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Isovector vibrations in nuclear matter at finite temperature
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We consider the propagation and damping of isovector excitations in heated nuclear matter within the
Landau Fermi-liquid theory. Results obtained for nuclear matter are applied to calculate the giant dipole
resonance~GDR! at finite temperature in heavy spherical nuclei within a Steinwedel and Jensen picture. The
centroid energy of the GDR slightly decreases with increasing temperature and the width increases asT2 for
temperaturesT,4 MeV in agreement with recent experimental data for GDR in208Pb and120Sn. The validity
of the method for other Fermi fluids is finally suggested.@S0556-2813~99!00206-X#

PACS number~s!: 24.30.Cz, 21.60.Ev, 21.65.1f
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I. INTRODUCTION

In recent years the GDR built on highly excited states i
central issue of many experimental and theoretical stu
~see Ref.@1#, and references therein!. In this context, one of
the most important open problems is the behavior of
GDR width in nonrotatingnuclei as a function of tempera
ture. There are two essentially different theoretical a
proaches to this problem. The first one@2# explains the tem-
perature increasing of the width as an effect of the adiab
coupling of the GDR to thermal shape deformations. In
second approach@3–7# the thermal contribution to the damp
ing width arises from an increasing nucleon-nucleon (NN)
collision rate (2p2h excitations! plus a Landau spreadin
due to new thermally allowedph transitions@8–12#.

In the present work, following the ideology of the seco
approach, we consider isovector volume vibrations in sp
isospin symmetrical nuclear matter at finite temperature
similar problem was studied in Refs.@9,10# within the ran-
dom phase approximation~RPA!, one-body, method. How
ever the Landau damping mechanism of the dissipation
propagating mode due to the thermal smearing of a Fe
distribution is too weak to be responsible for the fast incre
of the observed GDR width with temperature@9,10,13#.

The puzzle can be solved by taking into account the tw
body dissipation through the collision integral of the Landa
Vlasov equation@3#. We will use a quantum kinetic equatio
which leads to the introduction of memory effects in t
collision term in order to include off energy-shell contrib
tions @14#. Moreover, it was shown in Refs.@15,16#, that
memory effects are essentially increasing the widths of m
tipole resonances at small temperatures. In this work,
calculate the isovector strength function of nuclear ma
taking into account both thermal Landau damping and tw
body collisional dissipation, including the quantum memo
contribution.

The structure of the work is as follows. In Sec. II th
response function of the nuclear matter to the isovector
ternal field is derived. Various dissipation mechanisms c
tributing to the damping width of the GDR in hot nuclei a
discussed. In Sec. III the results of numerical calculations
PRC 590556-2813/99/59~6!/3099~10!/$15.00
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the isovector strength functions are reported. The full wid
at half maximum~FWHM! of the theoretical photoabsorp
tion cross section by heated208Pb and120Sn nuclei is com-
pared to the experimental data. That gives a possibility to
some restrictions on the value of the in-mediumNN scatter-
ing cross sections. Discussion and summary are given in
IV.

II. RESPONSE FUNCTION

The isovector response of uniform nuclear matter is
scribed by the linearized Landau-Vlasov equation with a c
lision term treated in the relaxation time approximati
@4,11,16#

]

]t
d f 1v•¹ rd f 2¹ r~dU12dV!•¹pf eq52

1

t
d f u l>1 ,

~1!

where v5p/m* is a velocity, d f [d f n2d f p , dU[dUn
2dUp , and dV[(dVn2dVp)/2 (dVq5tqdV, tn511,
tp521) @9# are differences between neutron and proton d
tribution functions~DFs!, mean fields, and external fields
respectively,f eq(ep5p2/2m* ) is the equilibrium finite tem-
perature Fermi distribution, and the notationl>1 means that
the perturbation of the DFd f u l>1 in the collision integral
includes only Fermi surface distortions with a multipolari
l>1 in order to conserve the particle number in the collisi
processes@14#. The inclusion of thel 51 harmonic in the
collision integral of Eq.~1!, at variance with the isoscala
case@11#, is due to nonconservation of the isovector curre
i.e., due to a collisional friction force between counte
streaming neutron and proton flows.

Equation~1! is derived assuming isospin symmetric u
perturbed nuclear matter, where isovector and isoscalar
turbations propagate independently. In the case of asymm
ric nuclear matter, equations for isovector and isoscalar
become coupled through terms}(N2Z)/A ~see Ref.@17#!.

The dynamical component of the isovector mean fielddU
can be expressed in terms of the isovector Landau param
F08 :
3099 ©1999 The American Physical Society
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dU5
F08

N~T!
dr, ~2!

where

dr~r ;t !5E gdp

~2p!3
d f ~r ,p;t ! ~3!

is the density perturbation,g52 is the spin degeneracy fac
tor, and

N~T!5E gdp

~2p!3 S 2
] f eq~ep!

]ep
D ~4!

is the thermally averaged density of states,N(0)
5gpFm/2p2, where for simplicity we put m* 5m
5938 MeV. It is assumed\51 everywhere in this work.

For an external fielddV}exp(ikr 2 ivt), periodic in
space and time, the isovector collective response function@9#
can be derived from Eq.~1!:

xcoll~v,k!52
dr

dV
5

2N~T!xT
t

11F08xT
t

, ~5!

where xT
t is the intrinsic response function@18–20#. The

explicit form of the functionxT
t (v,k) is ~details of deriva-

tion can be found in Ref.@11#!

xT
t ~s!52

N~0!

mpFN~T!
E

0

`

dp
p2sx~ p̄s/p!

s81 is9x~ p̄s/p!

] f eq~ep!

]ep
,

~6!

where

p̄5pFS ē

eF
D 1/2

, ~7!

ē5
5

3req
E gdp

~2p!3
epf eq~ep!, ~8!

req5E gdp

~2p!3
f eq~ep! ~9!

are quasiparticle average momentum, average kinetic en
~normalized atT50 on pF and eF), and density, with the
complex variable

s5s81 is9, s95
m

t p̄k
, s85

vm

p̄k
, ~10!

x(z) is a Legendre function of the second kind

x~z!5
1

2E21

1

dm
m

m2z
. ~11!

Equation~6! for the intrinsic isovector response function h
only a minor difference with the isoscalar case. Namely,
recover the isoscalar response function given by Eq.~30! in
gy

o

Ref. @11#, one should changeis9→ is9(113s8sp̄2/p2) in the
denominator of Eq.~6!. This difference is just due to inclu
sion of the damping of thel 51 harmonic in the isovecto
channel. We note a misprint in the right-hand side~RHS! of
Eq. ~30! in Ref. @11#: it should be multiplied by a minus sign

For a given momentum transferk, the strength function
per unit volume is

Sk~v!5
1

p
Im~xcoll!5

2N~T! Im~xT
t !/p

@11F08 Re~xT
t !#21@F08 Im~xT

t !#2
.

~12!

The strength function satisfies the following energy weigh
sum rule~EWSR! @9,10#:

E
0

`

dvvSk~v!5
k2

2m
r0 , ~13!

wherer050.16 fm23 is the nuclear saturation density.
Collective modes are given by the poles of the respo

function ~5!

11F08xT
t ~s!50. ~14!

By solving Eq.~14! we obtain the complex frequency

v5vR1 iv I5k
p̄

m
~s2 is9!. ~15!

The application of the formalism discussed above to fin
nuclei is based on the Steinwedel-Jensen~SJ! model
@9,10,21# which describes the GDR in heavy nuclei as a v
ume polarization mode conserving the total densityr5rn
1rp . According to this model, we choose the wave numb
of the normal mode ask5p/2R, whereR is the radius of a
nucleus. Inside the nucleus, the unperturbed distribution
nucleons is supposed to be uniform. The SJ model give
good overall reproduction of the ground state GDR energ
for heavy spherical nuclei@22#.

Equation~1! contains the two free parameters: the isove
tor Landau parameterF08 and the relaxation timet. The is-
ovector Landau parameterF08 at zero temperature can b
expressed as a function of the symmetry energy coefficienb
in the Weizsa¨cker mass formula as follows@23#:

F08~T50!5
3b

eF
21. ~16!

For a Skyrme interaction, the coupling constantf 08
[F08(T)/N(T) has the following well-known structure~see
Ref. @24#!:

f 085
pF

2

4
@ t2~2x211!2t1~2x111!#2

t0

2
~2x011!

2
t3

12
~2x311!ra. ~17!

We have chosen the T6 interaction of Ref.@25# for numerical
calculations: t0521794.20 MeV fm3, t15294.00
MeV fm5, t252294.00 MeV fm5, t3512817.00
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PRC 59 3101ISOVECTOR VIBRATIONS IN NUCLEAR MATTER AT . . .
MeV fm3(11a ) , x050.392, x1520.500, x2520.500,
x350.500, a51/3. This interaction is momentum indepe
dent and gives exactly Eq.~2! for the mean field perturba
tion. Respectively, the term}pF

2 in the RHS of Eq.~17! is
equal to zero for the T6 interaction.

We see that even at the absence of the momentum de
dence, the temperature still influences on the coupling c
stant through the the densityr. According to Ref.@26#, the
mean square of a nuclear radius increases quadratically
temperature due to thermal pressure of nucleons

^r 2&5^r 2&T50~11ar 2T2!, ~18!

wherear 250.431022 MeV22 for heavy nuclei. Therefore

r~T!.r0~12arT2!, ar5
3

2
ar 2. ~19!

For the coupling constantf 08 and the Landau parameterF08 ,
we obtain the following expressions:

f 08~T!5 f 08~0!~11afT
2!, ~20!

F08~T!5F08~0!~11aFT2!, ~21!

where f 08(0) is defined by Eq.~17! with r5r0, and

af5
t3

12f 08~0!
~2x311!r0

aaar ,

aF5af2
p2

12eF
2 .

In the derivation of Eq. ~21! we also used the low
temperature expansion of the level density

N~T!5N~0!S 12
p2

12

T2

eF
2 D . ~22!

The thermal dependence ofN(T) is very weak with respec
to the one off 08(T) and can be neglected. That gives for t
interaction T6 aF.af.0.531022 MeV22. The zero-
temperature isovector Landau parameter has a valueF08(0)
51.43 corresponding to the symmetry energyb530 MeV
andeF537 MeV @see Eq.~16!#.

The relaxation timet generally includes various dissipa
tion mechanisms~see Ref.@16#!:

t215tcoll
211twall

21 1t↑
21 , ~23!

where tcoll , twall , and t↑ are the relaxation times due t
two-body collisions, wall friction, and particle emission, r
spectively. The most important dissipation mechanis
which defines the temperature trend of the total width, is
dissipation due toNN collisions. The corresponding two
body relaxation timetcoll includes the temperature an
memory effects:

tcoll5
a (2)

T21~vR/2p!2
. ~24!
en-
n-

ith

,
e

The dependence of the relaxation time on the frequencyvR
arises from the memory effects and corresponds to the L
dau prescription@14#. The coefficienta (2) depends on the
NN scattering cross sections. We have calculated this c
ficient using energy and angular dependent differential cr
sections ofpp and np scattering derived from the BonnA
potential both with and without in-medium correction
@27,28# ~see the Appendix!. The results are a (2)

52.3 (5.4) MeV in the case of vacuum~in-medium re-
duced! cross sections.

The wall friction is related to the fragmentation widt
@29#, i.e., the GDR spreading due to a coupling toph exci-
tations. It can be taken into account as an additional diss
tive source term in the kinetic equation with a relaxati
time ~see Ref.@16#!

twall5
2R

v̄
j, ~25!

whereR is a nuclear radius,

v̄5
3vF

4 F11
p2

6 S T

eF
D 2G

is the temperature-dependent average velocity of nucle
and j;10 is a numerical factor. Actually the value of th
factor can be chosen to fit the fragmentation width of t
GDR in a cold nucleus, which is of the order of 0.5–2 Me
as given by RPA studies, Refs.@30,31#. Since the tempera
ture region of interest isT!eF , the relaxation timetwall
depends on temperature very weakly. This fact is indeed
agreement with a weak temperature dependence of the
mentation width obtained in RPA calculations, Ref.@32#.

The relaxation timet↑ caused by the direct particle emis
sion is related to the escape widthG↑ ~see Ref.@33#!. From
semiclassical@3,33# as well as quantal continuum RPA ca
culations@34# this quantity turns out to be quite small at a
temperatures. The reason for this is the small amplitude
the momentum distortions which leads to a quite redu
probability of direct particle emission. Therefore we will n
glect the contribution of particle escape to the total relaxat
time t.

III. NUMERICAL RESULTS

The analysis of a hot GDR is based on the photoabso
tion cross section by a thermally excited nucleussabs(v)
which can be expressed in terms of the strength func
Sk(v) of Eq. ~12! as follows:

sabs~v!5
4p2e2

ck2r0

NZ

A
vSk~v!. ~26!

This expression is obtained from comparison of the EW
~13! and the dipole sum rule of Ref.@21#:

E
0

`

dEsabs~E!5
2p2e2

mc

NZ

A
. ~27!

In this work we have studied the photoabsorption cro
section at temperaturesT<4 MeV using vacuum and in-
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FIG. 1. Photoabsorption cros
section by an excited nucleu
208Pb ~a! and by 120Sn ~b! at vari-
ous temperatures as a function
the photon energy. Calculation
are done using vacuum cross se
tions plus a wall friction contribu-
tion fitted to the g.s. FWHM.
ns
na
fo
r

fir
rth

os
an

s
th

a
ly

n
-
in
-
e

er
o

e
tl

is
on
n

rgy,
on-

at

e
f

or a
e-
medium reducedNN scattering cross sections. Calculatio
with a somewhat more developed version of our collisio
damping approach, including different relaxation times
harmonics withl 51 andl>2, have been done, actually, fo
temperatures up to 10 MeV to eventually see a zero-to-
sound transition. These results will be presented in a fo
coming paper, Ref.@35#.

In both cases of vacuum and in-medium reduced cr
sections, we have performed calculations switching on
off the wall friction contributiontwall

21 in the inverse relax-
ation timet21 @see Eq.~23!#. A value of this contribution
was chosen to fit the GDR width in ground state~g.s.! nuclei.
Of course when we use in-medium reduced cross section
need a larger one-body damping. The following values of
wall-friction width Gwall52/twall have been obtained:Gwall
50.5 (3.2) MeV for 208Pb andGwall50.9 (3.8) MeV for
120Sn for vacuum~in-medium reduced! NN scattering cross
sections. Once the ratio wall/collisional damping atT50 is
fixed, one can predict unambiguolsy the temperature beh
ior of the total width. Below, if the opposite is not special
indicated, the discussion is done for the case of vacuumNN
cross sections plus wall-friction contribution.

Figure 1 shows the photoabsorption cross section by
clei 208Pb ~a! and 120Sn ~b! as a function of the photon en
ergy for several temperatures. As the temperature is grow
the centroid energyEGDR ~i.e., the peak of the photoabsorp
tion cross section! is shifting to smaller energies and th
width is increasing. In Fig. 2~solid line! we report the tem-
perature dependence of the corresponding centroid en
for 208Pb. To understand better the thermal behavior
EGDR, we present in Fig. 2~see dotted and dashed lines! also
the calculations performed for a fixed nuclear radiusR (T
independent! in the formula for the wave numberk5p/2R
of the normal mode. We see thatEGDR decreases mostly du
to the thermal expansion of a nucleus. However, it sligh
decreases even for a fixed radiusR ~see dotted line in Fig. 2!.
Indeed at larger temperatures an increasing two-body d
pation should reduce the frequency of the collective moti
in close analogy with a classical oscillator with a frictio
force ~see also Refs.@36–38#!. This is at variance with pure
l
r
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mean field predictions@9–11# of a growth ofEGDR with tem-
perature. To conclude the discussion on the centroid ene
we note, that the thermal dependence of the coupling c
stantf 08 , introduced according to Eq.~20! ~see dashed line in
Fig. 2! does not, practically, change the results obtained
constantf 08 ~dotted line!.

In Fig. 3 ~solid lines!, the real and imaginary parts of th
pole of the response function~5! are shown as functions o
temperature for a nucleus208Pb. As far as the collective
mode is underdamped, i.e.,uIm(v)u/Re(v)!1, an approxi-
mate formula

FWHM52uIm~v!u ~28!

FIG. 2. Temperature dependence of the GDR energyEGDR de-
fined at the peak position of the photoabsorption cross section f
nucleus208Pb @see Fig. 1~a!#. Dotted, dashed, and solid lines corr
spond to calculations with fixed radiusR and fixed isovector cou-
pling constantf 08 , with fixed R and temperature dependentf 08 , and
with temperature dependentR and f 08 @see Eqs.~18!, ~20!#. A weak
temperature dependence of the level densityN(T) @see Eq.~22!# is
always present in the Landau parameterF085N(T) f 08 . Vacuum
cross sections plus wall friction contribution are used.



h

dt

in-

tu
ng

es

al

f

-
the

on
the
eld
is
the
is

ons
be-

for

tal
xi-

q.
n-

he

m
.

ions

n-
dis-

red
in-

-

es
the
n is
-

se

us

PRC 59 3103ISOVECTOR VIBRATIONS IN NUCLEAR MATTER AT . . .
has to be fulfilled@16#. We see from Fig. 3~compare lower
solid line to the open circles!, that the condition~28! is really
satisfied, corresponding to the Lorentzian shape of the p
toabsorption strength at high temperatures~see Fig. 1 and
Ref. @39#!. Some relatively small deviations from Eq.~28!
present in Fig. 3 can be explained by a quite large wi
already atT50. For instance, we have checked that Eq.~28!
is fulfilled with a much better accuracy in the case of
medium reducedNN cross sections without wall friction
contribution.

At low temperatures, one can neglect the tempera
spreading of the equilibrium Fermi distribution substituti
d(eF2ep) instead of@2] f eq(ep)/]ep# into Eq.~6!. Thus we
obtain the following approximate low-temperature expr
sion for the intrinsic response function:

xT
t ~s!.

sx~s!

s81 is9x~s!
, ~29!

where variabless, s9, ands8 are defined by Eqs.~10! with
the changep̄→pF . We remark that Eq.~29! when applied to
the case of an electron gas@F05N(T)4pe2/k2# gives just
the longitudinal dielectric function

e~k,v!511F0xT
t ~30!

obtained by Mermin@40#. This is to stress the more gener
framework of the results presented here@41#.

In the rare collision regime (vRt@1), an approximate
solution of the dispersion relation~14! with the intrinsic re-
sponse function~29! can be found analytically~see Refs.
@14,42#!:

vR.vFks(0)1O~T4!, ~31!

FIG. 3. Temperature dependence of Re(v), wherev is the pole
of the response function~5! ~upper solid line! and of 22Im(v),
where Im(v) is the imaginary part of the pole of the respon
function ~5! ~lower solid line! defined by Eq.~32! ~dashed line!
defined by Eq.~34! ~dotted line.! Open circles show the FWHM
extracted from the photoabsorption cross section of Fig. 1~a!. Cal-
culations are for a nucleus208Pb using vacuum cross sections pl
wall friction contribution.
o-

h

re

-

v I.
~2F0811!@~s(0)!221#2~F08!2

tF08@F082~s(0)!211#
1O~T6!, ~32!

wheres(0) is the root of collisionless dispersion relation

11F08x~s(0)!50. ~33!

The Landau parameterF08 in Eqs. ~32!, ~33! is taken atT
50. The simple expression~32! for the imaginary part of the
frequencyv ~dashed line in Fig. 3! reproduces the results o
a numerical solution of the ‘‘exact’’ dispersion relation~14!
~solid line in the same Fig. 3! with a good accuracy for
temperaturesT,2 MeV. At larger temperatures, a slight in
crease of the damping due to temperature smearing of
Fermi distribution is obtained with the dispersion relati
~14!. The difference between these two solutions is of
order of the Landau damping rate in the pure mean fi
approach@9,10#. We see that thermal Landau damping
small for the case of GDR, at variance with the case of
isoscalar mode@11#, since the isovector Landau parameter
larger than the isoscalar one for nuclear effective interacti
at normal density. As a consequence a weaker coupling
tween single particle and collective motion is expected
isovector vibrations@19#.

The dominance of the collisional contribution to the to
damping rate of the GDR is just expressed by an appro
mate relation~dotted line in Fig. 3!

2Im~v!.
1

t
, ~34!

which was used, for instance, in Ref.@15# to calculate widths
of giant resonances. The main deviation from Eq.~34! in the
dispersion relation~14! is caused by the exclusion of thel
50 harmonic from the collision integral on the RHS of E
~1!, i.e., due to taking into account the particle number co
servation. This results in a smaller absolute value of Im(v).

A source of uncertainty in our calculations is given by t
choice of theNN cross sections@see Eq.~A23! in the Ap-
pendix#. This is caused mostly by two reasons~i! The density
in a finite nucleus is not uniform. It is clear that vacuu
cross sections are more appropriate in the surface region~ii !
A quite large uncertainty of the in-mediumNN cross sec-
tions themselves exists, as a result from various calculat
~see Refs.@27,43#!.

An explicit implementation of the density-dependent i
medium cross section for the space nonuniform density
tribution of a finite nucleus, as was done in Ref.@44#, is out
of the scope of the present work. Thus, we have conside
the two limiting cases of vacuum cross sections and
medium reduced cross sections of Refs.@27,28# at the
nuclear saturation densityr0. In Figs. 4~a!–4~d! calculations
are presented with vacuumNN cross sections~a!, ~b! and
with in-medium ones~c!, ~d! in comparison to the experi
mental widths from Refs.@45,46# for the nuclei208Pb ~a!, ~c!
and 120Sn ~b!, ~d!. The use of vacuum cross sections giv
much better agreement with experiment compared to
case of in-medium reduced cross sections. This conclusio
not influenced by the switching on/off the wall friction con
tribution @compare solid and dotted lines in Figs. 4~a!–4~d!#.
We see from Figs. 4~c!, 4~d!, that the wall friction contribu-
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FIG. 4. The width FWHM of the GDR mode in nuclei208Pb~a!, ~c! and 120Sn~b!, ~d! as a function of temperature. Solid and dotted lin
represent calculations with and without a wall friction contribution, respectively. Panels~a!, ~b! @~c!, ~d!# contain results obtained with
vacuum~in-medium reduced! NN scattering cross sections. Points with errorbars show the experimental widths from Ref.@45# (208Pb) and
from Ref. @46# (120Sn).
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tion is important mostly at low temperature and gradua
decreases at high temperature. That is, in spite of the incr
ing one-body damping ratetwall

21 with temperature@see Eq.
~25!# and due to the nonlinear deviations from Eq.~34!,
caused by imposing the particle number conservation on
RHS of Eq.~1!.

IV. DISCUSSION AND SUMMARY

We have studied the isovector response of a heated s
isospin symmetric nuclear matter on the basis of the line
ized Landau-Vlasov equation with a collision integral inclu
ing memory effects in the relaxation time approximatio
Further, the dipole polarization SJ mode in a finite nucle
has been considered.

The one-body dissipation due to wall friction has be
included as an additional source term in the kinetic equa
that simulates the fragmentation width contribution~see
Refs. @16,29#!. Since the aim of this work was to study th
thermal behavior of the GDR damping width, we have fitt
a zero-temperature experimental width varying a value of
wall friction contribution as a free parameter and keeping
collisional contribution fixed. Once this fit is done, the tem
perature dependence of the width is defined unambiguo
for a given set of theNN scattering cross sections.

We have found that vacuumNN cross sections, used ne
glecting effective mass effects, give better agreement w
experimental data on the GDR width at finite temperatu
That implies a quite small (;0.5 MeV) contribution of the
as-

e

in-
r-

.
s

n

e
e

ly

th
.

fragmentation width to the total GDR damping width alrea
at T50 @see Figs. 4~a!, 4~b!#. The thermal Landau dampin
due to the coupling of thermally excited quasiparticles to
collective mode is also found to be negligible. Thus the
laxation of the volume isovector mode is caused mainly
NN collisions. An increasing temperature shifts the centr
energy of the isovector strength function to smaller valu
mostly due to the thermal swelling of a nucleus. The cal
lated width is proportional to 1/t in the temperature region
T,4 MeV studied here, that corresponds to a dominant c
lisional damping of the isovector zero sound mode and le
to a T2 behavior of the GDR-FWHM.

We have shown that some general GDR properties at h
excitation energy can be obtained directly from Fermi-liqu
theory. However, the main purpose of this work is not to g
perfect agreement with data for finite nuclei. Indeed, we
well aware that other contributions to the damping are m
ing in the present approach:~i! Thermal shape fluctuation
@2,47#; ~ii ! fluctuations due toNN correlations@48#. In par-
ticular the inclusion of these contributions could improve t
agreement with the data in the case of in-medium redu
NN cross sections@see Figs. 4~c!, 4~d!#. Moreover, the inclu-
sion of the effective mass corrections in the calculation of
collisional relaxation times Eq.~A12! is expected to reduce
the collisional contribution to the total width~see Ref.@44#!.
Therefore, some room for the contributions~i!,~ii ! will also
appear in the case of vacuum cross sections@see Figs. 4~a!,
4~b!#.



ef
at
el
tu
s

o
th
-
e
tr
i,

al
f
st

p-
e
e

o-
-
g
o

en
-

n
Q

A
u

ia

w
e
tio

e

-

id-
and

-

PRC 59 3105ISOVECTOR VIBRATIONS IN NUCLEAR MATTER AT . . .
A recent statistical model analysis ofg spectra produced
by inelastica scattering on120Sn @39# resulted in the con-
clusion that neither the thermal fluctuation model of R
@47# nor the collisional damping model could reproduce d
in details. We believe that the combination of the two mod
would give a much better agreement in that low-tempera
region, where the adiabatic coupling to shape fluctuation
more justified.

Extension to isospin asymmetric nuclear systems, m
suitable for the Pb case, can be performed following
approach of Refs.@17,49,50#. We do not expect to have sub
stantial variations in the temperature behavior of the isov
tor and isoscalar modes unless very high charge asymme
are reached@17,49#. However, in charge asymmetric nucle
a new soft mode different than the isovector and isosc
ones seems to appear@50# due to the collisional coupling o
proton and neutron vibrations, that requires further inve
gation.

Finally, a comment on the validity of the formalism a
plied here to the study of hot GDR in nuclei to a broad
context of physical problems. Indeed it can be easily gen
alized to the description of relative vibrations of any tw
component Fermi liquid with a mutual attraction, for in
stance, of a Coulomb plasma consisting of opposite char
fermions. Another application could be to the oscillations
the electronic cloud in metallic clusters, where the mom
tum nonconservingl 51 term in the collision integral ap
pears due to scattering of electrons on impurities@40#.
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APPENDIX

Here we will calculate the coefficienta (2) in Eq. ~24! for
the collisional relaxation timetcoll , closely following the
formalism of Refs.@51,52#. For simplicity, we will use in the
derivation the Boltzmann-Uehling-Uhlenbeck~BUU! colli-
sion integrals without memory effects. However, as is sho
in Ref. @44#, the collision integrals with memory effects giv
the result which can be obtained using Landau prescrip
tcoll5tBUU /@11(vR /2pT)2#, wheretBUU5a (2)/T2 is the
relaxation time given by the BUU collision integrals.

Time evolution of the space-uniform isovector DFf 5 f n
2 f p satisfies the equation~see Refs.@15,16#!

] f ~p;t !

]t
5I 5I nn1I np2I pp2I pn , ~A1!

whereI q1q2
stands for the collision integral of particles of th

sort q15n,p with particles of the sortq25n,p. Explicitly
.
a
s
re
is

re
e

c-
ies

ar

i-

r
r-

ed
f
-

.

.
s,
l

n

n

I q1q2
~p1;t !5

g2

~2p!6E dp2dp3dp4

3wq1q2
~p1,p2;p3,p4!d~ne!d~np!Q

3@ f q1
~p1;t !, f q2

~p2;t !; f q1
~p3;t !, f q2

~p4;t !#,

~A2!

where

Q~ f 1 , f 2 ; f 3 , f 4![~12 f 1!~12 f 2! f 3f 4

2 f 1f 2~12 f 3!~12 f 4!,

wq1q2
(p1,p2;p3,p4) is the spin-averaged probability of two

body collisions with initial momenta (p1,p2) and final mo-
menta (p3,p4), ne5ep1

1ep2
2ep3

2ep4
, np5p11p22p3

2p4. Neglecting the dependence ofwq1q2
on the DF, we can

write down perturbations of collision integrals~A2! keeping
the terms of the first order ind f q :

dI q1q2
~p1;t !5

g2

~2p!6E dp2dp3dp4

3wq1q2
~p1,p2;p3,p4!d~np!$a (1)cq1

~p1;t !

1a (2)cq2
~p2;t !1a (3)cq1

~p3;t !

1a (4)cq2
~p4;t !%, ~A3!

where

cq~p;t ![d f q~p;t !S ] f eq~ep!

]ep
D 21

~q5n,p!, ~A4!

a ( i )[
dQ@ f eq~ep1

!, f eq~ep2
!; f eq~ep3

!, f eq~ep4
!#

d f eq~epi
!

3
] f eq~epi

!

]epi

d~ne!, i 51,2,3,4. ~A5!

In Eq. ~A3! the isospin-symmetric nuclear matter is cons
ered that results in the same equilibrium DF for neutrons
protons.

For the perturbation of the collision integralI of the RHS
of Eq. ~A1!, assuming isotopic invariance (wpp5wnn , wpn
5wnp! we can write after simple algebra

dI ~p1;t !5dI nn1dI np2dI pp2dI pn

5
g2

~2p!6E dp2dp3dp4d~np!$~wpp1wnp!

3@a (1)c~p1;t !1a (3)c~p3;t !#1~wpp2wnp!

3@a (2)c~p2;t !1a (4)c~p4;t !#%, ~A6!

where c(p;t)5cn(p;t)2cp(p;t). The triple integral over
momenta in Eq. ~A6! can be taken using Abrikosov
Khalatnikov transformation~see Ref.@14#!, which is valid in
the limit T!eF :
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E dp2dp3dp4d~np!5
~m* !3

2 E
0

p

dQ
sinQ

cos~Q/2!

3E
0

p

dfE
0

2p

df2E
0

`

de2de3de4 ,

~A7!

whereu5( p̂1 ,p̂2)̂ is the angle between momenta of colli
ing particles (p̂i[pi /upiu, i 51,2,3,4),f is the angle between
the planes given by the momenta of incoming and outcom
particles

cosf5
@ p̂13 p̂2#•@ p̂33 p̂4#

u@ p̂13 p̂2#uu@ p̂33 p̂4#u
, ~A8!

f2 is the azimutal angle ofp2 in the system with thez axis
alongp1.

We decompose the perturbation of the DF into spher
harmonics

c~pi ;t !5(
l ,m

a lm~pi ;t !Ylm~ p̂i !, i 51,2,3,4, ~A9!

where coefficientsa lm can be taken on the Fermi surfac
sinceT!eF . According to Refs.@15,42,53#, the partial re-
laxation timet l

BUU is defined as follows:

1

t l
BUU

52

E
0

`

depE dV p̂Ylm* ~ p̂!dI ~p;t !

E
0

`

depE dV p̂Ylm* ~ p̂!d f ~p;t !

5

E dV p̂Ylm* ~ p̂!d Ī ~ p̂;t !

a lm
, ~A10!

where

d Ī ~ p̂;t !5E
0

`

depdI ~p;t !. ~A11!

Using Eq.~A7!, after somewhat lengthy but standard calc
lations, we come to the expression

1

t l
BUU

5
~m* !3T2

12p2 $^wppF l
(1)&12^wnpF l

(2)&%[
T2

k l
,

~A12!

where angular brackets denote the averaging over anglu
andf @16,42,51#

^F~u,f!&[
1

2pE0

p

du
sinu

cos
u

2

E
0

p

dfF~u,f!, ~A13!

F l
(1)511Pl~ p̂2• p̂1!2Pl~ p̂3• p̂1!2Pl~ p̂4• p̂1!,

~A14!
g

l

-

F l
(2)512Pl~ p̂2• p̂1!2Pl~ p̂3• p̂1!1Pl~ p̂4• p̂1!.

~A15!

A factor of 2 in the second term in curly brackets of E
~A12! is due to half momentum space integration overdp3
on the LHS of Eq.~A7! ~see Refs.@14,54,55#!. The argu-
ments of the Legendre polynomials in functions~A14!,
~A15! are

p̂2• p̂15cosu,

p̂3• p̂15cos2
u

2
1sin2

u

2
cosf,

p̂4• p̂15cos2
u

2
2sin2

u

2
cosf.

For l 51, 2, and` we have

F1
(1)50, F1

(2)54 sin2
u

2
sin2

f

2
, ~A16!

F2
(1)53 sin4

u

2
sin2f, F2

(2)53 sin2u sin2
f

2
,

~A17!

F`
(1)5F`

(2)51. ~A18!

Collision probabilities can be expressed in terms of cr
sections as follows:

wpp5
~2p!3

2m2

dspp

dVc.m.
, ~A19!

wpn5
~2p!3

2m2

dspn

dVc.m.
, ~A20!

wheredspp /dVc.m. and dspn /dVc.m. are differential cross
sections of pp and np scattering, dVc.m.
5sinuc.m.duc.m.dfc.m., uc.m., andfc.m. are polar and azimu-
tal scattering angles in the center of mass system of collid
particles,m5m* /2 is the reduced mass. Differential cro
sectionsdspp /dVc.m. anddspn /dVc.m. depend on the rela
tive momentump85up12p2u/2 of scattered particles and o
the polar angle

TABLE I. Parametersk l , l 51, 2, and` (MeV2 fm/c) de-
fined in Eq.~A12! at various choices of nucleon-nucleon scatteri
cross sections.

NN cross sections k1 k2 k`

Vacuum of Ref.@28# 503 491 401
In-medium at 1123 1068 1003
r5r0

of Ref. @28#

Isotropic energy- 920 1022 818
independent
of Ref. @15#
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uc.m.5arccosS ~p12p2!•~p32p4!

up12p2uup32p4u
D .

For particles scattered on the Fermi surface, we have

p85pF sin
u

2
, uc.m.5f.

In a particular case of isotropic energy-independent cr
sections the result of Ref.@15# is recovered:

1

t1
BUU

5
32

9
msvT2, ~A21!

1

t2
BUU

5
32

15
mssT

2, ~A22!

where sv5snp/2, ss5(snn1spp12snp)/4, snp
5(4p)dsnp /dVc.m..50 mb, snn.spp5(2p)dspp /
dVc.m..25 mb.
v

.

.

da
le

C

ss

We derived relaxation timest1
BUU , t2

BUU andt`
BUU using

pp andnn energy- and angular-dependent differential cro
sections calculated with BonnA potential in Refs.@27,28#
and puttingm* 5m in Eq. ~A12!. Results of these calcula
tions both with vacuum and in-medium cross sections at n
mal nuclear density are given in Table I. It is seen from t
table that alwayst1

BUU.t2
BUU.t`

BUU . That gives the idea of
putting the same value for all relaxation timest l

BUU , i.e., to
apply the usual relaxation time approximation. Thus, we
tain the collision integral of Eq.~1! with the relaxation time
tcoll given by Eq.~24!, where

a (2)5
3

k1
211k2

211k`
21

52.3 ~5.4! MeV, ~A23!

for vacuum~in-medium! cross sections of Ref.@28#.
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