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Giant monopole resonance and nuclear incompressibility within the Fermi-liquid drop model
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We study the important effects of Fermi surface distortion on the isoscalar giant monopole resonance
~ISGMR!, within a Fermi-liquid drop model, by considering consistently the effects on nuclear incompress-
ibility coefficients and the boundary conditions needed to determine the energy of the ISGMR. There is a
significant difference between the static nuclear incompressibilityK, derived as a stiffness coefficient with
respect to an adiabatic change in the bulk density, and the dynamic oneK8 associated with the zero sound
velocity. We show that the enhancement in the energy of the ISGMR, the lowest breathing mode, which is due
to the renormalization ofK into K8 is strongly suppressed by the effects of the Fermi surface distortion on the
boundary condition. This is not the case for higher breathing modes such as the overtone. We also discuss, in
particular, the effects of the Fermi surface distortion on energy weighted sums for the monopole mode and on
the constrained and the scaling incompressibility coefficients and their relation to the liquid drop one.
@S0556-2813~99!04706-8#

PACS number~s!: 21.65.1f, 21.60.2n, 24.30.Cz
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I. INTRODUCTION

The incompressibility coefficientK of finite nuclei pro-
vides unique information on the fundamental characteri
of the infinite nuclear matter, the incompressibility coef
cient K` . However, extraction of the incompressibility co
efficient K and the corresponding value ofK` from experi-
mental data on isoscalar giant monopole resonance~ISGMR!
is not straightforward@1,2#. A commonly used microscopic
approach for determiningK` is based on the self-consiste
Hartree-Fock ~HF! random-phase approximation~RPA!
method. In the HF-RPA approach one adopts a certain f
of effective nucleon-nucleon interaction, such as the Skyr
interaction, involving a set of a few parameters. Carrying
HF calculations, the parameters are determined by a fit to
experimental data on properties of ground states of a w
range of nuclei. It has been found that RPA calculatio
reproduce known experimental data on the strength distr
tion of the ISGMR @3,4# when existing effective nucleon
nucleon interactions havingK`5210630 MeV were used.
However, this commonly accepted value ofK` was ex-
tracted using a limited class of effective interactions.

In this work we mainly consider another commonly us
approach which is inspired by the liquid drop mass form
for nuclear binding energyE. This is a semiempirical ap
proach in which one writes@1,3–8# the incompressibilityK
of a nucleus with mass numberA as an expansion inA21/3

K5Kvol1KsurfA
21/31KcurvA

22/31KsymmS N2Z

A D 2

1KCoul

Z2

A4/3
1•••. ~1!

The nuclear matter incompressibilityK` is then deduced
from Eq. ~1! by extrapolation. We first note that this macr
scopic approach implies a liquid-drop model typeA expan-
PRC 590556-2813/99/59~6!/3139~7!/$15.00
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sion of K, whereK is related to the ISGMR energy by som
model assumptions. Different modifications of the Thom
Fermi approximation were used to estimate the coefficie
Kvol ,Ksurf, . . . , in Eq.~1! @5,7,8#. However, the incompress
ibility coefficient K` determined from Eq.~1! at A→` is a
staticstiffness coefficient with respect to an adiabatic chan
in the bulk densityr0. Namely,

K`59r0
2 d2~E/A!

dr0
2 U

r`

, ~2!

whereE and r` are the binding energy and the saturati
density of the nuclear matter, respectively.

The static incompressibility coefficientK` determines the
first sound velocity,c15AK`/9m, for propagation of com-
pression waves in nuclear matter. However, the ISGMR c
responds to thezero soundmode having the sound velocit
c0'vF'A3c1 and the renormalized incompressibility coe
ficient K 8̀ 59mc0

2'3K` . This strong renormalization of the
incompressibility coefficient arises due to dynamical dist
tion of the Fermi surface.

In contrast to the first sound regime, the eigenfreque
of the zero sound excitations such as the ISGMR canno
principle, be used directly to extract the static incompre
ibility of Eq. ~2! because of the additional contribution fro
the Fermi surface distortion effects which result in the ren
malization of the incompressibilityK` into K 8̀ . However, as
will be shown in this work, the Fermi surface distortion e
fects also affect the boundary condition, needed for de
mining the energy of the ISGMR of finite nuclei. The e
hancement in the energy of the ISGMR, the lowest breath
mode, which is due to the renormalization ofK into K8 is
strongly suppressed by the effects of the Fermi surface
tortion on the boundary condition. This is not the case
higher breathing modes such as the overtone. The aim of
work is to study effects of the Fermi surface distortion on t
ISGMR and nuclear incompressibility coefficients. We w
3139 ©1999 The American Physical Society
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consider, in particular, the constrained, the scaling and
liquid drop incompressibility coefficients.

In Sec. II we present the model for the ISGMR, introdu
ing the basic equation of motion and the correspond
boundary condition. In Sec. III we provide the solution f
the energy of the ISGMR and the energy moments of
distribution of monopole strength. In Sec. IV we prese
some numerical results and discuss the effects of the F
surface distortion on the energies of the ISGMR and
overtone and on the nuclear incompressibility coefficien
Our conclusions are given in Sec. V.

II. FERMI-SURFACE DISTORTION EFFECTS ON
MONOPOLE VIBRATIONS

There exists a simple relation between energyE01 of the
ISGMR and the incompressibility coefficientK, if one state
exhausts the energy-weighted sum rule. The constrained
scaling derivations of the incompressibility coefficien
(Kconstr andKsc, respectively! coincide in this case andE01

is given by

E015A\2Kconstr

m^r 2&eq

5A \2Ksc

m^r 2&eq

, ~3!

where

Kconstr5
m^r 2&eq

\2

m1

m21
, Ksc5

m^r 2&eq

\2

m3

m1
. ~4!

Here^r 2&eq is the equilibrium root mean square~rms! radius
of the nucleus andmk are the energy moments of the dist
bution of monopole strength

mk5(
n

~En2E0!ku^cnur 2uc0&u2. ~5!

The origin of the property manifested in Eqs.~3! and~4! lies
in the fact that in the case where the strength is concentr
in one state the dynamical Fermi-surface distortion effe
are washed out from the equation of motion and expres
~3! represents the excitation energy in first sound descript

To study the Fermi surface distortion effects on t
ISGMR energy and the nuclear incompressibility we w
start from the zero-sound equation of motion in the nucl
volume in the form~see Appendix!

mr0

]2

]t2 xa52(
b

¹bPab1r0¹aVext, ~6!

wherexW (rW,t) is the displacement field,r0 is the equilibrium
bulk particle density andPab is the dynamical part of the
pressure tensor

Pab52mr0S ¹axb1¹bxa2
2

3
¹W •xW dabD2

K

9
r0¹W •xW dab .

~7!

Here, in general, the nuclear static incompressibilityK also
includes the surface correction due to the surface tension@3#.
We have included the time dependent external field
e

-
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e
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r

Vext5l~ t !Q̂~r !, Q̂~r !5r 22^r 2&eq ~8!

in Eq. ~6! to be able to evaluate the response function and
corresponding energy momentsmk , Eq. ~5!.

We will assume below a sharp spherical surface of rad
Req for the equilibrium particle densityreq. The external
field Vext induces changes in the bulk density,dr(r ,t)
5h(r ,t)r0u(Req2r ), and in the radiusdR(t). Both of them
are related to the displacement fieldxW (r ,t). In the case of a
monopole excitation, a general form of the displacem
xW (r ,t) is given by

xW ~r ,t !5 f ~r ,t !r . ~9!

The form factorf (r ,t) is found from the continuity equation

dr52¹W •reqxW ~10!

to have in the nuclear interior the form

f ~r ,t !52
1

r 3E
0

r

dr1 r 1
2h~r 1 ,t !. ~11!

Using Eq.~10!, the equation of motion~6! can be trans-
formed in the nuclear interior into an equation of motion f
the bulk density parameterh(r ,t). Namely,

m
]2

]t2 h5
1

9
K8¹2h, ~12!

whereK8 is given by Eq.~A13!.
The external fieldVext does not enter Eq.~12!. However,

the external field affects the boundary condition. This can
taken as a condition for the compensation at the nuclear
face of the compressional pressurePrr and the pressures gen
erated by the external fieldPext, and the surface tensio
forcesdPs . Namely,

Pext1dPs5Prr ur 5Req
, ~13!

where

Pext5
3

5
l~ t !r0Req

2 , dPs52
2s

Req
2

dR~ t ! ~14!

and s is the surface tension coefficient. The radial comp
nent of the compressional pressure tensorPrr in Eq. ~13! can
be derived from Eqs.~7! and ~9! and is given by

Prr ur 5Req
5F1

9
r0K8h14mr0f G

r 5Req

. ~15!

The boundary condition given by Eqs.~13!–~15! plays a key
role in our consideration. The Fermi surface distortion
fects are manifested in both terms on the right-hand s
~RHS! of Eq. ~15!. Usually these effects are missed in th
liquid drop model consideration, see, for example, Ref.@3#.
We point out also that all original results of the present pa
are due to the abovementioned effects in the boundary c
dition ~13!.
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III. GIANT MONOPOLE RESONANCE
IN THE FERMI-LIQUID DROP MODEL

Using Eqs.~9!–~11!, the solution to Eq.~12! with spheri-
cal symmetry provides the displacement field in the form

xW ~r ,t !5a~ t !
j 1~kr !

kr
r , ~16!

wherea(t) is a harmonic function of time with a frequenc
v which is related to the wave numberk by the following
dispersion equation:

mv25
1

9
K8k2. ~17!

The amplitudea(t) can be evaluated in terms of the extern
field parameterl(t) from the boundary condition~13! and is
given by

a~ t !5
2x fl

x j0~x!2~ f s1 f m! j 1~x!
l~ t !, ~18!

wherex5kReq and

f s5
18s

r0ReqK8
, f l5

27Req
2

5K8
, f m5

36m

K8
. ~19!

The eigenexcitations are obtained as solutions to the s
lar equation determined by the denominator of Eq.~18!.
Namely,

xnj 0~xn!2~ f s1 f m! j 1~xn!50, ~20!

and the corresponding eigenfrequenciesvn are given by@see
Eq. ~17!#

vn5A K8

9mReq
2

xn . ~21!

In a general case of a Fermi-liquid drop withmÞ0, the
eigenfrequencyvn given by Eq.~21! is renormalized with
respect to the one in the traditional liquid drop model@3,9#
due to two contributions associated with the Fermi-surf
distortion: ~1! the direct change in the sound velocity, i.e
K8 appears instead ofK in Eq. ~21!; ~2! the change of the
roots xn of the secular equation~20! due to the additiona
contribution fromf mÞ0 in Eq.~20!. These two effects work
in opposite directions:K 8̀ increasesvn while f m decreases it,
see next section.

The displacement fieldxW n associated with thexn solution
of the secular equation~20! allows us to derive the relevan
collective massBn . The fluid kinetic energyEkin is given by

Ekin5
1

2
mE dr(

n
reqẋn

25
1

2 (
n

Bnȧn
2 . ~22!

Taking into account Eqs.~16!, ~20!, and~22!, one obtains

Bn5
3

2
AmReq

2 xn
24@12 j 0

2~xn!2~ f s1 f m! j 1
2~xn!#. ~23!
l

u-

e

We would like to stress that, in contrast to the analogi
expression for the mass coefficientBn in the liquid drop
model @3#, our result, Eq.~23!, takes into account the Ferm
surface distortion effects because off mÞ0. Moreover, usu-
ally one hasf m> f s and thus the Fermi surface distortio
effects are more important than the surface tension ef
manifested by the term withf s in Eq. ~23!.

To evaluate the quantum response functionS(v) with
respect to the external fieldVext;r 2 and the corresponding
energy weighted sumsmk , one has to evaluate the classic
monopole moment̂r 2&n for then mode. Using Eqs.~10! and
~20!, one obtains

^r 2&n5E dr r 2drn5a~ t !Sn , ~24!

where the particle density variationdrn is associated with
the displacement fieldxW n and

Sn5218AReq
2 xn

23F12
1

3
~ f s1 f m! j 1~xn!G . ~25!

Following the quantum correspondency principle and us
Eq. ~24!, we obtain~see also Chap. 6 in Ref.@9#!

mk5 (
n51

`

~\vn!kan
(0)2Sn

2 , ~26!

wherean
(0) is the zero-point amplitude

an
(0)5A\/2Bnvn. ~27!

Inserting expressions~21!, ~27!, ~23!, and~25! into Eq. ~26!,
one obtains

mk53362
\2AReq

2

m F12
1

3
~ f s1 f m!G2S \2K8

9mReq
2 D (k21)/2

mk̃,

~28!

where

mk̃5 (
n51

` xn
k23 j 1

2~xn!

12 j 0
2~xn!2~ f s1 f m! j 1

2~xn!
. ~29!

We would like to stress again that our result Eqs.~28! and
~29! provides an account of the Fermi surface distortion
fects. These both appear due to the renormalization of
incompressibility coefficientK8 and the term f m in the
boundary condition Eq.~20!.

It is necessary to note that the low-energy su
m21 , m23 , . . . , appear in the adiabatic limitv→0. This
limit corresponds to the first sound regime where the con
bution from the Fermi-surface distortion effects is abse
That means that the nonrenormalized incompressibilityK in-
stead ofK8 should be used in Eqs.~21! and ~28! with f m
50 in Eqs.~20! and ~28!.

IV. DISCUSSION

The sumsmk̃ of Eq. ~29! and, consequently, energy mo
mentsmk of Eq. ~28! can be evaluated analytically in th
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TABLE I. Excitation energies~in MeV! of the isoscalar giant monopole resonanceE01 and the overtone
isoscalar giant monopole resonanceE0

2
1 obtained for liquid drop model~LDM ! and for Fermi-liquid drop

model ~FLDM!, using Eqs.~20! and ~21! ~see text!.

A E01
exp E01

FLDM E01
LDM

E0
2
1

FLDM
E0

2
1

LDM E01
FLDM/E01

LDM
E0

2
1

FLDM/E0
2
1

LDM

40 18.0 16.1 13.8 73.0 28.8 1.165 2.533
90 16.2 14.9 12.8 57.5 26.1 1.169 2.202
120 15.2 14.1 12.0 52.6 24.5 1.169 2.145
208 13.7 12.8 10.9 44.6 22.1 1.167 2.015
1000 8.2 7.7 6.6 26.5 13.3 1.166 1.997
re

ti

, a
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e
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-

ol-

n-

r-
l-

l

n
n,
case of small perturbation parametersf s!1, f m!1.
Namely,

mk̃5pk25z~52k!2~k28!~ f s1 f m!pk27z~72k!,
~30!

wherez(s) is the Riemann zeta function

z~s!5 (
n51

`

n2s.

In the limit f s→0, f m→0, i.e., if both additional contribu-
tions to the incompressibilityK8 from the surface tension
and from the Fermi-surface distortion are absent, the th
lowest sumsm21 , m1, and m3 can be easily derived from
Eqs.~28! and ~30! and are given by

m215
36

35

AReq
4

K
, m15

6

5

\2AReq
2

m
, m352

\4AK

m2 .

~31!

In this case of small values for the parametersf s and f m ,
one also obtains an analytical solution to the secular equa
Eq. ~20! in the form

xn'np2~ f s1 f m!/np. ~32!

Using Eq. ~21!, the energyE01 of the lowest monopole
mode (n51) is then given as

E015\v15A\2p2K8

9mReq
2 F12

f s1 f m

p2 G . ~33!

In the limit f m50 andK85K, Eq. ~33! was derived earlier
in Ref. @3#. In general, the eigenenergyE01, Eq. ~33!, con-
tains the renormalized incompressibilityK8 instead of the
static one,K. This leads to an increase of the eigenenergy
can be seen from Eqs.~33! and ~A13!. However, the addi-
tional factor in parenthesis in Eq.~33!, which appears due to
e

on

s

the Fermi surface distortion effect on the boundary con
tion, see Eqs.~13! and ~20!, partly compensates for th
Fermi-surface distortion effect inK8.

Both values ofK8 and f m depend on the Landau scatte
ing amplitudeF0. The conditionf m!1, leading to the ap-
proximation Eq.~32! or Eq. ~33!, holds in the limit of the
zero to first sound transition region atF0@1. However, for
realistic nuclear forces, we haveF0;0. Therefore, the gen
eral expressions~20! and~21! should be used. For the energ
E01 of the lowest monopole mode (n51) we have from Eq.
~21!

E015\v15A \2K8

9mReq
2

x1 , ~34!

wherex1 is the lowest (x1.0) solution to the secular equa
tion ~20!.

We have carried out numerical calculations using the f
lowing nuclear parameters:r050.17 fm23, eF540 MeV,
r 051.12 fm,s51.2 MeV/fm2, andF050.2. The static in-
compressibilityK was determined from the experimental e
ergy E01

exp by using

K5
m^r 2&

\2 ~E01
exp

!2. ~35!

For the caseA51000, we have used the extrapolation fo
mula E01

exp'82A21/3 MeV. The results of the numerical ca
culations of the ISGMR energy,E01 are given in Table I.
The liquid drop model~LDM ! and Fermi-liquid drop mode
~FLDM! results were obtained withf m50 and f mÞ0, re-
spectively. The corresponding values ofK andK8 are shown
in Table II. We point out that the significant renormalizatio
of K into K8, which is due to the Fermi surface distortio
increases the value ofE01

FLDM . However, the effect of the
Fermi surface distortion on the boundary condition~on the
value ofx1) acts to decrease the value ofE01

FLDM . This com-
TABLE II. Incompressibilities~in MeV! as obtained from different definitions~see text!.

A K K8 KFLDM KLDM Kconstr KFLDM
sc KLDM

sc

40 68.8 500.8 54.9 40.5 42.4 57.7 57.6
90 95.7 527.7 81.2 59.4 62.7 87.2 87.1
120 102.0 534.0 87.5 63.9 67.6 94.3 94.2
208 119.6 551.6 103.6 76.1 80.5 113.2 113.0
1000 122.0 554.1 107.9 78.8 83.5 118.2 118.1
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pensation of the Fermi-surface distortion effect in the low
mode (n51) can be seen by comparing the energiesE01

FLDM

and E01
LDM in Table I. We also show in Table I, the energ

E0
2
1 of the overtone~double! ISGMR which corresponds to

n52 in Eqs.~20! and ~21!. We point out that the effect o
the Fermi surface distortion on the boundary condition~on
xn) is rather small for the higher modes withn>2. As can
be seen from Table I, the eigenenergy of the overtone g
monopole resonance,E0

2
1

FLDM
, is shifted up significantly with

respect to the energyE0
2
1

LDM
. This effect can be used for th

extraction of the Fermi-surface distortion effect on the d
namic nuclear incompressibilityK8 from an experimenta
measurement of the energy of the overtone giant mono
resonance.

We will now examine commonly used definitions of in
compressibility coefficients. Adopting the relation given
Eq. ~35! we define the corresponding incompressibility co
ficients

KFLDM5
m^r 2&

\2 ~E01
FLDM

!2 ~36!

and

KLDM5
m^r 2&

\2 ~E01
LDM

!2. ~37!

We also consider the well-known definitions of the inco
pressibility coefficients through the energy moments of
distribution of monopole strengthmk . Following Ref. @5#,
we will define the constrained incompressibilityKconstr

[K(1) and the scaled incompressibilityKsc[K(3) through
the mean energiesẼ(k) of the monopole resonance

Ẽ~k!5A mk

mk22
5A\2K~k!

m^r 2&
. ~38!

Let us start from the limiting casef s→0, f m→0. Using
Eqs. ~20! and ~21! with f s5 f m50, we obtain the known
result for the incompressibility coefficient associated w
classical liquid drop model

KLDM5
m^r 2&

\2 ~E01
LDM

!25
p2

15
K at f s5 f m50. ~39!

Using Eqs.~38! and~31! one obtains the constrained incom
pressibility

Kconstr5K~1!5
m^r 2&

\2 Ẽ~1!25
m^r 2&

\2

m1

m21
5

7

10
K.

~40!

This result was derived earlier in Ref.@10#. The scaled in-
compressibilityKsc can be also evaluated from Eqs.~38! and
~31! and is given by

Ksc5K~3!5
m^r 2&

\2 Ẽ~3!25
m^r 2&

\2

m3

m1
5K. ~41!
t

nt

-

le

-

-
e

In a general case,f sÞ0, f mÞ0, expression~28! for mk
has to be used. The constrained incompressibility~40! is not
affected by the Fermi-surface distortion because the summ1
is model independent and the adiabatic summ21 contains
the static incompressibilityK ~see above!. This is not case
for the scaled incompressibilityKsc because the renormalize
K8 enters the summ3, see Eq.~28!. However, as in the cas
of the lowest giant monopole resonance, there is a signific
compensation between the increase ofK8, appearing in Eq.
~28!, and the effect of the Fermi surface distortion in t
boundary condition, represented in Eqs.~28! and ~29! by
f mÞ0. In Table II we give the values of the incompressibi
ties K, K8, Kconstr, KFLDM, KLDM, KLDM

sc , and KFLDM
sc for

several nuclei. The incompressibilitiesK and K8 have been
obtained from Eqs.~35! and ~A13! at F050.2. The con-
strained incompressibilityKconstrwas evaluated from Eq.~4!.
Both scaled incompressibilitiesKLDM

sc and KFLDM
sc were cal-

culated from Eq.~4! taking f m50 for KLDM
sc and f m from

Eqs.~19! and ~A6! at F050.2 for KFLDM
sc . We can see from

Table II that in the limitA→` we obtain the results of Eqs
~39!, ~40!, and~41!. We stress that the general condition@11#
KFLDM

sc 5K` ~in the limit A→`) can be fulfilled quite well in
spite of the fact that the very large renormalized incompre
ibility K8 enters the summ3, see Eq.~28!.

We also note that the Fermi-surface distortion effects
the general expression~28! appear because the scaling a
sumption for the displacement fieldxW (r ,t) such asxW (r ,t)
5a(t)r ~Tassie model! is not used in our consideration, se
Eq. ~9!. This scaling assumption withxW (r ,t)5a(t)r washes
out the Fermi surface distortion effects from the press
tensorPab , Eq. ~7!, and Eq.~41! is transformed into the
hydrodynamical one. Namely,

Ksc5KF12
1

3
f sG . ~42!

Thus, in the limitA→`, we haveKsc5K` independently of
the magnitude of the Landau parameterF0.

V. CONCLUSIONS

We have shown that the monopole eigenmode in a fin
Fermi-liquid drop is renormalized due to two effects asso
ated with the dynamic Fermi-surface distortion: the chan
in the nuclear incompressibility, see Eqs.~21! and ~A13!,
and the change in the boundary condition, see Eqs.~15! and
~20!. These two effects work in opposite directions.

There is a significant difference between the static nuc
incompressibilityK, i.e., derived as a stiffness coefficie
with respect to a change in the bulk density, and the dyna
one,K8 associated with the zero sound velocity. The Ferm
surface distortion effects increase the incompressibility.
course, the increase of incompressibility due to the Fer
surface distortion effect leads to an increase of the energ
the giant monopole resonanceE01. However, the consisten
presence of the same Fermi-surface distortion effects in
boundary condition strongly suppresses this increase ofE01.
Therefore the energy of the lowest giant monopole resona
in the Fermi-liquid drop is rather close to the one in the us
liquid drop model where the Fermi-surface distortion effe
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are not taken into account. The Fermi-surface distortion
fects depend on the Landau interaction parameterFl . They
disappear in the limitF0→`. These effects are complete
washed out also from the dynamic incompressibilityK8 and
from the corresponding boundary condition for the breath
mode in the case of the scaling assumption for the displa
ment field taken in the formxW (r ,t)5a(t)r ~Tassie model!.

We point out that the effect of the Fermi surface distorti
in the boundary condition is rather small for the high
modes withn>2. This fact can be used for the extraction
the Fermi-surface distortion effect on the dynamic nucl
incompressibilityK8 by measuring the energy of the ove
tone giant monopole resonance. We have shown also tha
commonly used definition of the nuclear incompressibil
through the third energy momentm3 of the distribution of
monopole strength~so-called scaled incompressibility! gives
a result which is very close to the adiabatic definition of t
incompressibilityK, in spite of the fact that the strongl
renormalized incompressibilityK8 enters into the energy
moments sumsmk.1. This is a result of the above mentione
consistent account of the Fermi-surface effects in the bou
ary condition at the evaluation of the energy weighted s
mk , Eq. ~28!.
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APPENDIX

The Euler equation of motion~6! can be derived from the
variational principle. Let us introduce the conjugate variab
xn andmẋn , wherexn is the displacement field and consid
the LagrangianL($xn ,ẋn%) in the form @12#

L~$xn ,ẋn%!5Ekin~$ẋn%!2Epot~$xn%!, ~A1!

where

Ekin~$ẋn%!5
1

2
mE drreqẋn

2 ~A2!

and

Epot~$xn%!5
1

2E dr FK`

9
req~¹W •xW !21mreq(

ab
~¹axb!

3S ¹axb1¹bxa2
2

3
¹W •xW dabD G . ~A3!

The term multiplied bym in Eq. ~A3! is due to the dynamica
distortion of the Fermi surface appearing at zero-sound e
tations in a Fermi liquid. The constantm depends on the
Landau parametersFl in the interaction amplitudeF(p,p8):

F~p,p8!5(
l 50

`

Fl Pl~ p̂•p̂8!, p̂5p/p. ~A4!
f-

g
e-

r

r

the

d-

f
e

s

i-

In the case of an isotropic interaction amplitude, i.e.,

F0Þ0, FlÞ050, ~A5!

one has@15#

m5
3

2
s2eFF12

1

3s2 ~11F0!G , ~A6!

wheres5v/kFq andq is the wave number for the longitu
dinal zero-sound wave. Note that the assumption Eq.~A5!
implies also an effective mass ofm* 5m. An extension to
higher multipolaritiesl>1 is straightforward@13#.

The variational Lagrange equation reads

]

]t

dL
dẋn

2
dL
dxn

50. ~A7!

Substituting Eqs.~A1!–~A3! into Eq. ~A7!, we obtain the
Euler-like equation of motion in the following form:

m
]2

]t2 xa5(
b

¹bFmS ¹axb1¹bxa2
2

3
¹W •xW dabD

1
K`

9
¹W •xW dabG . ~A8!

We point out that Eqs.~A8! with m from Eq. ~A6! does not
imply any restriction on the multipolarity of the Fermi su
face distortion. Equations~A8! give a set of closed equation
of motion for the displacement fieldxW (r ,t). The solution of
Eq. ~A8! implies the previous solution of the dispersio
equation for the dimensionless sound velocitys. The value of
s depends on the multipolarityl of the Fermi-surface distor
tion. In two important particular cases of first-sound regim
l<1, and quadrupole distortion of the Fermi surface,l<2,
one has@14#

s2u l<15
1

3
~11F0!, s2u l<25

1

3 S 9

5
1F0D . ~A9!

Taking into account the continuity equation

]

]t
dr1req¹nẋn50, ~A10!

Eqs.~A8! can be cast in the form of the equation of prop
gation of the zero sound for the particle density perturbati
Namely,

]2

]t2 dr5c0
2¹2dr, ~A11!

wherec0 is the zero sound velocity

c05A 1

9m
K 8̀ ~A12!

and, see also Ref.@15#,

K 8̀ 5K`212eFF0V20, K`56eF~11F0!. ~A13!
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In
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,
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Here

V l0~s!5
1

2E21

1

dx
xPl~x!P0~x!

x2s
, ~A14!

Pl(x) is the Legendre polynomial ands can be obtained from
the well-known Landau’s dispersion relation@16#

2
1

F0
5V00~s!. ~A15!
c

l.

M

hy
The second term in the RHS of the first equation in E
~A13! is due to the dynamical Fermi-surface distortion.
the caseF0.0, this term increases the incompressibility b
cause ofV20(s),0 if F0.0. In the limiting caseF0→`,
we have from Eqs.~A14! and ~A15! V20'0 andK 8̀ 'K` .
This means that the Fermi-surface distortion effect dis
pears from the nuclear matter incompressibilityK 8̀ for a
strong repulsive interaction withF0@1. In the opposite case
F0→10, we find from Eqs.~A14! and ~A15! V20'21/F0

and strongly renormalized incompressibilityK 8̀ '3K` .
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