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A microscopic approach is proposed to the damping of the double giant dipole resoi@ER).
The double-time Green’s function method is used to derive a closed set of coupled equations for the
propagation of two-phonon excitation through the field of incoherent nucleon pairs. The analytical express-
ions for the width and energy shift of the DGDR are obtained. The numerical calculations are performed
for %9zr, %9sn, and?%®%b for several characteristics of the DGDR at zero as well as nonzero tempefatures
The results are found in reasonable agreement with existing experimental systematics for the width and energy
of the DGDR. As compared to the estimation within the harmonic picture, the anharmonicity leads to a
noticeable enhancement of the integrated photoabsorption cross d¢e#@) over the DGDR region. The
DGDR width is found to increase sharply with increasiicgat T<3 MeV, but goes to a saturation &t
>3 MeV. The harmonic limit for the DGDR width is restored alreadyTat1.5 MeV. It is shown that the
IPACS of the DGDR can also be enhanced compared to its harmonic value if it is built on a hot GDR.
[S0556-28189)03706-1

PACS numbeps): 24.30.Cz, 24.10.Pa, 25.75q

I. INTRODUCTION large compared to the giant dipole resonanDR):
Ebcpr=2Ecpr, i-€., well described by the harmonic pic-
The study of multiphonon excitations in nuclei has at-ture.

tracted considerable interest during the past ygats An (i) The observed widtH pgpgr Of the DGDR is in be-
unambiguous signature of the double giant dipole resonandeveen \2I'gpg and X' gpr, Wherel' gpr is the GDR width.
(DGDR) has been obtained in pion-induced charge exchange (iii) The magnitude of the measured total electromagnetic
reactions[2] and relativistic heavy-ion reactions via Cou- excitation cross section is found to be enhanced up to more
lomb excitation[3,4]. Since a giant resonance is a collectivethan three times as large compared to the harmonic limit
excitation, which can be well described by the first oscillatordepending on nuclei.
guantum(phonor), a multiphonon excitation can be inter- The experimental systematic indicates that the anhar-
preted as a giant resonance built on top of other giant resanonic effect and the interphonon interaction may play a role
nances. This leads to the harmonic picture, in which a mulin the deviation of the DGDR from its harmonic description.
tiphonon excitation is considered as composed ofSince the anharmonicity comes from the microscopic mecha-
independent phonons. In the harmonic limit the energy of aism of the excitations and their mutual coupling, the anhar-
multiphonon state is just the sum of energies of the constimonic effect must be studied based on a microscopic frame-
tuting single-phonoriboson) states. According to the golden work. Several microscopic studies have been undertaken in
rule, the width of the multiphonon resonance is also the sunthis direction and important results have been obtained.
of the individual widths of single-phonon resonances. Thisis In a microscopic model explicitly treatingp2h excita-
valid when the spreading width of a single-phonon resonancéons, Nishizaki and Wambach performed calculations for
is relatively small as compared to the energy range within*®Ca and?°%b[7,8]. Their results for’®®b[8] show only a
which the level density and the coupling matrix elements carsmall anharmonicity. The DGDR energy is smaller than
be considered approximately constBi. The decay of a twice the GDR energy by only few hundred keV for both O
single-phonon resonance can then be associated with and 2" components of the DGDR. The Landau damping is
Lorentzian distribution[6]. In the strong coupling limit, larger than that of the GDR by a factor of 1.12 — 1.17. The
where the shape of the single-phonon resonance approachgsreading and escape widths are not treated in this approach.
the Gaussian distribution, the width of the multiphonon reso-Similar conclusions have been drawn f§€a[7]. For 2°%b
nance is the quadratic sufmather than the sumof the the excitation cross section of the GDR and DGDR have

widths of single-phonon resonandés6]. been estimated for three choices of the minimum impact pa-
In reality the main features of the observed DGDR can bgameter. The authors found that none of these choices can
summarized as follows. explain the measured cross sections simultaneously and

(i) The energyEpgpr Of the DGDR is about twice as hence the discrepancy between measured cross sections and
theoretical estimates remains.
Using the quasiparticle-phonon mod€PM) by Solov-
*On leave of absence from the Institute of Nuclear Sciencdev [9], Ponomareet al. [10] took into account the mixing
and Technique, VAEC, Hanoi, Vietnam. Electronic address:between multiphonon configurations. Despite the complexity
dang@rikaxp.riken.go.jp of mixing a huge number of configurations up to three-
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phonon states, the numerical results are found to be verglaborate calculations. Meanwhile, in order to have further
close to the predictions by the harmonic picture. The strengtinsight into the mechanism of the DGDR, in our opinion, a
distributions of 0" and 2" components of the DGDR look simple theoretical approach based on the well-established
almost identical. knowledge of the GDR might be useful. The proposal of
Going beyond the random-phase approximati®®A),  such an approach is the main goal of the present paper. For
Lanzaet al.[11] studied the anharmonicity in the DGDR by this purpose we will make use of the phonon damping model
mixing two-phonon states among themselves and with onePDM), which has been proposed recently and applied quite
phonon states. They used a boson mapping technique to isuccessfully to describe the behavior of the hot GDR in Refs.
troduce nonlinear terms in the external field. These nonlinedrl8—21]. The method of double-time Green's functions em-
terms give the possibility for a direct connection between theployed in this approach will allow one to make a natural
ground state and two-phonon states. Due to the constructivextension to the nonzero temperature.
interplay of both anharmonicity in configuration mixing and  The present paper is organized as follows. In Sec. Il the
nonlinearity in the external field, the results of their calcula-formalism of the approach is derived. Section Il is devoted
tions for Coulomb excitation show an enhancement in thdo the analysis and discussion of numerical results. The paper
cross section in the DGDR region by 10% fé¥Pb and is summarized in Sec. IV, where conclusions are provided.
20% for 4%Ca. Summing up all the contributions coming
from the various states in the vicinity of the DGDR and
above the isovector giant quadrupole resonativ&QR)
(E>22 MeV), their calculated cross section for thetHeb A. General

reaction at a high incident energy 641 MeV/nucleon became 1o ppM has been proposed and discussed in detail in
310 mb, which is fairly close to the experimental value of Refs. [18—21]. Extending the PDM to the study of the

380?40 mb. In re(ient calqulqtior[&%],r\]/vhich inc“f?.e? both 0 DGDR in the present paper, we hope to be able to explore
Coulomb and nuclear excitations of the external field, a 25%ye nossible limit of the applicability and the capability of a

enhancement OI, the ggoss segti_on of the_ DGDR_has beeﬁ\odel, which has been demonstrated to be effective in de-
reported for the?’®Pb+ 2%Pb collision at an intermediate en- scribing the behavior of the GDR in hot nuclei.
ergy of 50 MeV/nucleon. We use the Hamiltonian of the PDM for the description of

An alternative approach to the theoretical StUdY 9f thethe coupling of collective oscillationghonons$ to the field
DGDR has been proposed by Kurasawa and SuAB{ivia o incoherent nucleon pairil8—21. This Hamiltonian is
studying the sum rules of the DGDR excited by a tWO'Stepcomposed of three terms:
dipole process. By setting the DGDR energy to be exactly
twice as large compared to the GDR enefgg., the har-
monic limit for the DGDR energy the authors derived a H=2 Ealas+> qu;Qq+ > ngs?alas,(QngQq)_
constraint for the sum rule of the DGDR, according to which s a ss'.d @2.1)

the non-energy weighted sum of strengthen-EWS$ m{?)

. 1 2

o the(lPSDR 's related tomg) for th? GDR by mg) . The first term on the right-hand sidehs) of Eq. (2.1 is the

:2[_m0 J°. They also showed that the W'd_th of the DGDR is field of independent single particles, Wheﬂté and a5 are

\2 times that of the GDR. However, taking account of thegreation and destruction operators of a particle or hole state

full Hamiltonian including the terms, which contain the sum i, energyE.= e.— er . The energy, is the single-particle

of products of twopp (hh) pa_urs(the scattering terp Dinh energy andeg the Fermi energy. We will call the enerdp,

Danget al.[14] have shown in a schematic model that therey,o gingle-particle energy whenever there is no confusion

is a possibility of the enhancement of the sum of strength o ith e,. The second term stands for the phonon field as the

the DGDR. as compared to the harmpnic limit, because th eld o?‘ harmonic oscillators, Wher@g andQ, are the cre-

e o E¥faon and cesnucton operatrs of  phoncn wih enagy

Finally, it has been pr,oposed in Ré1] that another way The last term describes the coupling between the first two

' terms. The indices and s’ denote particle §, E,>0) or

to compute the anharmonicity is to consider a DGDR built . . :
on a hot rather than a ground-state GDR. Since experimer“Ole (h, E,<0), while the indexg is reserved for the pho

[15-17 and theory[18—21] have shown that the thermal non stateq:{)\,i}_ with r_nultip_olarity)\ (j[he projection,u of
effect indeed leads to a sharp increase of the GDR width in the phonon index is om|tte(_JI for S|mpl|c)tyHenge, the
low temperaturesT<3 MeV) and a saturation of this width tsvséetﬁr?]eon ﬁgﬁoﬁg&jEgnzalﬁndgggage Couglr:r&gh Ee'
at high temperaturest¢>3 MeV), this behavior should cer- P P » PP,

tainly affect the DGDR. However, numerical estimation of pairs. In general,_the sums in the Ias'g two terms on the rhs of
the thermal effect on the DGDR is still absent so far. Eqg. (2.2) are carried out ovex=1. This form of the model

A general conclusion from these results can be drawn tha'flamIItonIan in Eq.(2.1) is quite general and common in

the anharmonic effects, being small in average parameters f;any microspopic appro_aches to nuclear_c.ollective _excita-
the DGDR such as the width and the energy, may result in jons. The difference is in the way of defining the single-
noticeable change in other characteristics such as the exciti‘;)\-artICIe energ.)!.Es, phoqon e”e"%y’%)a”d phonon sfructure
tion cross section. Except for the harmonic picture where th&nder a specific effective couplirfgsg . In the QPM[9] or
width and energy of the multiphonon resonance can be déhe nuclear field theoryNFT) [22], e.g., the coupling vertex
rived analytically, all the results for these parameters of thé s is @ sum of products of the coupling strength and the
DGDR have been provided so far through rather heavy andoupling-matrix elements. The coupling strength contains the

Il. FORMALISM
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RPA amplitudes oph configurations in the collective oscil- d

lation. The coupling matrix elements can be obtained i5:Gq,q,;q/q;(t—t")
R A dt —9192:949

through the derivative of the central potential. In the QPM,

thg phonpn operatong andQq have the_ fermion st_ructure, =46(t—t')(1+ Vg, T qu)(5q1q£5qzq§+ 5‘11‘455‘41‘42)
being built from the coheremih or quasiparticle pairs. The

form in Eq.(2.1) has been derived rigorously from the QPM +(wq, 1 @q,)Gq,q,:q;q,(t—t")

Hamiltonian in Ref[23]. In the simplest case when the two-

body term consists of only a separable isovector dipole- > [F(ql)g (=t

dipole interaction, one recovers from E@®.1) the Hamil- S 55023010

tonian, widely used in the literature to describe the g.s. GDR @)
[24]. +F P Gssqyqay(t—t)]. (2.6
We consider the damping of the two-phonon excitation as

the result of coupling of two single-phonon excitations, eachp, Eq. (2.6) the phonon occupation numbe at the phonon

of which is undergoing the damping due to coupling t0 in-energy w, occurs as a result of averaging over the grand
coherent nucleon pairs. In order to study this process, Weanonical ensemble

introduce the following double-time Green'’s functions which

describe: QlQy )= 84q Vg 2.7
(1) The propagation of two free phonons: {QuQa)=24q7q

The equation for the functiof®.3), that enters in the rhs of
D (t—tr) = AT AT 4 Eq. (2.6), is derived from Eq.2.5 in the same way. The
Cayapiajay(t— 1) ((qu(t)qu(t),qu(t )Qqé(t - exact result contains the functig®.3), as well as the higher-
(2.2 order Green'’s functions in the rhs. These higher-order Green
functions are

(2) The transition between “nucleon pair phonon” and

two-phonon configurations: @ ((a;r(t)asn(t)Qq/(t)Qq(t);Q;i(t’)Q;é(t’)»,

L (b) ((al(t)aw (1) Qg (1) Qa(t): Qq () Qq: (1)),

Gesaiajay(t=1) =((@s(as (DQq(1); Qg (1) Qgy(t')))- (© ((al(hag (D (Dag(t'); QL () QY ().
(2.3 ! ?

The hierarchy of the Green’s function would continue un-

In Egs. (2.2 and(2.3) the standard notation for the retarded €SS & decoupling is introduced to obtain a closed set of equa-
double-time Green’s function is usg@5,26, which means tions. The degree of complexity in the configuration mixing
depends, therefore, on the way of truncating the chain of

] equations. Since several numerical calculatigsse, e.g.,
((A(1);B(t")))=—i6(t—t"){(A(B(t"))+(B(t")A(1))}, Ref.[10]) have shown that higher-order effects such as cou-
(2.4  pling to three-phonon configurations, etc. seem to be negli-
gible on the damping of the two-phonon resonance, we will
for any operatorsA(t) and B(t’) with {...) denoting the confine ourselves in this work to the lowest-order coupling,
average over the grand canonical ensemble at tempef&ture considering only functiong2.2) and(2.3). Therefore, we ap-
According to the standard meth@6], the equation of mo- ply the decoupling scheme in R¢R6] to approximate the
tion for the double-time Green's functioA(t);B(t")))  Green’s function@ as
with respect to the HamiltoniaH can be derived from

((al(Dag(1)Qq (N Qq(1): Qg (1) Qg (1))
d
i&((Nt);B(t')»:5(t—t')<[A(t),B(t)]> ~ 659NsGqrgq)qy(t—t"), 28
+(([A(t),H(t)];B(t"))). (2.5  wherengis the single-particle occupation number

_/at
. . . . ns=(asas). 2.9
The double-time Green’s functions are convenient for appli- s=(3:39) 29
cations in statistics as they can be analyt_|cally contlnqed INrhe contribution of the Green's functidh) can be neglected
the complex plane. Th|§ allows one to derive the dampmg Obecause it is associated with the so-called scattering-phonon

. : - =" “Mprocess, which may become important only in the phonon
erator in a straightforward mannef, av0|d|ng_th_e ambiguity Nexcitation at very low energy. Applying the same decoupling
estimating the resonance width via the variation of the secg, 4o function(c), we find that the remaining Green’s func-
ond momen{21]. In Ref.[20] we have shown that the PDM . . + I N
contains a large class of graphs, including those of thdlon 1 of the type((as(t)asn(t),qu(t )qu(t ))). In Ref.
nuclear field theon(NFT) [22]. [19] it has been shown that this type of Green'’s function is

Applying Eqg. (2.5 to function (2.2 and Hamiltonian related to the single-particle damping, whose contribution to
(2.1), we obtain the following exact equation, which couplesthe damping of the collective phonon excitation such as the
function (2.2 to function(2.3): GDR can be omitted in the first order. This allows us to
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neglect also the contribution of functiofe) in all further
considerations in the present paper.

Within this approximation scheme the equation for func-

tion (2.3) can be truncated to the following form:

.d
G55 aiajay (1= 1) = (BEs = Est 0q) Gsgrgi7q;(1— 1)

+2 F(q )(ns ns’)Gq oY q’(t ).
q’

(2.10
Making now the Fourier transform of Eg&.6) and(2.10 to

the energy plan&, we obtain the following set of equations:

(E— Wq, ™ “’qz)quqz:qiqé(E)

(ay)
= 2 Fo i Gasia aay(B)

1.8

19

(a2)
E F gslslq1 q

1.8

/(E)

19

(1+vql+vq2)(5q %) a5 ),

Sa,a4%

(2.11

1q1 q2q2

(E-Eg+Es— wq)gss’q;qiqé(E)

—Z F9)(n—ng )Gy rqaay(E)=0. (.12
Expressinggss,q;qiqé(E) in terms Oqu’Q?qiqé(E) using Eg.
(2.12 and inserting the result in Eq2.11), we obtain an
equation foqu'q;q;qé(E)- For the propagation of a two-

phonon configurationd,q,) =(qg;,9s) this equation takes
a simple form as

1 1+vg tvg,

2.1
Q1Q2( )= 71' E— Wq, ~ ®q,~ qqu(E) (213
where the two-phonon polarization operailaglqz(E) has

the form

(UI1)F(Q1)

Py o (E)=> (ns—ng) ¥ S's

a2 sy Y| E-Eg+Esw
e »
E-Eg+Ei—w '

In Egs.(2.11) and(2.14) we omit the indicesd; ,q5) as they
coincide with @1,05).
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( ) (ay)
Yau,(@) =7 2 (Ns=Ng)[F o F Y 8(0—Eg+ Es— wg,)
s,s’
+F 2R 50— Eg + Eq—wg,)] (2.15
ss s’ S dq ’ .
while the energy shift has the form
(Q1)F(Q1)
Pg.o(@)=P> (Ng—Ng) f s
192 s,s’ s s w— Esr + ES_ qu
| FR 1o
w—Eg+Es—w '

with P denoting the principal value of the corresponding
integral. The excitation energy of the two-phonon state is

defined as the solutiom of the equation for the pole of the
Green'’s function(2.11), that is

w—(wa-i- qu)—quqz(a))IO. (2.17
Equationg2.15—(2.17) are the main equations for the study
of two-phonon excitations within the present formalism. If
the damping of each single-phonon excitation is described by
a microscopic model such as the POB-21], the phonon
occupation numbemw, (single-particle occupation number
ng) used in the calculations of the DGDR can be approxi-
mated by the Bose-Einste{frermi-Dirag distribution at the
phonon energy, (single-particle energ¥s) and tempera-
ture T [19]. We also notice that the presence of the factor
(ng—ngs) on the rhs of Eqs(2.15 and(2.16 implies that at
T= 0 only the coupling tgph configurations contributes to
the damping of the two-phonon excitation singg=1 and
n,=0, while atT+0 the coupling topp andhh configura-
tions will become dominant with increasinfy The latter
leads to the sharp increase of the GDR width at Toand its
saturation at highl. Detailed discussions on this issue are
given in Refs[19-21]. Thus, this formalism allows a natural
extension to the nonzero temperature case.

We notice that the decoupling scheme in E2.8) par-
tially includes the Pauli-correction terms in a sense of aver-
age. These terms consist of the matrix elements
(0]Qq;QqH leQ;2|0) [1], which become in the present ap-
proach

<0|quQqéHQalQ$2|o>

=2 Fg12<0|quQqéa;ras’(Qg+ Qq)Qq,Q3,/0),

q,s,s’

(2.18

where |0) is the phonon vacuum a=0. Expanding the

~ The damping and the energy shift of two-phonon excita-nucleon pairalag in the boson space into series of boson
tion are calculated as the imaginary part and real part of theperators according to the mapping in Ré&f7], we can see

analytic continuation of polarization operatBElqz(E) into
the complex energy planE=w=*is (w is real ande—0),
respectively{18—21,28. The analytical form of the damping
is obtained in this way as

that the expansion of/a, (afay) into a sum of tensor
products of twoph bosons yields a zero value of the matrix
element(2.18 because of the odd number of boson operators
within the average. The mapping af;ap into the series of
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boson operators leads to three-boson terms in the twowith
phonon space for the matrix eleme2t18 except for the

lowest-order term. The latter is taken into account by the FSS?FS”S
function (2.3) within the decoupling2.9). In general, it is Pq(w)ZPE (ns— ns’)ﬁa (2.27)
s,s’ W~ Eg s

known that the Pauli-correction terms may cause a shift of
relative order~A~2? from the harmonic estimate of the
two-phonon energy [28], which amounts to only
~0.03-0.05 MeV for 9&A<208. The recent study by
Bertsch and Feldmeier in R€R29] using the variational ap-
proach to anharmonic collective motion has found an even
smaller shift of order~A~*? of the second phonon energy

for all three modes: monopole, dipole, and quadrupole. Using Egs.(2.22 and (2.24 for the DGDR width and the

expression for the GDR width from Refd.8,19, we obtain
B. Double giant dipole resonance the ratio

we can derive the shift of the DGDR energygpg from its
harmonic value @gpg making use of Eqs.2.25 and(2.26

0pepr— 206prR= Pqq( @pepr) — 2Pg(wepr). (2.28

The DGDR can be considered as a special case of the
general formalism in the previous Sec. Il A, namely when > (ne—ne ) FYFD 8 wpepr— wg— Ee +E)
the two single-phonon excitations coincidg=q,=q. Their ~ Tpgpr s 5 s a
unperturbed energies are denoted, in this case, as =2

=wq, (2.19

1—‘GDR
> (ns—ng)FOFD 8(wepr—Eg + Es)
sg'

sg’ s
(2.29

wq :(Dq

1 2

where the indexg denotes the collective one-phonon state . L
with multipolarity and parityhA™=1" and energye, (the It can be seen from Eq2.29 that in the harmonic limit,
unperturbed giant dipole oscillatipnFrom Eqgs. (2.13— when|Py(wpepr) | < @pepr @nd| Py(wepr) | < wepr SO that

(2.17 we easily obtain the equations for the DGDR. ®bcor=2wgqandwcpr=wq, the ratio(2.29 becomes just 2
Namely, for the propagation of DGDR we have and the shift in Eq(2.28 vanishes. In general, employing
the S-function representations(x) =e[ w(x2+£2)]7 2, we

1 1+2v, see that many co_mpone_nts under the sums on the rhs of Eq.
Goo(B)=— £ 2wq—Poq(E) (220  (2.29 satisfy the inequality
with the polarization operator 1 _ 1
F@E@ [wpepr— wq— (Es —E9)]1*  [wepr—(Es —Eg)]? ,
Puq(E)=2> (Ng—ng)——>2° (2.2 (2.30
s E-EsHEsm o since an inequalitys,>E, — E, always holds for the case

ith (s,s")=(p,h) andw, located close to the energy of the

i i W
The damping and the energy shift of the DGDR are, respecGDR- Thus, we have

tively,
I'beor<2I GpRrs (2.31
Yool @) =27 2, (ns—ng)FUFD s(w—Eg +E—wq)], _ _ _
s,s’ which has been actually observed in the experiments.
(2.22 Similarly to the strength functio,(w) of the GDR de-
rived in Ref.[20], the strength functioB,q(w) of the DGDR
FOFQ is derived from Eq(2.20 as
Paq(@)=2P2, (ng—ng) . (2.23
s,s’ w— ES’ + ES_ Wq S ( )_ 1 ‘yqq(w)(l-‘r 2VGDR) (2 32)
The full width at the half maximuniFWHM) of the DGDR 1 T (- woeoR 2 [ Yaq @) 12 '
is defined as twice the damping in EQ.22 at the DGDR
energywpgpr, Namely where vgpr denotes the phonon occupation numbgrde-
fined at energyw,= wgpr-
I"'bepr=2Y44( @DGDR)- (2.29 Since two virtual photons are absorbed to excite the

DGDR through the Coulomb excitation process, those virtual
The energywpgpr Of the DGDR is the solution of the equa- photons are replaced by the equivalent real photons when we
tion apply the Weizseker-Williams method 30]. According to
this method, the Coulomb excitation cross sectenis re-
wpGpR~ 2@q~ Pgg(@pepr) = 0. (2.29  Jated to the equivalent photon numbgf- and the photoab-

. . ()\'17')
If we now recall that the energygpg Of the GDR is defined sorption cross section,” *(w) as

in the simplest version, the PDM{18,19 by the equation

Nyr oo
o= f—a()‘ N(w)dw. (2.33
wepr~ Wq~ Py(®cpr) =0 (2.26 © % o 7
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DGDR in Eq. (2.33 can be formally defined from the DGDR. The subscript 1 denotes the GDR, while 2 stands for
strength function(2.32 as DGDR.

r, E, I, E, 2, 2I, 2E

(O]

> . (2.34 907y 6.49 322 42 163 84 594 329
DGDR 1205y 605 308 48 154 96 679 308

_ _ %pp 795 276 40 137 80 566 274
Therefore, we have some hope to infer the possible change in

the electromagnetic cross section from the change in the pho-
toabsorption cross section of the DGDR due to anharmonig, yiiaig aT=0 for the nuclei under consideration. In the

effect. While this may reveal the source of the change in th%DM-l reasonable agreement between theory and data has

electromagnetic cross section, there still remains a questiolgeen achieved via coupling of GDR phonon to @h, pp

on how to measure this photoabsorption cross section for thgndhh configurations. The phonon energy and the matrix

qu(w) * Sqq(w) yqq(w)

DGDR. i (9) —
The EWSS and non-EWSS are calculated from ktte elen?efts of the courz(l;)n_g t%]_andpp o hr} F_ph F,l for
moment (s,8")=(p,h), and Fy=Fjy=F, for (s,s")=(p,p") or

(h,h") are introduced as parameters. Even though the

higher-order graphs were not included explicitly in the equa-

m(ki): jEZSj(w)wkdw, (2.35 f[ions within the PDM-l, t'his procedure implies that they are
E; incorporated effectively in the parametdfs and F,. The
energywg and the parametefs; andF, for the couplings

where the notationi=1, j=q) corresponds to the GDR have been chosen so that the experimental width and energy
case, while (=2 quq), is reserved for the DGDR. The ©f the GDR atT=0 are reproduced, and that the GDR en-

calculated values of the moments should be compared witf'9y does not vary with changinf (see the details in Ref.
the sum-rule constraints discussed in Rag]. 19]). Since these values are independent of temperature,_all
the thermal effects exclusively come from the microscopic
configuration mixing. The parameters employed in the
present calculations of the DGDR are the same as those de-
In this section we present the results of the calculations ofined within the PDM-1 and presented in Table | of Ref.
various DGDR characteristics such as energy, FWHM]19]. The calculations have also used a value of 0.5 MeV for
strength function, photoabsorption cross section, EWSS anidne smearing parameterin the & function. It has been con-
non-EWSS, whose expressions have been derived in Sefirmed that the results are stable against the variation of
I1B. The calculations are performed for three nuctzr,  within the interval 0.2 Me¥e<1.0 MeV.
12050, and?%®Pb at zero and nonzero temperatures. In order
to determine the GDR, we employ the same scenario, which
has been successfully used in the description of the hot GDR _ _
within the PDM-1[18,19. The latter is much simpler than __ The calculated widths and energies of the DGDR'zr,
the PDM-2 where the coupling to more complicated configu-"-°Sn, and**®Pb are compared with the corresponding val-
rations is explicitly included20,21]. In this scenario, we U€s of the GDR and those in the harmonic picture in Tables
assume that a fully microscopic description of the structurd and Il. In Table I the experimental ratios for the widths
of the ground-state GDR and its spreading wifithwould  and energies of DGDR and GDR are also shown.
not be important in the present consideration. In fact such a The energy of the DGDRwpgpr=E; is found to be
description can be found in a number of works such as Refshifted down by 0.7 MeV in®Zr and up by 0.2 MeV in
[9,22]. Various microscopic calculations and experimental**Pb as compared to their harmonic values abRr
data have shown that the GDR can be considered as &2E;. In the case of*°Sn the DGDR energy is found to be
strongly collective one-phonon excitation. Therefore, in or-just twice as large compared to the GDR energy. The widths
der to have a simple and clear picture, we assume that thepcor (I'2 in the tablesof the DGDR in®°Zr and 2%%Pb are
ground-state GDR is generated by a single collective anfbund to be in betweer/2I'gpr and d'gpr (I'gpr=1T"1 in
structureless phonon with energy, close to the centroid the tablek In *2°Sn the DGDR widtH pgpr is even smaller
energywgpr Of the ground-state GDR. We employ realistic than 2I'gpg. These values agree well with the experimen-
single-particle energies, calculated in the Woods-Saxon paal ones within the error bar§Table Il). In general, the

IIl. NUMERICAL RESULTS

A. Results at zero temperature

TABLE Il. Ratios of widths and of energies of the GDR and DGDR. The notation is the same as

in Table I.
I,/(2T,) TL/(y2I'y) TL/ly  TLUr,®®  E,/(2E,) E,IE, E,/E, (&)
90zr 0.77 1.09 155  1%0.25[1] 0.98 1.98 1.90.5[1]
12050 0.63 0.89 1.26 170.7[1] 1.00 2.00 2.0%0.5[1]

208pp 0.99 1.40 1.99  3:01.25[4] 1.01 2.02 1.8%0.1[4]
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' ' ' ' ' the DGDR. As a matter of fact the GDR iff®Pb is very
031 . | collective with a rather small widtl' ;pg=4 MeV. Conse-
quently, the anharmonicity in the DGDR f%b is minimal

] as can be expected. The anharmonic effect on the GDR in
12931 is the strongest among three nuclei giving the largest
. width I'gpr=4.8 MeV of the GDR. Therefore the DGDR
width T'pgpr=6.05 MeV in this nucleus also deviates
strongly from its harmonic value ofl2;pg=9.6 MeV.

60 The calculated strength functions of the GDR and DGDR
are shown in Fig. 1. The harmonic limit of the DGDR shape
is obtained by replacingpgpr and yqq(w) in Eqg. (2.32
with two times of the corresponding values for the GDR, i.e.,
with 2wgpr and 2y,4(w), respectively. A noticeable differ-
ence between the shape of the DGDR and its harmonic limit
is seen in%zr and 2%Sn, in particular in'?°Sn. For the
DGDR in 2%Pp the difference is much less. It is important to
notice that neither the GDR strength functi§g( ) [20,21]

nor the DGDR strength functio®,q(w) in Eq. (2.32 is
given as a single Breit-Wigner curve. In fact they are com-
posed of many Breit-Wigner shapes because of the
o-dependent dampingyq(w) in the GDR or yg4(w) in

. : . . : DGDR. Therefore, the DGDR energygpr defined as the
solution of Eq.(2.25 can be assigned to the DGDR centroid
energy, but not to its maximum peak. Only in the case when
the strength function can be well approximated by a single
Breit-Wigner curve as in the GDR, the energy centroid may
coincide with the position of the maximum peak of the reso-
nance. This explains why the shift between the maximum
peaks of the solid and dash-dotted lines in Fig. 1 is slightly
larger than the difference between tfeentroid energy of
the GDR and its corresponding value in the harmonic limit
shown in Table II.

FIG. 1. Strength functions of the GDR and DGDR. In each |y Ref.[13], Kurasawa and Suzuki have derived the rela-
panel the dashed curve is the strength function of the GDR. Thgjgp,

solid curve represents the strength function of the DGDR. The
dash-dotted curve corresponds to the harmonic limit of the strength 5
function of the DGDR. m(l )

g =—— =
P amPm®

02
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0.2 |
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0.2 - (c)

0.1 -

S(E) (MeV™)

0 10 60

1, (3.9

DGDR energy is quite well reproduced by the independent

phonon picture in all three nuclei. Regarding the width, one ) _
can see that the DGDR i#’3b seems to behave like a quite "d by Putlingwpepr=2wepr, they obtained
good superposition of two noninteracting GDRs, while the

deviation from the harmonic limit for the width of the m{?

DGDR in ®Zr and #°Sn is more noticeable. The difference So= 2

between the behavior of the DGDR in double-magic nuclei 2[mg "]
and the one in open-shell nuclei has been also pointed out

recently in the microscopic calculations by Laretaal.[11].  as a sum-rule constraint on the strength of the DGDR. In
We notice that since the DGDR is composed of a GDR builtorder to see how these relations are fulfilled, we collect in
on another GDR, the degree of collectivity of the GDR, Table Ill the values of the corresponding moments obtained
which shows how close the vibration is to the harmonic os-after integrating over & <60 MeV. The results in Table
cillation, will certainly imply the degree of harmonicity in Il show that the closest values to the relati®1) can be

(3.2

TABLE Ill. Values of zero(non-EWS$ and first(EWSS moments of the GDR and DGDR within 0
< <60 MeV. The superscriftl) corresponds to GDR?2) to DGDR. The notatiorthar indicates the value
calculated in the harmonic limit.

m  mP m® m® m@P(har) mP(har)  anPmP 2 m{?
907 0.94 15.81 1.76 57.41 1.73 53.64 59.45 1.76
1205 0.83 13.66 1.84 57.93 1.63 48.24 4551 1.39

208ppy 0.84 12.26 1.66 47.44 1.62 42.94 41.20 1.41
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: T : T T TABLE IV. Integrated photoabsorption cross sectiang (in
06 (@) ] MeV) for the DGDR within 22 Me\s <60 MeV.
ﬂ
5 04 | 4 oy o,(har) o,/ oy(har) Enhancement
0
) 90z¢ 7.09 4.87 1.46 46%
g oo2r T 1205 7.77 6.39 1.22 22%
208pp 5.23 4.84 1.08 8%
° 0o 1 60
magnetic excitations via Eq(2.33, the obtained results
. . . . : should contribute ultimately to the enhancement of the cross
06 | \ i j section in the Coulomb excitation.
% (b) / Sn
E 04 | /_,-"' . R B. Results at nonzero temperature
8 Ny The strength functionsSy,(w) from Eq. (2.32 of the
w ozt J 1 DGDR in three nuclei are plotted in Fig. 3 at several tem-
1 peratures. Since the DGDR dampifgy,(w) from Eq.(2.22
0 bt : S contains the same factor;—ng, as the GDR damping in
0 1020 E (i,?ev) 40 50 60 Refs.[18,19, one expects the same temperature dependence
of the DGDR width as compared to the GDR width. This is
. . ; . . due to the fact that the valje,—n,|, related to the quantal
06 i width ', always decreases from 1 &t 0 with increasing
5 T, while [n,—ny/| (Jn,—n,/]), related to the thermal width
<€ 04k i I't, increases from 0 af=0 asT increases to some inter-
g mediate value, but decreases later ornTascreases to very
o o02r 1 . . . . .
© 0.2
0 -
0 60 o
é 0.1
FIG. 2. Photoabsorption cross sections of the DGDR. The nota- m
tion is the same as in Fig. 1. @
obtained only in the harmonic picture, i.e., Wilmﬁz)(har), 0
where we haves;=0.9, 1.06, and 1.045,=0.98, 1.17, and
1.15 for 99%zr, 12%Sn, and ?°%Pb, respectively. Otherwise
these ratios can reach as muchsas 1.27 andsy=1.32 in
1205, Since the non-EWSSS"=(0|D?|0) with the dipole
operator D entering in Egs.(3.1) and (3.2 is model- =
dependente.g., it is fulfilled within the Tamm-Dancoff ap- E
proximation but violated within the RPAthe deviation from g
relations(3.1) and(3.2) should depend on how anharmonic- 'jni
ity is included as has been seen here.

The anharmonic effect on the behavior of the DGDR is
best seen in the calculated photoabsorption cross sections
shown in Fig. 2. Even though the resonance peak is still at
the same place as compared to the harmonic liiehétsh- 02
dotted curvep a substantial amount of strength is redistrib-
uted toward the high-energy wing. As a result the values of

the integrated photoabsorption cross secti®\CS) within N

the energy interval 22 MeV¥ »=<60 MeV are found to be 2 o1t )
enhanced by 46%, 22%, and 8% for the DGDR %ir, =

1205n, and 2%%Pb, respectively(Table V). These results 73

show that the anharmonic effect, mostly seen in the reso-

nance width as it is due to coupling of phonons to incoherent 0 BE=Es

nucleon pairs, indeed leads to a noticeable enhancement in 0 10 20 E(‘,?,loev) 40 50 60

the photoabsorption cross section of the DGDR as compared
to its value in the harmonic picture. Since the photoabsorp- FIG. 3. Strength functions of the DGDR at various tempera-
tion cross section is related to the cross section of electraures.
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0.8 . — . .
z 0.6
3 g
=3 g 04
@ s
g =
= g 02
0
1 2 4
T (MeV)
0.8
FIG. 4. Width of the DGDR as a function of temperature.

. . % 06
high values. The region where the factdrs,—n,/| and g
[np—ny,/| are around their maximum values corresponds to S 04t
the region of the width saturation, which has been experi- &
mentally observed for the GDR in hot nuc[di6,17). It can ng, o2 L
be seen in Fig. 3 that, with the resonance energy located

almost at the same place, the width of the DGDR also in- 0

creases sharply abincreases from 0 up td=3 MeV. At

T=3 MeV the shape of the DGDR obviously reaches a satu-

ration. 0.8
The total widthI"gpgr of the DGDR in three nuclei are

plotted as a function of temperature in Fig. 4. The saturated

values ofl"gpg are around 21, 24, and 22.5 MeV fézr, £ o6
1205, and®*®Pb, respectively. Since the quantal widtg is o4l
due to the anharmonic coupling of the resonance phonons to kS
1plh configurations, the decrease of the quantal width with % 0.2 b

increasingT signals the decrease of anharmonicity. Indeed,

as shown in Fig. 5, where the rafig,gpr/I"gpr is plotted as 0
a function of T, the harmonic limit [pgpr/I'goR) har= 2

seems to be satisfactorily restored et 1.5 MeV in %%Zr

and 2°%Sn, while the DGDR width in?%Pb remains always FIG. 6. Photoabsorption cross sections of the DGDR at several
equal to 2" ¢pr at all temperatures. The restoration of har-temperatures. The values of temperature are given in MeV.
monicity in the DGDR aff #0 found in the present study is

of paramount importance. The pure harmonic double-phonoghe GDR at high temperatures and to give the final solution
behavior of the DGDR in hot nuclei confirms the existenceg this puzzle.

of its building block (the hot GDR, where the quantal ef- The sharp increase of the DGDR width at IGand its
fects are mostly washed out. It has been shown within theatyration at highr shown in Figs. 3 and 4 lead to a sharp
PDM [20,21] that the GDR persists up to rather high tem-jncrease and saturation of the photoabsorption cross section
peratureT~6 MeV in agreement with the Brink hypothesis in the DGDR region as shown in Fig. 6. Accordingly, the
[31]. There is however another interpretation of the saturayalue o, of the IPACS within the DGDR region between 22
tion of the width of the hot GDR that is related to the disap-peV and 60 MeV also increases and saturates with increas-
pearance of the GDR at high temperature due to its exceeghg temperature. As a result, the enhancement of the IPACS
ingly large width [32,33. Therefore, an experimental o»(T) as compared to its harmonic valug® at T=0 in-

observation of the DGDR in hot nuclei predicted in the creases withl and saturates at high. In Fig. 7 the ratio
present work would be decisive to confirm the existence of

4 T T T T T

I'beorTapr
N
T
!
{

.
i
i
i
i
i
i
i
i
!
i
i
i

2
T (MeV) ) ]
FIG. 7. The ratio between the value,(T) of the integrated

FIG. 5. The ratio between the DGDR and GDR widths as aphotoabsorption cross section of DGDR and its harmonic value
function of temperatures. o5¥(T=0) as a function of temperatufe
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o5(T)/ah?(0) is plotted as a function of temperature. Al- DGDR strength function and, in particular, in the photoab-
ready afT=1 MeV an enhancement factor of around 1.8 for SOrption cross section. The IPACS within the energy interval

%7y "1.5 for 12%n, and 1.3 forP%Pb is seen for the IPACS rom a value above the IVGQR22 MeV) to 60 MeV is

- . 12 .
of DGDR as compared to its harmonic valueTat 0. Thus, ~ound enhanced by 46% ifZr, 22% in **Sn, and 8% in
%b as compared to the value in the harmonic limit. In our

the present analysis indicates a possibility that the enhance-

ment of DGDR excitation cross section can be brought abou?pinion this enhancement is dire_ctly related to the e_xperi-.
if the DGDR is built on the hot GDR mentally observed enhancement in the electromagnetic exci-

tation cross section as compared to the theoretical estima-
tions within the independent phonon picture.
(iii) At T#0 the coupling tgop andhh configurations is

We have proposed a simple yet microscopic approach tgPen, which leads to a sharp in(_:rease of the DGDR width at
the DGDR. The present approach is based on the PDMOW temperature and its satu.ratlon'E\1>3 MeV. The satu-
which has been successfully developed and applied to déated values of the DGDR width are found to be around 21
scribe the damping of the hot GDR8—21. This approach MeV in *°Zr, 24 MeV in *#%Sn, and 22.5 MeV if”Pb at
allows the inclusion of the coupling of collective phonons T~5 MeV. The DGDR shape changes drastically at [ow
generating the GDRs to the field of incoherent nucleon pairut almost ceases to changelat3 MeV. We have also
The natural extension to nonzero temperature is attained pgund that the harmonicity in the DGDR width is restored in
making use of the double-time Green’s function method. Aopen shell nuclei starting froni=1.5 MeV due to the de-
closed set of coupled equations for the damping of the&rease of the quantal effect with increasinghn experimen-
DGDR has been obtained and the analytical expressions féfl observation of the DGDR in hot nuclei is highly desirable
the width and energy shift of the DGDR have been derivedto confirm the persistence of the GDR itself at high tempera-
Using the same set of parameters previously selected for tHegres on the one hand, and the additional mechanism for the
description of the hot GDR, we have extensively applied thi€nhancement in the excitation cross section of thet)
approach to calculate the width, energy, and strength fund®GDR on the other hand.
tion of the DGDR at zero as well as nonzero temperatures in In order to maintain the transparency of the argument uti-
97r, 12950, and?°%Ph. The results of the numerical analysis lizing our simple model, we have neglected in the present
allow us to draw the following conclusions. study a number of corrections such as the effect of higher-

(i) The anharmonic effect on the energy of the DGDR isorder graphs(e.g., three-phonon graphsincluding the
rather small, which does not exceed 2% as compared to it3igher-order of boson operators in the boson mapping of the
value in the harmonic limit. The anharmonic effect on thePauli-correction graphs, coupling to continuum, etc. We also
width is more noticeable, confirming its quantal nature dudeft out entirely the nonlinearity of the external field. The
to Coup”ng Of harmonic phonon Osci”ation IIh Conﬁgura_ latter has been ShOVV.n to pe i_mportant to il’.lcre.ase the inte-
tions atT=0. The effect is stronger in open shell nuclei suchgrated electromagnetic excitation cross section in the DGDR
as 125n, while it is rather small in double-magic nuclei region[11,12. It is our hope that inclusion of these effects in
such as2%%Pb. In %Zzr, and 2°%Pb the DGDR width is in Our approach will receive due attention in forthcoming stud-
a range betweer/2I'gpr and X' gpr, while in *2%n it is €S-
even smaller thar2I" gp With I' gpg being the GDR width.

The results of calculations are found in reasonable agreement
with the experimental systematic for the width and energy of Numerical calculations were carried out by a 64-bit Alpha
the DGDR in the region of mass number under considerAXP work-station running Digital UNIX(OSF/) at the
ation. Computer Science Laboratory of RIKEN. The authors thank

(i) The anharmonic effect shows up more clearly in theG. Bertsch for turning their attention to R¢29].

IV. CONCLUSIONS
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