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Damping of the double giant dipole resonance
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A microscopic approach is proposed to the damping of the double giant dipole resonance~DGDR!.
The double-time Green’s function method is used to derive a closed set of coupled equations for the
propagation of two-phonon excitation through the field of incoherent nucleon pairs. The analytical express-
ions for the width and energy shift of the DGDR are obtained. The numerical calculations are performed
for 90Zr, 90Sn, and208Pb for several characteristics of the DGDR at zero as well as nonzero temperaturesT.
The results are found in reasonable agreement with existing experimental systematics for the width and energy
of the DGDR. As compared to the estimation within the harmonic picture, the anharmonicity leads to a
noticeable enhancement of the integrated photoabsorption cross section~IPACS! over the DGDR region. The
DGDR width is found to increase sharply with increasingT at T<3 MeV, but goes to a saturation atT
.3 MeV. The harmonic limit for the DGDR width is restored already atT>1.5 MeV. It is shown that the
IPACS of the DGDR can also be enhanced compared to its harmonic value if it is built on a hot GDR.
@S0556-2813~99!03706-1#

PACS number~s!: 24.30.Cz, 24.10.Pa, 25.75.2q
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I. INTRODUCTION

The study of multiphonon excitations in nuclei has
tracted considerable interest during the past years@1#. An
unambiguous signature of the double giant dipole resona
~DGDR! has been obtained in pion-induced charge excha
reactions@2# and relativistic heavy-ion reactions via Co
lomb excitation@3,4#. Since a giant resonance is a collecti
excitation, which can be well described by the first oscilla
quantum~phonon!, a multiphonon excitation can be inte
preted as a giant resonance built on top of other giant re
nances. This leads to the harmonic picture, in which a m
tiphonon excitation is considered as composed
independent phonons. In the harmonic limit the energy o
multiphonon state is just the sum of energies of the con
tuting single-phonon~boson! states. According to the golde
rule, the width of the multiphonon resonance is also the s
of the individual widths of single-phonon resonances. Thi
valid when the spreading width of a single-phonon resona
is relatively small as compared to the energy range wit
which the level density and the coupling matrix elements
be considered approximately constant@5#. The decay of a
single-phonon resonance can then be associated wi
Lorentzian distribution@6#. In the strong coupling limit,
where the shape of the single-phonon resonance approa
the Gaussian distribution, the width of the multiphonon re
nance is the quadratic sum~rather than the sum! of the
widths of single-phonon resonances@5,6#.

In reality the main features of the observed DGDR can
summarized as follows.

~i! The energyEDGDR of the DGDR is about twice as

*On leave of absence from the Institute of Nuclear Scie
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large compared to the giant dipole resonance~GDR!:
EDGDR.2EGDR, i.e., well described by the harmonic pic
ture.

~ii ! The observed widthGDGDR of the DGDR is in be-
tweenA2GGDR and 2GGDR, whereGGDR is the GDR width.

~iii ! The magnitude of the measured total electromagn
excitation cross section is found to be enhanced up to m
than three times as large compared to the harmonic l
depending on nuclei.

The experimental systematic indicates that the anh
monic effect and the interphonon interaction may play a r
in the deviation of the DGDR from its harmonic descriptio
Since the anharmonicity comes from the microscopic mec
nism of the excitations and their mutual coupling, the anh
monic effect must be studied based on a microscopic fra
work. Several microscopic studies have been undertake
this direction and important results have been obtained.

In a microscopic model explicitly treating 2p2h excita-
tions, Nishizaki and Wambach performed calculations
40Ca and208Pb @7,8#. Their results for208Pb @8# show only a
small anharmonicity. The DGDR energy is smaller th
twice the GDR energy by only few hundred keV for both 01

and 21 components of the DGDR. The Landau damping
larger than that of the GDR by a factor of 1.12 – 1.17. T
spreading and escape widths are not treated in this appro
Similar conclusions have been drawn for40Ca @7#. For 208Pb
the excitation cross section of the GDR and DGDR ha
been estimated for three choices of the minimum impact
rameter. The authors found that none of these choices
explain the measured cross sections simultaneously
hence the discrepancy between measured cross section
theoretical estimates remains.

Using the quasiparticle-phonon model~QPM! by Solov-
iev @9#, Ponomarevet al. @10# took into account the mixing
between multiphonon configurations. Despite the complex
of mixing a huge number of configurations up to thre
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PRC 59 3129DAMPING OF THE DOUBLE GIANT DIPOLE RESONANCE
phonon states, the numerical results are found to be v
close to the predictions by the harmonic picture. The stren
distributions of 01 and 21 components of the DGDR look
almost identical.

Going beyond the random-phase approximation~RPA!,
Lanzaet al. @11# studied the anharmonicity in the DGDR b
mixing two-phonon states among themselves and with o
phonon states. They used a boson mapping technique t
troduce nonlinear terms in the external field. These nonlin
terms give the possibility for a direct connection between
ground state and two-phonon states. Due to the construc
interplay of both anharmonicity in configuration mixing an
nonlinearity in the external field, the results of their calcu
tions for Coulomb excitation show an enhancement in
cross section in the DGDR region by 10% for208Pb and
20% for 40Ca. Summing up all the contributions comin
from the various states in the vicinity of the DGDR an
above the isovector giant quadrupole resonance~IVGQR!
(E.22 MeV), their calculated cross section for the Pb1Pb
reaction at a high incident energy 641 MeV/nucleon beca
310 mb, which is fairly close to the experimental value
380640 mb. In recent calculations@12#, which included both
Coulomb and nuclear excitations of the external field, a 2
enhancement of the cross section of the DGDR has b
reported for the208Pb1208Pb collision at an intermediate en
ergy of 50 MeV/nucleon.

An alternative approach to the theoretical study of
DGDR has been proposed by Kurasawa and Suzuki@13# via
studying the sum rules of the DGDR excited by a two-s
dipole process. By setting the DGDR energy to be exa
twice as large compared to the GDR energy~i.e., the har-
monic limit for the DGDR energy!, the authors derived a
constraint for the sum rule of the DGDR, according to whi
the non-energy weighted sum of strengths~non-EWSS! m0

(2)

of the DGDR is related tom0
(1) for the GDR by m0

(2)

52@m0
(1)#2. They also showed that the width of the DGDR

A2 times that of the GDR. However, taking account of t
full Hamiltonian including the terms, which contain the su
of products of twopp (hh) pairs~the scattering term!, Dinh
Danget al. @14# have shown in a schematic model that the
is a possibility of the enhancement of the sum of strength
the DGDR as compared to the harmonic limit, because
anharmonic effects due to the scattering term on the EW
being small for the GDR, are found enhanced for the DGD

Finally, it has been proposed in Ref.@1# that another way
to compute the anharmonicity is to consider a DGDR b
on a hot rather than a ground-state GDR. Since experim
@15–17# and theory@18–21# have shown that the therma
effect indeed leads to a sharp increase of the GDR widt
low temperatures (T<3 MeV) and a saturation of this width
at high temperatures (T.3 MeV), this behavior should cer
tainly affect the DGDR. However, numerical estimation
the thermal effect on the DGDR is still absent so far.

A general conclusion from these results can be drawn
the anharmonic effects, being small in average paramete
the DGDR such as the width and the energy, may result
noticeable change in other characteristics such as the ex
tion cross section. Except for the harmonic picture where
width and energy of the multiphonon resonance can be
rived analytically, all the results for these parameters of
DGDR have been provided so far through rather heavy
ry
th
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elaborate calculations. Meanwhile, in order to have furt
insight into the mechanism of the DGDR, in our opinion,
simple theoretical approach based on the well-establis
knowledge of the GDR might be useful. The proposal
such an approach is the main goal of the present paper.
this purpose we will make use of the phonon damping mo
~PDM!, which has been proposed recently and applied q
successfully to describe the behavior of the hot GDR in Re
@18–21#. The method of double-time Green’s functions em
ployed in this approach will allow one to make a natu
extension to the nonzero temperature.

The present paper is organized as follows. In Sec. II
formalism of the approach is derived. Section III is devot
to the analysis and discussion of numerical results. The pa
is summarized in Sec. IV, where conclusions are provide

II. FORMALISM

A. General

The PDM has been proposed and discussed in deta
Refs. @18–21#. Extending the PDM to the study of th
DGDR in the present paper, we hope to be able to exp
the possible limit of the applicability and the capability of
model, which has been demonstrated to be effective in
scribing the behavior of the GDR in hot nuclei.

We use the Hamiltonian of the PDM for the description
the coupling of collective oscillations~phonons! to the field
of incoherent nucleon pairs@18–21#. This Hamiltonian is
composed of three terms:

H5(
s

Esas
†as1(

q
vqQq

†Qq1 (
s,s8,q

Fss8
(q)as

†as8~Qq
†1Qq!.

~2.1!

The first term on the right-hand side~rhs! of Eq. ~2.1! is the
field of independent single particles, whereas

† and as are
creation and destruction operators of a particle or hole s
with energyEs5es2eF . The energyes is the single-particle
energy andeF the Fermi energy. We will call the energyEs
the single-particle energy whenever there is no confus
with es . The second term stands for the phonon field as
field of harmonic oscillators, whereQq

† andQq are the cre-
ation and destruction operators of a phonon with energyvq .
The last term describes the coupling between the first
terms. The indicess and s8 denote particle (p, Ep.0) or
hole (h, Eh,0), while the indexq is reserved for the pho
non stateq5$l,i % with multipolarity l ~the projectionm of
l in the phonon index is omitted for simplicity!. Hence, the
last term on the rhs of Eq.~2.1! includes the coupling be
tween the phonon field and all possibleph, pp, and hh
pairs. In general, the sums in the last two terms on the rh
Eq. ~2.1! are carried out overl>1. This form of the model
Hamiltonian in Eq.~2.1! is quite general and common i
many microscopic approaches to nuclear collective exc
tions. The difference is in the way of defining the singl
particle energyEs , phonon energyvq , and phonon structure
under a specific effective couplingFss8

(q) . In the QPM@9# or
the nuclear field theory~NFT! @22#, e.g., the coupling vertex
Fss8

(q) is a sum of products of the coupling strength and
coupling-matrix elements. The coupling strength contains
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3130 PRC 59NGUYEN DINH DANG, KOSAI TANABE, AND AKITO ARIMA
RPA amplitudes ofph configurations in the collective oscil
lation. The coupling matrix elements can be obtain
through the derivative of the central potential. In the QP
the phonon operatorsQq

† andQq have the fermion structure
being built from the coherentph or quasiparticle pairs. The
form in Eq.~2.1! has been derived rigorously from the QP
Hamiltonian in Ref.@23#. In the simplest case when the two
body term consists of only a separable isovector dipo
dipole interaction, one recovers from Eq.~2.1! the Hamil-
tonian, widely used in the literature to describe the g.s. G
@24#.

We consider the damping of the two-phonon excitation
the result of coupling of two single-phonon excitations, ea
of which is undergoing the damping due to coupling to
coherent nucleon pairs. In order to study this process,
introduce the following double-time Green’s functions whi
describe:

~1! The propagation of two free phonons:

Gq1q2 ;q
18q

28
~ t2t8!5^^Qq1

~ t !Qq2
~ t !;Qq

18
†

~ t8!Qq
28

†
~ t8!&&.

~2.2!

~2! The transition between ‘‘nucleon pair̂ phonon’’ and
two-phonon configurations:

Gss8q;q
18q

28
~ t2t8!5^^as

†~ t !as8~ t !Qq~ t !;Qq
18

†
~ t8!Qq

28
†

~ t8!&&.

~2.3!

In Eqs.~2.2! and~2.3! the standard notation for the retarde
double-time Green’s function is used@25,26#, which means

^^A~ t !;B~ t8!&&52 iu~ t2t8!$^A~ t !B~ t8!&7^B~ t8!A~ t !&%,

~2.4!

for any operatorsA(t) and B(t8) with ^ . . . & denoting the
average over the grand canonical ensemble at temperatuT.
According to the standard method@26#, the equation of mo-
tion for the double-time Green’s function̂̂ A(t);B(t8)&&
with respect to the HamiltonianH can be derived from

i
d

dt
^^A~ t !;B~ t8!&&5d~ t2t8!^@A~ t !,B~ t !#&

1^^@A~ t !,H~ t !#;B~ t8!&&. ~2.5!

The double-time Green’s functions are convenient for ap
cations in statistics as they can be analytically continued
the complex plane. This allows one to derive the damping
the resonance as the imaginary part of the polarization
erator in a straightforward manner, avoiding the ambiguity
estimating the resonance width via the variation of the s
ond moment@21#. In Ref. @20# we have shown that the PDM
contains a large class of graphs, including those of
nuclear field theory~NFT! @22#.

Applying Eq. ~2.5! to function ~2.2! and Hamiltonian
~2.1!, we obtain the following exact equation, which coupl
function ~2.2! to function ~2.3!:
d
,

-

R

s
h
-
e

i-
in
f

p-
n
c-

e

i
d

dt
Gq1q2 ;q

18q
28
~ t2t8!

5d~ t2t8!~11nq1
1nq2

!~dq1q
18
dq2q

28
1dq1q

28
dq

18q2
!

1~vq1
1vq2

!Gq1q2 ;q
18q

28
~ t2t8!

1(
s,s8

@F
ss8

(q1)Gss8q2 ;q
18q

28
~ t2t8!

1F
ss8

(q2)Gss8q1 ;q
18q

28
~ t2t8!#. ~2.6!

In Eq. ~2.6! the phonon occupation numbernq at the phonon
energyvq occurs as a result of averaging over the gra
canonical ensemble

^Qq
†Qq8&5dqq8nq . ~2.7!

The equation for the function~2.3!, that enters in the rhs o
Eq. ~2.6!, is derived from Eq.~2.5! in the same way. The
exact result contains the function~2.3!, as well as the higher-
order Green’s functions in the rhs. These higher-order Gr
functions are

~a! ^^as
†(t)as9(t)Qq8(t)Qq(t);Qq

18
†

(t8)Qq
28

†
(t8)&&,

~b! ^^as
†(t)as9(t)Qq8

† (t)Qq(t);Qq
18

†
(t8)Qq

28
†

(t8)&&,

~c! ^^as
†(t)as8(t)as1

† (t)as
18
(t8);Qq

18
†

(t8)Qq
28

†
(t8)&&.

The hierarchy of the Green’s function would continue u
less a decoupling is introduced to obtain a closed set of eq
tions. The degree of complexity in the configuration mixin
depends, therefore, on the way of truncating the chain
equations. Since several numerical calculations~see, e.g.,
Ref. @10#! have shown that higher-order effects such as c
pling to three-phonon configurations, etc. seem to be ne
gible on the damping of the two-phonon resonance, we w
confine ourselves in this work to the lowest-order couplin
considering only functions~2.2! and~2.3!. Therefore, we ap-
ply the decoupling scheme in Ref.@26# to approximate the
Green’s function~a! as

^^as
†~ t !as9~ t !Qq8~ t !Qq~ t !;Qq

18
†

~ t8!Qq
28

†
~ t8!&&

'dss9nsGq8q;q
18q

28
~ t2t8!, ~2.8!

wherens is the single-particle occupation number

ns5^as
†as&. ~2.9!

The contribution of the Green’s function~b! can be neglected
because it is associated with the so-called scattering-pho
process, which may become important only in the phon
excitation at very low energy. Applying the same decoupli
to the function~c!, we find that the remaining Green’s func
tion is of the type^^as

†(t)as9(t);Qq
18

†
(t8)Qq

28
†

(t8)&&. In Ref.

@19# it has been shown that this type of Green’s function
related to the single-particle damping, whose contribution
the damping of the collective phonon excitation such as
GDR can be omitted in the first order. This allows us
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PRC 59 3131DAMPING OF THE DOUBLE GIANT DIPOLE RESONANCE
neglect also the contribution of function~c! in all further
considerations in the present paper.

Within this approximation scheme the equation for fun
tion ~2.3! can be truncated to the following form:

i
d

dt
Gss8q;q

18q
28
~ t2t8!5~Es82Es1vq!Gss8q;q

18q
28
~ t2t8!

1(
q8

Fs8s
(q8)

~ns2ns8!Gq8q;q
18q

28
~ t2t8!.

~2.10!

Making now the Fourier transform of Eqs.~2.6! and~2.10! to
the energy planeE, we obtain the following set of equations

~E2vq1
2vq2

!Gq1q2 ;q
18q

28
~E!

2 (
s1 ,s18

F
s1s

18

(q1)Gs1s
18q2 ;q

18q
28
~E!

2 (
s1 ,s18

F
s1s

18

(q2)Gs1s
18q1 ;q

18q
28
~E!

5
1

2p
~11nq1

1nq2
!~dq1q

18
dq2q

28
1dq1q

28
dq

18q2
!, ~2.11!

~E2Es81Es2vq!Gss8q;q
18q

28
~E!

2(
q8

Fs8s
(q8)

~ns2ns8!Gq8q;q
18q

28
~E!50. ~2.12!

ExpressingGss8q;q
18q

28
(E) in terms ofGq8q;q

18q
28
(E) using Eq.

~2.12! and inserting the result in Eq.~2.11!, we obtain an
equation forGq8q;q

18q
28
(E). For the propagation of a two

phonon configuration (q1 ,q2)5(q18 ,q28) this equation takes
a simple form as

Gq1q2
~E!5

1

p

11nq1
1nq2

E2vq1
2vq2

2Pq1q2
~E!

, ~2.13!

where the two-phonon polarization operatorPq1q2
(E) has

the form

Pq1q2
~E!5(

s,s8
~ns2ns8!F F

ss8

(q1)
F

s8s

(q1)

E2Es81Es2vq2

1
F

ss8

(q2)
F

s8s

(q2)

E2Es81Es2vq1

G . ~2.14!

In Eqs.~2.11! and~2.14! we omit the indices (q18 ,q28) as they
coincide with (q1 ,q2).

The damping and the energy shift of two-phonon exc
tion are calculated as the imaginary part and real part of
analytic continuation of polarization operatorPq1q2

(E) into

the complex energy planeE5v6 i« (v is real and«→0),
respectively@18–21,26#. The analytical form of the damping
is obtained in this way as
-

-
e

gq1q2
~v!5pU(

s,s8
~ns2ns8!@F

ss8

(q1)
F

s8s

(q1)
d~v2Es81Es2vq2

!

1F
ss8

(q2)
F

s8s

(q2)
d~v2Es81Es2vq1

!#U, ~2.15!

while the energy shift has the form

Pq1q2
~v!5P(

s,s8
~ns2ns8!F F

ss8

(q1)
F

s8s

(q1)

v2Es81Es2vq2

1
F

ss8

(q2)
F

s8s

(q2)

v2Es81Es2vq1

G , ~2.16!

with P denoting the principal value of the correspondi
integral. The excitation energy of the two-phonon state
defined as the solutionv̄ of the equation for the pole of the
Green’s function~2.11!, that is

v̄2~vq1
1vq2

!2Pq1q2
~v̄ !50. ~2.17!

Equations~2.15!–~2.17! are the main equations for the stud
of two-phonon excitations within the present formalism.
the damping of each single-phonon excitation is described
a microscopic model such as the PDM@18–21#, the phonon
occupation numbernq ~single-particle occupation numbe
ns) used in the calculations of the DGDR can be appro
mated by the Bose-Einstein~Fermi-Dirac! distribution at the
phonon energyvq ~single-particle energyEs) and tempera-
ture T @19#. We also notice that the presence of the fac
(ns2ns8) on the rhs of Eqs.~2.15! and~2.16! implies that at
T5 0 only the coupling toph configurations contributes to
the damping of the two-phonon excitation sincenh51 and
np50, while atTÞ0 the coupling topp andhh configura-
tions will become dominant with increasingT. The latter
leads to the sharp increase of the GDR width at lowT and its
saturation at highT. Detailed discussions on this issue a
given in Refs.@19–21#. Thus, this formalism allows a natura
extension to the nonzero temperature case.

We notice that the decoupling scheme in Eq.~2.8! par-
tially includes the Pauli-correction terms in a sense of av
age. These terms consist of the matrix eleme
^0uQq

18
Qq

28
HQq1

† Qq2

† u0& @1#, which become in the present ap

proach

^0uQq
18
Qq

28
HQq1

† Qq2

† u0&

5 (
q,s,s8

Fss8
(q)^0uQq

18
Qq

28
as

†as8~Qq
†1Qq!Qq1

† Qq2

† u0&,

~2.18!

where u0& is the phonon vacuum atT50. Expanding the
nucleon pairas

†as8 in the boson space into series of bos
operators according to the mapping in Ref.@27#, we can see
that the expansion ofap

†ap8 (ah
†ah8) into a sum of tensor

products of twoph bosons yields a zero value of the matr
element~2.18! because of the odd number of boson operat
within the average. The mapping ofah

†ap into the series of
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boson operators leads to three-boson terms in the t
phonon space for the matrix element~2.18! except for the
lowest-order term. The latter is taken into account by
function ~2.3! within the decoupling~2.8!. In general, it is
known that the Pauli-correction terms may cause a shif
relative order;A22/3 from the harmonic estimate of th
two-phonon energy @28#, which amounts to only
;0.03–0.05 MeV for 90<A<208. The recent study by
Bertsch and Feldmeier in Ref.@29# using the variational ap
proach to anharmonic collective motion has found an e
smaller shift of order;A24/3 of the second phonon energ
for all three modes: monopole, dipole, and quadrupole.

B. Double giant dipole resonance

The DGDR can be considered as a special case of
general formalism in the previous Sec. II A, namely wh
the two single-phonon excitations coincideq15q25q. Their
unperturbed energies are denoted, in this case, as

vq1
5vq2

5vq , ~2.19!

where the indexq denotes the collective one-phonon sta
with multipolarity and paritylp512 and energyvq ~the
unperturbed giant dipole oscillation!. From Eqs. ~2.13!–
~2.17! we easily obtain the equations for the DGD
Namely, for the propagation of DGDR we have

Gqq~E!5
1

p

112nq

E22vq2Pqq~E!
~2.20!

with the polarization operator

Pqq~E!52(
s,s8

~ns2ns8!
Fss8

(q)Fs8s
(q)

E2Es81Es2vq

. ~2.21!

The damping and the energy shift of the DGDR are, resp
tively,

gqq~v!52pU(
s,s8

~ns2ns8!Fss8
(q)Fs8s

(q)d~v2Es81Es2vq!U,
~2.22!

Pqq~v!52P(
s,s8

~ns2ns8!
Fss8

(q)Fs8s
(q)

v2Es81Es2vq

. ~2.23!

The full width at the half maximum~FWHM! of the DGDR
is defined as twice the damping in Eq.~2.22! at the DGDR
energyvDGDR, namely

GDGDR52gqq~vDGDR!. ~2.24!

The energyvDGDR of the DGDR is the solution of the equa
tion

vDGDR22vq2Pqq~vDGDR!50. ~2.25!

If we now recall that the energyvGDR of the GDR is defined
in the simplest version, the PDM-1@18,19# by the equation

vGDR2vq2Pq~vGDR!50 ~2.26!
o-

e

f

n

he

c-

with

Pq~v!5P(
s,s8

~ns2ns8!
Fss8

(q)Fs8s
(q)

v2Es81Es

, ~2.27!

we can derive the shift of the DGDR energyvDGDR from its
harmonic value 2vGDR making use of Eqs.~2.25! and~2.26!
as

vDGDR22vGDR5Pqq~vDGDR!22Pq~vGDR!. ~2.28!

Using Eqs.~2.22! and ~2.24! for the DGDR width and the
expression for the GDR width from Refs.@18,19#, we obtain
the ratio

GDGDR

GGDR
52

(
ss8

~ns2ns8!Fss8
(q)Fs8s

(q)d~vDGDR2vq2Es81Es!

(
ss8

~ns2ns8!Fss8
(q)Fs8s

(q)d~vGDR2Es81Es!

.

~2.29!

It can be seen from Eq.~2.29! that in the harmonic limit,
whenuPqq(vDGDR)u!vDGDR anduPq(vGDR)u!vGDR so that
vDGDR.2vq andvGDR.vq , the ratio~2.29! becomes just 2
and the shift in Eq.~2.28! vanishes. In general, employin
the d-function representationd(x)5«@p(x21«2)#21, we
see that many components under the sums on the rhs o
~2.29! satisfy the inequality

1

@vDGDR2vq2~Es82Es!#
2

,
1

@vGDR2~Es82Es!#
2

,

~2.30!

since an inequalityvq.Es82Es always holds for the case
with (s,s8)5(p,h) andvq located close to the energy of th
GDR. Thus, we have

GDGDR,2GGDR, ~2.31!

which has been actually observed in the experiments.
Similarly to the strength functionSq(v) of the GDR de-

rived in Ref.@20#, the strength functionSqq(v) of the DGDR
is derived from Eq.~2.20! as

Sqq~v!5
1

p

gqq~v!~112nGDR!

~v2vDGDR!21@gqq~v!#2
, ~2.32!

wherenGDR denotes the phonon occupation numbernq de-
fined at energyvq5vGDR.

Since two virtual photons are absorbed to excite
DGDR through the Coulomb excitation process, those virt
photons are replaced by the equivalent real photons when
apply the Weizsa¨cker-Williams method@30#. According to
this method, the Coulomb excitation cross sectionsC is re-
lated to the equivalent photon numbernlp and the photoab-

sorption cross sectionsg
(lp)(v) as

sC5(
l
E nlp

v
sg

(lp)~v!dv. ~2.33!
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The photoabsorption cross sectionsg
(lp)(v)[sqq(v) for the

DGDR in Eq. ~2.33! can be formally defined from the
strength function~2.32! as

sqq~v!}Sqq~v!gqq~v!
v

vDGDR
. ~2.34!

Therefore, we have some hope to infer the possible chang
the electromagnetic cross section from the change in the
toabsorption cross section of the DGDR due to anharmo
effect. While this may reveal the source of the change in
electromagnetic cross section, there still remains a ques
on how to measure this photoabsorption cross section for
DGDR.

The EWSS and non-EWSS are calculated from thekth
moment

mk
( i )5E

E1

E2
Sj~v!vkdv, ~2.35!

where the notation (i 51, j 5q) corresponds to the GDR
case, while (i 52, j 5qq) is reserved for the DGDR. The
calculated values of the moments should be compared
the sum-rule constraints discussed in Ref.@13#.

III. NUMERICAL RESULTS

In this section we present the results of the calculation
various DGDR characteristics such as energy, FWH
strength function, photoabsorption cross section, EWSS
non-EWSS, whose expressions have been derived in
II B. The calculations are performed for three nuclei90Zr,
120Sn, and208Pb at zero and nonzero temperatures. In or
to determine the GDR, we employ the same scenario, wh
has been successfully used in the description of the hot G
within the PDM-1 @18,19#. The latter is much simpler tha
the PDM-2 where the coupling to more complicated config
rations is explicitly included@20,21#. In this scenario, we
assume that a fully microscopic description of the struct
of the ground-state GDR and its spreading widthG↓ would
not be important in the present consideration. In fact suc
description can be found in a number of works such as R
@9,22#. Various microscopic calculations and experimen
data have shown that the GDR can be considered a
strongly collective one-phonon excitation. Therefore, in
der to have a simple and clear picture, we assume that
ground-state GDR is generated by a single collective
structureless phonon with energyvq close to the centroid
energyvGDR of the ground-state GDR. We employ realist
single-particle energies, calculated in the Woods-Saxon
in
o-
ic
e
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he

th

f
,

nd
ec.
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h
R
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e
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s.
l
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-
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tentials atT50 for the nuclei under consideration. In th
PDM-1 reasonable agreement between theory and data
been achieved via coupling of GDR phonon to allph, pp,
andhh configurations. The phonon energyvq and the matrix
elements of the coupling toph and pp or hh Fph

(q)5F1 for
(s,s8)5(p,h), and Fpp

(q)5Fhh
(q)5F2 for (s,s8)5(p,p8) or

(h,h8) are introduced as parameters. Even though
higher-order graphs were not included explicitly in the equ
tions within the PDM-1, this procedure implies that they a
incorporated effectively in the parametersF1 and F2. The
energyvq and the parametersF1 and F2 for the couplings
have been chosen so that the experimental width and en
of the GDR atT50 are reproduced, and that the GDR e
ergy does not vary with changingT ~see the details in Ref
@19#!. Since these values are independent of temperature
the thermal effects exclusively come from the microsco
configuration mixing. The parameters employed in t
present calculations of the DGDR are the same as those
fined within the PDM-1 and presented in Table I of Re
@19#. The calculations have also used a value of 0.5 MeV
the smearing parameter« in thed function. It has been con
firmed that the results are stable against the variation o«
within the interval 0.2 MeV<«<1.0 MeV.

A. Results at zero temperature

The calculated widths and energies of the DGDR in90Zr,
120Sn, and208Pb are compared with the corresponding v
ues of the GDR and those in the harmonic picture in Tab
I and II. In Table II the experimental ratios for the width
and energies of DGDR and GDR are also shown.

The energy of the DGDRvDGDR[E2 is found to be
shifted down by 0.7 MeV in90Zr and up by 0.2 MeV in
208Pb as compared to their harmonic values of 2vGDR
[2E1. In the case of120Sn the DGDR energy is found to b
just twice as large compared to the GDR energy. The wid
GDGDR (G2 in the tables! of the DGDR in 90Zr and 208Pb are
found to be in betweenA2GGDR and 2GGDR (GGDR5G1 in
the tables!. In 120Sn the DGDR widthGDGDR is even smaller
thanA2GGDR. These values agree well with the experime
tal ones within the error bars~Table II!. In general, the

TABLE I. Widths and energies~in MeV! of the GDR and
DGDR. The subscript 1 denotes the GDR, while 2 stands
DGDR.

G2 E2 G1 E1 2G1 A2G1 2E1

90Zr 6.49 32.2 4.2 16.3 8.4 5.94 32.9
120Sn 6.05 30.8 4.8 15.4 9.6 6.79 30.8
208Pb 7.95 27.6 4.0 13.7 8.0 5.66 27.4
e as
TABLE II. Ratios of widths and of energies of the GDR and DGDR. The notation is the sam
in Table I.

G2 /(2G1) G2 /(A2G1) G2 /G1 G2 /G1
(exp) E2 /(2E1) E2 /E1 E2 /E1

(exp)

90Zr 0.77 1.09 1.55 1.760.25 @1# 0.98 1.98 1.960.5 @1#
120Sn 0.63 0.89 1.26 1.760.7 @1# 1.00 2.00 2.0560.5 @1#
208Pb 0.99 1.40 1.99 3.061.25 @4# 1.01 2.02 1.8760.1 @4#
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DGDR energy is quite well reproduced by the independ
phonon picture in all three nuclei. Regarding the width, o
can see that the DGDR in208Pb seems to behave like a qui
good superposition of two noninteracting GDRs, while t
deviation from the harmonic limit for the width of th
DGDR in 90Zr and 120Sn is more noticeable. The differenc
between the behavior of the DGDR in double-magic nuc
and the one in open-shell nuclei has been also pointed
recently in the microscopic calculations by Lanzaet al. @11#.
We notice that since the DGDR is composed of a GDR b
on another GDR, the degree of collectivity of the GD
which shows how close the vibration is to the harmonic
cillation, will certainly imply the degree of harmonicity in

FIG. 1. Strength functions of the GDR and DGDR. In ea
panel the dashed curve is the strength function of the GDR.
solid curve represents the strength function of the DGDR. T
dash-dotted curve corresponds to the harmonic limit of the stre
function of the DGDR.
t
e

i
ut

lt
,
-

the DGDR. As a matter of fact the GDR in208Pb is very
collective with a rather small widthGGDR.4 MeV. Conse-
quently, the anharmonicity in the DGDR in208Pb is minimal
as can be expected. The anharmonic effect on the GDR
120Sn is the strongest among three nuclei giving the larg
width GGDR.4.8 MeV of the GDR. Therefore the DGDR
width GDGDR56.05 MeV in this nucleus also deviate
strongly from its harmonic value of 2GGDR59.6 MeV.

The calculated strength functions of the GDR and DGD
are shown in Fig. 1. The harmonic limit of the DGDR sha
is obtained by replacingvDGDR and gqq(v) in Eq. ~2.32!
with two times of the corresponding values for the GDR, i.
with 2vGDR and 2gq(v), respectively. A noticeable differ
ence between the shape of the DGDR and its harmonic l
is seen in 90Zr and 120Sn, in particular in 120Sn. For the
DGDR in 208Pb the difference is much less. It is important
notice that neither the GDR strength functionSq(v) @20,21#
nor the DGDR strength functionSqq(v) in Eq. ~2.32! is
given as a single Breit-Wigner curve. In fact they are co
posed of many Breit-Wigner shapes because of
v-dependent dampinggq(v) in the GDR or gqq(v) in
DGDR. Therefore, the DGDR energyvGDR defined as the
solution of Eq.~2.25! can be assigned to the DGDR centro
energy, but not to its maximum peak. Only in the case wh
the strength function can be well approximated by a sin
Breit-Wigner curve as in the GDR, the energy centroid m
coincide with the position of the maximum peak of the res
nance. This explains why the shift between the maxim
peaks of the solid and dash-dotted lines in Fig. 1 is sligh
larger than the difference between the~centroid! energy of
the GDR and its corresponding value in the harmonic lim
shown in Table II.

In Ref. @13#, Kurasawa and Suzuki have derived the re
tion

s1[
m1

(2)

4m0
(1)m1

(1)
51, ~3.1!

and by puttingvDGDR52vGDR, they obtained

s0[
m0

(2)

2@m0
(1)#2

51 ~3.2!

as a sum-rule constraint on the strength of the DGDR.
order to see how these relations are fulfilled, we collect
Table III the values of the corresponding moments obtain
after integrating over 0<v<60 MeV. The results in Table
III show that the closest values to the relation~3.1! can be

e
e
th
TABLE III. Values of zero~non-EWSS! and first~EWSS! moments of the GDR and DGDR within 0
<v<60 MeV. The superscript~1! corresponds to GDR,~2! to DGDR. The notation~har! indicates the value
calculated in the harmonic limit.

m0
(1) m1

(1) m0
(2) m1

(2) m0
(2)(har) m1

(2)(har) 4m0
(1)m1

(1) 2@m0
(1)#2

90Zr 0.94 15.81 1.76 57.41 1.73 53.64 59.45 1.76
120Sn 0.83 13.66 1.84 57.93 1.63 48.24 45.51 1.39
208Pb 0.84 12.26 1.66 47.44 1.62 42.94 41.20 1.41
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obtained only in the harmonic picture, i.e., withm1
(2)(har),

where we haves150.9, 1.06, and 1.04,s050.98, 1.17, and
1.15 for 90Zr, 120Sn, and 208Pb, respectively. Otherwis
these ratios can reach as much ass151.27 ands051.32 in
120Sn. Since the non-EWSSm0

(1)5^0uD2u0& with the dipole
operator D entering in Eqs.~3.1! and ~3.2! is model-
dependent~e.g., it is fulfilled within the Tamm-Dancoff ap
proximation but violated within the RPA!, the deviation from
relations~3.1! and~3.2! should depend on how anharmoni
ity is included as has been seen here.

The anharmonic effect on the behavior of the DGDR
best seen in the calculated photoabsorption cross sec
shown in Fig. 2. Even though the resonance peak is sti
the same place as compared to the harmonic limit~dash-
dotted curves!, a substantial amount of strength is redistr
uted toward the high-energy wing. As a result the values
the integrated photoabsorption cross section~IPACS! within
the energy interval 22 MeV<v<60 MeV are found to be
enhanced by 46%, 22%, and 8% for the DGDR in90Zr,
120Sn, and 208Pb, respectively~Table IV!. These results
show that the anharmonic effect, mostly seen in the re
nance width as it is due to coupling of phonons to incoher
nucleon pairs, indeed leads to a noticeable enhanceme
the photoabsorption cross section of the DGDR as comp
to its value in the harmonic picture. Since the photoabso
tion cross section is related to the cross section of elec

FIG. 2. Photoabsorption cross sections of the DGDR. The n
tion is the same as in Fig. 1.
ns
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magnetic excitations via Eq.~2.33!, the obtained results
should contribute ultimately to the enhancement of the cr
section in the Coulomb excitation.

B. Results at nonzero temperature

The strength functionsSqq(v) from Eq. ~2.32! of the
DGDR in three nuclei are plotted in Fig. 3 at several te
peratures. Since the DGDR dampinggqq(v) from Eq.~2.22!
contains the same factorns2ns8 as the GDR damping in
Refs.@18,19#, one expects the same temperature depende
of the DGDR width as compared to the GDR width. This
due to the fact that the valueunh2npu, related to the quanta
width GQ , always decreases from 1 atT50 with increasing
T, while unp2np8u (unp2np8u), related to the thermal width
GT , increases from 0 atT50 asT increases to some inter
mediate value, but decreases later on asT increases to very

a-

TABLE IV. Integrated photoabsorption cross sectionss2 ~in
MeV! for the DGDR within 22 MeV<v<60 MeV.

s2 s2(har) s2 /s2(har) Enhancement

90Zr 7.09 4.87 1.46 46%
120Sn 7.77 6.39 1.22 22%
208Pb 5.23 4.84 1.08 8%

FIG. 3. Strength functions of the DGDR at various tempe
tures.
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3136 PRC 59NGUYEN DINH DANG, KOSAI TANABE, AND AKITO ARIMA
high values. The region where the factorsunp2np8u and
unh2nh8u are around their maximum values corresponds
the region of the width saturation, which has been exp
mentally observed for the GDR in hot nuclei@16,17#. It can
be seen in Fig. 3 that, with the resonance energy loca
almost at the same place, the width of the DGDR also
creases sharply asT increases from 0 up toT.3 MeV. At
T>3 MeV the shape of the DGDR obviously reaches a sa
ration.

The total widthGGDR of the DGDR in three nuclei are
plotted as a function of temperature in Fig. 4. The satura
values ofGGDR are around 21, 24, and 22.5 MeV for90Zr,
120Sn, and208Pb, respectively. Since the quantal widthGQ is
due to the anharmonic coupling of the resonance phonon
1p1h configurations, the decrease of the quantal width w
increasingT signals the decrease of anharmonicity. Inde
as shown in Fig. 5, where the ratioGDGDR/GGDR is plotted as
a function of T, the harmonic limit (GDGDR/GGDR)har52
seems to be satisfactorily restored atT>1.5 MeV in 90Zr
and 120Sn, while the DGDR width in208Pb remains always
equal to 2GGDR at all temperatures. The restoration of ha
monicity in the DGDR atTÞ0 found in the present study i
of paramount importance. The pure harmonic double-pho
behavior of the DGDR in hot nuclei confirms the existen
of its building block ~the hot GDR!, where the quantal ef
fects are mostly washed out. It has been shown within
PDM @20,21# that the GDR persists up to rather high tem
peratureT;6 MeV in agreement with the Brink hypothes
@31#. There is however another interpretation of the satu
tion of the width of the hot GDR that is related to the disa
pearance of the GDR at high temperature due to its exc
ingly large width @32,33#. Therefore, an experimenta
observation of the DGDR in hot nuclei predicted in t
present work would be decisive to confirm the existence

FIG. 5. The ratio between the DGDR and GDR widths as
function of temperatures.

FIG. 4. Width of the DGDR as a function of temperature.
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the GDR at high temperatures and to give the final solut
to this puzzle.

The sharp increase of the DGDR width at lowT and its
saturation at highT shown in Figs. 3 and 4 lead to a sha
increase and saturation of the photoabsorption cross se
in the DGDR region as shown in Fig. 6. Accordingly, th
values2 of the IPACS within the DGDR region between 2
MeV and 60 MeV also increases and saturates with incre
ing temperature. As a result, the enhancement of the IPA
s2(T) as compared to its harmonic values2

har at T50 in-
creases withT and saturates at highT. In Fig. 7 the ratio

a
FIG. 7. The ratio between the values2(T) of the integrated

photoabsorption cross section of DGDR and its harmonic va
s2

har(T50) as a function of temperatureT.

FIG. 6. Photoabsorption cross sections of the DGDR at sev
temperatures. The values of temperature are given in MeV.
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s2(T)/s2
har(0) is plotted as a function of temperature. A

ready atT51 MeV an enhancement factor of around 1.8 f
90Zr, 1.5 for 120Sn, and 1.3 for208Pb is seen for the IPACS
of DGDR as compared to its harmonic value atT50. Thus,
the present analysis indicates a possibility that the enha
ment of DGDR excitation cross section can be brought ab
if the DGDR is built on the hot GDR.

IV. CONCLUSIONS

We have proposed a simple yet microscopic approac
the DGDR. The present approach is based on the PD
which has been successfully developed and applied to
scribe the damping of the hot GDR@18–21#. This approach
allows the inclusion of the coupling of collective phono
generating the GDRs to the field of incoherent nucleon pa
The natural extension to nonzero temperature is attained
making use of the double-time Green’s function method
closed set of coupled equations for the damping of
DGDR has been obtained and the analytical expressions
the width and energy shift of the DGDR have been deriv
Using the same set of parameters previously selected fo
description of the hot GDR, we have extensively applied t
approach to calculate the width, energy, and strength fu
tion of the DGDR at zero as well as nonzero temperature
90Zr, 120Sn, and208Pb. The results of the numerical analys
allow us to draw the following conclusions.

~i! The anharmonic effect on the energy of the DGDR
rather small, which does not exceed 2% as compared t
value in the harmonic limit. The anharmonic effect on t
width is more noticeable, confirming its quantal nature d
to coupling of harmonic phonon oscillation toph configura-
tions atT50. The effect is stronger in open shell nuclei su
as 120Sn, while it is rather small in double-magic nucl
such as208Pb. In 90Zr, and 208Pb the DGDR width is in
a range betweenA2GGDR and 2GGDR, while in 120Sn it is
even smaller thanA2GGDR with GGDR being the GDR width.
The results of calculations are found in reasonable agreem
with the experimental systematic for the width and energy
the DGDR in the region of mass number under consid
ation.

~ii ! The anharmonic effect shows up more clearly in t
.
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DGDR strength function and, in particular, in the photoa
sorption cross section. The IPACS within the energy inter
from a value above the IVGQR~22 MeV! to 60 MeV is
found enhanced by 46% in90Zr, 22% in 120Sn, and 8% in
208Pb as compared to the value in the harmonic limit. In o
opinion this enhancement is directly related to the exp
mentally observed enhancement in the electromagnetic e
tation cross section as compared to the theoretical est
tions within the independent phonon picture.

~iii ! At TÞ0 the coupling topp andhh configurations is
open, which leads to a sharp increase of the DGDR width
low temperature and its saturation atT.3 MeV. The satu-
rated values of the DGDR width are found to be around
MeV in 90Zr, 24 MeV in 120Sn, and 22.5 MeV in208Pb at
T;5 MeV. The DGDR shape changes drastically at lowT
but almost ceases to change atT>3 MeV. We have also
found that the harmonicity in the DGDR width is restored
open shell nuclei starting fromT>1.5 MeV due to the de-
crease of the quantal effect with increasingT. An experimen-
tal observation of the DGDR in hot nuclei is highly desirab
to confirm the persistence of the GDR itself at high tempe
tures on the one hand, and the additional mechanism for
enhancement in the excitation cross section of the~hot!
DGDR on the other hand.

In order to maintain the transparency of the argument
lizing our simple model, we have neglected in the pres
study a number of corrections such as the effect of high
order graphs~e.g., three-phonon graphs!, including the
higher-order of boson operators in the boson mapping of
Pauli-correction graphs, coupling to continuum, etc. We a
left out entirely the nonlinearity of the external field. Th
latter has been shown to be important to increase the i
grated electromagnetic excitation cross section in the DG
region@11,12#. It is our hope that inclusion of these effects
our approach will receive due attention in forthcoming stu
ies.
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