible directions of the flow anddef, . Note:
\(/jv_e mtyst not assume that the flow is parallel to the freeze-out Rov3+3v2+3(2—Ry)v +3—2Ry=0,

irection.

Let us start on the pre FO side labeled by “0.” Here in where Ry=eyv,/p,. This equation can be solved analyti-
the LR frameug=(1,0,0,0) and we can choose thedirec-  cally and yields one physical roat=2-3/R, (and two un-
tion in this frame to point into the FO direction, so that physical ones =—1). Insertingv then into Eq(18), we can
do,= v¥0(v0,1,0,0do. We assume that we know the FO obtain the resulting chemical potentia, also.
hypersurface, i.e., we knowg. Then, in this frame the con- The possibility of this simple analytic solution is a conse-
servation laws have three nonvanishing components yieldinguence of the fact that in the=0 limit the cut of the Jtiner
three known parametefdydo, , Tgl‘daﬂ, andTg“do, . distribution is made along central cones in the RFG, which

To find the solution we need these values in the RFGhen divide the energy and the baryon charge exactly in the
frame. However, the 3-dimensional direction of theaxis = same proportions.
will not change because the front is assumed to be isotropic As an illustration we studied the freeze-out of quark-
in its own[y,z]-plane. Thus, in the RFG the peak flow pa- gluon plasmaQGP to cut Jutner gas, in the massless limit.
rameter isuec=(1,0,0,0)geg, and the normal of the FO The pre FO side QGP is described by the most simple bag-
frontisn,=y(v,1,0,0). Note thab #v,. Furthermore, letus model EO§Eqs.(5.28—(33) in Ref.[18]], thus local equi-
recall that the parameter determines the post FO peak flow librium is assumed and all pre FO parameters are assumed to
parameter in RFF,ufc=¥(10,0,0)rer (Where do, be known including the baryon, energy-momentum and en-

=(0,1,0,0do|gep) - tropy currents. . _
Consequently the conservation law®,(10) yield three On the post FO side these currents were evaluated earlier
nonvanishing equations in the RFG frame, in this section, and the equations arising from the conserva-

tion laws, Eq.(5), were solved as presented above. Figure 2
[N“do,]=0, [Tof‘daﬂ]=0 and [T**do,]=0, indicates the change of flow velocity during freeze-out.
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FIG. 2. Change of velocities in freeze-out of QGP to hadronic  FIG. 3. The final baryon density, as a function of the pre FO
matter described by massless cuttder distribution. The final ve-  baryon density. The baryon density decreases in the freeze-out pro-
locity parameterdfull lines) of the cut Jitner distribution are plot- cess for casesy=0.5, To=50 MeV, (a) Ag=80 MeV (full line),

ted versus the initial flow velocity of QGP measured in the rest(h) Ag;=120 MeV (dashed-dotted line and (c) Ag=160 MeV
frame of the front (RFP for case: (8 ny=1.2 fm 3, T, (dashed ling

=60 MeV, Ag=225 MeV, (b) ny=0.1 fm 3, T,=60 MeV,
Ag=80 MeV, and (c) no=12 fm 3 To=60 MeV, Ag=0  fact that the post FO flow velocities are above the pre FO
MeV_._ Observe that for small initial flow velocities the center of the ones, as shown in Fig. 2.
cut.JLItner distribution moves backwards, although all the particles  \ye should mention that the post FO temperajaeam-
which are allowed to freeze out move forward. Thus, the post FQuer of the cut Jitner distribution becomes rather high, about
baryon flpw velocitiegdotted line$ are positive. _Note the large an order of magnitude higher than the pre FO temperature.
accele{ﬁtlon causgd by the released latent heat in éasaad (b). However, we have to recall that the term temperature is not
Ag=B"", whereB is the bag constant. . S L .
applicable for a nonequilibrium distribution, therefore this
result has no physical significance, it just illustrates the pa-
Physical solution exists only for positive initial velocities, rgmetrization of the distribution of the assumed cittnkr
vo=0. The velocityparameterof the post FO cut dtner  shape.
distribution varies from—1 to +1, but the post FO Eckart  Finally we have to check the entropy condition for these
flow VeIOCity is of course alWayS pOSitive in RFF. Thus, thes()'utions_ As we knov\[29,20’33 QGP can freeze out to
post FO baryon current is also positive in RERis is obvi-  hadronic matter with entropy production only if the QGP is
ous since we do not allow any particle to cross the frontsypercooled or considerably supercooled. This remains valid
backwardg and consequently, the pre FO current and  for the cut Jitner assumption as post FO distribution also.
should also be pOSitive because of the Continuity equatior\/\/ith most parametrizations On|y low temperature QGP is
For small initial velocities,yo—0, the post FO velocities aple to freeze-out. For the cuittther gas we cannot speak of
approach zero also, but for moderate velocities, deduced re critical temperature, because this gas is not in equilibrium
cently from experimentsy =0.3-0.7, the difference be- and consequently cannot be in phase equilibrium either. Still
tween the post and pre FO flow velocities may be essentiathjs distribution can be attributed an entropy current by its
In order to show the effect of these modifications com-kinetic definition, and the entropy condition can be checked
pared to the original Cooper-Frye treatméwhere the in- (Fig. 4.
crease of the flow velocity is ignorgeve can consider case  |n reality the entropy condition is not so stringent as Fig.
(@) in Fig 2. The cut Jtiner distribution always leads to an 4 indicates. In this illustrative study the post FO EOS had
exponentialp; spectrum, but according to the new modified relatively few degrees of freedom to accomodate the high
treatment starting fronv,=0.2 the post FO flow velocity entropy content of QGP. By including many post FO mesons
increases t@,,= 0.4, while the post FO parameter velocity and other hadronic degrees of freedom in our post FO EOS,
(which determines thp; spectrumincreases to =0.6. This  the entropy condition can be satisfied in a much wider range
corresponds to an increase of the slope parameéigfe, by  of parameters.
60%. This is due to the large latent heat arising from the
large value of the bag constant taken in cé®eln case(b)
the same effect is present but it is weaker. This change of the
flow velocity is a basic feature of the correct freeze-out treat-
ment, and it is a consequence of the conservation laws and We have seen that taking the cuttder distribution as an
not of the positivity requirement gi“do, in spacelike FO. ansatz for the post FO distribution, we can solve the freeze-
Thus, the flow velocity change occurs both in spacelike andut problem formally. Although we can satisfy all require-
in timelike freeze-out. This effect can cause for example thanents, the obtained parameter values make it questionable
conversion of latent heat to collective kinetic energy and notvhether the cut dtner ansatz is an adequate assumption.
to heat if the freeze-out coincides with an exotherm phas&he shape of the distribution with the sharp cuts is also a
transition[29]. rather unphysical feature of the distribution.
Figure 3 shows that the baryon density, E§5), de- To obtain more realistic, and physically better applicable
creases in the freeze-out process. This is connected to the distributions, we should evaluate the distribution in more

V. FREEZE-OUT DISTRIBUTION
FROM KINETIC THEORY
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25 that results including the Cooper-Frye freeze-out procedure

should be reconsidered and new emphasis should be given to
the precise evaluation of the post freeze-out particle distribu-
tions.

The deviation from the earlier Cooper-Fry approach
(where changes of flow velocity, density, and temperature
y were ignored is apparent if the pre FO matter has large
15 % ] energy content in the form of compressional energy, latent
heat, or in any other way, which is not present in the post

FO, noninteracting matter. As this post FO matter is not

necessarily in thermal equilibrium, we cannot consider it as a

30 40 50 60 70 80 90 10 thermal phase with equilibrium thermodynamical param-
T, [MeV] eters. Thus, this idealized approach assuming a FO surface is

always assuming a discontinuity irrespective of what was the

FIG. 4. The ratio of post FO and pre FO entropy currents transphase of the pre FO matter. Nevertheless, this treatment
verse to the freeze-out front. Freeze-out can be physically realizegpads to the strongest modifications in cases when a first
if R>1. The entropy condition is tested for three cas@$:no  order phase transition with large latent heat is coupled to the
=0.1 fm™3, v,=05, Ag=80 MeV (full line), (b) ny  freeze-out process.
=05 fm:z* vo=0.5, Ag=80 MeV (dashed ling and (c) no Here we have considered an idealized transition as a dis-
=1.2 fm™, vo=0.5, Ag=225 MeV (dotted ling. continuity across a hypersurface. In as much as the flow
across the surface is stationary our results are valid irrespec-
tive of the surface thickness, because we used only conser-
vation laws. On the other hand in heavy ion reactions the
flow across the surface can be considered stationary only if it

” R Lo is 1-2 fm wide. With purely kinetic freeze-out this is not a
returned the cut Jtner distribution also, but only in highly very realistic assumptiofd]. On the other hand rapid had-
unrealistic situations: only when the model yielded incom-

_ronization from supercooled QGP may satisfy the required

plete fregze_-out. Thus, further ‘_’VOF" IS nee_ded_ to f'nd IOhySI'conditions and the sharp surface approximation is then real-
cally realistic post freeze-out distributions in kinetic modelsistiC [34]

or in other dynamical microscopic models.

physical, microscopic nonequilibrium models. Kinetic theory
is a straightforward candidate for this task.

A first very simplified attempt to solve the freeze-out
problem dynamically in one dimensional kinetic mo@27]
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