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Tests and applications of self-consistent cranking in the interacting boson model
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The self-consistent cranking method is tested by comparing the cranking calculations in the interacting
boson model with the exact results obtained from th€33ldnd Q6) dynamical symmetries and from nu-
merical diagonalization. The method is used to study the spin dependence of shape variablsd anthed g
boson models. When realistic sets of parameters are used, both models lead to similar results: axial shape is
retained with increasing cranking frequency while fluctuations in the shape vanatte slightly reduced.
[S0556-28189)05206-1

PACS numbegs): 21.60.Ev, 21.60.Fw

I. INTRODUCTION SCC method is then used in a study of triaxiality in the IBM
both in thesd- andsdgboson versions of the model.

Self-consistent crankingSCQO is one of the most popular
methods to study collective rotations in nuclear many-body Il. CRANKING FORMALISM IN THE IBM
systemq 1]. Within the Hartree-Fock framework, it has pro- ) ) )
vided important insights into the backbending phenomena, The SCC in the IBM was formulated in R¢#] to which
and currently, it is being used actively in studies of superdeWe refer for details, especially concerning the construction of
formed nucle{2]. In stark contrast, it has been rarely used inthe intrinsic state and the symmetries it possesses. For a
the interacting boson modéBM) [3]. In fact, there is only ~ given IBM HamiltonianH and intrinsic stat¢N,x), the SCC
one application of SCC to IBM where a study of moment ofaround thex axis is described by
inertia (MOI) is carried out[4]. In the early stages of the
model, an obvious reason for this neglect was the availability
of exact resultgeither via dynamical symmetries or numeri-
cal diagonalizatioy) which left little room for development ~ .
of approximate methods such as SCC. In later extensions dfnereLy is thex component of the angular momentum op-
the IBM (e.g., sdgIBM), dynamical symmetries were not erator,N is the boson _number andare the vananong! pa-
very useful, and numerical diagonalization could not be carf@meters to be determined from the extremum condition. For
ried out due to large basis space, hence alternative metho§€nvenience, we consider a general formulation of the 1BM
were needed. At around the same time, however, an exafhich will be tailored to specific cases later. Thus, we intro-
angular momentum projection technique was developed fofluce the boson creation and annihilation operalgjfs by,
axially symmetric boson systems NLéxpansioff5]), which ~ With I=0,2,4 ..., whereby=s, b,=d, b,=g, etc. The in-
provided analytical solutions for general Hamiltonians intrinsic state is given by a condensate of intrinsic bosons as
large basis spaces, filling the gap left by the other methods.
Although the assumption of axial symmetry is reasonable for [
most deformed nuclei in their ground states, triaxial effects  |N,x)=(NI)"Y3(b"HN0), b'=> > xmbl,, (2
are known to play a role, especially at high spif$ There- I m=-I
fore a study of the evolution of shapes in the IBM would be
useful in order to investigate such questions as the effects afhere x,,, are the normalized boson mean fields, ex
triaxiality in nuclear spectra, ways of incorporating it in the =1. Due to the symmetries in the cranked sysf{eh X,
IBM Hamiltonian, and whether an improved description of are real anc_,= X, . Note that the oddn components of
spectra can be obtained if triaxial effects are taken into acx;, vanish in the static limit ¢=0), but not in general.
count. Thus, invoking the normalization conditiofe.g., setting

In this paper, we first present tests of the SCC by comxg=1), there are three independent variational parameters
paring the cranking calculations with the exact results obin the sd-IBM (X,g,X21,X55) and five more in thesdg-IBM
tained in the SB) and 46) limits, as well as from diago- (X4g, - - - X44). FOr the IBM Hamiltonian, we use the generic
nalization of more realistic Hamiltonians in tee-IBM. The  multipole form

SN, X|H— wL,|N,x)=0, )

2|max
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where the boson number and multipole operators are given

by (NXILINX)==N> (=1)"
Imn
A . ) - X{(Inl—m[11)v2I(1+1)(21+1)/3
nlzé by b, TL):; tjilb; bl]ib)' ) XinXim
X vt (10

In particular, the angular momentum operators are
For a given angular frequenay, the cranking equation
(1) is solved numerically by minimizing the cranking expres-

3 _—_1(|: i) sion E(x,w)=(H— wlL,) with respect to the mean fields
X 2 +1=-1h The dynamical MOI is calculated from the derivative of
(Ly), Eq.(10) as[7]
L,= [(1+1)(21+1)/3[b/B, 1M 5 d(L
W= 2 I+ D@+ D)73bb (5 S0 (<ij>, a1

The parameters of the Hamiltonian consist of the single boyhich is obtained under the assumption,)=L. For the

son energiesg, , the multipole coupling strengths,, and  exact energy level&(L), dynamical MOl and the corre-
the r_nult|pole paramete@H . The Hermiticity condition on sponding rotational frequencies are calculated ff@in
multipole operators requires thi; =ty; .

The expectation values in E¢3) can be evaluated in a
straightforward manner using boson calculus techniques. For =h2[
the one-body operators, one simply obtains

-t an?
TE(L+2)—2E(L)+E(L—2)"

d?E(L)
dL?

1
(N,X| N, X) =N, % (6) w=7[E(L+2)-E(L-2)]. (12

Evolution of triaxiality with rotation is studied using the fol-

Calculations for the multipole interactions are somewhaiowing expressions for the collective shape variajple
more involved but the expectation values can again be re-

duced to a compact form

(Q2)
=2 ==, 3
k '@y =\2 150 13
(NXTR.TOIN)=N(N-1) X (—1)*A,A,
wook _ 7(Q-Q-Q)
) cosy=—1\/5"— - (14)
,le <QQ>
+N|Em € H (7)

The one-body expectation values of the quadrupole operator
, in Eq. (13) follow from Eq. (8) as(Q,)=NA,, . The two-
Here(,kA)ky corr_esponds to the expect_atlop value of the operabody expectation value in EGL4) is given in Eq.(7) and the

tor T,” in a single boson state and is given by three-body part is derived in Appendix. Equatid®) gives

the average value foy while Eq.(14) probes its fluctuations
from this average. Thus the information content of the two

XinX
A= (—D)™(inimlkp)t —o (8)  expressions fory are different and they compliment each
jnim XX other.
Using. j[h_e symmgtries_ imposed on the mean fie]ds an_d the IIl. CRANKING IN THE  sd-IBM
Hermiticity condition, it can be shown tha,, vanishes if
k+ w is odd, and furthermoré\k,ﬂz(—l)kAkM. Thus, for In this section, we perform cranking calculations for a

even multipoles, only the positive, evenvalues contribute variety ofsd-IBM Hamiltonians and compare the results for

to the sum in Eq(7). The second term in Eq7) arises from  the dynamical MOI and/ with the exact ones obtained from

the normal ordering of the boson operators and correspondtynamical symmetriefSU(3) and Q6)], and from numeri-

to an effective one-body term with boson energies cal diagonalization. For this purpose, we use a simple Hamil-
tonian with a quadrupole interaction adeboson energy

. 2k+1 ) A
8|=m; té - 9) H=—kQ-Q+ehy. (15)
A Following the convention, we denote the parameters of the
Finally, the expectation value @f, is guadrupole operator htyy,=1 andt,,,= x. The SU3) limit
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is obtained where=0 and y=—7/2, and the ©b) limit 10 —————————————7———
whene = y=0. To test more realistic Hamiltonians, we use . 1
the middle value fory (—+/7/4), which leads to a better R S ]
description of electromagnetic propertigg]. Inclusion of - ]
thed-boson energy witls = 1.5N « improves, in addition, the A sus2
moment of inertia systemati¢®]. The exact energy eigen- [~ : ]
valuesg(L) are obtained from the Casimir operators in the g 40 F ]
case of the dynamical symmetries, and by numerical diago- T ¥ ]
nalization of the Hamiltonian in the latter two cases. g L5 E
For convenience in the variational problem, we gg§ C ]
=1 and drop the subscript 2 from the quadrupole mean 60;' E
fields, i.e.,Xo;m=Xny. The normalization is then given by - 3 ]
N=1+x3+2x3+2x3. (16) e E
The expectation value of the Hamiltoniafl5), E(x) % S T N R
=(N,x|H|N,x), can be written from Eqg6), (7) as 0.0 0.1 0.2 0.3 0.4
ho (MeV)
E(x)=— k[N(N—1)(A3s+2A%,) +5(ng) + (x>+ 1){ng)] FIG. 1. Comparison of the cranking calculations of the dynami-
R cal moment of inertia in thad-IBM (lineg) with the exact results
+e(Nng). (17)  obtained from the dynamical symmetries (8Uand Q6) (filled
) circles, and numerical diagonalizatiory & — \7/4 with e=0 and
Here the quadratic forma,, follow from Eq. (8) as e=1.5Nk) (open circles In all casesN=10 andx=—20 keV
are used.
1 2,2 2 : . . _
AZO:/T/[ZXO_ V20Tx(x5+ X2 —2x3)], creases withw as in a typical deformed nucleu§ig. 1),

though the overall magnitude is still too large. The deviation
between the cranking and the exact results in this case is
1 comparable to that in the §B) limit, with the error getting
Az=l2xat V2ITx(2X0%o+V3I2XD)], (18 smaller at higher frequencies. Wherddoson energy with
£=1.9Nk is included in the Hamiltonian, which fits the ob-
served range of MOI data better, the agreement between the
cranking and exact results improve markedly, especially at
lower frequencies.
The SCC is a semiclassical theory and it would be exact
in the classical limit wherN—c. Thus to understand the
) o nature of discrepancies seen in Fig. 1 better, we need to
From Eq.(10), the cranking term is given by study theN dependence of the results. In Fig. 2, we show the
SCC results for7?) as a function ofN in the SU3) and
O(6) limits. Since the MOI is not constant in the® limit,
(Ly= /\f X1(VBXo+2xy). (200 we have taken the value ¢f® at the middle-frequency for
eachN. The curves that trace the SCC results are obtained

In Fig. 1, we compare the cranking results for the dynamifrom
cal MOI obtained from Eq(11) with those obtained from
Eq. (12) using the exact energy levels fbi=10 bosons. In
the SU3) and Q#6) limits, the MOI is constant and given by J(cf)—J(z)
T2 =4/3«=200/3 and 2¢=100 %% MeV, respectively.
Note that both results are independenthfand the con- i the sug) limit, and from
stancy of MOI simply follows from the fact thaE(L) is
guadratic inL in both cases. The SCC leads to a constant
MOI in the SU3) limit, as expected from a rigid rotor, but j(z)—j(2)< 1_£+ 1 ) 22
deviates from the exact result by about 5%. Th@)Qimit N 2N2)’
corresponds to &-unstable rotor for which cranking is not
expected to work well. Not surprisingly, comparison of thein the Q6) limit. The coefficients in Eqs(21) and(22) are
cranking results fot7® in Fig. 1 indicate a maximum de- derived from a I expansion of the SCC equati¢h). It is
viation (~10%) from the exact result, as well as a smallclear from Fig. 2 and Eq$21), (22) that the SCC calculation
frequency dependence in MOI. We will comment on theseof 7(? is correct to leading order but fails in higher orders in
deviations further when discussing thiedependence of the 1/N by generating spurious correction terms. A comparison
results below. The case with= — \/7/4 falls in between the of Eq. (17) with the accurate angular-momentum-projected
two dynamical symmetry results. The dynamical MOI in- result[5] confirms that the incorrect treatment of theN1/

and the expectation values of andny are

A N - N 2 2 2
(ng)= N (ngy= JT/(X°+ 2X7+2X5). (19

"IN W) @)
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72 T T T T T T
SU(3) limit 100 | ]
exact 1
% ] FIG. 2. Boson number dependence of the
é . L i cranking dynamical moment of inertia in the
) cranking 95 L .
g SU3) and Q6) limits of the sd-IBM (circles.
cranking The lines that trace the circles are obtained from
& ) ] Eqg. (22) in the SU3) case and from Eg22) in
%0 | ] the Q6) case.
exact
0(6) limit
66 1 1 1 1 1 1
10 20 30 10 20 30

terms in the SCC is the cause of the discrepancy. It is interfact that the @6) states remairy unstable at all spins. In Fig.
esting to note that an agreement is obtained if one uses tt& we show the evolution of the triaxiality anglewith the
Casimir operator of the S@3) given by C,=Q-Q cranking frequency for the remaining three cases discussed
+(3/8)L-L, instead of jusQ- Q. In this case, the incorrect above for three different boson numbeks= 10, 15, 20. Re-
1/N contribution from theQ-Q interaction is exactly can- sylts obtained from both Eqg13) (solid line) and (14)
celed by the spurious contribution from thel term. An-  (dashed lingare shown. The ground band in the @Wlimit
other interesting observation is that the best agreement qfan pe described exactly by angular momentum projection
SCC with the exact results is achieved in the realistic casgom an axially symmetric intrinsic state, therefore, both av-
with y=— 714 ande=1.N«. This happens because the gragey and its fluctuations should vanishat frequencies.
1{N term is now dominated by the leading contribution from o scc resultgFig. 3, lefy start with y=0 at low w but
(ng), which is correctly treated in the SCC. The errors fromdeviate from it systematically with increasing frequency. Al-
(ng) contribute at the M? level, and these become apparentthough the situation appears to be improving with increasing
only at the high-rotational frequencies as is apparent in FigN, similar to the case i7(?, in fact, this is merely due to
1. the extension of the spectrum with(w,<N). If one scales
We next study the effects of triaxiality in SCC. It is well out theN dependencé.e., plotsy againstw/N), then all the
known that the energy surface of aml-IBM Hamiltonian  curves with differentN overlap. Thusy can be written as a
with one- and two-body interactions has an axially symmetpower expansion ino/N with the leading N independent
ric minima in the deformed pha$&0]. An exception occurs term being zero. This situation is similar to that encountered
in the Q(6) limit, where ay-unstable shape develops. The in the study of 7(?): the SCC gets the leading order term
SCC calculations in the @) limit give 3C° for both the correctly (y=0) but fails in higher-orders in W by gener-
averagey (13) and its fluctuationg14) at all frequencies. ating spurious terms in powers @/N. The fact that the
Thus the SCC results are consistent with the description ahcorrect 1N terms in y all depend on the cranking fre-
the Q6) limit using a triaxial intrinsic state withy=30°, guency makes the SCC results increasingly unreliable at
which has a very shallow minimum in the direction[11]. higher frequencies. The onset of triaxiality observed at
Frequency independence of the results corroborates with theround midfrequencyd,,,/2) in all curves in Fig. 3 is thus

X=Ksy3/2

¢/kN=1.5

y (degrees)

0.0 0.2 0.4 0.0 0.2 0.4 0.0 0.2 0.4 0.6 0.8
ho (MeV) ho (MeV) hw (MeV)

FIG. 3. Cranking calculations of the triaxiality angjein the sd-IBM for the three cases shown in Fig. 1 fi=10, 15, 20. The solid
lines indicate average obtained from Eq(13) and the dashed lines correspond to its fluctuations given by 1By.
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due the failure of the SCC and not a genuine feature of thez(yy = — . IN(N= 1)(A2.+ 2A2) +5(A) + (1 + g2+ g2
boson system. We remark that despite the sudden increase in( ) 2L N( /(A 22 T 8(Ng) + (14 6oz Ao

the calculatedy values,.7(?) remains constant in the $8) X(Ng) + (5/9)(a54+ Az (Ng) ]~ ka N(N— 1) (A
limit, suggesting that triaxiality has a negligible effect on
MOI in the interacting boson model. +2A%3,+2A2) +9(ng) + (9/5)(h3,+ h3,)(Ny)
We interpret the remaining more realistic cases in the R R R
light of the SUB3) test. In the case of=—\7/4 (Fig. 3, +(1+h3,+hi)(ng) ]+ eg(Ng) +e4(Ng). (25

middle), the averagey (solid lineg remains around zero ex-

cept at high frequencies. Attributing this sudden riseyito  Here the quadrupole quadratic forg, are given by
the break down of SCC, we see that-0 for all ground-

band states of 8- Q Hamiltonian. The fluctuation&dashed

lines), on the other hand, are nonzero but get smaller with A= { 2%z~ N207q o X2+ X2, 2X3,)

increasingN. The values of fluctuations at=0 are consis-

tent with those obtained from an exact calcglation for the + 22121054 /3%, Xaot+ V0%, X 41+ \BXoXs2)
ground statd12]. At higher frequencies there is a small re-

duction in fluctuations, that is, rotations have a slightly sta- — (1/3\77) Qua( 102+ 17x2,+ 8X2,— Tx2,— 28x2 )],
bilizing effect on they motion. Increasing the boson number

also suppresses fluctuations, which is due to the energy sur-

face becoming deeper in thedirection with largem values. _= 2

The last case witle=1.5N« (Fig. 3, righy has broadly the Aao= jyl 2%at V2024 23002+ V3126)

same features. The one-body term cannot induce triaxiality

alone, therefore, the small deviation in averagé&om zero +(2/3V18) Qo Xaok a0t VBXaXart V15oea

at midfrequencies is presumably due to errors in SCC. There + /35x
. . . . ; V Xag+ VTOXo0X4a) + /213
is an increase in fluctuations compared to the middle panel, 21743 22Xa4) a4

which can be explained as due to the energy surface becom- X (2XgpXaa+ 3Xa1Xa3+ 3\/10/7X40x42+(5/\/7)x§1)],
ing shallower with the addition of the one-body term. These
results indicate that rotations have a rather limited effect on (26)

the shape variables in tisa-IBM, with averagey remaining
nearly constant at zero, and its fluctuations being slightl
reduced from the ground state value at higher spins.

yamd the hexadecapole quadratic forAg, by

1
Aso= 2% a0t N 2135N( 3x50— 4X5,+ X3)
IV. CRANKING IN THE sdgIBM
In contrast to thesd-IBM, where numerical diagonaliza- ~ (2NTD 2l 2Bxa0%at VEXorxar—63xz0%u2)

tion is a routine task, thedgIBM already suffers from the +12/1000 44 9X5+ 9x5;— 11x3,— 21x3,+ 14x5,) ],
large basis problem, and exact diagonalization is not possible

for N>11, that is, for most of the deformed nuclei. Th&l1/

expansion circumvents this problem but because it assumeg 1 2

axial symmetry, one cannot use it to address questions o 42_N[2X42+(1/\ﬁ )Noo VBXoXoo— 2X5,) + /31385,

triaxiality. Here we perform cranking calculations in the

sdgIBM to study the evolution of shapes with rotation with- X (6\/5XaX a0 IXaXa1— (8/V3)XaXaz— 5\ TXa1Xa3
out restriction to axial symmetry. For the Hamiltonian, we
choose + 2\ 14%55X 4q) + /5110000 4 67X X a4+ 2\ TX41X43

— 11X yXap— 6X§1)],

H=—k,Q - Q— 4Ty Ty+egng+ egﬁg, (23 1
Ang= /T/[ZXM"‘ hooX35+ (217/55) Nag( VBXoX so+ \21Xp1Xg3
which has been shown to provide a good representation of

data in rare-earth and actinide nudi#8]. As in Sec. IlI, we + 2\TXo0%44) + (1143 214X oXas
Eﬁtqof hgo=1 andxge=1. Then the normalization is given +2\/3—5x41x43+ 3\/§x22)]. 27)

The one-body expectation values in EE5) are given by
Eqg. (19 and
N=1+4 X350+ 2X5,+ 2X5,+ X5+ 2X5,+ 2X5,+ 2X45+ 2X3,.
(24 N
(Ng)= N(xﬁoJr 2X2 4 2X2+ 2x2,+2X3,). (29

The expectation value of the Hamiltonig23) follows from
Egs.(6), (7) as Finally, from Eq.(10) the cranking term is
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V. CONCLUSIONS

(Ly= 2N [X22( VBXag+ 2X50) + Xa1( 25X 40+ 31/2X42) . . .
N We have tested the self-consistent cranking method using

the exact IBM results obtained from dynamical symmetries
+ Xag V1442t 212%4) ). (29 and numerical diagonalization. The SCC results for the dy-
namic MOI are in good agreement with the exact ones, es-
pecially in realistic cases where the deviation is at most a
few percent. The study of shapes using SCC, on the other
hand, remains problematic due to the generation of spurious
frequency-dependent terms in shape variables, which be-
come dominant at high frequencies. Nevertheless, SCC can
give reliable information on evolution of shapes in the low to
mid frequency range. Our study of shapes using SCC indi-
o _ _ cates that both thed- andsdg-IBM with one- and two-body
[h,q]=0, q;=(j0I0[20)q;, h;=(j0I0[40)h;, interactions retain the axial shapg=0) with fluctuations

300 around 16, as long as the model parameters are restricted to
a realistic range that reproduce the data. The only frequency
dependence in shape variables is observed in the fluctuations
in y which is slightly reduced with increasing frequency.
These results suggest that if the triaxial effects are important
and need to be included in the IBM, then the remedy should
be sought in three-body interactions rather thyanosons.

In view of the numerous parameters in theégIBM, we
limit our discussion to a realistic range tailored to dgita].
Accordingly, the quadrupole parametdi$,,,024,044 are
scaled from their S(B) values with a single factay as sug-
gested by microscopidsl4]. The hexadecapole parameters
{h22,hz4,h44} are determined from those af; through the
commutation condition

which reproduce the availabE4 data reasonably wellL3].
We adapt the realistisd-IBM parameters used in Fig. 1,
k,=—20 keV, q=0.5 and eg=1.9N«,, and use further,
€5=4Nk, and k4/k,=0-0.4. Energy levels are very well
described in thedg-IBM [13], therefore we do not dwell on
a study of MOI apart from noting that all the SCC calcula-
tions of 7 exhibit the characteristic rise with increasing
frequency seen in experimental spectra. We focus instead on APPENDIX: THREE-BODY OPERATORS
the shape question which could not be addressed in the 1/ Here we derive the expectation value of the three-bod
expansion approach. With the parameter set described above, d le interaction in é’qm) The scalar product of the y
the SCC calculations of in thesdgIBM are very similar to qhua rupod | : d fined P

those of thesd-IBM with the realistic set of paramete(Big. three quadrupole operators is defined as

3, right). Because the hexadecapole interaction is a relatively

nov_el feature not u_sed in thed-IBM, we brief_ly comment Q-Q-Q=[QQ]?.Q. (A1)

on its effect. Inclusion of the hexadecapole interaction does

not cause any deviation from the axial shape but dependin_crl . ) .

on its sign, it either decreases the fluctuationsyifattrac- he expectation _vaIl_Je of this three-body term in the conden-
tive) or increases therfrepulsive by a few degrees. This is S&t€ state Eq2) is given by

very similar to the effect of changing the strength of the

guadrupole interaction, in that, a larges leads to a deeper 1

energy well in they direction, therefore reduces the fluctua- (Q-Q-Q)=+ 2 (—1)"(2u12m|21)

tions, and vice versa. In certain parametrizations where the N i

boson energies are neglected, it is possible to obtain nonaxial
shapes in thesdgIBM [15]. However, once a-boson en-
ergy ofe;~1 MeV is included, as demanded by the experi-
mental spectra, such deviations from axial symmetry quicklyWriting the quadrupole operators explicitly and commuting
disappear. In short, the congruence found betweersthe all the boson creation operators to the left, one obtains a
andsdgIBM results with regard to the shape variablés a  three-body term, three two-body terms, and a one-body term.
direct consequence of the fairly highboson energy, which Using boson calculus, the matrix elements of these normal
limits the effect ofg bosons to a perturbative range at low to ordered operators can be evaluated in a straightforward man-
medium spins. ner with the result

x(0[bNQ,, Q,,Q_.(bHN0).  (A2)

(Q'Q'Q>=M%M (—1)M2p12u|21) y jEH | (=)™ "2 Msq; 01,01 5,X (JaMal 1] 240)(f2mal 2n2| 25)
o mlrln22m33&1$]23n3

X(jaMal 3n3|2 = p) X {N(N= 1) (N=2)X}_ m, X} m,Xj smgX1, —n, Xi,—n, X1,

+N(N— 1)[Xj1m1Xl'2m2X'2*“2X|3*“3513|15m3*”1+ lemlszmzx X'1*“1X|3*n3513|25m3*”2

X 3m X gmXip—nXi3ng 9 2! 15"‘2* nl] N 1myXiz—ng 9 2! 15'“2* nlgj 3 25”‘3* ”2}' (A3)
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The three-body pafthe first term is seen to involve a triple
product of the one-body expectation valukg, defined in
Eqg. (8). In the effective two-body terms, thr&&-G coeffi-
cients can be summed to yield aj6symbol and aC-G

coefficient. After some manipulations of the summation in-
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In the case of thesd-IBM, A,q and A, are given in Eq.
(18). The contracted parameters in E§5) become

Qo= X, Oop=1—3x%14,

dices, all 3 terms can be shown to be equivalent. Finally, the

sum of the fourC-G coefficients in the effective one-body

term gives a 6j- symbol. Thus, Eq(A3) can be written com-
pactly as

(Q-Q-Q)=N(N-1)(N-2)

X D (—1)M2u1212 200 A2, Ay P

MMM

+3N(N=1)2) (—1)*Az,A, ,
I

+ND, X2, (A4)
Im
where we have introduced
- T O I 1
QJ|=5Z (—1)'““[2 5 i)jSQn,
~ 25 I i 2
S'ZmiEj [2 5 j]QHQijq“. (A5)

andﬂzﬂ is obtained fromA,, by replacingqj,—>aj, in Eq.
(8). Note that symmetry ofy;, is retained, i.e.q; =0qy; . Us-
ing the fact thatA,;=A,_;=0 andA,,=A,_,, the sums in
Eq. (A4) involving A,,, can be carried out to yield

(Q-Q-Q)=N(N—1)(N—2)\2/7(— A3s+ 6A3,) Az
+3N(N=1)A 0850+ 28580+ NIE P

(AB)

e0=bx, &»,=2x—3x%/14. (A7)

Using these values afj, one obtains fol,, andA,,

.1
A= N[Z XXo— V2IT(1—3x?114)(x3+x3—2x3)],

~ 1
Agy= N[z XXo+ N21T(1—3x21148) (2xoXp+ /3/2X2)].
(A8)

In the sdg-IBM, these parameters are given by

g 8 3, 2,
Qo2=022, Qxp=1- 129221 7924

- 2 22
d24= 7 O22024—5 4—2q 24944,
- \Fzz 65
Q44 42q24 42\/22(1447

- - 3, 4 , |2,
£0=050, &2=20— ﬂ%z"‘ 7Q22Q24+5 2024944,

10 25\22 325

E4=6—3q22q§4+ 189 Uz240aa~ W\/Z—Zqil. (A9)
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