PHYSICAL REVIEW C VOLUME 59, NUMBER 6 JUNE 1999

Giant monopole resonance and nuclear incompressibility within the Fermi-liquid drop model
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We study the important effects of Fermi surface distortion on the isoscalar giant monopole resonance
(ISGMR), within a Fermi-liquid drop model, by considering consistently the effects on nuclear incompress-
ibility coefficients and the boundary conditions needed to determine the energy of the ISGMR. There is a
significant difference between the static nuclear incompressitilitgerived as a stiffness coefficient with
respect to an adiabatic change in the bulk density, and the dynamik ‘oassociated with the zero sound
velocity. We show that the enhancement in the energy of the ISGMR, the lowest breathing mode, which is due
to the renormalization ok into K’ is strongly suppressed by the effects of the Fermi surface distortion on the
boundary condition. This is not the case for higher breathing modes such as the overtone. We also discuss, in
particular, the effects of the Fermi surface distortion on energy weighted sums for the monopole mode and on
the constrained and the scaling incompressibility coefficients and their relation to the liquid drop one.
[S0556-281®9)04706-9

PACS numbdps): 21.65+f, 21.60—n, 24.30.Cz

[. INTRODUCTION sion of K, whereK is related to the ISGMR energy by some
model assumptions. Different modifications of the Thomas-
The incompressibility coefficienK of finite nuclei pro- Fermi approximation were used to estimate the coefficients
vides unique information on the fundamental characteristid,q,Ksys, - - - » in EQ.(1) [5,7,8. However, the incompress-
of the infinite nuclear matter, the incompressibility coeffi- ibility coefficient K., determined from Eq(l) at A—< is a
cientK,,. However, extraction of the incompressibility co- staticstiffness coefficient with respect to an adiabatic change

efficient K and the corresponding value Kf, from experi- in the bulk densityp,. Namely,

mental data on isoscalar giant monopole reson@&@MR)

is not straightforward1,2]. A commonly used microscopic 2dZ(E/A)

approach for determining ., is based on the self-consistent oczgpod—pg ' @
Hartree-Fock (HF) random-phase approximatiofiRPA) P

method. In the HF-RPA approach one adopts a certain form

of effective nucleon-nucleon interaction, such as the SkyrmahereE and p.. are the binding energy and the saturation
interaction, involving a set of a few parameters. Carrying ougdensity of the nuclear matter, respectively.

HF calculations, the parameters are determined by a fit to the The static incompressibility coefficiet. determines the
experimental data on properties of ground states of a widérst sound velocityc, = vK../9m, for propagation of com-
range of nuclei. It has been found that RPA calculationgoression waves in nuclear matter. However, the ISGMR cor-
reproduce known experimental data on the strength distriburesponds to theero soundnode having the sound velocity
tion of the ISGMR[3,4] when existing effective nucleon- Co~ve~+3c, and the renormalized incompressibility coef-
nucleon interactions havini§..=210+=30 MeV were used. ficientK.=9mc3~3K.,. This strong renormalization of the
However, this commonly accepted value Kf, was ex- incompressibility coefficient arises due to dynamical distor-
tracted using a limited class of effective interactions. tion of the Fermi surface.

In this work we mainly consider another commonly used In contrast to the first sound regime, the eigenfrequency
approach which is inspired by the liquid drop mass formulaof the zero sound excitations such as the ISGMR cannot, in
for nuclear binding energf¥. This is a semiempirical ap- principle, be used directly to extract the static incompress-
proach in which one writegl,3—§ the incompressibilityk ibility of Eq. (2) because of the additional contribution from
of a nucleus with mass numbéras an expansion iA~ %3 the Fermi surface distortion effects which result in the renor-

malization of the incompressibiliti(., into K, . However, as
N—Z\2 will be shown in this work, the Fermi surface distortion ef-
K=Kyort KeurA ™3+ K gyn A7 23+ Ksymﬂ( T) fects also affect the boundary condition, needed for deter-
mining the energy of the ISGMR of finite nuclei. The en-
72 hancement in the energy of the ISGMR, the lowest breathing
+Keou—Zzt (1)  mode, which is due to the renormalization Kfinto K’ is
A strongly suppressed by the effects of the Fermi surface dis-
tortion on the boundary condition. This is not the case for
The nuclear matter incompressibilitg., is then deduced higher breathing modes such as the overtone. The aim of this
from Eq. (1) by extrapolation. We first note that this macro- work is to study effects of the Fermi surface distortion on the
scopic approach implies a liquid-drop model typeexpan- ISGMR and nuclear incompressibility coefficients. We wiill
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consider, in particular, the constrained, the scaling and the — A A(r)=r2_(r2
liquid drop inF():ompressibiIity coefficients. k Vo= MOQM),  QIN=r"~(r)eq ®

In Sec. Il we present the model for the ISGMR, introduc-in Eq. (6) to be able to evaluate the response function and the
ing the basic equation of motion and the correspondingorresponding energy moments, Eq. (5).
boundary condition. In Sec. Ill we provide the solution for  \ye will assume below a sharp spherical surface of radius
the energy of the ISGMR and the energy moments of the_ for the equilibrium particle densitpe,. The external

distribution of monopole strength. In Sec. IV we presentfie|q V., induces changes in the bulk densitgp(r,t)
some numerical results and discuss the effects of the Fermi 7(r,t) pof(Reg—r), and in the radiusR(t). Both of them

surface distortion on the energies of the_ I.S.GMR a_n_d theare related to the displacement fie}dr,t). In the case of a
overtone and on the nuclear incompressibility coefficients

. . i Mmonopole excitation, a general form of the displacement
Our conclusions are given in Sec. V. - .
x(r,t) is given by

Il. FERMI-SURFACE DISTORTION EFFECTS ON e = f(r.r ©
MONOPOLE VIBRATIONS x(r,t)=f(r,tr.

There exists a simple relation between enefgy of the ~ The form factorf(r,t) is found from the continuity equation
ISGMR and the incompressibility coefficieKt, if one state . .
exhausts the energy-weighted sum rule. The constrained and op=—Vpegx (10
scaling derivations of the incompressibility coefficients , o
(Keomst and K¢, respectively coincide in this case anBy+ to have in the nuclear interior the form
is given by

m(r)eq

: )

M(r?)eq Using Eq.(10), the equation of motiori6) can be trans-
formed in the nuclear interior into an equation of motion for
the bulk density parametey(r,t). Namely,

1 (r
- 2
\/ﬁZKconstr \/ﬁZKsc f(r!t)_ r3fodr1 r17l(f1,t)- (11)
Eo+:

where

m(r®)eq My m(r?)eq Ms 2
constr_ q_ L sc__\ /€q7’’3 J '
: 72 m_y’ K 2 my’ @ m-2 7= gK VZn, (12

Here(rz)eq is the equilibrium root mean squafems) radius  whereK' is given by Eq.(A13).
of the nucleus andn, are the energy moments of the distri-  The external fieldV,,; does not enter Eq12). However,

bution of monopole strength the external field affects the boundary condition. This can be
taken as a condition for the compensation at the nuclear sur-

my= 2 (En—Eo) (il r?| wo) |2 (5 face of the compressmna! press@e and the pressures gen-

n erated by the external fiel®,,;,, and the surface tension

- , . . forces 6P, . Namely,
The origin of the property manifested in E¢8) and(4) lies

in the fact that in the case where the strength is concentrated Pexit OPo="Pirli=r . (13
in one state the dynamical Fermi-surface distortion effects o

are washed out from the equation of motion and expressiofhere

(3) represents the excitation energy in first sound description.

To study the Fermi surface distortion effects on the 3 o
ISGMR energy and the nuclear incompressibility we will PeXFE)\(t)poqu, OP,=——6R(1) (14)
start from the zero-sound equation of motion in the nuclear Req

olume in the form(see Appendi . . - .
volume ( ppendix and o is the surface tension coefficient. The radial compo-

92 nent of the compressional pressure tenderin Eq. (13) can
Mpo~2 X o™= —% VPast PoVaVext: (6)  be derived from Egs(7) and(9) and is given by
ST : , : - 1
wherex(r,t) is the displacement fielghg is the equilibrium Prr|r:Req= §poK’ nt 4,up0f} . (15
bulk particle density and®,z is the dynamical part of the r=Regq

pressure tensor
The boundary condition given by Eqd.3)—(15) plays a key
2. . K . . role in our consideration. The Fermi surface distortion ef-
Pap=—~1pPo| VaxptVexa=3V XOus| =GP0V XIup- fects are manifested in both terms on the right-hand side
7) (RH9) of Eg. (15). Usually these effects are missed in the
liquid drop model consideration, see, for example, R8¥.
Here, in general, the nuclear static incompressiblitalso ~ We point out also that all original results of the present paper
includes the surface correction due to the surface terf8ibn are due to the abovementioned effects in the boundary con-
We have included the time dependent external field dition (13).
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Ill. GIANT MONOPOLE RESONANCE We would like to stress that, in contrast to the analogical
IN THE FERMI-LIQUID DROP MODEL expression for the mass coefficieBt, in the liquid drop

Using Eqgs.(9)—(11), the solution to Eq(12) with spheri- model[3], our result, Eq(23), takes into account the Fermi

cal symmetry provides the displacement field in the form surface distortion effects becausefof# 0. Moreover, usu-
y yp P ally one hasf,=f, and thus the Fermi surface distortion

_ j1(Kr) effects are more important than the surface tension effect
x(r,t)=a(t) KT r, (16) manifested by the term with, in Eq. (23).
To evaluate the quantum response functi®(w) with

wherea(t) is a harmonic function of time with a frequency '€SPect to the external fiede,~r? and the corresponding

» which is related to the wave numbkrby the following =~ €nergy weighted SUImsl, one has to evaluate the classical

dispersion equation: monopole momer‘(tr )n for then mode. Using Eq4.10) and
(20), one obtains

2_3 1,2
Mo™=g Kk (7 <r2>n=f drr2sp,=a(t)S,, (24)

The amplitudex(t) can be evaluated in terms of the external

field paramete (t) from the boundary conditioft.3) and is where the particle density variatiofp,, is associated with

given by the displacement fielg,, and
S . SE—) (18 Sh=— 18AReX, °| 1- %(fmuwxn) . (@9
Xjo(X) = (fo+f,)j1(X)
wherex=KRgq and Following the quantum correspondency principle and using

Eq. (24), we obtain(see also Chap. 6 in Rdi9])

180 27TR%, 36u
fa=—-—, f,=—r.

5K’ K’

poReK”

The eigenexcitations are obtained as solutions to the SeCUarea© is the zero-point amplitude
lar equation determined by the denominator of EB). n P P

(19

[oa

m,= ngl (hwn) 9?2, (26)

Namely, a\V= /2B w,. (27)
Xnjo(Xn) = (T +1,)j1(Xn) =0, (20) Inserting expression@1), (27), (23), and(25) into Eq.(26),
and the corresponding eigenfrequencigsare given by see one obtains
Eq. (1 , 0\ (k=1)/2
e m—3x62% 1—1f +f 2K m,
k™ 3( o ,u) my,
K’ (21) m 9m %q
w,= X -
" Vomrg, ™" (29
S ) where
In a general case of a Fermi-liquid drop wiga#0, the
eigenfrequencyw, given by Eq.(21) is renormalized with = XK7352(xp)
respect to the one in the traditional liquid drop mofB] M=, (29)

_ 2 — 2 .
due to two contributions associated with the Fermi-surface n=1 1=1o(Xn) (f”+f“)11(xn)

distortion: (1) the direct change in the sound velocity, i.e.

"W Id lik in th It E
K’ appears instead df in Eq. (21); (2) the change of the e would like to stress again that our result E(E8) and

(29 provides an account of the Fermi surface distortion ef-

roots x, of the secular equatiof20) due to the additional o 1s These hoth appear due to the renormalization of the
contribution fromf ,#0 in Eq.(20). These two effects work incompressibility coefficient’ and the termf, in the

in opposite directionsK_, increaseso,, while f , decreases it, boundary condition Eq(20).

see next section. ) It is necessary to note that the low-energy sums
The displacement fielg, associated with th&, solution m_,, m_3, ..., appear in the adiabatic limib—0. This

of the secular equatiof20) allows us to derive the relevant limit corresponds to the first sound regime where the contri-

collective mas®,,. The fluid kinetic energ¥;, is given by  bution from the Fermi-surface distortion effects is absent.
That means that the nonrenormalized incompressilility-

1 . 1 i ’ . .
= 2_- 2 stead ofK’ should be used in Eq$21) and (28) with f
Ein 2mf dr; Pedn™7 ; Ban- 22 4 Egs.(20) and(28). :
Taking into account Eqg16), (20), and(22), one obtains IV. DISCUSSION

The sumam, of Eq. (29) and, consequently, energy mo-

3
_° —4pq 2 _ 2
B”_ZAmFéqX” [1=5600) = (T 1012001 (29) mentsm, of Eq. (28) can be evaluated analytically in the
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TABLE I. Excitation energiegin MeV) of the isoscalar giant monopole resonafige and the overtone
isoscalar giant monopole resonarﬁ:@e; obtained for liquid drop modelLDM) and for Fermi-liquid drop
model (FLDM), using Eqs(20) and(21) (see text

A Egip EngM E;?M EggDM ESEM EngM/EBBM ESZ&DM/ EI(;EM
40 18.0 16.1 13.8 73.0 28.8 1.165 2.533
90 16.2 14.9 12.8 57.5 26.1 1.169 2.202
120 15.2 141 12.0 52.6 245 1.169 2.145
208 13.7 12.8 10.9 44.6 22.1 1.167 2.015
1000 8.2 7.7 6.6 26.5 13.3 1.166 1.997

case of small perturbation parametefs <1, f,<1. the Fermi surface distortion effect on the boundary condi-

Namely, tion, see Egs(13) and (20), partly compensates for the
_ Fermi-surface distortion effect i’.
m=m*"%¢(5—K) — (k—8)(f ,+f )7 7¢(7-kK), Both values ofK’ andf, depend on the Landau scatter-

(30 ing amplitudeF,. The conditionf,<1, leading to the ap-
proximation Eq.(32) or Eq. (33), holds in the limit of the
zero to first sound transition region By>1. However, for

o realistic nuclear forces, we ha¥g,~0. Therefore, the gen-

L(s)= E n-s. eral expression&0) and(21) should be used. For the energy

n=1 Ey+ of the lowest monopole mode & 1) we have from Eq.

(21

where{(s) is the Riemann zeta function

In the limit f,—0, f,—0, i.e., if both additional contribu-
tions to the incompressibilit)’ from the surface tension 22K
and from the Fermi-surface distortion are absent, the three Eo: =fw;= "\ /—le
lowest sumsn_;, m;, andms can be easily derived from 9mR§
Egs.(28) and(30) and are given by

(34)
q

wherex; is the lowest ¥;>0) solution to the secular equa-

36 AR, 6 12ARS, #AAK tion (20).

“E®E K Mt MTZ o We have carried out numerical calculations using the fol-
(32 lowing nuclear parametergi,=0.17 fm 3, ee=40 MeV,
ro=1.12 fm,o=1.2 MeV/fn?, andF,=0.2. The static in-

In this case of small values for the parametieysandf,,,  compressibilityk was determined from the experimental en-
one also obtains an analytical solution to the secular equatiogrgy ESP by using
Eq. (20) in the form

m_q

~nm—(ft 1)/ 32 _ ™) gewy2
Xp=nm—(f,+f,)/nm. (32 K—_hz_(Em . (35

Using Eq. (21), the energyEy+ of the lowest monopole )
mode (1=1) is then given as For the caseA=1000, we have used the extrapolation for-
mulaEgi*~82A 3 MeV. The results of the numerical cal-

hzsz’[ fot+f, culations of the ISGMR energyg,+ are given in Table I.

Eor=fw;= omRe ll_ 2 | (33 The liquid drop modelLDM) and Fermi-liquid drop model

q (FLDM) results were obtained with,=0 andf,+#0, re-

In the limit f,=0 andK’ =K, Eq. (33) was derived earlier spectively. The corresponding valueskoindK'’ are shown
in Ref. [3]. “4'“ general, the eigenenerd+, Eq. (33), con- in Table 1. We point out that the significant renormalization
tains the renormalized incompressibiliy’ instead of the ©f K into K', which is dF‘ﬂtho the Fermi surface distortion,

static oneK. This leads to an increase of the eigenenergy, agicreases the value d&,:"" . However, the effect of the
can be seen from Eq$33) and (A13). However, the addi- Fermi surface distortion on the boundary conditiom the
tional factor in parenthesis in E3), which appears due to value ofx,) acts to decrease the valueEﬁkDM . This com-

TABLE Il. Incompressibilities(in MeV) as obtained from different definitior{see text

A K K’ KeLom Kiom K eonst K& o Ko

40 68.8 500.8 54.9 405 424 57.7 57.6
90 95.7 527.7 81.2 59.4 62.7 87.2 87.1
120 102.0 534.0 87.5 63.9 67.6 94.3 94.2
208 119.6 551.6 103.6 76.1 80.5 113.2 113.0

1000 122.0 554.1 107.9 78.8 83.5 118.2 118.1
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pensation of the Fermi-surface distortion effect in the lowest In a general casd,,#0, f,#0, expressior(28) for my
mode (1=1) can be seen by comparing the enerdgigs "  has to be used. The constrained incompressiti#iy is not
and E(L)BM in Table I. We also show in Table I, the energy gffected b'y the Fermi-surface dlsto.rtlon' because the ISYM

is model independent and the adiabatic sem,; contains
) ) the static incompressibilitk (see above This is not case
n=2 in Egs.(20) and (21). We point out that the effect of ¢, the scaled incompressibilitgs® because the renormalized
the Fermi surface distortion on the boundary condition ' anters the surmy, see Eq(28). However, as in the case
Xn) is rather small for the higher modes wif=2. As can ¢ the Jowest giant monopole resonance, there is a significant
be seen from Table I’FEES eigenenergy of the overtone giant,mpensation between the increasekéf appearing in Eq.
monopole resonancE,Oz , is shifted up significantly with  (28), and the effect of the Fermi surface distortion in the

respect to the ener@"?M. This effect can be used for the boundary condition, re_presented in qus).and (29 by o
0, f,#0. In Table Il we give the values of the incompressibili-

extraction of the Fermi-surface distortion effect on the dy-tjes K, K’, Keonstt KFLDM K LDM sc . and K<, for

namic nuclear incompressibilitk’ from an experimental geyeral nuclei. The incompressibiliti€sand K’ have been
measurement of the energy of the overtone giant monopolgpained from Eqs(35) and (A13) at F,=0.2. The con-
res\j)vnan(_:”e. _ | 4 definit . strained incompressibilitiK ©°""was evaluated from Eq4).
e will now examine commonly used definitions of in- ; i 1 SC sc )
compressibility coefficients. Adopting the relation given in S&gesdc?liﬂqlrgogf t[ziisrl]bll;tld_sz“gO?rfsz( FL%dV\;erirgf:
Eq. (35) we define the corresponding incompressibility coef- a 91u= sc oM K
Egs.(19 and(A6) at Fy=0.2 for K§/py - We can see from

E02+ of the overtongdouble ISGMR which corresponds to

fici . - /
icients Table Il that in the limitA— o we obtain the results of Egs.
m(rz) (39), (40), and(41). We stress that the general condit{dr]
FLDM _ FLDM, 2 sc o . . . . X
K _T(E"* ) (36 rL.om = Ko (in the limit A— o) can be fulfilled quite well in
spite of the fact that the very large renormalized incompress-
and ibility K’ enters the summ;, see Eq(28).
We also note that the Fermi-surface distortion effects in
m(r2) the general expressiof28) appear because the scaling as-
LDM _ LDM,\ 2 . . L - N
K= (Epe )" (37)  sumption for the displacement fielg(r,t) such asy(r,t)

=a(t)r (Tassie modelis not used in our consideration, see

We also consider the well-known definitions of the incom-Ed. (9). This scaling assumption witk(r,t) = «(t)r washes
pressibility coefficients through the energy moments of theout the Fermi surface distortion effects from the pressure
distribution of monopole strengthn,. Following Ref.[5],  tensorP,z, Eqg. (7), and Eq.(41) is transformed into the
we will define the constrained incompressibilitg®"s"  hydrodynamical one. Namely,

=K(1) and the scaled incompressibili§**=K(3) through

the mean energies(k) of the monopole resonance KSe=K|1— Ef } (42)
3 o
E(k \/ M \/ﬁZK(k) 38
= = - . . sc_ .
(k) My m(r2) - (38 Thus, in the limitA— o, we haveK**=K_, independently of

the magnitude of the Landau paramefgr
Let us start from the limiting casé,—0, f,—0. Using

Egs. (20) and (21) with f,=f, =0, we obtain the known V. CONCLUSIONS
result for the incompressibility coefficient associated with . . L
classical liquid drop model We have shown that the monopole eigenmode in a finite

Fermi-liquid drop is renormalized due to two effects associ-
72 ated with the dynamic Fermi-surface distortion: the change
(E'(;?M)zzl—SK at f,=f,=0. (39 in the nuclear incompressibility, see Eq&1) and (A13),
and the change in the boundary condition, see Eds.and
(20). These two effects work in opposite directions.
There is a significant difference between the static nuclear
incompressibilityK, i.e., derived as a stiffness coefficient
m(r2 m(r?) m 7 with respect t(_) a chaljge in the bulk density, a_nd the dynamic
K oonsti— K (1) = _Z_”E(l)zz_z_ 1t _ "k one,K'’ associated with the zero sound velocity. The Fermi-
h A® m_; 10 surface distortion effects increase the incompressibility. Of
(40) course, the increase of incompressibility due to the Fermi-
surface distortion effect leads to an increase of the energy of
the giant monopole resonankEg+. However, the consistent
presence of the same Fermi-surface distortion effects in the
boundary condition strongly suppresses this increads, of
m(r2) m(r2) m Therefore the_ energy of.the lowest giant monopol'e resonance
KSe=K(3)= — ~E(3)2= . —_k. (41) in the Fermi-liquid drop is rather clpse to the one in the usual
h At my liquid drop model where the Fermi-surface distortion effects

LDM_m<r2>
T

Using Egs.(38) and(31) one obtains the constrained incom-
pressibility

This result was derived earlier in Rgfl0]. The scaled in-
compressibilityK*¢ can be also evaluated from E¢88) and
(31) and is given by
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are not taken into account. The Fermi-surface distortion efin the case of an isotropic interaction amplitude, i.e.,

fects depend on the Landau interaction paraméterThey

disappear in the limif,—x. These effects are completely Fo#0, Fi:0=0, (AS)

washed out also from the dynamic incompressibikty and

from the corresponding boundary condition for the breathing®™® nas15]

mode in the case of the scaling assumption for the displace- 3

ment field taken in the forni(r,t)z a(t)r (Tassie model n= ESZGF
We point out that the effect of the Fermi surface distortion

in the bqundary cqndition is rather small for the higherwheres: wlkeq andq is the wave number for the longitu-

modes WIthZZ. Thl_s fac_t can be used for the extraction of yinal zero-sound wave. Note that the assumption (@&)

Fhe Fermps_urf_ace,dlstoruon ef_fect on the dynamic nuCIearimplies also an effective mass af* =m. An extension to

mcompressmnltyK by measuring the energy of the over- higher multipolarities =1 is straightforward 13].

tone giant monopole.rg:.sonance. We have s_hown also t_hfa.t the The variational Lagrange equation reads

commonly used definition of the nuclear incompressibility

1
1—3—2(1+F0) , (AB)

S

through the third energy moment; of the distribution of

. e a 6L oL
monopole strengtkso-called scaled incompressibilitgives - =0. (A7)
a result which is very close to the adiabatic definition of the at sx, OX»

incompressibilityK, in spite of the fact that the strongly o ] ]
renormalized incompressibilit)’ enters into the energy Substituting Eqs(A1)—(A3) into Eq. (A7), we obtain the

moments sume,.,. This is a result of the above mentioned Euler-like equation of motion in the following form:

consistent account of the Fermi-surface effects in the bound- 2 5

ary condition at the evaluation of the energy weighted sum M= Xo= 2 V M(V Y+ VaXa—=V - X0

my, Eq.(29). gt=re g R “*
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APPENDIX equation for the dimensionless sound velosityhe value of

. . . s depends on the multipolarityof the Fermi-surface distor-
The Euler equation of motiof6) can be derived from the tion. In two important particular cases of first-sound regime,

variational principle. Let us introduce the conjugate variable§<1 and quadrupole distortion of the Fermi surfae?2
X, andmy, , wherey, is the displacement field and consider gne hag14] '

the LagrangiarC({x,.x,}) in the form[12]

1 1/9
. . 2 — 2 —
LEx X = Erin({xh) — Epo{x.}), (A1) sfic1=3(1+Fo), S%i<2=3|g+Fo|. (A9
where Taking into account the continuity equation
SRR TR J :
Exin({xo})=5m [ drpegy, (A2) 9P+ PeqV X, =0, (A10)
and Egs.(A8) can be cast in the form of the equation of propa-
1 K gation of the zero sound for the particle density perturbation.
Epot({XV})ZEJ dr gpeq(V-X)erMpeanB (Vaxp) Namely,
(92
2. . — 8p=c3V26p, (A11)
o ] ) ) wherecy is the zero sound velocity
The term multiplied by in Eq. (A3) is due to the dynamical
distortion of the Fermi surface appearing at zero-sound exci- 1
tations in a Fermi liquid. The constapt depends on the Co= %K; (Al12)

Landau parametef, in the interaction amplitud&(p,p’):
and, see also Ref15],

F(PP)=2 FIPi(P-P). P=plp-  (A4) KL=K..—12:F o0z, K.=6ex(1+Fg). (A13)
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Here The second term in the RHS of the first equation in Eq.
(A13) is due to the dynamical Fermi-surface distortion. In
O ()= 11 xP(X)Po(x) Ayq) the caséo>0, this term increases the incompressibility be-

'O(S)_E 1 X—S ' (A14) cause of(),4(s)<0 if F5>0. In the limiting caseFy— o,

we have from Eqs(Al4) and (A15) Q,0~0 andK. ~K.,.
P\(x) is the Legendre polynomial arstan be obtained from This means that the Fermi-surface distortion effect disap-

the well-known Landau’s dispersion relatiphe] pears from the nuclear matter incompressibili€y, for a
1 strong repulsive interaction withy>1. In the opposite case,
— = =0yy9). (A15) Fo— +0, we find from. Eqs_(A14) and (A1.5) Oy~ —1/F,
Fo and strongly renormalized incompressibilky, ~ 3K, .

[1] S. Shlomo and D. H. Youngblood, Phys. Rev.4Q, 529 [9] A. Bohr and B. MottelsonNuclear StructurgBenjamin, New

(1993. York, 1975, Vol. 2.
[2] S. Shlomo and P J. Siemens, Phys. Re\81C2291(1985. [10] B. K. Jennings and A. D. Jackson, Phys. R&f.141(1980.
[3] J. P. Blaizot, Phys. Re4, 171(1980. [11] O. Bohigas, A. M. Lane, and J. Martorell, Phys. RBf, 267
[4] J. P. Blaizot, J. F. Berger, J. Decharge, and M. Girod, Nucl. (1979.

Phys.A591, 435(1995. [12] V. M. Kolomietz, Bull. Acad. Sci. USSR, Phys. Se&t6, 129
[5] J. Treiner, H. Krivine, O. Bohigas, and J. Martorell, Nucl. (1982.

Phys.A371, 253(198)). [13] G. Baym and C. Pethick,andau Fermi-liquid TheoryWiley
[6] J. P. Blaizot and B. Grammaticos, Nucl. Phys355, 115 and Sons, New York, 1991

(1981). [14] T. Yukawa and G. Holzwarth, Nucl. PhyA364, 29 (1981.
[7] R. C. Nayak, J. M. Pearson, M. Farine, P. Gleissl, and M.[15] V. M. Kolomeitz, A. G. Magner, and V. A. Plujko, Z. Phys. A

Brack, Nucl. PhysA516, 62 (1990. 345 137(1993.

[8] V. S. Uma Maheswari, V. S. Ramamurthy, and L. Satpathy,[16] E. M. Lifshitz and L. Pitajevskii,Physical Kinetics(Nauka,
Phys. Rev. G416, 2305(1992. Moscow, 1978.



