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Nonperturbative time-dependent approach to breakup of halo nuclei
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1Physique Nucle´aire Théorique et Physique Mathe´matique, C.P. 229, Universite´ Libre de Bruxelles, B-1050 Brussels, Belgium

2Joint Institute for Nuclear Research, Dubna, Moscow Region 141980, Russian Federation
~Received 29 December 1998!

The time-dependent mesh method is proposed as an efficient tool for a quantitative analysis of the Coulomb
breakup of halo nuclei. The approach allows a treatment of breakup reactions in the nonperturbative regime. It
avoids any multipole expansion for the Coulomb interaction between the projectile and the target. Moreover,
it permits using more general trajectories allowing an estimation of postacceleration effects. This numerical
technique is applied to the11Be1208Pb→10Be1n1208Pb breakup reaction at 72 MeV per nucleon and is
compared with experiment and with a previous calculation. Corrections due to the projectile deflection from a
straight-line trajectory and to the neutron spin rotation are found to be weak for the specific collision param-
eters.@S0556-2813~99!00306-4#

PACS number~s!: 25.60.Gc, 25.70.De, 02.70.Jn, 27.20.1n
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I. INTRODUCTION

Coulomb breakup is one of the main tools for the study
halo nuclei@1#. The breakup cross section provides use
information about the structure of the halo. Therefore, t
topic is the subject of intensive experimental and theoret
investigations. Among halo nuclei, the11Be nucleus is of
particular importance because the relative simplicity of
structure allows more accurate theoretical investigations.
deed, its two bound states can be fairly well described a
10Be core to which a neutron is loosely bound. With a go
approximation, the breakup can be seen as a transition f
a two-particle bound state to the continuum, due to a vary
Coulomb field.

Recently, efficient mesh methods@2–4# of solution of the
time-dependent Schro¨dinger equation have been develop
for quantitatively treating the time evolution of th
projectile-nucleus wave function in this kind of reactio
These analyses were performed with three spatial dimens
for the relative motion of the halo neutron with respect to
core. From a physical viewpoint, they are attractive owing
the simplicity of the treatment of time dependence. Howe
some simplifications in these computations, i.e., the use
multipole expansion for the Coulomb field between the h
nucleus and the target and the application of a perturba
approximation in the computation of the total breakup cr
sections, may introduce significant limitations in further d
velopments of this approach.

In the present work, the time-dependent Schro¨dinger
equation is solved with a nonperturbative algorithm on
three-dimensional spatial mesh which does not suffer fr
the abovementioned limitations. In fact, the method allo
much flexibility in the definition of the trajectory of the pro
jectile. Different effects can be taken into account such as
Coulomb repulsion between the target and projectile or s
coupling effects. The method@5–7# makes use of values o
the wave function at mesh points in angular space, in
spirit of the discrete-variable or Lagrange-mesh methods~see
Ref. @8#, and references therein!. The radial functions are
approximated with variable-step finite-difference techniqu
The splitting-up method@9# accurately describes the tim
PRC 590556-2813/99/59~6!/3232~8!/$15.00
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evolution of the system. The efficiency of the present a
proach is illustrated by studying the Coulomb breakup re
tion 11Be1208Pb→10Be1n1208Pb at an energy~72 MeV
per nucleon! where experimental data are available@10# and
where another mesh method has recently been applied@4#.

In Sec. II, the physical problem is recalled and modeliz
The computational algorithm is described. In Sec. III, t
conditions of the calculation are discussed and compa
with those of Ref.@4#. The convergence of the method
analyzed in Sec. IV. The obtained results are discusse
Sec. V. The last section is devoted to concluding remark

II. THEORETICAL FRAMEWORK

A. Model

The 10Be core nucleus is treated as a structureless par
which is weakly bound to the halo neutron by the poten
V(r), wherer is the coordinate between the core nucleus a
the neutron. In such an approach, the reaction11Be1208Pb
→10Be1n1208Pb in the projectile rest frame follows th
time-dependent Schro¨dinger equation

i\
]

]t
C~r,t !5H~r,t ! C~r,t !5@H0~r!1h~r,t !# C~r,t !,

~1!

where the wave packetC(r,t) describes the relative motio
of the neutron and the core. In this expression

H052
\2

2m
n r1V~r! ~2!

is the 11Be internal Hamiltonian with reduced massm
5mnmc /M , wheremn , mc and M5mn1mc are the neu-
tron, 10Be-core, and11Be masses, respectively. The potent
V(r) is the sum of anl-dependent central potentialVl(r ) and
a spin-orbit interactionVl

s(r ) l•s. The interaction of the tar-
get nucleus with the projectile

h~r,t !5VC~r,t !1Vsc~r,t ! ~3!
3232 ©1999 The American Physical Society
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is described by two terms in our model.
The time-dependent Coulomb potentialVC(r,t) is defined

in two different ways which correspond to different mode
ings of the reaction mechanism. The first definition reads

VC~r,t !5
ZcZTe2

umnr/M1R~ t !u
2

ZcZTe2

R~ t !
, ~4!

where Zc and ZT are the charge numbers of the core a
target, respectively, andR(t) is the relative coordinate be
tween the projectile and the target~see Fig. 1!. With a
straight-line trajectoryR(t)5b1v0t whereb is the impact
vector andv0 is the initial velocity, this definition corre-
sponds to previous models@2–4#. Equation~4! is also able to
simulate the projectile deceleration before the collision
well as its acceleration afterwards by using a Coulomb
jectory for R(t). However, the core postacceleration due
the neutron emission is not described. In the following,
refer to approaches based on Eq.~4! as the ‘‘bound-neutron
model.’’

In order to evaluate the importance of postaccelera
effects, we choose the second definition

VC~r,t !5
ZcZTe2

r~ t !
2

ZcZTe2

ur~ t !2mnr/M u
, ~5!

wherer(t) is the relative coordinate between the target a
the projectile core~see Fig. 1!. It corresponds to the so-calle
‘‘free particle’’ mechanism discussed earlier@11# when only
the core is acted upon by the target Coulomb field with
influence of the neutron. The core follows its own trajecto
which is not affected by a shift between the charged c
location and the11Be center of mass. In the following, w
refer to approaches based on Eq.~5! as the ‘‘free-neutron
model.’’

In some calculations, we also introduce the interact
Vsc(r,t) describing the coupling of the neutron spins with
the varying electric field of the target

Vsc~r,t !52gn

ZTe2\

2mnc2

1

ur~ t !2ru3
s•v~ t !3@r~ t !2r#,

~6!

where gn is the neutron gyromagnetic factor andv is the
relative velocity of the projectile and the target.

B. Angular-subspace discretization

For solving the time-dependent four-dimensional Sch¨-
dinger equation~1!, we apply a nonperturbative approac
@7#, which has been developed recently and used in a num

FIG. 1. Coordinates appearing in the definitions of potentialVC

@Eqs.~4! and ~5!#.
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of nonstationary problems of muon@5# and atomic@6,7#
physics. We seek a solutionC(r,t) in spherical coordinates
(r ,V)[(r ,u,f) as an expansion

C~r,t !5
1

r (
s

(
n j

N

wn~V!~w21!n jc j
s~r ,t ! ~7!

over the two-dimensional basis

wn~V!5 P̃l
m~u!35

cosmf, m.0,

1

A2
, m50,

sinmf, m,0.

~8!

In this basis,P̃l
m(u) is in general an associated Legend

polynomial Pl
umu(u), with a few possible exceptions as e

plained below after Eq.~9!. The symboln represents$ l ,m%
wherem takesAN values varying between6(AN21)/2 and
l takesAN values starting withumu. The sum overn, (n51

N ,
is equivalent to the double sum(m52(AN21)/2

(AN21)/2 ( l 5umu
umu1AN21.

The basis~8! is associated with a mesh. For theu vari-
able, theAN mesh pointsu j u

are chosen from the zeros o

the Legendre polynomialPAN(cosuju
). For thef variable,

theAN mesh points are chosen asf j f
5p(2 j f21)/AN. The

total numberN of grid pointsV j5(u j u
,f j f

) is equal to the
number of basis functions in expansion~7! @6,7#. To this
mesh are associatedN weightsl j which are the products o
the standard Gauss-Legendre weights by 2p/AN. The
(w21)n j are the elements of theN3N matrix w21 inverse to
the matrix with elementswn j5wn(V j ) defined at the grid

pointsV j . The polynomialsP̃l
m(u) are chosen in such a wa

that one has exactly

E wn~V!wn8~V!dV5(
j

l jwn jwn8 j5dnn8 ~9!

for all n and n8<N. For mostn and n8, property ~9! is
automatically satisfied because the basis functionswn(V) are
orthogonal and the Gauss quadrature is exact. However,

few cases with the highestl values, some polynomialsP̃l
m

have to be specially made orthogonal in the sense of
Gauss quadrature. With this choice, the matrixl j

1/2wn j is
orthogonal.

The radial components c j
s(r ,t) correspond to

c(r ,V j ,t)us& where us&5u61/2& is a spin state and
c(r ,V j ,t) is a complex function. Let us introduce th
2N-component vectorC(r ,t)5$l j

1/2c j
s(r ,t)%. With respect

to the unknown coefficients in expansion~7!, the problem is
reduced to a system of Schro¨dinger-type equations

i\
]

]t
C~r ,t !5@Ĥ0~r !1ĥ~r ,t !# C~r ,t !. ~10!

In this system,Ĥ0(r ) and ĥ(r ,t) are 2N32N matrix opera-
tors representingH0 andh @Eqs.~2! and~3!# on the grid. The

elements ofĤ0(r ) are defined by
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H0k j
ss8~r !5H 2

\2

2m

]2

]r 2
dk j1~lkl j !

21/2 (
n5$ l ,m%

N

~w21!nk

3FVl
s~r !1

\2

2mr 2
l ~ l 11!G ~w21!n jJ dss8 , ~11!

where Vl
s(r ) is the diagonal matrix element of a spheric

potential between the neutron and the core in thelth partial
wave calculated with the spin stateus& @4#.

The elements ofĥ(r ,t) read

hk j
ss8~r ,t !5@VC~r ,Vk ,t !dss81Vsc

ss8~r ,Vk ,t !#dk j . ~12!

Notice that the time-dependent Coulomb operator define
Eq. ~4! or ~5! is diagonal in such a representation and do
not require the multipole expansion used in other approac
@2–4#.

C. Computational scheme

Another attractive peculiarity of the present approach
that the only nondiagonal part of the Hamiltonian in Eq.~10!

is in the block matricesĤ0
ss @Eq. ~11!#. For each spin state

they can be diagonalized by the simple unitary transfo
Snk5lk

1/2wnk @7#. This property has been exploited for deve
oping an economic algorithm with a computational time p
portional to the numberN of unknowns in the system o
equations~10! @7#. The splitting-up method@9# has been ap-
plied for the propagation in timetn→tn115tn1Dt as

C~r ,tn1Dt !5~11 1
2 iDt ĥ!21~12 1

2 iDt ĥ!

3~11 1
2 iDt Ĥ0!21~12 1

2 iDt Ĥ0!C~r ,tn!.

~13!

Thus the problem is split up into two steps involving t
intermediate timetn1 1

2 Dt.
At the initial step, the vector functionC(r ,tn1 1

2 Dt) is
evaluated from the known vector functionC(r ,tn) with the
system ofN differential equations

@11 1
2 iDt ŜĤ0~r !Ŝ†#C̄~r ,tn1 1

2 Dt !

5@12 1
2 iDt ŜĤ0~r !Ŝ†#C̄~r ,tn!, ~14!

where

C̄~r ,tn!5ŜC~r ,tn!. ~15!

The system of equations~14! is uncoupled since

~ŜĤ0Ŝ†!nn8
ss8 5F2

\2

2m

]2

]r 2
1Vl

s~r !1
\2

2mr 2
l ~ l 11!Gdss8dnn8 ,

n5$ l ,m%. ~16!

It is solved with the boundary conditions

C̄~0,tn1 1
2 Dt !5C̄~r m ,tn1 1

2 Dt !50, r m→`. ~17!
l

in
s
es

s

-

Then the wave function at timetn1 1
2 Dt is obtained as

C~r ,tn1 1
2 Dt !5Ŝ†C̄~r ,tn1 1

2 Dt !. ~18!

The most time-consuming part in performing the initial st
tn→tn1 1

2 Dt @Eqs. ~15!–~18!#, i.e., solving the boundary
value problem~14! and~17!, demands onlyN computational

operations. Moreover, theŜ transformation is time indepen
dent andr independent and, as a consequence, the ma
Snk5lk

1/2wn(Vk) has to be evaluated only once.
At the second step, the system ofN uncoupled algebraic

equations

@11 1
2 iDt ĥ~r ,tn!#C~r ,tn1Dt !

5@12 1
2 iDt ĥ~r ,tn!#C~r ,tn1 1

2 Dt ! ~19!

with the matrixĥ(r ,tn) defined in Eq.~12! which is nondi-
agonal only in the spin space, is then solved. Applying
split-operator method~15!–~19! to problem ~10! demands
that the two-dimensional basiswn(V), used in Eq.~7!, is
orthogonal on the gridVk . It is shown in Ref.@7# that,
because of the simplicity of the diagonalization proced

for the Ĥ0(r ) operator, the computational time for solvin
problem ~15!–~19! is approximately proportional toN as
long as the calculation in Eq.~18! is negligible, i.e., whenN
is not too large.

III. CONDITIONS OF THE CALCULATION

The time evolution of the system is calculated accord
to the above scheme starting from the initial stateC(r,Tin)
5f1s(r), wheref1s(r) is the ground-state wave function o
the projectile HamiltonianH0(r). Following the parametri-
zation suggested in Ref.@4#, the interactionV between the
neutron and the10Be core is chosen as the sum of a spheri
Woods-Saxon potentialVl(r )5Vl f (r ), with the radiusR0
52.669 fm and the diffusenessa50.6 fm, and of a standard
spin-orbit interaction

Vl
s~r !l•s5Vls

1

r

d

dr
f ~r !l•s. ~20!

The standard valueVls532.8 MeV fm2 is used for the depth
of the ls potential for ap-shell nucleus@4#. The depths
of the Woods-Saxon potentials have been determined
V05259.5 MeV (l 50) andVl5240.5 MeV (l>1) in or-
der to locate the 1/21 ground state of11Be at20.503 MeV
and the 1/22 excited state at20.183 MeV@4# with respect to
the threshold for neutron breakup. Notice the considera
deviation of theV0 value employed here for the ground sta
from V05258.2 MeV used in Ref.@4#. The analysis pre-
sented below explains the reason for this variation.

For approximating Eq.~14! with respect to the radial vari
able r, a second-order finite-difference approximation on
quasiuniform grid has been used on the intervalr P @0,r m#
with r m5800 fm in this section as in Ref.@4#. The grid has
been realized by the mappingr→x of the initial interval onto
xP @0,1# by the formular 5r m (e8x21)/(e821) @6#. Table
I illustrates the convergence of the scheme asDr→0 (Dx
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→0) by using as a test the calculation of the binding ene
of the 11Be ground state. In this case, the eigenvalue prob

Ĥ0~r !C~r !5«C~r ! ~21!

is solved with a spherical potential in Eq.~2!. For the sake of
comparison, the computations are also performed with a
form grid overr for the two valuesV05259.5 and258.2
MeV. The results are compared with ‘‘exact’’ energies o
tained with the Lagrange-mesh technique@8# with zeros of
theN540 Laguerre polynomial. The analysis shows that
second order finite-difference approximation on a quasiu
form grid with Nx5500 points (Dx50.002), used in the
present work, leads to a considerably more accurate valu
« in Eq. ~21! than the analogous finite-difference scheme
the uniform grid withNr52000 points (Dr 50.4 fm!. The
use of a uniform grid withDr 50.4 fm in Ref.@4# seems to
be the main reason for the deviation of their parameterV0
with respect to ours. Indeed Table I shows that the exp
mental binding energy is well reproduced forV05258.2
MeV with Dr 50.4 fm but that convergence is not reach
yet. It is shown in Table I that, for computing the eigenval
« on the uniform grid with a 1% accuracy, the numberNr of
grid points must be increased at least by a factor of 8 (Dr
50.05 fm!. The more extended 1/22 excited state is less
sensitive to the integration stepDr ~or Dx), which explains
why the fitted parameterV15240.5 MeV does not deviate
much from the value240.4 MeV used in Ref.@4#.

IV. CONVERGENCE OF THE SCHEME

We present an illustration of the convergence of the co
putational scheme, using as an example a calculation of
mean valuê kz& of the longitudinal momentum@3#

^kz~ t !&5

E dkkzu^kuCbu~r,t !&u2

E dk^kuCbu~r,t !&u2
~22!

between the neutron emitted in the reaction11Be1208Pb
→10Be1n1208Pb and the core nucleus10Be. The notation
uk& represents a plane wave. The breakup component is
tained by eliminating the bound states from the calcula
wave packet@3,4#

TABLE I. Convergence of the method asDx→0 (Dr→0) in
the calculation of the binding energy2« of the 11Be ground state.
The ‘‘exact’’ results are 0.5013 (V05259.5) and 0.3247 (V05
258.2). Energies are in MeV and lengths in fm.

Quasiuniform grid Uniform grid
2« 2« 2«

Nx Dx V05259.5 Nr Dr V05259.5 V05258.2

125 0.008 0.521 2000 0.4 0.722 0.504
250 0.004 0.506 4000 0.2 0.552 0.365
500 0.002 0.502 8000 0.1 0.514 0.334

16 000 0.05 0.504 0.327
y
m

i-

-

e
i-

of
n

i-

-
he

b-
d

uCbu~r,t !&5S 12 (
nPbound

ufn(r)&^fn(r)u D uC~r,t !&,

~23!

where the sum runs over the two bound states of11Be ob-
tained from Eq.~21!.

To avoid the slowly convergent and time-consumi
three-dimensional integration over the momentum space
Eq. ~22!, the direct computation in coordinate space

^kz~ t !&5
^Cbu~r,t !u2 i ~]/]z!uCbu~r,t !&

^Cbu~r,t !uCbu~r,t !&
~24!

has been used instead in Ref.@4#. In the present paper we
suggest an alternative approach for the calculation of
mean valueŝkz& and ^kx& through the matrix element of a
commutator as in

^kz~ t !&5 i
m

\2

^Cbu~r,t !u@Ĥ~r,t !,z#uCbu~r,t !&

^Cbu~r,t !uCbu~r,t !&
, ~25!

which avoids the loss of accuracy due to the numerical
ferentiation over the Cartesian variables in Eq.~24! of the
wave packet calculated in spherical coordinates. The ca
lation is performed, as in the previous theoretical consid
ations@3,4#, according to the bound-neutron model@Eq. ~4!#
with the straight-line trajectoryR(t)5b1v0t of the 11Be
projectile. The impact parameter is chosen asb512 fm and
the selected relative velocityv050.37c corresponds to 72
MeV per nucleon, i.e., the conditions of the experiment@10#
as well as the previous calculations@3,4#. Thez axis is cho-
sen alongv0 and thex axis is in the collision plane.

Since the admixture of the breakup componentCbu(r,t)
in the total wave functionC(r,t) is only of the order of 10%
@4,10#, the calculation of the quantitŷkz(t)& is a rather chal-
lenging computational problem supposed to be very sens
to variations of the spatial grid parametersN, Dx andr m , as
well as the time grid parametersDt andTout. It provides a
good example for analyzing the convergence of the meth
Moreover, this analysis is also actual because the prev
calculations@3,4# reproduce only half the measured valu
^kz& of the momentum between the neutron and the c
nucleus in the longitudinal direction@10# and the source of
this difference has not been clarified so far.

First we analyze the convergence of the method with
spect toN→` and the validity of the multipole expansion o
operator~4!, used in previous calculations@2–4#. We use the
quasiuniform grid$r i% fixed above by studying the boun
states of11Be. The valuê kz(t)& has been evaluated on a s
of successively converging angular grids$V j%1

N (N→`)
without and with multipole expansion of operator~4!. The
initial time was chosen asTin5220\ MeV21. The results
presented in Table II for the average longitudinal moment
show the fast convergence asN increases. For the chose
values ofb andv0, they also indicate a slower convergen
with respect toN of the truncated multipole expansions
operator~4! as used in Refs.@2–4#. The accuracy of the
dipole1quadrupole (d1q) approximation is, however
rather good.
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TABLE II. Convergence of the bound-neutron model with a straight-line trajectory asN→` and con-
vergence of the multipole expansion in Eq.~4! for the mean value2^kz(t)& @Eq. ~25!# of the longitudinal
momentum between the neutron and the core nucleus (Dt50.02\ MeV21, Dx50.002, andr m

5800 fm). For everyN, the values of̂ kz(t)& obtained without multipole expansion of Eq.~4! are given. For
N59 and 25, the values calculated with only the dipole term~d! in a multipole expansion of Eq.~4! and with
the dipole and quadrupole terms (d1q) are also presented.

t N59 N525 N549
(\ MeV21) d d1q Eq. ~4! d d1q Eq. ~4! Eq. ~4!

1 0.0171 0.0167 0.0150 0.0171 0.0167 0.0150 0.015
4 0.0143 0.0120 0.0124 0.0146 0.0124 0.0128 0.012
7 0.0172 0.0153 0.0154 0.0176 0.0156 0.0158 0.015

10 0.0136 0.0116 0.0118 0.0140 0.0120 0.0123 0.012
15 0.0115 0.0097 0.0100 0.0120 0.0102 0.0105 0.010
20 0.0102 0.0087 0.0090 0.0107 0.0091 0.0094 0.009
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The convergence overDt→0 is illustrated in Table III as
well as the convergence with respect toDx→0, r m→`,
where the valueŝkz(t)& calculated on a set of successive
converging radial$r i% and time $tn% grids are given. The
analysis shows that the time grid withDt50.02\ MeV21

gives about a 1% accuracy in calculating the^kz(t)& values
for all times in the intervalt<Tout. However, the radial grid
fixed in the previous paragraph by analyzing the ene
structure of11Be (Dx50.002, r m5800 fm! gives the same
accuracy only for not too large timest<4\ MeV21. The
presented data show that for getting an asymptotically st
value of ^kz(Tout)& with Tout.10220\ MeV21→`, it is
necessary to increase the boundary of integration tor m

51200 fm and to keep the step of integrationDx rather
small. In Refs.@3,4#, the boundaries of integration were ch
sen asr m5800 fm andTout52Tin510\ MeV21.

The calculated valueŝkz&520.0157 fm21 and ^kx&
50.0480 fm21 at Tout510\ MeV21 can be compared with
the previous resultŝki&520.019 and^k'&50.052 fm21

obtained in Ref.@4#. The difference between our results a
the previous ones can be explained by the use of a m
detailed radial grid and by the avoidance of a multipole
pansion of the operator~4! in the present calculations~see
Tables I, II, and III!.
y

le

re
-

V. RESULTS AND DISCUSSION

With the developed model, we now analyze the dep
dence of the mean transverse and longitudinal moment
the emitted neutron, on postacceleration effects. In Fig. 2,
calculated valueŝkz(t)& and^kx(t)& are given as a function
of time. The transverse momentum̂kx& has been evaluate
with a formula analogous to Eq.~25!.

A set of calculations have been done with differe
choices of the time-dependent Coulomb interactionVC(r,t)
in Eq. ~3!. First we have considered a bound-neutron mo
~4! with a straight-line trajectory~i.e., without any decelera
tion or acceleration of the projectile!.

Then the model has been improved by considering in
~4! a Coulomb trajectory. As one can see from the figur
the correction of the trajectoryR(t) weakly influences the
values of̂ kx& and slightly more the values of^kz&. However,
estimating the effects of postacceleration is possible thro
a comparison with the free-neutron model according to
~5! ~i.e., assuming that the freedom of the neutron occurr
after the breakup is realized during the full reaction proce!.
The average momentum̂kx& changes considerably, in agre
ment with the simple classical modeling of the ‘‘free pa
ticle’’ mechanism@11#. The ^kz& evaluated with the free-
neutron model becomes closer to the experimental one,
(

TABLE III. Illustration of the method convergence asDt→0 andDx→0, r m→` for the mean value

2^kz(t)& @Eq. ~25!# of the longitudinal momentum between the neutron and the core nucleusDt0

50.02\ MeV21).

r m5800 fm r m5800 fm r m51200 fm r m51200 fm r m51500 fm
t Dx50.002 Dx50.002 Dx50.0005 Dx50.0004 Dx50.0004

(\ MeV21) Dt5Dt0 Dt5 1
2 Dt0 Dt5Dt0 Dt5Dt0 Dt5Dt0

1 0.0150 0.0147 0.0150 0.0150 0.0150
4 0.0128 0.0129 0.0134 0.0134 0.0134
7 0.0158 0.0157 0.0176 0.0176 0.0176

10 0.0123 0.0122 0.0156 0.0157 0.0157
15 0.0105 0.0103 0.0159 0.0161 0.0161
20 0.0094 0.0092 0.0158 0.0162 0.0162
25 0.0154 0.0160 0.0162
30 0.0148 0.0156 0.0157
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the considerable difference of about a factor of 2 between
calculated and experimental values remains.

The developed method has also been applied to the
breakup cross section. We have calculated this cross se
as a function of the energyE of the relative motion between
the emitted neutron and the core nucleus by the formula

dsbu~E!

dE

5
4mk

\2 E
bmin

bmax

(
lm

U E j l~kr !Ylm~ r̂!Cbu~r,Tout!drU2

bdb.

~26!

Again we first apply the bound-neutron model with t
straight-lineR(t) trajectory in the time-dependent Coulom
potential~4!, as in the previous calculations@2–4#. Then cor-

FIG. 2. Time dependence of the mean longitudinal^kz(t)& ~a!
and transversêkx(t)& ~b! momenta. The calculations are perform
on the grid N525, Dx50.0005, r m51200 fm, Dt
50.01\ MeV21, Tin5220\ MeV21. Open circles correspond t
the data obtained with the bound-neutron model~4! with a straight-
line trajectory. Calculations with a Coulomb trajectoryR(t) in po-
tential ~4! are indicated by full squares. Calculations with the fre
neutron model~5! are displayed as full circles.
e

tal
ion

rections due to the projectile deflection from the straight-l
trajectory and postacceleration effect are evaluated.

The calculated total breakup cross sections are displa
in Fig. 3 together with the experimental data@10# and the
most accurate previous theoretical results@4#. One can see
that the previous calculation essentially overestimates
breakup cross section near the maximum as compared
the present results and the experimental data~see Fig. 3!. In
previous works@3,4#, a simplified bound-neutron model wit
a straight-line trajectory of the projectile has been used. S
cifically the multipole approximation of the time-depende
Coulomb potential~4! and a less detailed grid were used
Ref. @4#. The previous calculations were also partly pertu
bative, i.e., integral~26! was calculated numerically on th
interval @bmin512 fm, bmax530 fm# and the remaining
part was evaluated with the first-order perturbation theory
the present calculation, this integral is calculated numeric
over the whole interval@bmin512 fm, bmax5400 fm#. Our
analysis shows that using more accurate spatial and
grids as well as avoiding the multipole approximation giv
an effect of the order of a few percents near the maximum
the breakup cross section. The main part of these correcti
due to the extension of the boundary of integration over
radial variable from the valuer m5800 fm used in Ref.@4# to
r m51200 fm, is illustrated in Fig. 3. Therefore the use of t
first-order perturbation theory in Ref.@4# for evaluating the
main part of the integral~26! on the interval @bmax
530 fm, `# may be the main source leading to the ove
estimation of the breakup cross section near the maximum
compared with our results and the experimental data~see
Fig. 3!. Table IV illustrates the convergence of the integ

-

FIG. 3. Total breakup cross sectionsdsbu(E)/dE. Calculations
are performed with the bound-neutron model~4! with a straight-line
trajectory on theN525 angular grid forDt50.01\ MeV21 and
Tout52Tin520\ MeV21. The dashed line represents the resu
obtained on the quasiuniform gridDx50.002, r m5800 fm. The
solid line shows the results from the gridDx50.0005, r m51200
fm. The triangle indicates the result obtained with a Coulomb t
jectoryR(t) in potential~4! and the full circle indicates the result o
the free-neutron model~5! (Dx50.0005, r m51200 fm). The
boundaries of integration overb are chosen asbmin512 fm and
bmax5400 fm. The previous~partly perturbative! results of Ref.@4#
are represented as a dotted line. The experimental data are
Ref. @10#.
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~26! as a function of the upper boundbmax for a few energies
E for the same boundary of integrationr m over the radial
variable as in Ref.@4#. It shows that the integration ove
the interval@30 fm, 400 fm# gives about 60% of the calcu
lated cross section near the maximum. Thus inaccura
of the first-order perturbation theory may therefore sign
cantly reduce the global accuracy of the results. A poss
source for the loss of accuracy may be the time propaga
on a not detailed enough radial grid for the wave function
the perturbative term~16! of Ref. @4#. Actually, as shown in
Sec. III, the radial grid used in Ref.@4# gives a noticeably
less accurate description of the11Be ground state than ou
scheme.

Corrections due to the projectile deflection from t
straight-line trajectory and postacceleration effect are fo
to be weak~see Fig. 3! and do not destroy the rather goo
agreement of the calculated cross sections with the exp
mental ones.

We also examined the effect of the neutron spin coupl
with the varying field of the target determined by Eq.~6!. For
the considered values of impact parameters and colliding
ergies, it does not exceed the order of 0.2% in the value
^kx&, ^kz&, anddsbu(E)/dE and can be neglected.

Note that including the small impact parameters from
interval @0,bmin512 fm# in the computational schem
should increase the total cross sections and lead to a b
agreement with the experimental data. However, estimate
this part of the integral~26! demands correcting the time
dependent Coulomb interaction~4! by nuclear effects atb
,12 fm.

In conclusion of the discussion of the total breakup cr
section, we mention two recent calculations@12,13#, giving
values closer to our results and experimental data@10# than
to those of Ref.@4#. The first work@12# applies a semiclas
sical coupled-channel scheme with a wave function exp
sion over a stationary basis. The basis includes bound
low-lying states of the discretized continuum for the fi
three partial waves. The introduction of the nuclear inter
tion with a nucleus-nucleus optical potential avoids the n
for a cutoff over the impact parameterb. This analysis sug-
gests a cutoff in impact parameter at about 11.5 fm, clos
our bmin512 fm used in Refs.@3,4,10#. Unlike our results,
these calculations are partly perturbative due to the multip
expansion for the interaction potential. In Ref.@13# a quantal

TABLE IV. Convergence of the method for the breakup cro
section ds(E,bmax)/dE ~in b/MeV! as a function of the impac
parameterbmax ~in fm! and the energyE ~in MeV!. The calculation
is performed with N525, Dx50.002, r m5800 fm, and Dt
50.01\ MeV21 over the time interval fromTin5220\ MeV21 to
Tout520\ MeV21.

bmax E50.2 E50.3 E50.6 E51.2 E52.0 E52.8

12 0.036 0.043 0.044 0.024 0.011 0.006
30 0.543 0.618 0.526 0.242 0.102 0.051
50 0.856 0.948 0.755 0.322 0.126 0.060

100 1.196 1.279 0.938 0.364 0.134 0.062
200 1.349 1.407 0.982 0.369 0.134 0.062
300 1.369 1.421 0.985 0.369 0.134 0.062
400 1.373 1.423 0.985 0.369 0.134 0.062
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nonperturbative but stationary computational scheme
been applied.

VI. CONCLUSION

In this work, we suggested a nonperturbative tim
dependent approach for the quantitative analysis of
Coulomb breakup of halo nuclei. By using as an exam
the 11Be1208Pb→10Be1n1208Pb breakup reaction, we il
lustrated the fast convergence of the method and its e
ciency.

The suggested three-dimensional mesh approxima
possesses the advantage that a local interaction is diagon
such a representation. As a consequence, it allows avoi
the use of the multipole expansion of the time-depend
Coulomb interaction between the projectile and the targe
well as the straight-line approximation for the projectile tr
jectory used in the previous calculations. Postaccelera
effects may be treated in a natural way in such an appro
by using other types of trajectories.

The splitting-up method only requires a simple diagon
ization procedure for the remaining nondiagonal part of
kinetic energy operator. It gives a fast convergence with
spect to the numbers of grid points~N andNx). The compu-
tational time is directly proportional to the numbersN and
Nx . It allowed us to extend the boundaries of integrati
over the radial and time variables. It also permits avoid
the perturbative approximations used in Refs.@3,4# for evalu-
ating the breakup cross sections.

These advantages make the method promising for ap
cations to other breakup reactions, particularly with emiss
of a proton~see, for example, Ref.@14#!. Another interesting,
but more difficult application may be breakup reactions w
two-neutron halo nuclei.

The effect of the neutron postacceleration in the brea
of 11Be has also been investigated in this approach by c
paring the results obtained with two different Coulomb tr
jectories followed by the full halo nucleus and by its cor
Including their effect slightly improves the mean values
the transverse momentum of the emitted neutron.

The present model could easily deal with nuclear effe
between target and projectile occurring at lower energ
and/or at smaller impact parameters. The only minor mo
fication would be using the complex values of the optic
potentials between target and projectile or projectile fra
ments~see, for example, Ref.@12#!.
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