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Nonperturbative time-dependent approach to breakup of halo nuclei
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The time-dependent mesh method is proposed as an efficient tool for a quantitative analysis of the Coulomb
breakup of halo nuclei. The approach allows a treatment of breakup reactions in the nonperturbative regime. It
avoids any multipole expansion for the Coulomb interaction between the projectile and the target. Moreover,
it permits using more general trajectories allowing an estimation of postacceleration effects. This numerical
technique is applied to thé'Be+2%Pb— 1%Be+n+2%%Pb breakup reaction at 72 MeV per nucleon and is
compared with experiment and with a previous calculation. Corrections due to the projectile deflection from a
straight-line trajectory and to the neutron spin rotation are found to be weak for the specific collision param-
eters.[S0556-28139)00306-4

PACS numbe(s): 25.60.Gc, 25.70.De, 02.70.Jn, 27.20.

[. INTRODUCTION evolution of the system. The efficiency of the present ap-
proach is illustrated by studying the Coulomb breakup reac-
Coulomb breakup is one of the main tools for the study oftion *'Be+2°%b—Be+n+2%Pp at an energy72 MeV
halo nuclei[1]. The breakup cross section provides usefulper nucleop where experimental data are availafl®] and
information about the structure of the halo. Therefore, thigvhere another mesh method has recently been apjplied
topic is the subject of intensive experimental and theoretical In Sec. II, the physical problem is recalled and modelized.
investigations. Among halo nuclei, thEBe nucleus is of The computational algorithm is described. In Sec. llI, the
particular importance because the relative simplicity of itsconditions of the calculation are discussed and compared
structure allows more accurate theoretical investigations. Inwith those of Ref.[4]. The convergence of the method is
deed, its two bound states can be fairly well described as analyzed in Sec. IV. The obtained results are discussed in
1%Be core to which a neutron is loosely bound. With a goodSec. V. The last section is devoted to concluding remarks.
approximation, the breakup can be seen as a transition from

a two-particle bound state to the continuum, due to a varying Il. THEORETICAL FRAMEWORK
Coulomb field.
Recently, efficient mesh methofz—4] of solution of the A. Model

time-dependent Schdinger equation have been developed The 1%e core nucleus is treated as a structureless particle
for quantitatively treating the time evolution of the which is weakly bound to the halo neutron by the potential
projectile-nucleus wave function in this kind of reaction. v(r), wherer is the coordinate between the core nucleus and
These analyses were performed with three spatial dimensiofige neutron. In such an approach, the reacfitBe+2°%Ph

for the relative motion of the halo neutron with respect to the_,198e+ n+29%pp in the projectile rest frame follows the
core. From a physical viewpoint, they are attractive owing totime-dependent Schdinger equation

the simplicity of the treatment of time dependence. However
some simplifications in these computations, i.e., the use ofa . ¢

multipole expansion for the Coulomb field between the halo 1% 7 ¥ (1) =H(r,O W (r,) =[Ho(r)+h(r,n]¥(r.0),
nucleus and the target and the application of a perturbation 1)
approximation in the computation of the total breakup cross

velopments of this approach. . of the neutron and the core. In this expression
In the present work, the time-dependent Sdimger
equation is solved with a nonperturbative algorithm on a 72
three-dimensional spatial mesh which does not suffer from Ho=—=—A,+V(r) 2
the abovementioned limitations. In fact, the method allows 2u

much flexibility in the definition of the trajectory of the pro- o o _

jectile. Different effects can be taken into account such as théé the ~'Be internal Hamiltonian with reduced mags
Coulomb repulsion between the target and projectile or spirm mnrlnC/M, where mln, m; and M=m,+m are the neu-
coupling effects. The methdd—7] makes use of values of tron, . %Be-core, and'Be masses, respectively. The potential
the wave function at mesh points in angular space, in th¢/(r) is the sum of ah-dependent central potenti(r) and
spirit of the discrete-variable or Lagrange-mesh mettisds @ spin-orbit interaction/{(r) I-s. The interaction of the tar-
Ref. [8], and references ther@inThe radial functions are get nucleus with the projectile

approximated with variable-step finite-difference techniques.

The splitting-up method9] accurately describes the time h(r,t)=V¢(r,t) +Vgr,t) 3
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of nonstationary problems of muofb] and atomic[6,7]
physics. We seek a solutiofi(r,t) in spherical coordinates
(r,Q)=(r,0,¢) as an expansion

1 N
PO=1 2 2 el e Dyt @)

FIG. 1. Coordinates appearing in the definitions of potential ~ OVer the two-dimensional basis

Eqgs.(4 d(5)].
[Egs.(4) and (5)] cosm¢p, m>0,

is described by two terms in our model.

~ 1
The time-dependent Coulomb potentigl(r,t) is defined 0, (Q)=PMO)x{ —=, m=0, (8)
in two different ways which correspond to different model- V2
ings of the reaction mechanism. The first definition reads sinm¢, m<O0.
Z.Z€? Z.Z€?

4 In this basis,|~3,m( 0) is in general an associated Legendre
polynomial P|m|(0), with a few possible exceptions as ex-

where Z. and Z; are the charge numbers of the core andplained below after E(9). Th_e symboly representg|,m}
target, respectively, ank(t) is the relative coordinate be- WNerem takesyN values varying betweem(\/ﬁ—l)/ZNand
tween the projectile and the targétee Fig. L With a | takesyN values starting W'mm|-q$ hlelzsum OVGE’:N%Tl,
straight-line trajectoryR(t)=b+ vt whereb is the impact is equivalent to the double suly" (% ;="
vector andv, is the initial velocity, this definition corre-  The basis(8) is associated with a mesh. For thevari-

sponds to previous modedla—4]. Equation(4) is also able to  able, the\/N mesh pointsg; are chosen from the zeros of
simulate the projectile deceleration before the collision ashe Legendre polynomiaP (cosf, ). For the ¢ variable,

well as its acceleration afterwards by using a Coulomb tra; . ;

. ! the N mesh points are chosen és = 7(2j,—1)/+/N. The
jectory for R(t). However, the core postacceleration due to P : i fﬁb m( J‘/’_ )

the neutron emission is not described. In the following, wetot@l numbem of grid pointsQ;=(¢; ,¢; ) is equal to the

refer to approaches based on E4j. as the “bound-neutron number of basis functions in expansi¢f) [6,7]. To this

Vel D= M RO] RO

model.” mesh are associatédiweights\; which are the products of
In order to evaluate the importance of postacceleratiothe standard Gauss-Legendre weights by/¢N. The
effects, we choose the second definition (¢ h ,j are the elements of tH¢xX N matrix ¢ linverse to

) ) the matrix with elementsp,;= ¢,((};) defined at the grid
ZoZ7€" ZcZ7e , (5) points(); . The polynomials|"(¢) are chosen in such a way
p(t)  [p(t)—mr/M| that one has exactly

Vc(r,t) =

wherep(t) is the relative coordinate between the target and
the projectile corésee Fig. 1 It corresponds to the so-called f @, ()@, ()dQ= N\j@,j¢,j= 8, )
“free particle” mechanism discussed earl{@rl] when only J
the core is acted upon by the target Coulomb field Withoutf

influence of the neutron. The core follows its own trajectory o all v and »"<N. For most» and »’, property (9) is
which is not affected by a shift between the charged Coréalutomatlcally satisfied because the basis functigy{$)) are

location and the''Be center of mass. In the following, we orthogonal and the Gauss quadrature is exact. However, in a

refer to approaches based on Ef) as the “free-neutron few cases with the highestvalues, some polynomialB]"

model.” have to be specially made orthogonal in the sense of the
In some calculations, we also introduce the interactionGauss quadrature. With this choice, the mav[i%équyj is

V¢ (r,t) describing the coupling of the neutron spmwith orthogonal.

the varying electric field of the target The radial components dzl-s(r,t) correspond  to
#(r,Q;,t)[s) where [s)=[+1/2) is a spin state and
Z.e%h 1 #(r,Q2;,t) is a complex function. Let us introduce the

Vs, )= =0n 2m. 2 |p(t) 12 sv(OX[p)—r], 2N-component vectorl(r,t) ={\ {2 y3(r,t)}. With respect

(6) to the unknown coefficients in expansi6tr), the problem is
reduced to a system of Scliinger-type equations

where g,, is the neutron gyromagnetic factor amdis the

. . . . & ~ ~
relative velocity of the projectile and the target. iﬁE\P(r,t)=[Ho(r)+h(r,t)] W(r 1), (10)

B. Angular-subspace discretization ~ R
For solving the time-dependent four-dimensional $ehro !N this systemH,(r) andh(r,t) are 2NX 2N matrix opera-
dinger equation(1), we apply a nonperturbative approach tors represeptmgio andh[Egs.(2) and(3)] on the grid. The
[7], which has been developed recently and used in a numb&lements oHy(r) are defined by
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2 42 N Then the wave function at timig,+ 3At is obtained as
ss’_r L S —-1/2 -1
(=) =5 228 ) %m} (¢ Yk

v= W(r,t,+ A1) =SMW(r,t,+ LAL). (18)
2

X|VR(r) +——1(1+1)
r

(07 Y),it s, (1D The most time-consuming part in performing the initial step
" t,—t,+3At [Egs. (15)—(18)], i.e., solving the boundary-
value problem(14) and(17), demands onlyN computational

operations. Moreover, th® transformation is time indepen-

2u

where Vi(r) is the diagonal matrix element of a spherical

potential between the neutron and the core inlthepartial  jent andr independent and, as a consequence, the matrix
wave calculated WIAth the spin std® [4]. Syk=?\ﬁ/2%(9k) has to be evaluated only once.

The elements oh(r,t) read At the second step, the system Mfuncoupled algebraic

) , equations
Ejs(r,t)=[VC(I’,Qk,t)ﬁssf-l-vzi(I’,Qk,t)]ékj. (12) .

_ , o [1+3iAth(r,t)]W(r,t,+At)
Notice that the time-dependent Coulomb operator defined in
Eqg. (4) or (5) is diagonal in such a representation and does =[1—3iAth(r,t,)]¥(r,t,+2At) (19)
not require the multipole expansion used in other approaches

[2-4) with the matrixR(r t,) defined in Eq(12) which is nondi-
agonal only in the spin space, is then solved. Applying the

C. Computational scheme split-operator method15)—(19) to problem (10) demands

Another attractive peculiarity of the present approach ighat the two-dimensional basis,({2), used in Eq.(7), is

that the only nondiagonal part of the Hamiltonian in Ep) ~ orthogonal on the grid),. It is shown in Ref.[7] that,
is in the block matricesi;lés [Eq. (11)]. For each spin state, because of the simplicity of the diagonalization procedure

they can be diagonalized by the simple unitary transfornfor the Ho(r) operator, the computational time for solving
S,k=\F20,4 [7]. This property has been exploited for devel- Problem (15—(19) is approximately proportional tiN as
oping an economic algorithm with a computational time pro-long as the calculation in E18) is negligible, i.e., whemN
portional to the numbeN of unknowns in the system of IS not too large.

equationg10) [7]. The splitting-up metho@d] has been ap-

plied for the propagation in timg,—t,,=t,+ At as I1l. CONDITIONS OF THE CALCULATION
CAD = (14 LiAth) - L(1—LiAth The time evolution of th_e system is <_:a]<_:u|ated according
Wty t AY=(1+21Ath) (1-ziAth) to the above scheme starting from the initial stétér,T;,)
X (1+LiAt I’_\Io)fl(l_ LAt I:lo)‘lf(r,tn). = ¢14(r), whereg,4(r) is the ground-state wave function of

the projectile HamiltoniarHy(r). Following the parametri-
(13 zation suggested in Ref4], the interactionv between the
neutron and thé®Be core is chosen as the sum of a spherical
Woods-Saxon potentiaV/;(r)=V,f(r), with the radiusR,
=2.669 fm and the diffuseness= 0.6 fm, and of a standard
spin-orbit interaction

Thus the problem is split up into two steps involving the
intermediate time,,+ 3 At.

At the initial step, the vector functioM(r,t,+ 3At) is
evaluated from the known vector functiok(r,t,) with the
system ofN differential equations 1d
V,S(r)l~s=V|SF—f(r)I-s. (20)

[1+3iAt SHo(r)SHW(r t,+ LAL) dr

The standard valu¥,.=32.8 MeV fn? is used for the depth

—T1—1LiAt S SHry
=[1=21AtSHo(N)STW(r t), (14) of the Is potential for ap-shell nucleus[4]. The depths
where of the Woods-Saxon potentials have been determined as
Vo=—59.5 MeV (=0) andV,=—-40.5 MeV (=1) in or-
J— N 1 _
W(rt,)=SW(r.t,). (15 der to locate the 1/2 ground state of'Be at—0.503 MeV

and the 1/2 excited state at-0.183 MeV[4] with respect to
the threshold for neutron breakup. Notice the considerable
deviation of theV, value employed here for the ground state
L 52 52 52 from Vo= —58.2 MeV used in Ref[4]. The analysis pre-
(SHoSN®®, =| — =— — +V(r)+ ——1(1+1)| 855 5, , sented below explains the reason for this variation.
" 2 gr? 2ur? For approximating Eq(14) with respect to the radial vari-
abler, a second-order finite-difference approximation on a
v={l,m}. (16)  quasiuniform grid has been used on the intenval[ O ;]
with r,,=800 fm in this section as in Ref4]. The grid has
It is solved with the boundary conditions been realized by the mappimg-x of the initial interval onto
_ _ xe [0,1] by the formular =r, (e®*—1)/(e—1) [6]. Table
WO, +3At)=W(r, t,+3A1)=0, r,—». (17 | illustrates the convergence of the schemeAas-0 (Ax

The system of equationd4) is uncoupled since
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TABLE I. Convergence of the method @asx—0 (Ar—0) in
the calculation of the binding energye of the 1'Be ground state.
The “exact” results are 0.5013\f;=—59.5) and 0.3247\(y=
—58.2). Energies are in MeV and lengths in fm.

Quasiuniform grid

—&

Uniform grid

—& —&

N, Ax V,=-595 N, Ar Vy=-595 Vy=—58.2
125 0.008  0.521 2000 0.4 0.722 0.504
250 0.004  0.506 4000 0.2 0.552 0.365
500 0.002  0.502 8000 0.1 0.514 0.334

16000 0.05  0.504 0.327

—0) by using as a test the calculation of the binding energ
of the 1'Be ground state. In this case, the eigenvalue proble

Ho(r) W (r)=eW(r) (21)

is solved with a spherical potential in E@). For the sake of

comparison, the computations are also performed with a uni-

form grid overr for the two valuesv,=—59.5 and—58.2
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[Ppyr,))={1- X

ve bound

[#,(N)X b, (D] |[¥(r.D),
(23

where the sum runs over the two bound states'8fe ob-
tained from Eq(21).

To avoid the slowly convergent and time-consuming
three-dimensional integration over the momentum space in
Eq. (22), the direct computation in coordinate space

_(Whdr )| =i(9/92)| Wpyr.1))

(ky(1))= (Wp(r,H) [ Wpy(r,b)) 2

has been used instead in Rft). In the present paper we
suggest an alternative approach for the calculation of the
mean valuegk,) and(k,) through the matrix element of a
commutator as in

e (WolrDIH(D,2][Wa(1,0)

N L () B

(k1)) =

MeV. The results are compared with “exact” energies ob-which avoids the loss of accuracy due to the numerical dif-

tained with the Lagrange-mesh technid& with zeros of

ferentiation over the Cartesian variables in E24) of the

the N=40 Laguerre polynomial. The analysis shows that thevave packet calculated. in sphericgl coordinatgs. The c.alcu-
second order finite-difference approximation on a quasiunilation is performed, as in the previous theoretical consider-

form grid with N,=500 points Ax=0.002), used in the

ations[3,4], according to the bound-neutron modEh. (4)]

present work, leads to a considerably more accurate value afith the straight-line trajectonR(t) =b+wv,t of the 'Be
e in Eq. (21) than the analogous finite-difference scheme orprojectile. The impact parameter is choserbasl2 fm and

the uniform grid withN,=2000 points Ar=0.4 fm). The
use of a uniform grid withAr =0.4 fm in Ref.[4] seems to
be the main reason for the deviation of their param&tgr

the selected relative velocity,=0.37c corresponds to 72
MeV per nucleon, i.e., the conditions of the experimierti]
as well as the previous calculatiof®4]. The z axis is cho-

with respect to ours. Indeed Table | shows that the experisen along, and thex axis is in the collision plane.

mental binding energy is well reproduced fo=—58.2

Since the admixture of the breakup compon@hy(r,t)

MeV with Ar=0.4 fm but that convergence is not reachedin the total wave function(r,t) is only of the order of 10%
yet. It is shown in Table | that, for computing the eigenvalue[4,10], the calculation of the quantitk,(t)) is a rather chal-

¢ on the uniform grid with a 1% accuracy, the numbgrof
grid points must be increased at least by a factor ofA8 (

=0.05 fm). The more extended 172excited state is less

sensitive to the integration stefr (or Ax), which explains

why the fitted parametev,=—40.5 MeV does not deviate

much from the value-40.4 MeV used in Refl4].

IV. CONVERGENCE OF THE SCHEME

We present an illustration of the convergence of the com-

lenging computational problem supposed to be very sensitive
to variations of the spatial grid paramet&isAx andr,,, as

well as the time grid parametetst and T,;. It provides a
good example for analyzing the convergence of the method.
Moreover, this analysis is also actual because the previous
calculations[3,4] reproduce only half the measured value
(ky) of the momentum between the neutron and the core
nucleus in the longitudinal directiofl0] and the source of
this difference has not been clarified so far.

First we analyze the convergence of the method with re-

putational scheme, using as an example a calculation of thePect toN— oo and the validity of the multipole expansion of

mean valugk,) of the longitudinal momenturfB]

fo||<|<z|<k|llfbu(r,t)>|2

(ko(t))= (22

[ ackwaironf

between the neutron emitted in the reactibiBe+2%%Pb
—10Be+n+2%ph and the core nucleu¥Be. The notation

operator(4), used in previous calculatiof2—4]. We use the
quasiuniform grid{r;} fixed above by studying the bound
states of''Be. The valugk,(t)) has been evaluated on a set
of successively converging angular gric@ﬁlj}? (N— )
without and with multipole expansion of operat@). The
initial time was chosen a$;,= — 20k MeV . The results
presented in Table Il for the average longitudinal momentum
show the fast convergence &kincreases. For the chosen
values ofb andv, they also indicate a slower convergence
with respect toN of the truncated multipole expansions of

|k) represents a plane wave. The breakup component is oloperator(4) as used in Refs[2—4]. The accuracy of the

tained by eliminating the bound states from the calculatedlipole+quadrupole @+qg) approximation is,

wave packef3,4]

however,
rather good.
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TABLE Il. Convergence of the bound-neutron model with a straight-line trajectoly-as> and con-
vergence of the multipole expansion in Ed) for the mean value-(k,(t)) [Eq. (25)] of the longitudinal
momentum between the neutron and the core nuclef$=0.02: MeV~1, Ax=0.002, andr,
=800 fm). For evenN, the values ofk,(t)) obtained without multipole expansion of E¢) are given. For
N=9 and 25, the values calculated with only the dipole té&ljrin a multipole expansion of E44) and with
the dipole and quadrupole termd- q) are also presented.

t N=9 N=25 N=49

(A Mev™Y) d d+q Eq. (4) d d+q Eqg. (4) Eq. (4)
1 0.0171 0.0167 0.0150 0.0171 0.0167 0.0150 0.0150
4 0.0143 0.0120 0.0124 0.0146 0.0124 0.0128 0.0128
7 0.0172 0.0153 0.0154 0.0176 0.0156 0.0158 0.0158
10 0.0136 0.0116 0.0118 0.0140 0.0120 0.0123 0.0123
15 0.0115 0.0097 0.0100 0.0120 0.0102 0.0105 0.0105
20 0.0102 0.0087 0.0090 0.0107 0.0091 0.0094 0.0094

The convergence ovext— 0 is illustrated in Table Il as V. RESULTS AND DISCUSSION

well as the convergence with respect Ax—0, r,,—o,
where the valuegk,(t)) calculated on a set of successively de
converging radialr;} and time{t,} grids are given. The
analysis shows that the time grid witht=0.02% MeV 1!
gives about a 1% accuracy in calculating flkg(t)) values
for all times in the intervat<T,,. However, the radial grid
fixed in the previous paragraph by analyzing the energ
structure of'Be (Ax=0.002,r,,=800 fm) gives the same
accuracy only for not too large times<44 MeV~!. The
presented data show that for getting an asymptotically stabl
value of (K,(Tou)) With Tou=10—20k MeV 1-e, it is
necessary to increase the boundary of integratiorr fo
=1200 fm and to keep the step of integratiarx rather
small. In Refs[3,4], the boundaries of integration were cho-
sen ag ,=800 fm andT,,= — Ti{,=104 MeV L.

The calculated valuegk,)=—0.0157 fm'! and (k)
=0.0480 fm! atT,,=104 MeV ! can be compared with

With the developed model, we now analyze the depen-
nce of the mean transverse and longitudinal momenta of
the emitted neutron, on postacceleration effects. In Fig. 2, the
calculated valueék,(t)) and(k,(t)) are given as a function
of time. The transverse momentufk,) has been evaluated
with a formula analogous to E@25).
YA set of calculations have been done with different
choices of the time-dependent Coulomb interactityir,t)
in Eq. (3). First we have considered a bound-neutron model
54) with a straight-line trajectoryi.e., without any decelera-
tion or acceleration of the project)le

Then the model has been improved by considering in Eq.
(4) a Coulomb trajectory. As one can see from the figures,
the correction of the trajectori®(t) weakly influences the
values of(k,) and slightly more the values ¢k,). However,
estimating the effects of postacceleration is possible through
) _,acomparison with the free-neutron model according to Eg.
the previous resultgk;)=—0.019 and(k, )=0.052 fm (5) (i.e., assuming that the freedom of the neutron occurring
obtained in Ref[4]. The difference between our results and 5o the breakup is realized during the full reaction process

the previous ones can be explained by the use of a more g gyerage momentuti,) changes considerably, in agree-
detailed radial grid and by the avoidance of a multipole ex-

: . , ment with the simple classical modeling of the “free par-
_ﬁ’_art‘)ls'onl ci‘; thedolﬁm)eratc(m in the present calculationsee  igje mechanism[11]. The (k,) evaluated with the free-
ables 1, 11, and 11).

neutron model becomes closer to the experimental one, but

TABLE Ill. lllustration of the method convergence as—0 andAx—O0, r,,— for the mean value

—(ky,(t)) [Eq. (25)] of the longitudinal momentum between the neutron and the core nuclets (
=0.024 MeV™1).

rm=2800 fm rm=2800 fm rm=1200 fm rm=1200 fm rm=1500 fm

t Ax=0.002 Ax=0.002 Ax=0.0005 Ax=0.0004 Ax=0.0004
(A MeV™1) At=At, At=3At, At=At, At=At, At=At,
1 0.0150 0.0147 0.0150 0.0150 0.0150
4 0.0128 0.0129 0.0134 0.0134 0.0134
7 0.0158 0.0157 0.0176 0.0176 0.0176
10 0.0123 0.0122 0.0156 0.0157 0.0157
15 0.0105 0.0103 0.0159 0.0161 0.0161
20 0.0094 0.0092 0.0158 0.0162 0.0162
25 0.0154 0.0160 0.0162

30 0.0148 0.0156 0.0157
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0.06 . : . . . T . . | . ; ;
- (@ -
0.04 |- . 2r \ 7
= | ] 2
g 002 - g riln~ % 1
— i 1 2 4 \\
= 0.00 - 3'n 2\ +
~ F =] N
-0.02 I \\KL‘:\ % i
—0.04 i 1 i L | 1 1 L o} L l I | I )
-10 0 10 20 30 0 1 2 3
t (h Mev'") E (MeV)
0.08 . T . T . | . FIG. 3. Total breakup cross sectiods, (E)/dE. Calculations
i ®) i are performed with the bound-neutron mo@®lwith a straight-line
L . trajectory on theN=25 angular grid forAt=0.0% MeV~! and
0.06 - o ] Touw= —Tin=20k MeV~ 1. The dashed line represents the results
i N sBn, . ste, can - i obtained on the quasiuniform grilx=0.002, r ,=800 fm. The
P ST T s et solid line shows the results from the grisk=0.0005, r ,,= 1200
'g 0.04 I ] fm. The triangle indicates the result obtained with a Coulomb tra-
= | | jectoryR(t) in potential(4) and the full circle indicates the result of
= - . the free-neutron model5) (Ax=0.0005,r,=1200 fm). The
5 002 1 7 boundaries of integration over are chosen ab,,=12 fm and
L i bimax= 400 fm. The previougpartly perturbativeresults of Ref[4]
. are represented as a dotted line. The experimental data are from
0.00 ¢ 1 Ref.[10].
- : rections due to the projectile deflection from the straight-line

~0.02 T e a0 o trajectory and postacceleration effect are evaluated.
t (h Mev™) The calculated total breakup cross sections are displayed
in Fig. 3 together with the experimental ddtk0] and the
FIG. 2. Time dependence of the mean longitudifla(t)) (8  most accurate previous theoretical res(i#td One can see
and transversék,(t)) (b) momenta. The calculations are performed that the previous calculation essentially overestimates the
on the grid N=25, Ax=0.0005 r,=1200 fm, At  breakup cross section near the maximum as compared with
=0.0% MeV~*, Tj,=—20h MeV~*. Open circles correspond to the present results and the experimental dsé Fig. 3. In
the data obtained with the bound-neutron madeghwith a straight- previous workg3,4], a simplified bound-neutron model with
line trajectory. Calculations with a Coulomb trajectdr{t) in po- 3 straight-line trajectory of the projectile has been used. Spe-
tential (4) are indicated_ by full squares. _Calculations with the free'cifically the multipole approximation of the time-dependent
neutron model(S) are displayed as full circles. Coulomb potential4) and a less detailed grid were used in
) ) Ref. [4]. The previous calculations were also partly pertur-
the considerable dn‘fe_rence of about afact.or of 2 between thggative, i.e., integral26) was calculated numerically on the
calculated and experimental values remains. _ interval [by,=12 fm, by=30 fm] and the remaining
The developed method has also been applied to the tot@lat was evaluated with the first-order perturbation theory. In
breakup cross section. We have calculated this cross secti@Re present calculation, this integral is calculated numerically
as a fu_nctlon of the enerdy of the relative motion between ,yer the whole intervalbin=12 fm, bya=400 fm]. Our
the emitted neutron and the core nucleus by the formula analysis shows that using more accurate spatial and time
grids as well as avoiding the multipole approximation gives
dou(E) an effect of the order of a few percents near the maximum of
dE the breakup cross section. The main part of these corrections,
due to the extension of the boundary of integration over the
Brmax _ - 2 radial variable from the value,=800 fm used in Refl4] to
fbmin % f (KDY im(NWpy(r, Toudr| bdb. r m=1200 fm, is illustrated in Fig. 3. Therefore the use of the
first-order perturbation theory in Rdi4] for evaluating the
(260  main part of the integral(26) on the interval [y
=30 fm, «] may be the main source leading to the over-
Again we first apply the bound-neutron model with the estimation of the breakup cross section near the maximum as
straight-lineR(t) trajectory in the time-dependent Coulomb compared with our results and the experimental date
potential(4), as in the previous calculatiofi@—4]. Then cor-  Fig. 3). Table IV illustrates the convergence of the integral

4uk
T K
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TABLE IV. Convergence of the method for the breakup crossnonperturbative but stationary computational scheme has
sectiondo(E,bya)/dE (in b/MeV) as a function of the impact peen applied.
parameteb,,,, (in fm) and the energ¥ (in MeV). The calculation
is performed with N=25, Ax=0.002, r,=800 fm, and At

=0.01% MeV~1! over the time interval fronT;,= — 204 MeV 1! to
Tou= 206 MeV 1. VI. CONCLUSION

In this work, we suggested a nonperturbative time-
dependent approach for the quantitative analysis of the
12 0036 0.043 0.044 0024 0011 0006 Coulomb breakup of halo nuclei. By using as an example
30 0543 0.618 0.526 0.242 0.102 0.051 the Be+2%pp—19Be+ n+2%Pb breakup reaction, we il-
50 0856 0.948 0755 0.322 0126 0060 lustrated the fast convergence of the method and its effi-
100 1.196 1.279 0.938 0.364 0.134 0.062 ciency.
200 1.349 1.407 0982 0369 0.134 0.062 The suggested three-dimensional mesh approximation
300 1369 1421 0985 0.369 0134 0062 possesses the advantage that alocal interaction is diagonal in
400 1.373 1423 0985 0369 0134 0.062 Such a representation. As a consequence, it allows avoiding
the use of the multipole expansion of the time-dependent
Coulomb interaction between the projectile and the target as
(26) as a function of the upper bouthg,,, for a few energies well as the straight-line approximation for the projectile tra-
E for the same boundary of integration, over the radial jectory used in the previous calculations. Postacceleration
variable as in Ref[4]. It shows that the integration over effects may be treated in a natural way in such an approach
the interval[30 fm, 400 fnj gives about 60% of the calcu- by using other types of trajectories.
lated cross section near the maximum. Thus inaccuracies The splitting-up method only requires a simple diagonal-

of the first-order perturbation theory may therefore signifi-ization procedure for the remaining nondiagonal part of the
cantly reduce the global accuracy of the results. A possibl@inetic energy operator. It gives a fast convergence with re-
source for the loss of accuracy may be the time propagatiogpect to the numbers of grid pointd andN,). The compu-

on a not detgiled enough radial grid for the wave functiqn iNtational time is directly proportional to the numbe¥sand

the perturbative terni16) of Ref.[4]. Actually, as shownin N |t allowed us to extend the boundaries of integration
Sec. lll, the radial grid used in Ref4] gives a noticeably gver the radial and time variables. It also permits avoiding
less accurate description of tHéBe ground state than our the perturbative approximations used in RE8s4] for evalu-
scheme. ating the breakup cross sections.

Corrections due to the pI’OjeCtile deflection from the These advantages make the method promising for app“_
straight-line trajectory and postacceleration effect are foungations to other breakup reactions, particularly with emission
to be weak(see Fig. 3 and do not destroy the rather good of g proton(see, for example, Refi14]). Another interesting,
agreement of the calculated cross sections with the expergyt more difficult application may be breakup reactions with
mental ones. two-neutron halo nuclei.

We also examined the effect of the neutron spin coupling The effect of the neutron postacceleration in the breakup
with the varying field of the target determined by £6). For  of 118e has also been investigated in this approach by com-
the considered values of impact parameters and colliding efaring the results obtained with two different Coulomb tra-
ergies, it does not exceed the order of 0.2% in the values gbctories followed by the full halo nucleus and by its core.
(ke), (kz), anddoy,(E)/dE and can be neglected. Including their effect slightly improves the mean values of

Note that inCIUding the Sma” impaCt parameters from thqhe transverse momentum of the emitted neutron.
interval [0b;,,=12 fm] in the computational scheme  The present model could easily deal with nuclear effects
should increase the total cross sections and lead to a bettggetween target and projectile occurring at lower energies
agreement with the eXperimental data. However, estimates Gndlor at smaller impact parameters_ The on|y minor modi-
this part of the integra(26) demands correcting the time- fication would be using the complex values of the optical
dependent Coulomb interactidd) by nuclear effects ab  potentials between target and projectile or projectile frag-

<12 fm. ments(see, for example, Ref12]).
In conclusion of the discussion of the total breakup cross

section, we mention two recent calculatidi®,13, giving
values closer to our results and experimental {4 than
to those of Ref[4]. The first work[12] applies a semiclas-
sical coupled-channel scheme with a wave function expan- V.S.M. would like to thank Drs. F.M. Penkov and V.A.
sion over a stationary basis. The basis includes bound arnguzmin for many useful discussions and suggestions and the
low-lying states of the discretized continuum for the firststaff of the P.N.T.P.M. of the Free University of Brussels for
three partial waves. The introduction of the nuclear interacwarm hospitality. He also gratefully acknowledges the warm
tion with a nucleus-nucleus optical potential avoids the needhospitality and the use of the computer resources of IMEP of
for a cutoff over the impact parametbr This analysis sug- the Austrian Academy of Sciences. This text presents re-
gests a cutoff in impact parameter at about 11.5 fm, close teearch results of the Belgian program on interuniversity at-
our bi,=12 fm used in Refs[3,4,10. Unlike our results, traction poles initiated by the Belgian-state Federal Services
these calculations are partly perturbative due to the multipoléor Scientific, Technical and Cultural Affairs. V.S.M. was
expansion for the interaction potential. In REf3] a quantal  partly supported by that program.
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