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Isovector vibrations in nuclear matter at finite temperature

M. Di Toro,! V. M. Kolomietz?*® and A. B. Larionov*
IDipartimento di Fisica and Istituto Nazionale di Fisica Nucleare, Laboratorio Nazionale del Sud, 1-95123 Catania, Italy
2Institute for Nuclear Research, Prosp. Nauki 47, 252028 Kiev, Ukraine
3Cyclotron Institute, Texas A&M University, College Station, Texas 77843-3366
4Kurchatov Institute, Moscow 123182, Russia
(Received 28 July 1998; revised manuscript received 12 January 1999

We consider the propagation and damping of isovector excitations in heated nuclear matter within the
Landau Fermi-liquid theory. Results obtained for nuclear matter are applied to calculate the giant dipole
resonancéGDR) at finite temperature in heavy spherical nuclei within a Steinwedel and Jensen picture. The
centroid energy of the GDR slightly decreases with increasing temperature and the width incréEsésr as
temperature3 <4 MeV in agreement with recent experimental data for GDR’f®b and*?°Sn. The validity
of the method for other Fermi fluids is finally suggestes0556-28139)00206-X]

PACS numbe(s): 24.30.Cz, 21.60.Ev, 21.65f

I. INTRODUCTION the isovector strength functions are reported. The full width
at half maximum(FWHM) of the theoretical photoabsorp-
In recent years the GDR built on highly excited states is dion cross section by heateéd®b and*?°Sn nuclei is com-
central issue of many experimental and theoretical studiepared to the experimental data. That gives a possibility to get
(see Ref[1], and references thergirin this context, one of Some restrictions on the value of the in-meditiN scatter-
the most important open problems is the behavior of théng cross sections. Discussion and summary are given in Sec.
GDR width in nonrotatingnuclei as a function of tempera- V.
ture. There are two essentially different theoretical ap-
proaches to this problem. The first offf explains the tem- Il. RESPONSE FUNCTION
perature increasing of the width as an effect of the adiabatic ) ) )
coupling of the GDR to thermal shape deformations. In the The isovector response of uniform nuclear matter is de-
second approadi8—7] the thermal contribution to the damp- s.,c.nbed by the Imean;ed Landau—VIgsovlequatmn WIFh a _coI—
ing width arises from an increasing nucleon-nuclediNj lision term treated in the relaxation time approximation
collision rate (2h excitations plus a Landau spreading (411,14
due to new thermally allowegh transitions[8—12].
In the present W(_)rk, f_ollowing the ideology of_the s_econ_d ﬁ5f+v~V,5f—V,(5U+25V)-V S }5”'21,
approach, we consider isovector volume vibrations in spin- dt e
isospin symmetrical nuclear matter at finite temperature. A 1)
similar problem was studied in Refg,10] within the ran-
dom phase approximatiofRPA), one-body, method. How- Where v=p/m* is a velocity, 6f=éf,—of,, sU=6U,
ever the Landau damping mechanism of the dissipation of a 0Up, and oV=(6V,—6Vp)/2 (Vq=T10V, 7=+1,
propagating mode due to the thermal smearing of a Fermip= —1) [9] are differences between neutron and proton dis-
distribution is too weak to be responsible for the fast increasdibution functions(DFs), mean fields, and external fields,
of the observed GDR width with temperat(&10,13. respectively foq(€,=p?/2m*) is the equilibrium finite tem-
The puzzle can be solved by taking into account the twoperature Fermi distribution, and the notatical means that
body dissipation through the collision integral of the Landau-the perturbation of the DFf|,~, in the collision integral
Vlasov equatiori3]. We will use a quantum kinetic equation includes only Fermi surface distortions with a multipolarity
which leads to the introduction of memory effects in thel=1 in order to conserve the particle number in the collision
collision term in order to include off energy-shell contribu- processe¢14]. The inclusion of thd =1 harmonic in the
tions [14]. Moreover, it was shown in Ref§15,16, that  collision integral of Eq.(1), at variance with the isoscalar
memory effects are essentially increasing the widths of mulcase{11], is due to nonconservation of the isovector current,
tipole resonances at small temperatures. In this work, wée., due to a collisional friction force between counter-
calculate the isovector strength function of nuclear mattestreaming neutron and proton flows.
taking into account both thermal Landau damping and two- Equation(1) is derived assuming isospin symmetric un-
body collisional dissipation, including the quantum memoryperturbed nuclear matter, where isovector and isoscalar per-
contribution. turbations propagate independently. In the case of asymmet-
The structure of the work is as follows. In Sec. Il the ric nuclear matter, equations for isovector and isoscalar DF
response function of the nuclear matter to the isovector exbecome coupled through termgN—2Z)/A (see Ref[17]).
ternal field is derived. Various dissipation mechanisms con- The dynamical component of the isovector mean figlh
tributing to the damping width of the GDR in hot nuclei are can be expressed in terms of the isovector Landau parameter
discussed. In Sec. Il the results of numerical calculations of :
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_ Fo
SU= o 9 2
where
5p(r;t)=f 9P st rpit) 3
(2m)°

is the density perturbatiom=2 is the spin degeneracy fac-
tor, and

gdp (_ 0feq(ep))

N(T)= (27 Ie

(4)

p

is the thermally averaged density of states|(0)
=gpem/272, where for simplicity we putm*=m
=938 MeV. It is assumed =1 everywhere in this work.

For an external fieldéVoexp(kr —iwt), periodic in
space and time, the isovector collective response fungéipn
can be derived from Ed1):

op 2N(T)xt
O R L )
1+Foxt
where x7 is the intrinsic response functiof18—20Q. The
explicit form of the functiony1(w,k) is (details of deriva-
tion can be found in Ref11])

. N(©O) (= p’sx(psip) dfefep)
x1(s)=— P—— =
MPeN(T) Jo "s' +is"y(ps/p)  9€p

Ref.[11], one should changs”—is"(1+3s’'sp?/p?) in the
denominator of Eq(6). This difference is just due to inclu-
sion of the damping of thé=1 harmonic in the isovector
channel. We note a misprint in the right-hand s({&S) of
Eq. (30) in Ref.[11]: it should be multiplied by a minus sign.

For a given momentum transféy the strength function
per unit volume is

2N(T) Im(x )/

[1+FyRe(xDI2+[FIm(xP)1?
(12)

:i colly —
Si(@) = —Im(x“")

The strength function satisfies the following energy weighted
sum rule(EWSR) [9,10]:

o B k2
fo dooS(w)= 2mPor (13

wherep,=0.16 fm 2 is the nuclear saturation density.
Collective modes are given by the poles of the response
function (5)

1+Fxi(s)=0. (14)

By solving Eq.(14) we obtain the complex frequency

w=wR+iw,=k%(s—is”). (15)

The application of the formalism discussed above to finite
nuclei is based on the Steinwedel-Jensé€®) model
[9,10,21 which describes the GDR in heavy nuclei as a vol-

®  ume polarization mode conserving the total dengityp,
where + pp - According to this model, we choose the wave number
of the normal mode ak= 7/2R, whereR is the radius of a
. e\ 12 nucleus. Inside the nucleus, the unperturbed distribution of
p=pF(6—) , (7 nucleons is supposed to be uniform. The SJ model gives a
F good overall reproduction of the ground state GDR energies
for heavy spherical nucl¢22].
- i gdp eofed €) ®) Equation(1) contains the two free parameters: the isovec-
3peq) (2m)3 P ETPT tor Landau parametef, and the relaxation time. The is-
ovector Landau parametd¥, at zero temperature can be
gdp expressed as a function of the symmetry energy coeffi@ent
Peq= erq( €p) (9)  in the WeizSaker mass formula as follow3]:
— i 3B
are quasiparticle average momentum, average kinetic energy Fo(T=0)= - 1. (16)
F

(normalized afT=0 on pr and e¢), and density, with the
complex variable

. m wm
s=s'+is", §'=—, §'=—, (10
pk pk

x(2) is a Legendre function of the second kind

11 M
X(Z)ZEJ_ldME- (11)

For a Skyrme interaction, the coupling constaf
=F,(T)/N(T) has the following well-known structuresee
Ref. [24]):

2
’ pF to
f0=—4 [to(2%,+ 1) —t1(2%;+1)]— E(2X0+ 1)

t3
— 52X+ 1)p". (17)

Equation(6) for the intrinsic isovector response function has We have chosen the T6 interaction of R&5] for numerical
only a minor difference with the isoscalar case. Namely, tocalculations: to=—1794.20 MeV i, t,=294.00

recover the isoscalar response function given by(Bg). in

MeV fm°, t,=—294.00 MeV fm, t;=12817.00
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MeV fm3(t*te) - x,=0.392, x;=-0.500, x,=—0.500,
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The dependence of the relaxation time on the frequengy

X3=0.500, «=1/3. This interaction is momentum indepen- arises from the memory effects and corresponds to the Lan-
dent and gives exactly Eq2) for the mean field perturba- dau prescriptior{14]. The coefficienta~) depends on the

tion. Respectively, the termpZ in the RHS of Eq.(17) is
equal to zero for the T6 interaction.

NN scattering cross sections. We have calculated this coef-
ficient using energy and angular dependent differential cross

We see that even at the absence of the momentum depe$ections ofpp andnp scattering derived from the BonA
dence, the temperature still influences on the coupling conPotential both with and without in-medium corrections

stant through the the densigy According to Ref[26], the

[27,28 (see the Appendix The results are o)

mean square of a nuclear radius increases quadratically withi 2.3 (5.4) MeV in the case of vacuurin-medium re-

temperature due to thermal pressure of nucleons

(r3y=(r®r_o(1+a,2T?), (18)

wherea,2=0.4x10"2 MeV~ 2 for heavy nuclei. Therefore

3
a,=5 (19

p(T)ZPO(l_apTz)i 2

a,2.

For the coupling constarft) and the Landau parametEf,,

we obtain the following expressions:
fo(T)="15(0)(1+a;T?), (20

Fo(T)=F4(0)(1+apT?), (21)

wheref(0) is defined by Eq(17) with p=p,, and

t3
a;= 2x3+1)pfaa,,
f 12f6(0)( 3 Po P

In the derivation of Eq.(21) we also used the low-
temperature expansion of the level density

(22

2 12
N(T)=N(O)( 1- Eg—'zz)

The thermal dependence NfT) is very weak with respect

to the one off {(T) and can be neglected. That gives for th

interaction T6 ar=a;=0.5x10"2 MeV 2. The zero-
temperature isovector Landau parameter has a Vajiie)
=1.43 corresponding to the symmetry eneggy 30 MeV
andez=37 MeV [see Eq(16)].

duced cross sections.

The wall friction is related to the fragmentation width
[29], i.e., the GDR spreading due to a couplingpto exci-
tations. It can be taken into account as an additional dissipa-
tive source term in the kinetic equation with a relaxation
time (see Ref[16])

2R

Twal=—=§, (25
U
whereR is a nuclear radius,

77,2

"%

T 2

€F

3U|:
4

is the temperature-dependent average velocity of nucleons,
and ¢é~10 is a numerical factor. Actually the value of this
factor can be chosen to fit the fragmentation width of the
GDR in a cold nucleus, which is of the order of 0.5-2 MeV
as given by RPA studies, Refi80,31. Since the tempera-
ture region of interest i <<ep, the relaxation timer,,,
depends on temperature very weakly. This fact is indeed in
agreement with a weak temperature dependence of the frag-
mentation width obtained in RPA calculations, Re&2].

The relaxation timer; caused by the direct particle emis-
sion is related to the escape width (see Ref[33]). From
semiclassical3,33] as well as quantal continuum RPA cal-
culations[34] this quantity turns out to be quite small at all
temperatures. The reason for this is the small amplitude of
the momentum distortions which leads to a quite reduced
probability of direct particle emission. Therefore we will ne-

e9lect the contribution of particle escape to the total relaxation
er.

Ill. NUMERICAL RESULTS

The analysis of a hot GDR is based on the photoabsorp-

The relaxation timer generally includes various dissipa- tion cross section by a thermally excited nucleng,{)

tion mechanismgsee Ref[16)):

1_, -1
_Tcoll+

T Tv_\,;" +7 1 (23

where 7¢, Twai, and 7, are the relaxation times due to
two-body collisions, wall friction, and particle emission, re-
spectively. The most important dissipation mechanism

which can be expressed in terms of the strength function
S(w) of Eq. (12) as follows:

4722 NZ

Uabs(w):m Twsk(w)- (26)

This expression is obtained from comparison of the EWSR

which defines the temperature trend of the total width, is thez13) and the dipole sum rule of ReR1]:

dissipation due taNN collisions. The corresponding two-
body relaxation timer, includes the temperature and

memory effects:

o)
Teoll = (24

T2+ (wgl2m)?

2m%e’ NZ
mc A’

f:d EoadE)= (27

In this work we have studied the photoabsorption cross
section at temperaturéB<4 MeV using vacuum and in-
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FIG. 1. Photoabsorption cross
section by an excited nucleus
20%ph (@) and by *2°Sn (b) at vari-
ous temperatures as a function of
the photon energy. Calculations
are done using vacuum cross sec-
tions plus a wall friction contribu-
tion fitted to the g.s. FWHM.

medium reducediN scattering cross sections. Calculationsmean field predictionf9—11] of a growth ofE gpg with tem-

with a somewhat more developed version of our collisionalperature. To conclude the discussion on the centroid energy,
damping approach, including different relaxation times forye note, that the thermal dependence of the coupling con-
harmonics with =1 andl=2, have been done, actually, for stantf/, introduced according to EqO) (see dashed line in
temperatures up to 10 MeV to eventually see a zero-to-firstig 5" joes not, practically, change the results obtained at

sound transition. These results will be presented in a forth-

coming paper, Ref.35].

In both cases of vacuum and in-medium reduced cross
sections, we have performed calculations switching on an
off the wall friction contributionr,, in the inverse relax-
ation time 7~ ! [see Eq.(23)]. A value of this contribution

constantf ) (dotted ling.
In Fig. 3 (solid lineg, the

mate formula

was chosen to fit the GDR width in ground stéges) nuclei.

Of course when we use in-medium reduced cross sections we
need a larger one-body damping. The following values of the

wall-friction width ',y =2/7,,5 have been obtained:,

=0.5 (3.2) MeV for?%%b andl',,,;=0.9 (3.8) MeV for
12051 for vacuum(in-medium reducedN N scattering cross
sections. Once the ratio wall/collisional dampingTat O is
fixed, one can predict unambiguolsy the temperature behav
ior of the total width. Below, if the opposite is not specially
indicated, the discussion is done for the case of vachiin

cross sections plus wall-friction contribution.

Figure 1 shows the photoabsorption cross section by nu
clei 2°%Pb (a) and *?%Sn (b) as a function of the photon en-
ergy for several temperatures. As the temperature is growing
the centroid energ¥¢pr (i.€., the peak of the photoabsorp-
tion cross sectionis shifting to smaller energies and the
width is increasing. In Fig. 2solid line) we report the tem-
perature dependence of the corresponding centroid energ

FWHM=2|Im()|

real and imaginary parts of the

ole of the response functigi®) are shown as functions of
emperature for a nucleué®Pb. As far as the collective
mode is underdamped, i.elm(w)|/Re(w)<1, an approxi-

(28)

140 ———— 1

T,
e

13.5
| R = const, {y’ = const

[ — R = const, f,(T)
[ — R, M

(MeV)

13.0 -

Ecor

125

12.0 i

for 2%%Ph. To understand better the thermal behavior of 0.0 1.0
Ecpr, We present in Fig. 2see dotted and dashed lin@éso

the calculations performed for a fixed nuclear radRigT
independentin the formula for the wave numbde= 7/2R

2.0 3.0 4.0

T (MeV)

FIG. 2. Temperature dependence of the GDR ené&igyr de-
fined at the peak position of the photoabsorption cross section for a

of the normal mode. We see thagpr decreases mostly due nycleus?®Pb[see Fig. 1a)]. Dotted, dashed, and solid lines corre-
to the thermal expansion of a nucleus. However, it slightlyspond to calculations with fixed raditand fixed isovector cou-

decreases even for a fixed radRigésee dotted line in Fig.)2

pling constant, with fixed R and temperature dependdijt, and

Indeed at larger temperatures an increasing two-body disswith temperature dependeRtandf;, [see Eqs(18), (20)]. A weak
pation should reduce the frequency of the collective motiontemperature dependence of the level densit¥) [see Eq(22)] is

in close analogy with a classical oscillator with a friction always present in the Landau paramekgy=N(T)fg.

Vacuum

force (see also Ref4.36—3§). This is at variance with pure cross sections plus wall friction contribution are used.
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(2F o+ D[(s©)?~1]-(Fg)?
TFg[Fo—(s?)%+1]

-
3

+0(T%, (32

w|=

=y
N

wheres(® is the root of collisionless dispersion relation

-
o
T T

1+ Fox(s©)=0. (33

The Landau parametd¥;, in Egs. (32), (33) is taken atT
=0. The simple expressiai32) for the imaginary part of the
frequencyw (dashed line in Fig. Breproduces the results of
a numerical solution of the “exact” dispersion relati¢iv)

- 2 Im(w), Re(w) (MeV)
-]

oL ] (solid line in the same Fig.)3with a good accuracy for

L temperature3 <2 MeV. At larger temperatures, a slight in-
0 . L . L . L . crease of the damping due to temperature smearing of the
0.0 1.0 2.0 3.0 4.0

Fermi distribution is obtained with the dispersion relation
(14). The difference between these two solutions is of the

FIG. 3. Temperature dependence of Re(wherew is the pole ~ Order of the Landau damping rate in the pure mean field
of the response functiots) (upper solid ling and of —2Im(w), ~ @PProach[9,10. We see that thermal Landau damping is
where Im@) is the imaginary part of the pole of the response Small for the case of GDR, at variance with the case of the
function (5) (lower solid line defined by Eq.(32) (dashed ling  isoscalar modgll], since the isovector Landau parameter is
defined by Eq.(34) (dotted line) Open circles show the FWHM larger than the isoscalar one for nuclear effective interactions
extracted from the photoabsorption cross section of Fig. Cal-  at normal density. As a consequence a weaker coupling be-
culations are for a nucleur®®Pb using vacuum cross sections plus tween single particle and collective motion is expected for
wall friction contribution. isovector vibrationg19].

The dominance of the collisional contribution to the total
has to be fulfilled 16]. We see from Fig. 3compare lower damping rate of the GDR is just expressed by an approxi-
solid line to the open circl@sthat the conditior{28) is really ~ mate relation(dotted line in Fig. 3
satisfied, corresponding to the Lorentzian shape of the pho-
toabsorption strength at high temperatutese Fig. 1 and
Ref. [39]). Some relatively small deviations from E(R8)
present in Fig. 3 can be explained by a quite large width
already aff =0. For instance, we have checked that &) which was used, for instance, in Rgf5] to calculate widths
is fulfilled with a much better accuracy in the case of in-Of giant resonances. The main deviation from E34) in the
medium reduced\N cross sections without wall friction dispersion relatior(14) is caused by the exclusion of the
contribution. =0 harmonic from the collision integral on the RHS of Eq.

At low temperatures, one can neg|ect the temperaturél), i.e., dueto taking into account the partiCIe number con-
spreading of the equilibrium Fermi distribution substituting Servation. This results in a smaller absolute value ofan(

T (MeV)

—Im(w)= %, (34)

8(er— €p) instead of — of o €,)/ d€,] into Eq.(6). Thus we A source of uncertainty in our calculations is given by the
obtain the following approximate low-temperature expres-choice of theNN cross section§see Eq.(A23) in the Ap-
sion for the intrinsic response function: pendixy. This is caused mostly by two reasdisThe density

in a finite nucleus is not uniform. It is clear that vacuum
cross sections are more appropriate in the surface re@ipn.

xH(s)= ﬂ (29 A quite large uncertainty of the in-mediuMN cross sec-
s’ +is"x(s) tions themselves exists, as a result from various calculations
(see Refs[27,43).
where variables, s”, ands’ are defined by Eqg10) with An explicit implementation of the density-dependent in-

the chang¢7—> pe . We remark that E¢29) when applied to medium cross section for the space nonuniform density dis-
the case of an electron g&B,=N(T)4me?/k?] gives just tribution of a finite nucleus, as was done in Ref4], is out
the longitudinal dielectric fungtion of the scope of the present work. Thus, we have considered

the two limiting cases of vacuum cross sections and in-
medium reduced cross sections of Refg7,2§ at the
nuclear saturation densipgp. In Figs. 4a)—4(d) calculations
are presented with vacuumdN cross sectionga), (b) and
obtained by Mermirf40]. This is to stress the more general with in-medium onegc), (d) in comparison to the experi-
framework of the results presented hédd]. mental widths from Refd45,46] for the nuclei2°®Pb (a), (c)

In the rare collision regime fr7>1), an approximate and 12%Sn (b), (d). The use of vacuum cross sections gives
SO|uti0n Of the diSperSion relat|dr14) W|th the intrinSiC re- much better agreement W|th experiment Compared to the
sponse function29) can be found analyticallfsee Refs. case of in-medium reduced cross sections. This conclusion is
[14,42): not influenced by the switching on/off the wall friction con-

tribution [compare solid and dotted lines in Figsa4-4(d)].
wr=vks®+0O(T4), (31)  We see from Figs. @), 4(d), that the wall friction contribu-

e(k,0)=1+FqxT (30
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FIG. 4. The width FWHM of the GDR mode in nucl&i®b(a), (c) and 12°Sn(b), (d) as a function of temperature. Solid and dotted lines
represent calculations with and without a wall friction contribution, respectively. P&aeltb) [(c), (d)] contain results obtained with
vacuum(in-medium reducedN N scattering cross sections. Points with errorbars show the experimental widths frofdR¢f°%b) and
from Ref.[46] (}2%Sn).

tion is important mostly at low temperature and graduallyfragmentation width to the total GDR damping width already
decreases at high temperature. That is, in spite of the increast T=0 [see Figs. @), 4(b)]. The thermal Landau damping

ing one-body damping rate,,5 with temperaturdsee Eq.  due to the coupling of thermally excited quasiparticles to the
(25] and due to the nonlinear deviations from EHg4), collective mode is also found to be negligible. Thus the re-
caused by imposing the particle number conservation on thexation of the volume isovector mode is caused mainly by

RHS of Eq.(1). NN collisions. An increasing temperature shifts the centroid
energy of the isovector strength function to smaller values,
IV. DISCUSSION AND SUMMARY mostly due to the thermal swelling of a nucleus. The calcu-

We h tudied the i i f a heated .lated width is proportional to */in the temperature region
. € have sludied the iSovector response ot a heated Spi- - \1a/ stydied here, that corresponds to a dominant col-
isospin symmetric nuclear matter on the basis of the linear-

ized Landau-Vlasov equation with a collision integral includ- lisional damping of the isovector zero sound mode and leads

ing memory effects in the relaxation time approximation.to aT? behavior of the GDR-FWHM, _ .
Further, the dipole polarization SJ mode in a finite nucleus /e have shown that some general GDR properties at high
has been considered. excitation energy can be obtained directly from Fermi-liquid
The one-body dissipation due to wall friction has beenth€ory. However, the main purpose of this work is not to get
included as an additional source term in the kinetic equatioerfect agreement with data for finite nuclei. Indeed, we are
that simulates the fragmentation width contributiggee  Well aware that other contributions to the damping are miss-
Refs.[16,29). Since the aim of this work was to study the ing in the present approacki) Thermal shape fluctuations
thermal behavior of the GDR damping width, we have fitted[2,47]; (ii) fluctuations due tNN correlations[48]. In par-
a zero-temperature experimental width varying a value of thdicular the inclusion of these contributions could improve the
wall friction contribution as a free parameter and keeping theagreement with the data in the case of in-medium reduced
collisional contribution fixed. Once this fit is done, the tem- NN cross sectionfsee Figs. &), 4(d)]. Moreover, the inclu-
perature dependence of the width is defined unambiguouslion of the effective mass corrections in the calculation of the
for a given set of theNN scattering cross sections. collisional relaxation times EqA12) is expected to reduce
We have found that vacuuiN cross sections, used ne- the collisional contribution to the total widttsee Ref[44]).
glecting effective mass effects, give better agreement witfTherefore, some room for the contributiof(ii) will also
experimental data on the GDR width at finite temperatureappear in the case of vacuum cross sectiseg Figs. @),
That implies a quite small40.5 MeV) contribution of the 4(b)].
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A recent statistical model analysis ¢fspectra produced 9°
by inelasticar scattering on*?°Sn [39] resulted in the con- |qlq2(p1:t)=wf dp,dpsdps
clusion that neither the thermal fluctuation model of Ref.
[47] nor the collisional damping model could reproduce data Xquqz(pl'DZ; P3,P4) (A €)S(AP)Q
in details. We believe that the combination of the two models
would give a much better agreement in that low-temperature X[fq, (P10, o, (P2it):fq (Pait). Fo (Pait)],

region, where the adiabatic coupling to shape fluctuations is
more justified.

Extension to isospin asymmetric nuclear systems, MOrg here
suitable for the Pb case, can be performed following the

(A2)

approach of Refd.17,49,50. We do not expect to have sub- Q(fq,fo:fa,fa)=(1—f1)(1—f,)faf,
stantial variations in the temperature behavior of the isovec-
tor and isoscalar modes unless very high charge asymmetries —f1fo(1—1F3)(1—"fy),

are reachedl17,49. However, in charge asymmetric nuclei,
a new soft mode different than the isovector and isoscala¥a,q,(P1:P2i P3,P4) is the spin-averaged probability of two-
ones seems to apped0] due to the collisional coupling of body collisions with initial momentap;,p,) and final mo-
proton and neutron vibrations, that requires further investimenta (3,ps), Ae=¢€, + €, — €, —€p,, APp=pP1+pP—P;3

1 2 3 4

gation. — P4 Neglecting the dependencesf, 4, on the DF, we can

Finally, a comment on the validity of the formalism ap- . . L ,
plied here to the study of hot GDR in nuclei to a broadermgtetzecrircr)]v;noftehr;u;itr);ug?dsechE6c]f)ll.|8|on integrals2) keeping
q:

context of physical problems. Indeed it can be easily gener-
alized to the description of relative vibrations of any two- 92
component Fermi liquid with a mutual attraction, for in- 4l qqu(pl;t):WJ dp,dpsdp,
stance, of a Coulomb plasma consisting of opposite charged

fermions. Another application could be to the oscillations of X Wy.q.(P1P2 PaPa) S(AP) aPipy (prit)
the electronic cloud in metallic clusters, where the momen- 292 !
tum nonconserving=1 term in the collision integral ap- +a(2)l//q2(p2;t)+a(3)¢ql(p3;t)

pears due to scattering of electrons on impurifi&3).
+ a(4)¢q2( P&}, (A3)
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dfeq(€p)

-1
o€y ) (q=n,p), (A4)

é’feq( epi)

APPENDIX dep,

X

S(Ae), 1=1234. (A5)

Here we will calculate the coefficient ) in Eq.(24) for  In Eq. (A3) the isospin-symmetric nuclear matter is consid-
the collisional relaxation timer.y, closely following the ered that results in the same equilibrium DF for neutrons and
formalism of Refs[51,52. For simplicity, we will use in the  protons.
derivation the Boltzmann-Uehling-Uhlenbe¢BUU) colli- For the perturbation of the collision integriabf the RHS
sion integrals without memory effects. However, as is showrof Eq. (A1), assuming isotopic invariancevg,=wu,, Wpn
in Ref.[44], the collision integrals with memaory effects give :Wnp) we can write after simple algebra
the result which can be obtained using Landau prescription

Teol= Tauu/[ 1+ (0r/27T)?%], where rgyu=a!)/T? is the 81 (py;t) = 8l pnt 81 np— 8l pp— 8l pn
relaxation time given by the BUU collision integrals. )

Time evolution of the space-uniform isovector DE f, __9 f dp,dp=dps8( A p){ (Wyp+ W)
—f, satisfies the equatiofsee Refs[15,16)) (2m)® 2nRsERa pp " Tnp

X[aMy(py;t) + D p(pgit) ]+ (Wpp—Wip)
(A1) X[a®y(pyit) +aDy(pst) 1, (AB)

where ¢(p;t) = ¥n(p;t) — ¥p(p;t). The triple integral over
o ) momenta in Eq.(A6) can be taken using Abrikosov-
wherel o, stands for the collision integral of particles of the Khalatnikov transformatioisee Ref[14]), which is valid in

sortg,;=n,p with particles of the sortj,=n,p. Explicitly the limit T<eg:

apt)y
=1 =Tt lnp=lpp~ lpn,
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_(m*)3 ” sin® ®()=1—P(p2-Pp1)— Pi(P3-P1)+ P(Ps- Pa)-
| doadnpiainp =5 [ Tao (A15)

m 2w il A factor of 2 in the second term in curly brackets of Eq.
X fo d‘f’f() dd’ZL deydezdey, (Al12) is due to half momentum space integration oupg
on the LHS of Eq.(A7) (see Refs[14,54,59). The argu-
(A7) ments of the Legendre polynomials in functiofal4),
S (A15) are
where 6= (p;,p,) is the angle between momenta of collid- R
ing particles p;=p;/|pi|, i=1,2,3,4),¢ is the angle between P2-p1=COSH,
the planes given by the momenta of incoming and outcoming
particles

.. 9 .0
o p3-p1=co§§+sm2§cos¢,
_ [P1XP2]-[P3X P4l

0S¢ = =
I[p1X p2lI[P3X Pall

(A8) o 0 0
Pa-P1= cos?z - sinzzcosdx

¢, is the azimutal angle gb, in the system with the axis

a|0ng p;. Forl=1, 2, and« we have
We decompose the perturbation of the DF into spherical ) s
harmonics ®{I=0, ©f)=4sif 5 sit, (A16)

PP D=2 am(PiDYim(P),  1=1,234, (A9) 0 s
" d{I=3 Sin“isinz(ﬁ, ®{)=3 sinzesinzi,

where coefficientsy,, can be taken on the Fermi surface, (A17)
since T<egr. According to Refs[15,42,53, the partial re-
laxation timerP" is defined as follows: P =p)=1. (A18)
* vk o . Collision probabilities can be expressed in terms of cross
1 fo depf d05Yim(P) 1 (p:t) sections as follows:
A Fd fdﬂ YE.(P) St (pit) (2m)° do
€p pYim(P)oT(P; _ PP
0 Wee 2/-‘/2 dQc.m.’ (A19)
f QY (P) Sl (pst) (2m)3 dopy 20
_ Won=—"5"7" ,
= e : (A10) P 242 dQen
where wheredo,,/dQ ¢, anddo,,/dQ., are differential cross

sections of pp and np scattering, dQ.p.
- o =8inf; nd0. mddcm.s Ocm, and o, , are polar and azimu-
sl(p;)= Jo depol (p;t). (All)  tal scattering angles in the center of mass system of colliding

particles, u=m*/2 is the reduced mass. Differential cross

Using Eq.(A7), after somewhat lengthy but standard calcu-S€ctionsdop,/dQ¢ , anddoy,/dQ), depend on the rela-
lations, we come to the expression tive momentunp’ =|p,—p,|/2 of scattered particles and on
the polar angle
1 (m* )STZ T2
— (+) (= TABLE |. Parametersc;, =1, 2, ande (MeV? fm/c) de-
—— (W, @ Y+ 2(w, , @)} , I ' 2,
T|BUU 127 < PP np Kj fined in Eq.(A12) at various choices of nucleon-nucleon scattering
(A12) cross sections.

where angular brackets denote the averaging over amglesNN cross sections K1 Ko Ke
and ¢ [16,42,5]
Vacuum of Ref[28] 503 491 401
1 (= sing (= In-medium at 1123 1068 1003
<F(0,¢)>E—f dﬁ—f doF(0,¢), (A13)  p=p,
2 0 0 0
co of Ref.[28]
Isotropic energy- 920 1022 818
. o o o independent
O{M=1+Py(py-p1)— Pi(P3-P1) — Pi(Ps- P), of Ref. [15]

(A14)
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(P1—P2) - (P3—Pa) We derived relaxation times;“Y, 75Y" and 72" using
fc.m=arcco Pi—pallps—pd | pp andnn energy- and angular-dependent differential cross
sections calculated with BonA potential in Refs[27,2§
For particles scattered on the Fermi surface, we have and puttingm* =m in Eq. (A12). Results of these calcula-
tions both with vacuum and in-medium cross sections at nor-
P’ =pe sinf O = b mal nuclear density are given in Table I. It is seen from the

table that always® Y= 75%Y=72Y  That gives the idea of

In a particular case of isotropic energy-independent crosButting the same value for all relaxation time’", i.e., to

sections the result of Ref15] is recovered: apply the usual relaxation time approximation. Thus, we ob-
tain the collision integral of Eq.1l) with the relaxation time

1 32 Teon given by Eq.(24), where

S0~ 5 Mo T (A21)
1
1 32 3

TBUU = 1_5m0'sT ) (A22) a(_)Zﬁ =2.3 (5.4 MeV, (A23)
2 Ky Tt Ky TK,

where  o,=0on/2, os=(onatoppt20mp)/4, oy
=(4m)dop,/dQn=50 mb, Tnn=0pp=(2m)dop,/

dQ. =25 mb. for vacuum(in-medium cross sections of Ref28].
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