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Tests and applications of self-consistent cranking in the interacting boson model
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The self-consistent cranking method is tested by comparing the cranking calculations in the interacting
boson model with the exact results obtained from the SU~3! and O~6! dynamical symmetries and from nu-
merical diagonalization. The method is used to study the spin dependence of shape variables in thesd andsdg
boson models. When realistic sets of parameters are used, both models lead to similar results: axial shape is
retained with increasing cranking frequency while fluctuations in the shape variableg are slightly reduced.
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I. INTRODUCTION

Self-consistent cranking~SCC! is one of the most popula
methods to study collective rotations in nuclear many-bo
systems@1#. Within the Hartree-Fock framework, it has pro
vided important insights into the backbending phenome
and currently, it is being used actively in studies of super
formed nuclei@2#. In stark contrast, it has been rarely used
the interacting boson model~IBM ! @3#. In fact, there is only
one application of SCC to IBM where a study of moment
inertia ~MOI! is carried out@4#. In the early stages of the
model, an obvious reason for this neglect was the availab
of exact results~either via dynamical symmetries or nume
cal diagonalization!, which left little room for developmen
of approximate methods such as SCC. In later extension
the IBM ~e.g., sdg-IBM !, dynamical symmetries were no
very useful, and numerical diagonalization could not be c
ried out due to large basis space, hence alternative met
were needed. At around the same time, however, an e
angular momentum projection technique was developed
axially symmetric boson systems (1/N expansion@5#!, which
provided analytical solutions for general Hamiltonians
large basis spaces, filling the gap left by the other metho
Although the assumption of axial symmetry is reasonable
most deformed nuclei in their ground states, triaxial effe
are known to play a role, especially at high spins@6#. There-
fore a study of the evolution of shapes in the IBM would
useful in order to investigate such questions as the effec
triaxiality in nuclear spectra, ways of incorporating it in th
IBM Hamiltonian, and whether an improved description
spectra can be obtained if triaxial effects are taken into
count.

In this paper, we first present tests of the SCC by co
paring the cranking calculations with the exact results
tained in the SU~3! and O~6! limits, as well as from diago-
nalization of more realistic Hamiltonians in thesd-IBM. The
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SCC method is then used in a study of triaxiality in the IB
both in thesd- andsdg-boson versions of the model.

II. CRANKING FORMALISM IN THE IBM

The SCC in the IBM was formulated in Ref.@4# to which
we refer for details, especially concerning the construction
the intrinsic state and the symmetries it possesses. F
given IBM HamiltonianH and intrinsic stateuN,x&, the SCC
around thex axis is described by

d^N,xuH2vL̂xuN,x&50, ~1!

whereL̂x is thex component of the angular momentum o
erator,N is the boson number andx are the variational pa-
rameters to be determined from the extremum condition.
convenience, we consider a general formulation of the IB
which will be tailored to specific cases later. Thus, we int
duce the boson creation and annihilation operatorsblm

† ,blm

with l 50,2,4, . . . , whereb05s, b25d, b45g, etc. The in-
trinsic state is given by a condensate of intrinsic bosons

uN,x&5~N! !21/2~b†!Nu0&, b†5(
l

(
m52 l

l

xlmblm
† , ~2!

where xlm are the normalized boson mean fields, i.e.,x•x
51. Due to the symmetries in the cranked system@4#, xlm
are real andxl 2m5xlm . Note that the odd-m components of
xlm vanish in the static limit (v50), but not in general.
Thus, invoking the normalization condition~e.g., setting
x0051), there are three independent variational parame
in the sd-IBM ( x20,x21,x22) and five more in thesdg-IBM
(x40, . . . ,x44). For the IBM Hamiltonian, we use the gener
multipole form

H5(
l

« l n̂l2 (
k50

2l max

kkT
(k)
•T(k), ~3!
3146 ©1999 The American Physical Society
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where the boson number and multipole operators are g
by

n̂l5(
m

blm
† blm , Tm

(k)5(
j l

tk j l@bj
†b̃l #m

(k) . ~4!

In particular, the angular momentum operators are

L̂x5
21

A2
~ L̂112L̂21!,

L̂m5(
l

Al ~ l 11!~2l 11!/3@bl
†b̃l #m

(1) . ~5!

The parameters of the Hamiltonian consist of the single
son energies,« l , the multipole coupling strengthskk, and
the multipole parameterstk j l . The Hermiticity condition on
multipole operators requires thattk j l5tkl j .

The expectation values in Eq.~3! can be evaluated in a
straightforward manner using boson calculus techniques.
the one-body operators, one simply obtains

^N,xun̂l uN,x&5N(
m

xlm
2

x•x
. ~6!

Calculations for the multipole interactions are somew
more involved but the expectation values can again be
duced to a compact form

^N,xuT(k)
•T(k)uN,x&5N~N21! (

m52k

k

~21!mAkmAk2m

1N(
lm

« l8
xlm

2

x•x
. ~7!

HereAkm corresponds to the expectation value of the ope
tor Tm

(k) in a single boson state and is given by

Akm5 (
jnlm

~21!m^ jnlmukm&tk j l

xjnxlm

x•x
. ~8!

Using the symmetries imposed on the mean fields and
Hermiticity condition, it can be shown thatAkm vanishes if
k1m is odd, and furthermoreAk2m5(21)kAkm . Thus, for
even multipoles, only the positive, evenm values contribute
to the sum in Eq.~7!. The second term in Eq.~7! arises from
the normal ordering of the boson operators and correspo
to an effective one-body term with boson energies

« l85
2k11

2l 11 (
j

tk j l
2 . ~9!

Finally, the expectation value ofL̂x is
n

-

or

t
e-

-

e

ds

^N,xuL̂xuN,x&52N(
lmn

~21!m

3^ lnl 2mu11&A2l ~ l 11!~2l 11!/3

3
xlnxlm

x•x
. ~10!

For a given angular frequencyv, the cranking equation
~1! is solved numerically by minimizing the cranking expre
sion E(x,v)5^H2vLx& with respect to the mean fieldsx.
The dynamical MOI is calculated from the derivative

^L̂x&, Eq. ~10! as @7#

J (2)5
d^L̂x&
dv

, ~11!

which is obtained under the assumption^Lx&.L. For the
exact energy levelsE(L), dynamical MOI and the corre
sponding rotational frequencies are calculated from@7#

5\2Fd2E~L !

dL2 G21

.
4\2

E~L12!22E~L !1E~L22!
,

v5
1

4\
@E~L12!2E~L22!#. ~12!

Evolution of triaxiality with rotation is studied using the fo
lowing expressions for the collective shape variableg:

tang5A2
^Q2&

^Q0&
, ~13!

cos 3g52A7

2

^Q•Q•Q&

^Q•Q&3/2
. ~14!

The one-body expectation values of the quadrupole oper
in Eq. ~13! follow from Eq. ~8! as ^Qm&5NA2m . The two-
body expectation value in Eq.~14! is given in Eq.~7! and the
three-body part is derived in Appendix. Equation~13! gives
the average value forg while Eq.~14! probes its fluctuations
from this average. Thus the information content of the t
expressions forg are different and they compliment eac
other.

III. CRANKING IN THE sd-IBM

In this section, we perform cranking calculations for
variety ofsd-IBM Hamiltonians and compare the results f
the dynamical MOI andg with the exact ones obtained from
dynamical symmetries@SU~3! and O~6!#, and from numeri-
cal diagonalization. For this purpose, we use a simple Ham
tonian with a quadrupole interaction andd-boson energy

H52kQ•Q1«n̂d . ~15!

Following the convention, we denote the parameters of
quadrupole operator byt20251 andt2225x. The SU~3! limit
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is obtained when«50 andx52A7/2, and the O~6! limit
when«5x50. To test more realistic Hamiltonians, we u
the middle value forx (2A7/4), which leads to a bette
description of electromagnetic properties@8#. Inclusion of
thed-boson energy with«51.5Nk improves, in addition, the
moment of inertia systematics@9#. The exact energy eigen
valuesE(L) are obtained from the Casimir operators in t
case of the dynamical symmetries, and by numerical dia
nalization of the Hamiltonian in the latter two cases.

For convenience in the variational problem, we setx00
51 and drop the subscript 2 from the quadrupole me
fields, i.e.,x2m5xm . The normalization is then given by

N511x0
212x1

212x2
2 . ~16!

The expectation value of the Hamiltonian~15!, E(x)
5^N,xuHuN,x&, can be written from Eqs.~6!, ~7! as

E~x!52k@N~N21!~A20
2 12A22

2 !15^n̂s&1~x211!^n̂d&#

1«^n̂d&. ~17!

Here the quadratic formsA2m follow from Eq. ~8! as

A205
1

N @2x02A2/7x~x0
21x1

222x2
2!#,

A225
1

N @2x21A2/7x~2x0x21A3/2x1
2!#, ~18!

and the expectation values ofn̂s and n̂d are

^n̂s&5
N

N , ^n̂d&5
N

N ~x0
212x1

212x2
2!. ~19!

From Eq.~10!, the cranking term is given by

^L̂x&5
2N

N x1~A6x012x2!. ~20!

In Fig. 1, we compare the cranking results for the dyna
cal MOI obtained from Eq.~11! with those obtained from
Eq. ~12! using the exact energy levels forN510 bosons. In
the SU~3! and O~6! limits, the MOI is constant and given b
J ex

(2)54/3k5200/3 and 2/k5100 \2/MeV, respectively.
Note that both results are independent ofN, and the con-
stancy of MOI simply follows from the fact thatE(L) is
quadratic inL in both cases. The SCC leads to a const
MOI in the SU~3! limit, as expected from a rigid rotor, bu
deviates from the exact result by about 5%. The O~6! limit
corresponds to ag-unstable rotor for which cranking is no
expected to work well. Not surprisingly, comparison of t
cranking results forJ (2) in Fig. 1 indicate a maximum de
viation (;10%) from the exact result, as well as a sm
frequency dependence in MOI. We will comment on the
deviations further when discussing theN dependence of the
results below. The case withx52A7/4 falls in between the
two dynamical symmetry results. The dynamical MOI i
o-

n

i-

t

l
e

creases withv as in a typical deformed nucleus~Fig. 1!,
though the overall magnitude is still too large. The deviati
between the cranking and the exact results in this cas
comparable to that in the SU~3! limit, with the error getting
smaller at higher frequencies. When ad-boson energy with
«51.5Nk is included in the Hamiltonian, which fits the ob
served range of MOI data better, the agreement between
cranking and exact results improve markedly, especially
lower frequencies.

The SCC is a semiclassical theory and it would be ex
in the classical limit whenN→`. Thus to understand the
nature of discrepancies seen in Fig. 1 better, we need
study theN dependence of the results. In Fig. 2, we show
SCC results forJ (2) as a function ofN in the SU~3! and
O~6! limits. Since the MOI is not constant in the O~6! limit,
we have taken the value ofJ (2) at the middle-frequency for
eachN. The curves that trace the SCC results are obtai
from

J cr
(2)5J ex

(2)S 11
1

2N
1

1

7N2D , ~21!

in the SU~3! limit, and from

J cr
(2)5J ex

(2)S 12
1

N
1

1

2N2D , ~22!

in the O~6! limit. The coefficients in Eqs.~21! and ~22! are
derived from a 1/N expansion of the SCC equation~1!. It is
clear from Fig. 2 and Eqs.~21!, ~22! that the SCC calculation
of J (2) is correct to leading order but fails in higher orders
1/N by generating spurious correction terms. A comparis
of Eq. ~17! with the accurate angular-momentum-project
result @5# confirms that the incorrect treatment of the 1/N

FIG. 1. Comparison of the cranking calculations of the dynam
cal moment of inertia in thesd-IBM ~lines! with the exact results
obtained from the dynamical symmetries SU~3! and O~6! ~filled
circles!, and numerical diagonalization (x52A7/4 with «50 and
«51.5Nk) ~open circles!. In all cases,N510 andk5220 keV
are used.
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FIG. 2. Boson number dependence of t
cranking dynamical moment of inertia in th
SU~3! and O~6! limits of the sd-IBM ~circles!.
The lines that trace the circles are obtained fro
Eq. ~21! in the SU~3! case and from Eq.~22! in
the O~6! case.
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terms in the SCC is the cause of the discrepancy. It is in
esting to note that an agreement is obtained if one uses
Casimir operator of the SU~3! given by C25Q•Q
1(3/8)L•L, instead of justQ•Q. In this case, the incorrec
1/N contribution from theQ•Q interaction is exactly can
celed by the spurious contribution from theL•L term. An-
other interesting observation is that the best agreemen
SCC with the exact results is achieved in the realistic c
with x52A7/4 and«51.5Nk. This happens because th
1/N term is now dominated by the leading contribution fro

^n̂d&, which is correctly treated in the SCC. The errors fro

^n̂d& contribute at the 1/N2 level, and these become appare
only at the high-rotational frequencies as is apparent in F
1.

We next study the effects of triaxiality in SCC. It is we
known that the energy surface of ansd-IBM Hamiltonian
with one- and two-body interactions has an axially symm
ric minima in the deformed phase@10#. An exception occurs
in the O~6! limit, where ag-unstable shape develops. Th
SCC calculations in the O~6! limit give 30o for both the
averageg ~13! and its fluctuations~14! at all frequencies.
Thus the SCC results are consistent with the description
the O~6! limit using a triaxial intrinsic state withg530o,
which has a very shallow minimum in theg direction @11#.
Frequency independence of the results corroborates with
r-
he

of
e

t
g.

t-

of

he

fact that the O~6! states remaing unstable at all spins. In Fig
3, we show the evolution of the triaxiality angleg with the
cranking frequency for the remaining three cases discus
above for three different boson numbers,N510, 15, 20. Re-
sults obtained from both Eqs.~13! ~solid line! and ~14!
~dashed line! are shown. The ground band in the SU~3! limit
can be described exactly by angular momentum projec
from an axially symmetric intrinsic state, therefore, both a
erageg and its fluctuations should vanish atall frequencies.
The SCC results~Fig. 3, left! start with g50 at low v but
deviate from it systematically with increasing frequency. A
though the situation appears to be improving with increas
N, similar to the case inJ (2), in fact, this is merely due to
the extension of the spectrum withN (vmax}N). If one scales
out theN dependence~i.e., plotsg againstv/N), then all the
curves with differentN overlap. Thusg can be written as a
power expansion inv/N with the leading (N independent!
term being zero. This situation is similar to that encounte
in the study ofJ (2): the SCC gets the leading order ter
correctly (g50) but fails in higher-orders in 1/N by gener-
ating spurious terms in powers ofv/N. The fact that the
incorrect 1/N terms in g all depend on the cranking fre
quency makes the SCC results increasingly unreliable
higher frequencies. The onset of triaxiality observed
around midfrequency (vmax/2) in all curves in Fig. 3 is thus
FIG. 3. Cranking calculations of the triaxiality angleg in the sd-IBM for the three cases shown in Fig. 1 forN510, 15, 20. The solid
lines indicate averageg obtained from Eq.~13! and the dashed lines correspond to its fluctuations given by Eq.~14!.
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due the failure of the SCC and not a genuine feature of
boson system. We remark that despite the sudden increa
the calculatedg values,J (2) remains constant in the SU~3!
limit, suggesting that triaxiality has a negligible effect o
MOI in the interacting boson model.

We interpret the remaining more realistic cases in
light of the SU~3! test. In the case ofx52A7/4 ~Fig. 3,
middle!, the averageg ~solid lines! remains around zero ex
cept at high frequencies. Attributing this sudden rise ing to
the break down of SCC, we see thatg;0 for all ground-
band states of aQ•Q Hamiltonian. The fluctuations~dashed
lines!, on the other hand, are nonzero but get smaller w
increasingN. The values of fluctuations atv50 are consis-
tent with those obtained from an exact calculation for
ground state@12#. At higher frequencies there is a small r
duction in fluctuations, that is, rotations have a slightly s
bilizing effect on theg motion. Increasing the boson numb
also suppresses fluctuations, which is due to the energy
face becoming deeper in theg direction with largerN values.
The last case with«51.5Nk ~Fig. 3, right! has broadly the
same features. The one-body term cannot induce triaxia
alone, therefore, the small deviation in averageg from zero
at midfrequencies is presumably due to errors in SCC. Th
is an increase in fluctuations compared to the middle pa
which can be explained as due to the energy surface bec
ing shallower with the addition of the one-body term. The
results indicate that rotations have a rather limited effect
the shape variables in thesd-IBM, with averageg remaining
nearly constant at zero, and its fluctuations being sligh
reduced from the ground state value at higher spins.

IV. CRANKING IN THE sdg-IBM

In contrast to thesd-IBM, where numerical diagonaliza
tion is a routine task, thesdg-IBM already suffers from the
large basis problem, and exact diagonalization is not poss
for N.11, that is, for most of the deformed nuclei. The 1N
expansion circumvents this problem but because it assu
axial symmetry, one cannot use it to address questions
triaxiality. Here we perform cranking calculations in th
sdg-IBM to study the evolution of shapes with rotation with
out restriction to axial symmetry. For the Hamiltonian, w
choose

H52k2Q•Q2k4T4•T41«dn̂d1egn̂g , ~23!

which has been shown to provide a good representatio
data in rare-earth and actinide nuclei@13#. As in Sec. III, we
setq025h0251 andx0051. Then the normalization is give
by

N511x20
2 12x21

2 12x22
2 1x40

2 12x41
2 12x42

2 12x43
2 12x44

2 .
~24!

The expectation value of the Hamiltonian~23! follows from
Eqs.~6!, ~7! as
e
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e
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E~x!52k2@N~N21!~A20
2 12A22

2 !15^n̂s&1~11q22
2 1q24

2 !

3^n̂d&1~5/9!~q24
2 1q44

2 !^n̂g&#2k4@N~N21!~A40
2

12A42
2 12A44

2 !19^n̂s&1~9/5!~h22
2 1h24

2 !^n̂d&

1~11h24
2 1h44

2 !^n̂g&#1«d^n̂d&1«g^n̂g&. ~25!

Here the quadrupole quadratic formsA2m are given by

A205
1

N @2x202A2/7q22~x20
2 1x21

2 22x22
2 !

12A2/21q24~A3x20x401A10x21x411A5x22x42!

2~1/3A77!q44~10x40
2 117x41

2 18x42
2 27x43

2 228x44
2 !#,

A225
1

N @2x221A2/7q22~2x20x221A3/2x21
2 !

1~2/3A14!q24~x22x401A5x21x411A15x20x42

1A35x21x431A70x22x44!1A2/33q44

3~2x42x4413x41x4313A10/7x40x421~5/A7!x41
2 !#,

~26!

and the hexadecapole quadratic formsA4m by

A405
1

N @2x401A2/35h22~3x20
2 24x21

2 1x22
2 !

2~2/A77!h24~2A5x20x401A6x21x4126A3x22x42!

1A2/1001h44~9x40
2 19x41

2 211x42
2 221x43

2 114x44
2 !#,

A425
1

N @2x421~1/A7!h22~A6x20x2222x21
2 !1A3/385h24

3~6A5x22x4019x21x412~8/A3!x20x4225A7x21x43

12A14x22x44!1A5/1001h44~6A7x42x4412A7x41x43

211x40x4226x41
2 !#,

A445
1

N @2x441h22x22
2 1~2/A55!h24~A6x22x421A21x21x43

12A7x20x44!1~1/A143!h44~2A14x40x44

12A35x41x4313A5x42
2 !#. ~27!

The one-body expectation values in Eq.~25! are given by
Eq. ~19! and

^n̂g&5
N

N~x40
2 12x41

2 12x42
2 12x43

2 12x44
2 !. ~28!

Finally, from Eq.~10! the cranking term is



rs

,

ll

la-
g
d
1
o

e

oe
din

he
r
a-
th
x

ri
kl

to

sing
ies
dy-
es-
t a
ther
ious
be-
can
to
di-

d to
ncy
tions
y.
tant
uld

dy

en-

ng
s a
rm.

mal
an-

PRC 59 3151TESTS AND APPLICATIONS OF SELF-CONSISTENT . . .
^L̂x&5
2N

N @x21~A6x2012x22!1x41~2A5x4013A2x42!

1x43~A14x4212A2x44!#. ~29!

In view of the numerous parameters in thesdg-IBM, we
limit our discussion to a realistic range tailored to data@13#.
Accordingly, the quadrupole parameters$q22,q24,q44% are
scaled from their SU~3! values with a single factorq as sug-
gested by microscopics@14#. The hexadecapole paramete
$h22,h24,h44% are determined from those ofqjl through the
commutation condition

@ h̄,q̄#50, q̄ j l 5^ j 0l0u20&qjl , h̄ j l 5^ j 0l0u40&hjl ,
~30!

which reproduce the availableE4 data reasonably well@13#.
We adapt the realisticsd-IBM parameters used in Fig. 1
k25220 keV, q50.5 and ed51.5Nk2, and use further,
eg54Nk2 and k4 /k250 –0.4. Energy levels are very we
described in thesdg-IBM @13#, therefore we do not dwell on
a study of MOI apart from noting that all the SCC calcu
tions of J (2) exhibit the characteristic rise with increasin
frequency seen in experimental spectra. We focus instea
the shape question which could not be addressed in theN
expansion approach. With the parameter set described ab
the SCC calculations ofg in thesdg-IBM are very similar to
those of thesd-IBM with the realistic set of parameters~Fig.
3, right!. Because the hexadecapole interaction is a relativ
novel feature not used in thesd-IBM, we briefly comment
on its effect. Inclusion of the hexadecapole interaction d
not cause any deviation from the axial shape but depen
on its sign, it either decreases the fluctuations ing ~attrac-
tive! or increases them~repulsive! by a few degrees. This is
very similar to the effect of changing the strength of t
quadrupole interaction, in that, a largerk2 leads to a deepe
energy well in theg direction, therefore reduces the fluctu
tions, and vice versa. In certain parametrizations where
boson energies are neglected, it is possible to obtain nona
shapes in thesdg-IBM @15#. However, once ag-boson en-
ergy ofeg;1 MeV is included, as demanded by the expe
mental spectra, such deviations from axial symmetry quic
disappear. In short, the congruence found between thesd-
andsdg-IBM results with regard to the shape variableg is a
direct consequence of the fairly highg-boson energy, which
limits the effect ofg bosons to a perturbative range at low
medium spins.
on
/
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V. CONCLUSIONS

We have tested the self-consistent cranking method u
the exact IBM results obtained from dynamical symmetr
and numerical diagonalization. The SCC results for the
namic MOI are in good agreement with the exact ones,
pecially in realistic cases where the deviation is at mos
few percent. The study of shapes using SCC, on the o
hand, remains problematic due to the generation of spur
frequency-dependent terms in shape variables, which
come dominant at high frequencies. Nevertheless, SCC
give reliable information on evolution of shapes in the low
mid frequency range. Our study of shapes using SCC in
cates that both thesd- andsdg-IBM with one- and two-body
interactions retain the axial shape (g50) with fluctuations
around 10o, as long as the model parameters are restricte
a realistic range that reproduce the data. The only freque
dependence in shape variables is observed in the fluctua
in g which is slightly reduced with increasing frequenc
These results suggest that if the triaxial effects are impor
and need to be included in the IBM, then the remedy sho
be sought in three-body interactions rather thang bosons.

APPENDIX: THREE-BODY OPERATORS

Here we derive the expectation value of the three-bo
quadrupole interaction in Eq.~14!. The scalar product of the
three quadrupole operators is defined as

Q•Q•Q5@QQ# (2)
•Q. ~A1!

The expectation value of this three-body term in the cond
sate state Eq.~2! is given by

^Q•Q•Q&5
1

N! (
m1m2m

~21!m^2m12m2u2m&

3^0ubNQm1
Qm2

Q2m~b†!Nu0&. ~A2!

Writing the quadrupole operators explicitly and commuti
all the boson creation operators to the left, one obtain
three-body term, three two-body terms, and a one-body te
Using boson calculus, the matrix elements of these nor
ordered operators can be evaluated in a straightforward m
ner with the result
^Q•Q•Q&5 (
m1m2m

~21!m^2m12m2u2m& (
j 1 j 2 j 3l 1l 2l 3

m1m2m3n1n2n3

~21!n11n21n3qj 1l 1
qj 2l 2

qj 3l 3
3^ j 1m1l 1n1u2m1&^ j 2m2l 2n2u2m2&

3^ j 3m3l 3n3u22m&3$N~N21!~N22!xj 1m1
xj 2m2

xj 3m3
xl 12n1

xl 22n2
xl 32n3

1N~N21!@xj 1m1
xj 2m2

xl 22n2
xl 32n3

d j 3l 1
dm32n1

1xj 1m1
xj 2m2

3xl 12n1
xl 32n3

d j 3l 2
dm32n2

1xj 1m1
xj 3m3

xl 22n2
xl 32n3

d j 2l 1
dm22n1

#1Nxj 1m1
xl 32n3

d j 2l 1
dm22n1

d j 3l 2
dm32n2

%. ~A3!
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The three-body part~the first term! is seen to involve a triple
product of the one-body expectation valuesA2m defined in
Eq. ~8!. In the effective two-body terms, threeC-G coeffi-
cients can be summed to yield a 6-j symbol and aC-G
coefficient. After some manipulations of the summation
dices, all 3 terms can be shown to be equivalent. Finally,
sum of the fourC-G coefficients in the effective one-bod
term gives a 6-j symbol. Thus, Eq.~A3! can be written com-
pactly as

^Q•Q•Q&5N~N21!~N22!

3 (
m1m2m

~21!m^2m12m2u2m&A2m1
A2m2

A22m

13N~N21!(
m

~21!mÃ2mA22m

1N(
lm

«̃ lxlm
2 , ~A4!

where we have introduced

q̃ j l 55(
i

~21! i 1 j 1 l H j l 2

2 2 i J qji qil ,

«̃ l5
25

2l 11 (
i j

H l i 2

2 2 j J qli qi j qjl , ~A5!

and Ã2m is obtained fromA2m by replacingqjl→q̃ j l in Eq.
~8!. Note that symmetry ofqjl is retained, i.e.,q̃ j l 5q̃l j . Us-
ing the fact thatA215A22150 andA225A222, the sums in
Eq. ~A4! involving A2m can be carried out to yield

^Q•Q•Q&5N~N21!~N22!A2/7~2A20
2 16A22

2 !A20

13N~N21!Ã20A2012Ã22A221N(
lm

«̃ lxlm
2 .

~A6!
c

cl
-
e

In the case of thesd-IBM, A20 andA22 are given in Eq.
~18!. The contracted parameters in Eq.~A5! become

q̃025x, q̃225123x2/14,

«̃055x, «̃252x23x3/14. ~A7!

Using these values ofq̃ j l , one obtains forÃ20 and Ã22

Ã205
1

N @2xx02A2/7~123x2/14!~x0
21x1

222x2
2!#,

Ã225
1

N @2xx21A2/7~123x2/14!~2x0x21A3/2x1
2!#.

~A8!

In the sdg-IBM, these parameters are given by

q̃025q22, q̃22512
3

14
q22

2 1
2

7
q24

2 ,

q̃245
2

7
q22q2425A22

42
q24q44,

q̃4455A22

42
q24

2 2
65

42A22
q44

2 ,

«̃055q22, «̃252q222
3

14
q22

3 1
4

7
q22q24

2 15A22

42
q24

2 q44,

«̃45
10

63
q22q24

2 1
25A22

189
q24

2 q442
325

378A22
q44

3 . ~A9!
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